xref: /freebsd/sys/dev/safe/safe.c (revision 4f19c2e99b0d5429c5f0dee1952f170c699a4954)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2003 Sam Leffler, Errno Consulting
5  * Copyright (c) 2003 Global Technology Associates, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 /*
32  * SafeNet SafeXcel-1141 hardware crypto accelerator
33  */
34 #include "opt_safe.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/proc.h>
39 #include <sys/errno.h>
40 #include <sys/malloc.h>
41 #include <sys/kernel.h>
42 #include <sys/mbuf.h>
43 #include <sys/module.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/sysctl.h>
47 #include <sys/endian.h>
48 #include <sys/uio.h>
49 
50 #include <vm/vm.h>
51 #include <vm/pmap.h>
52 
53 #include <machine/bus.h>
54 #include <machine/resource.h>
55 #include <sys/bus.h>
56 #include <sys/rman.h>
57 
58 #include <opencrypto/cryptodev.h>
59 #include <opencrypto/xform_auth.h>
60 #include <sys/random.h>
61 #include <sys/kobj.h>
62 
63 #include "cryptodev_if.h"
64 
65 #include <dev/pci/pcivar.h>
66 #include <dev/pci/pcireg.h>
67 
68 #ifdef SAFE_RNDTEST
69 #include <dev/rndtest/rndtest.h>
70 #endif
71 #include <dev/safe/safereg.h>
72 #include <dev/safe/safevar.h>
73 
74 #ifndef bswap32
75 #define	bswap32	NTOHL
76 #endif
77 
78 /*
79  * Prototypes and count for the pci_device structure
80  */
81 static	int safe_probe(device_t);
82 static	int safe_attach(device_t);
83 static	int safe_detach(device_t);
84 static	int safe_suspend(device_t);
85 static	int safe_resume(device_t);
86 static	int safe_shutdown(device_t);
87 
88 static	int safe_probesession(device_t, const struct crypto_session_params *);
89 static	int safe_newsession(device_t, crypto_session_t,
90 	    const struct crypto_session_params *);
91 static	int safe_process(device_t, struct cryptop *, int);
92 
93 static device_method_t safe_methods[] = {
94 	/* Device interface */
95 	DEVMETHOD(device_probe,		safe_probe),
96 	DEVMETHOD(device_attach,	safe_attach),
97 	DEVMETHOD(device_detach,	safe_detach),
98 	DEVMETHOD(device_suspend,	safe_suspend),
99 	DEVMETHOD(device_resume,	safe_resume),
100 	DEVMETHOD(device_shutdown,	safe_shutdown),
101 
102 	/* crypto device methods */
103 	DEVMETHOD(cryptodev_probesession, safe_probesession),
104 	DEVMETHOD(cryptodev_newsession,	safe_newsession),
105 	DEVMETHOD(cryptodev_process,	safe_process),
106 
107 	DEVMETHOD_END
108 };
109 
110 static driver_t safe_driver = {
111 	"safe",
112 	safe_methods,
113 	sizeof (struct safe_softc)
114 };
115 
116 DRIVER_MODULE(safe, pci, safe_driver, 0, 0);
117 MODULE_DEPEND(safe, crypto, 1, 1, 1);
118 #ifdef SAFE_RNDTEST
119 MODULE_DEPEND(safe, rndtest, 1, 1, 1);
120 #endif
121 
122 static	void safe_intr(void *);
123 static	void safe_callback(struct safe_softc *, struct safe_ringentry *);
124 static	void safe_feed(struct safe_softc *, struct safe_ringentry *);
125 static	void safe_mcopy(struct mbuf *, struct mbuf *, u_int);
126 #ifndef SAFE_NO_RNG
127 static	void safe_rng_init(struct safe_softc *);
128 static	void safe_rng(void *);
129 #endif /* SAFE_NO_RNG */
130 static	int safe_dma_malloc(struct safe_softc *, bus_size_t,
131 	        struct safe_dma_alloc *, int);
132 #define	safe_dma_sync(_dma, _flags) \
133 	bus_dmamap_sync((_dma)->dma_tag, (_dma)->dma_map, (_flags))
134 static	void safe_dma_free(struct safe_softc *, struct safe_dma_alloc *);
135 static	int safe_dmamap_aligned(const struct safe_operand *);
136 static	int safe_dmamap_uniform(const struct safe_operand *);
137 
138 static	void safe_reset_board(struct safe_softc *);
139 static	void safe_init_board(struct safe_softc *);
140 static	void safe_init_pciregs(device_t dev);
141 static	void safe_cleanchip(struct safe_softc *);
142 static	void safe_totalreset(struct safe_softc *);
143 
144 static	int safe_free_entry(struct safe_softc *, struct safe_ringentry *);
145 
146 static SYSCTL_NODE(_hw, OID_AUTO, safe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
147     "SafeNet driver parameters");
148 
149 #ifdef SAFE_DEBUG
150 static	void safe_dump_dmastatus(struct safe_softc *, const char *);
151 static	void safe_dump_ringstate(struct safe_softc *, const char *);
152 static	void safe_dump_intrstate(struct safe_softc *, const char *);
153 static	void safe_dump_request(struct safe_softc *, const char *,
154 		struct safe_ringentry *);
155 
156 static	struct safe_softc *safec;		/* for use by hw.safe.dump */
157 
158 static	int safe_debug = 0;
159 SYSCTL_INT(_hw_safe, OID_AUTO, debug, CTLFLAG_RW, &safe_debug,
160 	    0, "control debugging msgs");
161 #define	DPRINTF(_x)	if (safe_debug) printf _x
162 #else
163 #define	DPRINTF(_x)
164 #endif
165 
166 #define	READ_REG(sc,r) \
167 	bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (r))
168 
169 #define WRITE_REG(sc,reg,val) \
170 	bus_space_write_4((sc)->sc_st, (sc)->sc_sh, reg, val)
171 
172 struct safe_stats safestats;
173 SYSCTL_STRUCT(_hw_safe, OID_AUTO, stats, CTLFLAG_RD, &safestats,
174 	    safe_stats, "driver statistics");
175 #ifndef SAFE_NO_RNG
176 static	int safe_rnginterval = 1;		/* poll once a second */
177 SYSCTL_INT(_hw_safe, OID_AUTO, rnginterval, CTLFLAG_RW, &safe_rnginterval,
178 	    0, "RNG polling interval (secs)");
179 static	int safe_rngbufsize = 16;		/* 64 bytes each poll  */
180 SYSCTL_INT(_hw_safe, OID_AUTO, rngbufsize, CTLFLAG_RW, &safe_rngbufsize,
181 	    0, "RNG polling buffer size (32-bit words)");
182 static	int safe_rngmaxalarm = 8;		/* max alarms before reset */
183 SYSCTL_INT(_hw_safe, OID_AUTO, rngmaxalarm, CTLFLAG_RW, &safe_rngmaxalarm,
184 	    0, "RNG max alarms before reset");
185 #endif /* SAFE_NO_RNG */
186 
187 static int
safe_probe(device_t dev)188 safe_probe(device_t dev)
189 {
190 	if (pci_get_vendor(dev) == PCI_VENDOR_SAFENET &&
191 	    pci_get_device(dev) == PCI_PRODUCT_SAFEXCEL)
192 		return (BUS_PROBE_DEFAULT);
193 	return (ENXIO);
194 }
195 
196 static const char*
safe_partname(struct safe_softc * sc)197 safe_partname(struct safe_softc *sc)
198 {
199 	/* XXX sprintf numbers when not decoded */
200 	switch (pci_get_vendor(sc->sc_dev)) {
201 	case PCI_VENDOR_SAFENET:
202 		switch (pci_get_device(sc->sc_dev)) {
203 		case PCI_PRODUCT_SAFEXCEL: return "SafeNet SafeXcel-1141";
204 		}
205 		return "SafeNet unknown-part";
206 	}
207 	return "Unknown-vendor unknown-part";
208 }
209 
210 #ifndef SAFE_NO_RNG
211 static void
default_harvest(struct rndtest_state * rsp,void * buf,u_int count)212 default_harvest(struct rndtest_state *rsp, void *buf, u_int count)
213 {
214 	/* MarkM: FIX!! Check that this does not swamp the harvester! */
215 	random_harvest_queue(buf, count, RANDOM_PURE_SAFE);
216 }
217 #endif /* SAFE_NO_RNG */
218 
219 static int
safe_attach(device_t dev)220 safe_attach(device_t dev)
221 {
222 	struct safe_softc *sc = device_get_softc(dev);
223 	u_int32_t raddr;
224 	u_int32_t i;
225 	int rid;
226 
227 	bzero(sc, sizeof (*sc));
228 	sc->sc_dev = dev;
229 
230 	/* XXX handle power management */
231 
232 	pci_enable_busmaster(dev);
233 
234 	/*
235 	 * Setup memory-mapping of PCI registers.
236 	 */
237 	rid = BS_BAR;
238 	sc->sc_sr = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
239 					   RF_ACTIVE);
240 	if (sc->sc_sr == NULL) {
241 		device_printf(dev, "cannot map register space\n");
242 		goto bad;
243 	}
244 	sc->sc_st = rman_get_bustag(sc->sc_sr);
245 	sc->sc_sh = rman_get_bushandle(sc->sc_sr);
246 
247 	/*
248 	 * Arrange interrupt line.
249 	 */
250 	rid = 0;
251 	sc->sc_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
252 					    RF_SHAREABLE|RF_ACTIVE);
253 	if (sc->sc_irq == NULL) {
254 		device_printf(dev, "could not map interrupt\n");
255 		goto bad1;
256 	}
257 	/*
258 	 * NB: Network code assumes we are blocked with splimp()
259 	 *     so make sure the IRQ is mapped appropriately.
260 	 */
261 	if (bus_setup_intr(dev, sc->sc_irq, INTR_TYPE_NET | INTR_MPSAFE,
262 			   NULL, safe_intr, sc, &sc->sc_ih)) {
263 		device_printf(dev, "could not establish interrupt\n");
264 		goto bad2;
265 	}
266 
267 	sc->sc_cid = crypto_get_driverid(dev, sizeof(struct safe_session),
268 	    CRYPTOCAP_F_HARDWARE);
269 	if (sc->sc_cid < 0) {
270 		device_printf(dev, "could not get crypto driver id\n");
271 		goto bad3;
272 	}
273 
274 	sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
275 		(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
276 
277 	/*
278 	 * Setup DMA descriptor area.
279 	 */
280 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
281 			       1,			/* alignment */
282 			       SAFE_DMA_BOUNDARY,	/* boundary */
283 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
284 			       BUS_SPACE_MAXADDR,	/* highaddr */
285 			       NULL, NULL,		/* filter, filterarg */
286 			       SAFE_MAX_DMA,		/* maxsize */
287 			       SAFE_MAX_PART,		/* nsegments */
288 			       SAFE_MAX_SSIZE,		/* maxsegsize */
289 			       BUS_DMA_ALLOCNOW,	/* flags */
290 			       NULL, NULL,		/* locking */
291 			       &sc->sc_srcdmat)) {
292 		device_printf(dev, "cannot allocate DMA tag\n");
293 		goto bad4;
294 	}
295 	if (bus_dma_tag_create(bus_get_dma_tag(dev),	/* parent */
296 			       1,			/* alignment */
297 			       SAFE_MAX_DSIZE,		/* boundary */
298 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
299 			       BUS_SPACE_MAXADDR,	/* highaddr */
300 			       NULL, NULL,		/* filter, filterarg */
301 			       SAFE_MAX_DMA,		/* maxsize */
302 			       SAFE_MAX_PART,		/* nsegments */
303 			       SAFE_MAX_DSIZE,		/* maxsegsize */
304 			       BUS_DMA_ALLOCNOW,	/* flags */
305 			       NULL, NULL,		/* locking */
306 			       &sc->sc_dstdmat)) {
307 		device_printf(dev, "cannot allocate DMA tag\n");
308 		goto bad4;
309 	}
310 
311 	/*
312 	 * Allocate packet engine descriptors.
313 	 */
314 	if (safe_dma_malloc(sc,
315 	    SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
316 	    &sc->sc_ringalloc, 0)) {
317 		device_printf(dev, "cannot allocate PE descriptor ring\n");
318 		bus_dma_tag_destroy(sc->sc_srcdmat);
319 		goto bad4;
320 	}
321 	/*
322 	 * Hookup the static portion of all our data structures.
323 	 */
324 	sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
325 	sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
326 	sc->sc_front = sc->sc_ring;
327 	sc->sc_back = sc->sc_ring;
328 	raddr = sc->sc_ringalloc.dma_paddr;
329 	bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
330 	for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
331 		struct safe_ringentry *re = &sc->sc_ring[i];
332 
333 		re->re_desc.d_sa = raddr +
334 			offsetof(struct safe_ringentry, re_sa);
335 		re->re_sa.sa_staterec = raddr +
336 			offsetof(struct safe_ringentry, re_sastate);
337 
338 		raddr += sizeof (struct safe_ringentry);
339 	}
340 	mtx_init(&sc->sc_ringmtx, device_get_nameunit(dev),
341 		"packet engine ring", MTX_DEF);
342 
343 	/*
344 	 * Allocate scatter and gather particle descriptors.
345 	 */
346 	if (safe_dma_malloc(sc, SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
347 	    &sc->sc_spalloc, 0)) {
348 		device_printf(dev, "cannot allocate source particle "
349 			"descriptor ring\n");
350 		mtx_destroy(&sc->sc_ringmtx);
351 		safe_dma_free(sc, &sc->sc_ringalloc);
352 		bus_dma_tag_destroy(sc->sc_srcdmat);
353 		goto bad4;
354 	}
355 	sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
356 	sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
357 	sc->sc_spfree = sc->sc_spring;
358 	bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
359 
360 	if (safe_dma_malloc(sc, SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
361 	    &sc->sc_dpalloc, 0)) {
362 		device_printf(dev, "cannot allocate destination particle "
363 			"descriptor ring\n");
364 		mtx_destroy(&sc->sc_ringmtx);
365 		safe_dma_free(sc, &sc->sc_spalloc);
366 		safe_dma_free(sc, &sc->sc_ringalloc);
367 		bus_dma_tag_destroy(sc->sc_dstdmat);
368 		goto bad4;
369 	}
370 	sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
371 	sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
372 	sc->sc_dpfree = sc->sc_dpring;
373 	bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
374 
375 	device_printf(sc->sc_dev, "%s", safe_partname(sc));
376 
377 	sc->sc_devinfo = READ_REG(sc, SAFE_DEVINFO);
378 	if (sc->sc_devinfo & SAFE_DEVINFO_RNG) {
379 		sc->sc_flags |= SAFE_FLAGS_RNG;
380 		printf(" rng");
381 	}
382 	if (sc->sc_devinfo & SAFE_DEVINFO_PKEY) {
383 #if 0
384 		printf(" key");
385 		sc->sc_flags |= SAFE_FLAGS_KEY;
386 #endif
387 	}
388 	if (sc->sc_devinfo & SAFE_DEVINFO_DES) {
389 		printf(" des/3des");
390 	}
391 	if (sc->sc_devinfo & SAFE_DEVINFO_AES) {
392 		printf(" aes");
393 	}
394 	if (sc->sc_devinfo & SAFE_DEVINFO_MD5) {
395 		printf(" md5");
396 	}
397 	if (sc->sc_devinfo & SAFE_DEVINFO_SHA1) {
398 		printf(" sha1");
399 	}
400 	/* XXX other supported algorithms */
401 	printf("\n");
402 
403 	safe_reset_board(sc);		/* reset h/w */
404 	safe_init_pciregs(dev);		/* init pci settings */
405 	safe_init_board(sc);		/* init h/w */
406 
407 #ifndef SAFE_NO_RNG
408 	if (sc->sc_flags & SAFE_FLAGS_RNG) {
409 #ifdef SAFE_RNDTEST
410 		sc->sc_rndtest = rndtest_attach(dev);
411 		if (sc->sc_rndtest)
412 			sc->sc_harvest = rndtest_harvest;
413 		else
414 			sc->sc_harvest = default_harvest;
415 #else
416 		sc->sc_harvest = default_harvest;
417 #endif
418 		safe_rng_init(sc);
419 
420 		callout_init(&sc->sc_rngto, 1);
421 		callout_reset(&sc->sc_rngto, hz*safe_rnginterval, safe_rng, sc);
422 	}
423 #endif /* SAFE_NO_RNG */
424 #ifdef SAFE_DEBUG
425 	safec = sc;			/* for use by hw.safe.dump */
426 #endif
427 	gone_in(16, "%s(4) is deprecated in 15.0 and removed in 16.0\n",
428 	    safe_driver.name);
429 	return (0);
430 bad4:
431 	crypto_unregister_all(sc->sc_cid);
432 bad3:
433 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
434 bad2:
435 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
436 bad1:
437 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
438 bad:
439 	return (ENXIO);
440 }
441 
442 /*
443  * Detach a device that successfully probed.
444  */
445 static int
safe_detach(device_t dev)446 safe_detach(device_t dev)
447 {
448 	struct safe_softc *sc = device_get_softc(dev);
449 
450 	/* XXX wait/abort active ops */
451 
452 	WRITE_REG(sc, SAFE_HI_MASK, 0);		/* disable interrupts */
453 
454 	callout_stop(&sc->sc_rngto);
455 
456 	crypto_unregister_all(sc->sc_cid);
457 
458 #ifdef SAFE_RNDTEST
459 	if (sc->sc_rndtest)
460 		rndtest_detach(sc->sc_rndtest);
461 #endif
462 
463 	safe_cleanchip(sc);
464 	safe_dma_free(sc, &sc->sc_dpalloc);
465 	safe_dma_free(sc, &sc->sc_spalloc);
466 	mtx_destroy(&sc->sc_ringmtx);
467 	safe_dma_free(sc, &sc->sc_ringalloc);
468 
469 	bus_teardown_intr(dev, sc->sc_irq, sc->sc_ih);
470 	bus_release_resource(dev, SYS_RES_IRQ, 0, sc->sc_irq);
471 
472 	bus_dma_tag_destroy(sc->sc_srcdmat);
473 	bus_dma_tag_destroy(sc->sc_dstdmat);
474 	bus_release_resource(dev, SYS_RES_MEMORY, BS_BAR, sc->sc_sr);
475 
476 	return (0);
477 }
478 
479 /*
480  * Stop all chip i/o so that the kernel's probe routines don't
481  * get confused by errant DMAs when rebooting.
482  */
483 static int
safe_shutdown(device_t dev)484 safe_shutdown(device_t dev)
485 {
486 #ifdef notyet
487 	safe_stop(device_get_softc(dev));
488 #endif
489 	return (0);
490 }
491 
492 /*
493  * Device suspend routine.
494  */
495 static int
safe_suspend(device_t dev)496 safe_suspend(device_t dev)
497 {
498 	struct safe_softc *sc = device_get_softc(dev);
499 
500 #ifdef notyet
501 	/* XXX stop the device and save PCI settings */
502 #endif
503 	sc->sc_suspended = 1;
504 
505 	return (0);
506 }
507 
508 static int
safe_resume(device_t dev)509 safe_resume(device_t dev)
510 {
511 	struct safe_softc *sc = device_get_softc(dev);
512 
513 #ifdef notyet
514 	/* XXX retore PCI settings and start the device */
515 #endif
516 	sc->sc_suspended = 0;
517 	return (0);
518 }
519 
520 /*
521  * SafeXcel Interrupt routine
522  */
523 static void
safe_intr(void * arg)524 safe_intr(void *arg)
525 {
526 	struct safe_softc *sc = arg;
527 	volatile u_int32_t stat;
528 
529 	stat = READ_REG(sc, SAFE_HM_STAT);
530 	if (stat == 0)			/* shared irq, not for us */
531 		return;
532 
533 	WRITE_REG(sc, SAFE_HI_CLR, stat);	/* IACK */
534 
535 	if ((stat & SAFE_INT_PE_DDONE)) {
536 		/*
537 		 * Descriptor(s) done; scan the ring and
538 		 * process completed operations.
539 		 */
540 		mtx_lock(&sc->sc_ringmtx);
541 		while (sc->sc_back != sc->sc_front) {
542 			struct safe_ringentry *re = sc->sc_back;
543 #ifdef SAFE_DEBUG
544 			if (safe_debug) {
545 				safe_dump_ringstate(sc, __func__);
546 				safe_dump_request(sc, __func__, re);
547 			}
548 #endif
549 			/*
550 			 * safe_process marks ring entries that were allocated
551 			 * but not used with a csr of zero.  This insures the
552 			 * ring front pointer never needs to be set backwards
553 			 * in the event that an entry is allocated but not used
554 			 * because of a setup error.
555 			 */
556 			if (re->re_desc.d_csr != 0) {
557 				if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr))
558 					break;
559 				if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len))
560 					break;
561 				sc->sc_nqchip--;
562 				safe_callback(sc, re);
563 			}
564 			if (++(sc->sc_back) == sc->sc_ringtop)
565 				sc->sc_back = sc->sc_ring;
566 		}
567 		mtx_unlock(&sc->sc_ringmtx);
568 	}
569 
570 	/*
571 	 * Check to see if we got any DMA Error
572 	 */
573 	if (stat & SAFE_INT_PE_ERROR) {
574 		DPRINTF(("dmaerr dmastat %08x\n",
575 			READ_REG(sc, SAFE_PE_DMASTAT)));
576 		safestats.st_dmaerr++;
577 		safe_totalreset(sc);
578 #if 0
579 		safe_feed(sc);
580 #endif
581 	}
582 
583 	if (sc->sc_needwakeup) {		/* XXX check high watermark */
584 		int wakeup = sc->sc_needwakeup & CRYPTO_SYMQ;
585 		DPRINTF(("%s: wakeup crypto %x\n", __func__,
586 			sc->sc_needwakeup));
587 		sc->sc_needwakeup &= ~wakeup;
588 		crypto_unblock(sc->sc_cid, wakeup);
589 	}
590 }
591 
592 /*
593  * safe_feed() - post a request to chip
594  */
595 static void
safe_feed(struct safe_softc * sc,struct safe_ringentry * re)596 safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
597 {
598 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_PREWRITE);
599 	if (re->re_dst_map != NULL)
600 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
601 			BUS_DMASYNC_PREREAD);
602 	/* XXX have no smaller granularity */
603 	safe_dma_sync(&sc->sc_ringalloc,
604 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
605 	safe_dma_sync(&sc->sc_spalloc, BUS_DMASYNC_PREWRITE);
606 	safe_dma_sync(&sc->sc_dpalloc, BUS_DMASYNC_PREWRITE);
607 
608 #ifdef SAFE_DEBUG
609 	if (safe_debug) {
610 		safe_dump_ringstate(sc, __func__);
611 		safe_dump_request(sc, __func__, re);
612 	}
613 #endif
614 	sc->sc_nqchip++;
615 	if (sc->sc_nqchip > safestats.st_maxqchip)
616 		safestats.st_maxqchip = sc->sc_nqchip;
617 	/* poke h/w to check descriptor ring, any value can be written */
618 	WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
619 }
620 
621 #define	N(a)	(sizeof(a) / sizeof (a[0]))
622 static void
safe_setup_enckey(struct safe_session * ses,const void * key)623 safe_setup_enckey(struct safe_session *ses, const void *key)
624 {
625 	int i;
626 
627 	bcopy(key, ses->ses_key, ses->ses_klen);
628 
629 	/* PE is little-endian, insure proper byte order */
630 	for (i = 0; i < N(ses->ses_key); i++)
631 		ses->ses_key[i] = htole32(ses->ses_key[i]);
632 }
633 
634 static void
safe_setup_mackey(struct safe_session * ses,int algo,const uint8_t * key,int klen)635 safe_setup_mackey(struct safe_session *ses, int algo, const uint8_t *key,
636     int klen)
637 {
638 	SHA1_CTX sha1ctx;
639 	int i;
640 
641 	hmac_init_ipad(&auth_hash_hmac_sha1, key, klen, &sha1ctx);
642 	bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
643 
644 	hmac_init_opad(&auth_hash_hmac_sha1, key, klen, &sha1ctx);
645 	bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
646 
647 	explicit_bzero(&sha1ctx, sizeof(sha1ctx));
648 
649 	/* PE is little-endian, insure proper byte order */
650 	for (i = 0; i < N(ses->ses_hminner); i++) {
651 		ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
652 		ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
653 	}
654 }
655 #undef N
656 
657 static bool
safe_auth_supported(struct safe_softc * sc,const struct crypto_session_params * csp)658 safe_auth_supported(struct safe_softc *sc,
659     const struct crypto_session_params *csp)
660 {
661 
662 	switch (csp->csp_auth_alg) {
663 	case CRYPTO_SHA1_HMAC:
664 		if ((sc->sc_devinfo & SAFE_DEVINFO_SHA1) == 0)
665 			return (false);
666 		break;
667 	default:
668 		return (false);
669 	}
670 	return (true);
671 }
672 
673 static bool
safe_cipher_supported(struct safe_softc * sc,const struct crypto_session_params * csp)674 safe_cipher_supported(struct safe_softc *sc,
675     const struct crypto_session_params *csp)
676 {
677 
678 	switch (csp->csp_cipher_alg) {
679 	case CRYPTO_AES_CBC:
680 		if ((sc->sc_devinfo & SAFE_DEVINFO_AES) == 0)
681 			return (false);
682 		if (csp->csp_ivlen != 16)
683 			return (false);
684 		if (csp->csp_cipher_klen != 16 &&
685 		    csp->csp_cipher_klen != 24 &&
686 		    csp->csp_cipher_klen != 32)
687 			return (false);
688 		break;
689 	}
690 	return (true);
691 }
692 
693 static int
safe_probesession(device_t dev,const struct crypto_session_params * csp)694 safe_probesession(device_t dev, const struct crypto_session_params *csp)
695 {
696 	struct safe_softc *sc = device_get_softc(dev);
697 
698 	if (csp->csp_flags != 0)
699 		return (EINVAL);
700 	switch (csp->csp_mode) {
701 	case CSP_MODE_DIGEST:
702 		if (!safe_auth_supported(sc, csp))
703 			return (EINVAL);
704 		break;
705 	case CSP_MODE_CIPHER:
706 		if (!safe_cipher_supported(sc, csp))
707 			return (EINVAL);
708 		break;
709 	case CSP_MODE_ETA:
710 		if (!safe_auth_supported(sc, csp) ||
711 		    !safe_cipher_supported(sc, csp))
712 			return (EINVAL);
713 		break;
714 	default:
715 		return (EINVAL);
716 	}
717 
718 	return (CRYPTODEV_PROBE_HARDWARE);
719 }
720 
721 /*
722  * Allocate a new 'session'.
723  */
724 static int
safe_newsession(device_t dev,crypto_session_t cses,const struct crypto_session_params * csp)725 safe_newsession(device_t dev, crypto_session_t cses,
726     const struct crypto_session_params *csp)
727 {
728 	struct safe_session *ses;
729 
730 	ses = crypto_get_driver_session(cses);
731 	if (csp->csp_cipher_alg != 0) {
732 		ses->ses_klen = csp->csp_cipher_klen;
733 		if (csp->csp_cipher_key != NULL)
734 			safe_setup_enckey(ses, csp->csp_cipher_key);
735 	}
736 
737 	if (csp->csp_auth_alg != 0) {
738 		ses->ses_mlen = csp->csp_auth_mlen;
739 		if (ses->ses_mlen == 0) {
740 			ses->ses_mlen = SHA1_HASH_LEN;
741 		}
742 
743 		if (csp->csp_auth_key != NULL) {
744 			safe_setup_mackey(ses, csp->csp_auth_alg,
745 			    csp->csp_auth_key, csp->csp_auth_klen);
746 		}
747 	}
748 
749 	return (0);
750 }
751 
752 static void
safe_op_cb(void * arg,bus_dma_segment_t * seg,int nsegs,int error)753 safe_op_cb(void *arg, bus_dma_segment_t *seg, int nsegs, int error)
754 {
755 	struct safe_operand *op = arg;
756 
757 	DPRINTF(("%s: nsegs %d error %d\n", __func__,
758 		nsegs, error));
759 	if (error != 0)
760 		return;
761 	op->nsegs = nsegs;
762 	bcopy(seg, op->segs, nsegs * sizeof (seg[0]));
763 }
764 
765 static int
safe_process(device_t dev,struct cryptop * crp,int hint)766 safe_process(device_t dev, struct cryptop *crp, int hint)
767 {
768 	struct safe_softc *sc = device_get_softc(dev);
769 	const struct crypto_session_params *csp;
770 	int err = 0, i, nicealign, uniform;
771 	int bypass, oplen;
772 	int16_t coffset;
773 	struct safe_session *ses;
774 	struct safe_ringentry *re;
775 	struct safe_sarec *sa;
776 	struct safe_pdesc *pd;
777 	u_int32_t cmd0, cmd1, staterec;
778 
779 	mtx_lock(&sc->sc_ringmtx);
780 	if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
781 		safestats.st_ringfull++;
782 		sc->sc_needwakeup |= CRYPTO_SYMQ;
783 		mtx_unlock(&sc->sc_ringmtx);
784 		return (ERESTART);
785 	}
786 	re = sc->sc_front;
787 
788 	staterec = re->re_sa.sa_staterec;	/* save */
789 	/* NB: zero everything but the PE descriptor */
790 	bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
791 	re->re_sa.sa_staterec = staterec;	/* restore */
792 
793 	re->re_crp = crp;
794 
795 	sa = &re->re_sa;
796 	ses = crypto_get_driver_session(crp->crp_session);
797 	csp = crypto_get_params(crp->crp_session);
798 
799 	cmd0 = SAFE_SA_CMD0_BASIC;		/* basic group operation */
800 	cmd1 = 0;
801 	switch (csp->csp_mode) {
802 	case CSP_MODE_DIGEST:
803 		cmd0 |= SAFE_SA_CMD0_OP_HASH;
804 		break;
805 	case CSP_MODE_CIPHER:
806 		cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
807 		break;
808 	case CSP_MODE_ETA:
809 		cmd0 |= SAFE_SA_CMD0_OP_BOTH;
810 		break;
811 	}
812 
813 	if (csp->csp_cipher_alg != 0) {
814 		if (crp->crp_cipher_key != NULL)
815 			safe_setup_enckey(ses, crp->crp_cipher_key);
816 
817 		switch (csp->csp_cipher_alg) {
818 		case CRYPTO_AES_CBC:
819 			cmd0 |= SAFE_SA_CMD0_AES;
820 			cmd1 |= SAFE_SA_CMD1_CBC;
821 			if (ses->ses_klen * 8 == 128)
822 			     cmd1 |=  SAFE_SA_CMD1_AES128;
823 			else if (ses->ses_klen * 8 == 192)
824 			     cmd1 |=  SAFE_SA_CMD1_AES192;
825 			else
826 			     cmd1 |=  SAFE_SA_CMD1_AES256;
827 		}
828 
829 		/*
830 		 * Setup encrypt/decrypt state.  When using basic ops
831 		 * we can't use an inline IV because hash/crypt offset
832 		 * must be from the end of the IV to the start of the
833 		 * crypt data and this leaves out the preceding header
834 		 * from the hash calculation.  Instead we place the IV
835 		 * in the state record and set the hash/crypt offset to
836 		 * copy both the header+IV.
837 		 */
838 		crypto_read_iv(crp, re->re_sastate.sa_saved_iv);
839 		cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
840 
841 		if (CRYPTO_OP_IS_ENCRYPT(crp->crp_op)) {
842 			cmd0 |= SAFE_SA_CMD0_OUTBOUND;
843 
844 			/*
845 			 * XXX: I suspect we don't need this since we
846 			 * don't save the returned IV.
847 			 */
848 			cmd0 |= SAFE_SA_CMD0_SAVEIV;
849 		} else {
850 			cmd0 |= SAFE_SA_CMD0_INBOUND;
851 		}
852 		/*
853 		 * For basic encryption use the zero pad algorithm.
854 		 * This pads results to an 8-byte boundary and
855 		 * suppresses padding verification for inbound (i.e.
856 		 * decrypt) operations.
857 		 *
858 		 * NB: Not sure if the 8-byte pad boundary is a problem.
859 		 */
860 		cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
861 
862 		/* XXX assert key bufs have the same size */
863 		bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
864 	}
865 
866 	if (csp->csp_auth_alg != 0) {
867 		if (crp->crp_auth_key != NULL) {
868 			safe_setup_mackey(ses, csp->csp_auth_alg,
869 			    crp->crp_auth_key, csp->csp_auth_klen);
870 		}
871 
872 		switch (csp->csp_auth_alg) {
873 		case CRYPTO_SHA1_HMAC:
874 			cmd0 |= SAFE_SA_CMD0_SHA1;
875 			cmd1 |= SAFE_SA_CMD1_HMAC;	/* NB: enable HMAC */
876 			break;
877 		}
878 
879 		/*
880 		 * Digest data is loaded from the SA and the hash
881 		 * result is saved to the state block where we
882 		 * retrieve it for return to the caller.
883 		 */
884 		/* XXX assert digest bufs have the same size */
885 		bcopy(ses->ses_hminner, sa->sa_indigest,
886 			sizeof(sa->sa_indigest));
887 		bcopy(ses->ses_hmouter, sa->sa_outdigest,
888 			sizeof(sa->sa_outdigest));
889 
890 		cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
891 		re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
892 	}
893 
894 	if (csp->csp_mode == CSP_MODE_ETA) {
895 		/*
896 		 * The driver only supports ETA requests where there
897 		 * is no gap between the AAD and payload.
898 		 */
899 		if (crp->crp_aad_length != 0 &&
900 		    crp->crp_aad_start + crp->crp_aad_length !=
901 		    crp->crp_payload_start) {
902 			safestats.st_lenmismatch++;
903 			err = EINVAL;
904 			goto errout;
905 		}
906 		if (crp->crp_aad_length != 0)
907 			bypass = crp->crp_aad_start;
908 		else
909 			bypass = crp->crp_payload_start;
910 		coffset = crp->crp_aad_length;
911 		oplen = crp->crp_payload_start + crp->crp_payload_length;
912 #ifdef SAFE_DEBUG
913 		if (safe_debug) {
914 			printf("AAD: skip %d, len %d, digest %d\n",
915 			    crp->crp_aad_start, crp->crp_aad_length,
916 			    crp->crp_digest_start);
917 			printf("payload: skip %d, len %d, IV %d\n",
918 			    crp->crp_payload_start, crp->crp_payload_length,
919 			    crp->crp_iv_start);
920 			printf("bypass %d coffset %d oplen %d\n",
921 				bypass, coffset, oplen);
922 		}
923 #endif
924 		if (coffset & 3) {	/* offset must be 32-bit aligned */
925 			DPRINTF(("%s: coffset %u misaligned\n",
926 				__func__, coffset));
927 			safestats.st_coffmisaligned++;
928 			err = EINVAL;
929 			goto errout;
930 		}
931 		coffset >>= 2;
932 		if (coffset > 255) {	/* offset must be <256 dwords */
933 			DPRINTF(("%s: coffset %u too big\n",
934 				__func__, coffset));
935 			safestats.st_cofftoobig++;
936 			err = EINVAL;
937 			goto errout;
938 		}
939 		/*
940 		 * Tell the hardware to copy the header to the output.
941 		 * The header is defined as the data from the end of
942 		 * the bypass to the start of data to be encrypted.
943 		 * Typically this is the inline IV.  Note that you need
944 		 * to do this even if src+dst are the same; it appears
945 		 * that w/o this bit the crypted data is written
946 		 * immediately after the bypass data.
947 		 */
948 		cmd1 |= SAFE_SA_CMD1_HDRCOPY;
949 		/*
950 		 * Disable IP header mutable bit handling.  This is
951 		 * needed to get correct HMAC calculations.
952 		 */
953 		cmd1 |= SAFE_SA_CMD1_MUTABLE;
954 	} else {
955 		bypass = crp->crp_payload_start;
956 		oplen = bypass + crp->crp_payload_length;
957 		coffset = 0;
958 	}
959 	/* XXX verify multiple of 4 when using s/g */
960 	if (bypass > 96) {		/* bypass offset must be <= 96 bytes */
961 		DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
962 		safestats.st_bypasstoobig++;
963 		err = EINVAL;
964 		goto errout;
965 	}
966 
967 	if (bus_dmamap_create(sc->sc_srcdmat, BUS_DMA_NOWAIT, &re->re_src_map)) {
968 		safestats.st_nomap++;
969 		err = ENOMEM;
970 		goto errout;
971 	}
972 	if (bus_dmamap_load_crp(sc->sc_srcdmat, re->re_src_map, crp, safe_op_cb,
973 	    &re->re_src, BUS_DMA_NOWAIT) != 0) {
974 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
975 		re->re_src_map = NULL;
976 		safestats.st_noload++;
977 		err = ENOMEM;
978 		goto errout;
979 	}
980 	re->re_src_mapsize = crypto_buffer_len(&crp->crp_buf);
981 	nicealign = safe_dmamap_aligned(&re->re_src);
982 	uniform = safe_dmamap_uniform(&re->re_src);
983 
984 	DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
985 		nicealign, uniform, re->re_src.nsegs));
986 	if (re->re_src.nsegs > 1) {
987 		re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
988 			((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
989 		for (i = 0; i < re->re_src_nsegs; i++) {
990 			/* NB: no need to check if there's space */
991 			pd = sc->sc_spfree;
992 			if (++(sc->sc_spfree) == sc->sc_springtop)
993 				sc->sc_spfree = sc->sc_spring;
994 
995 			KASSERT((pd->pd_flags&3) == 0 ||
996 				(pd->pd_flags&3) == SAFE_PD_DONE,
997 				("bogus source particle descriptor; flags %x",
998 				pd->pd_flags));
999 			pd->pd_addr = re->re_src_segs[i].ds_addr;
1000 			pd->pd_size = re->re_src_segs[i].ds_len;
1001 			pd->pd_flags = SAFE_PD_READY;
1002 		}
1003 		cmd0 |= SAFE_SA_CMD0_IGATHER;
1004 	} else {
1005 		/*
1006 		 * No need for gather, reference the operand directly.
1007 		 */
1008 		re->re_desc.d_src = re->re_src_segs[0].ds_addr;
1009 	}
1010 
1011 	if (csp->csp_mode == CSP_MODE_DIGEST) {
1012 		/*
1013 		 * Hash op; no destination needed.
1014 		 */
1015 	} else {
1016 		if (nicealign && uniform == 1) {
1017 			/*
1018 			 * Source layout is suitable for direct
1019 			 * sharing of the DMA map and segment list.
1020 			 */
1021 			re->re_dst = re->re_src;
1022 		} else if (nicealign && uniform == 2) {
1023 			/*
1024 			 * The source is properly aligned but requires a
1025 			 * different particle list to handle DMA of the
1026 			 * result.  Create a new map and do the load to
1027 			 * create the segment list.  The particle
1028 			 * descriptor setup code below will handle the
1029 			 * rest.
1030 			 */
1031 			if (bus_dmamap_create(sc->sc_dstdmat, BUS_DMA_NOWAIT,
1032 			    &re->re_dst_map)) {
1033 				safestats.st_nomap++;
1034 				err = ENOMEM;
1035 				goto errout;
1036 			}
1037 			if (bus_dmamap_load_crp(sc->sc_dstdmat, re->re_dst_map,
1038 			    crp, safe_op_cb, &re->re_dst, BUS_DMA_NOWAIT) !=
1039 			    0) {
1040 				bus_dmamap_destroy(sc->sc_dstdmat,
1041 				    re->re_dst_map);
1042 				re->re_dst_map = NULL;
1043 				safestats.st_noload++;
1044 				err = ENOMEM;
1045 				goto errout;
1046 			}
1047 		} else if (crp->crp_buf.cb_type == CRYPTO_BUF_MBUF) {
1048 			int totlen, len;
1049 			struct mbuf *m, *top, **mp;
1050 
1051 			/*
1052 			 * DMA constraints require that we allocate a
1053 			 * new mbuf chain for the destination.  We
1054 			 * allocate an entire new set of mbufs of
1055 			 * optimal/required size and then tell the
1056 			 * hardware to copy any bits that are not
1057 			 * created as a byproduct of the operation.
1058 			 */
1059 			if (!nicealign)
1060 				safestats.st_unaligned++;
1061 			if (!uniform)
1062 				safestats.st_notuniform++;
1063 			totlen = re->re_src_mapsize;
1064 			if (crp->crp_buf.cb_mbuf->m_flags & M_PKTHDR) {
1065 				len = MHLEN;
1066 				MGETHDR(m, M_NOWAIT, MT_DATA);
1067 				if (m && !m_dup_pkthdr(m, crp->crp_buf.cb_mbuf,
1068 				    M_NOWAIT)) {
1069 					m_free(m);
1070 					m = NULL;
1071 				}
1072 			} else {
1073 				len = MLEN;
1074 				MGET(m, M_NOWAIT, MT_DATA);
1075 			}
1076 			if (m == NULL) {
1077 				safestats.st_nombuf++;
1078 				err = sc->sc_nqchip ? ERESTART : ENOMEM;
1079 				goto errout;
1080 			}
1081 			if (totlen >= MINCLSIZE) {
1082 				if (!(MCLGET(m, M_NOWAIT))) {
1083 					m_free(m);
1084 					safestats.st_nomcl++;
1085 					err = sc->sc_nqchip ?
1086 					    ERESTART : ENOMEM;
1087 					goto errout;
1088 				}
1089 				len = MCLBYTES;
1090 			}
1091 			m->m_len = len;
1092 			top = NULL;
1093 			mp = &top;
1094 
1095 			while (totlen > 0) {
1096 				if (top) {
1097 					MGET(m, M_NOWAIT, MT_DATA);
1098 					if (m == NULL) {
1099 						m_freem(top);
1100 						safestats.st_nombuf++;
1101 						err = sc->sc_nqchip ?
1102 						    ERESTART : ENOMEM;
1103 						goto errout;
1104 					}
1105 					len = MLEN;
1106 				}
1107 				if (top && totlen >= MINCLSIZE) {
1108 					if (!(MCLGET(m, M_NOWAIT))) {
1109 						*mp = m;
1110 						m_freem(top);
1111 						safestats.st_nomcl++;
1112 						err = sc->sc_nqchip ?
1113 						    ERESTART : ENOMEM;
1114 						goto errout;
1115 					}
1116 					len = MCLBYTES;
1117 				}
1118 				m->m_len = len = min(totlen, len);
1119 				totlen -= len;
1120 				*mp = m;
1121 				mp = &m->m_next;
1122 			}
1123 			re->re_dst_m = top;
1124 			if (bus_dmamap_create(sc->sc_dstdmat,
1125 			    BUS_DMA_NOWAIT, &re->re_dst_map) != 0) {
1126 				safestats.st_nomap++;
1127 				err = ENOMEM;
1128 				goto errout;
1129 			}
1130 			if (bus_dmamap_load_mbuf_sg(sc->sc_dstdmat,
1131 			    re->re_dst_map, top, re->re_dst_segs,
1132 			    &re->re_dst_nsegs, 0) != 0) {
1133 				bus_dmamap_destroy(sc->sc_dstdmat,
1134 				    re->re_dst_map);
1135 				re->re_dst_map = NULL;
1136 				safestats.st_noload++;
1137 				err = ENOMEM;
1138 				goto errout;
1139 			}
1140 			re->re_dst_mapsize = re->re_src_mapsize;
1141 			if (re->re_src.mapsize > oplen) {
1142 				/*
1143 				 * There's data following what the
1144 				 * hardware will copy for us.  If this
1145 				 * isn't just the ICV (that's going to
1146 				 * be written on completion), copy it
1147 				 * to the new mbufs
1148 				 */
1149 				if (!(csp->csp_mode == CSP_MODE_ETA &&
1150 				    (re->re_src.mapsize-oplen) == ses->ses_mlen &&
1151 				    crp->crp_digest_start == oplen))
1152 					safe_mcopy(crp->crp_buf.cb_mbuf,
1153 					    re->re_dst_m, oplen);
1154 				else
1155 					safestats.st_noicvcopy++;
1156 			}
1157 		} else {
1158 			if (!nicealign) {
1159 				safestats.st_iovmisaligned++;
1160 				err = EINVAL;
1161 				goto errout;
1162 			} else {
1163 				/*
1164 				 * There's no way to handle the DMA
1165 				 * requirements with this uio.  We
1166 				 * could create a separate DMA area for
1167 				 * the result and then copy it back,
1168 				 * but for now we just bail and return
1169 				 * an error.  Note that uio requests
1170 				 * > SAFE_MAX_DSIZE are handled because
1171 				 * the DMA map and segment list for the
1172 				 * destination wil result in a
1173 				 * destination particle list that does
1174 				 * the necessary scatter DMA.
1175 				 */
1176 				safestats.st_iovnotuniform++;
1177 				err = EINVAL;
1178 				goto errout;
1179 			}
1180 		}
1181 
1182 		if (re->re_dst.nsegs > 1) {
1183 			re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
1184 			    ((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
1185 			for (i = 0; i < re->re_dst_nsegs; i++) {
1186 				pd = sc->sc_dpfree;
1187 				KASSERT((pd->pd_flags&3) == 0 ||
1188 					(pd->pd_flags&3) == SAFE_PD_DONE,
1189 					("bogus dest particle descriptor; flags %x",
1190 						pd->pd_flags));
1191 				if (++(sc->sc_dpfree) == sc->sc_dpringtop)
1192 					sc->sc_dpfree = sc->sc_dpring;
1193 				pd->pd_addr = re->re_dst_segs[i].ds_addr;
1194 				pd->pd_flags = SAFE_PD_READY;
1195 			}
1196 			cmd0 |= SAFE_SA_CMD0_OSCATTER;
1197 		} else {
1198 			/*
1199 			 * No need for scatter, reference the operand directly.
1200 			 */
1201 			re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
1202 		}
1203 	}
1204 
1205 	/*
1206 	 * All done with setup; fillin the SA command words
1207 	 * and the packet engine descriptor.  The operation
1208 	 * is now ready for submission to the hardware.
1209 	 */
1210 	sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
1211 	sa->sa_cmd1 = cmd1
1212 		    | (coffset << SAFE_SA_CMD1_OFFSET_S)
1213 		    | SAFE_SA_CMD1_SAREV1	/* Rev 1 SA data structure */
1214 		    | SAFE_SA_CMD1_SRPCI
1215 		    ;
1216 	/*
1217 	 * NB: the order of writes is important here.  In case the
1218 	 * chip is scanning the ring because of an outstanding request
1219 	 * it might nab this one too.  In that case we need to make
1220 	 * sure the setup is complete before we write the length
1221 	 * field of the descriptor as it signals the descriptor is
1222 	 * ready for processing.
1223 	 */
1224 	re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
1225 	if (csp->csp_auth_alg != 0)
1226 		re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
1227 	re->re_desc.d_len = oplen
1228 			  | SAFE_PE_LEN_READY
1229 			  | (bypass << SAFE_PE_LEN_BYPASS_S)
1230 			  ;
1231 
1232 	safestats.st_ipackets++;
1233 	safestats.st_ibytes += oplen;
1234 
1235 	if (++(sc->sc_front) == sc->sc_ringtop)
1236 		sc->sc_front = sc->sc_ring;
1237 
1238 	/* XXX honor batching */
1239 	safe_feed(sc, re);
1240 	mtx_unlock(&sc->sc_ringmtx);
1241 	return (0);
1242 
1243 errout:
1244 	if (re->re_dst_m != NULL)
1245 		m_freem(re->re_dst_m);
1246 
1247 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1248 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1249 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1250 	}
1251 	if (re->re_src_map != NULL) {
1252 		bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1253 		bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1254 	}
1255 	mtx_unlock(&sc->sc_ringmtx);
1256 	if (err != ERESTART) {
1257 		crp->crp_etype = err;
1258 		crypto_done(crp);
1259 		err = 0;
1260 	} else {
1261 		sc->sc_needwakeup |= CRYPTO_SYMQ;
1262 	}
1263 	return (err);
1264 }
1265 
1266 static void
safe_callback(struct safe_softc * sc,struct safe_ringentry * re)1267 safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
1268 {
1269 	const struct crypto_session_params *csp;
1270 	struct cryptop *crp = (struct cryptop *)re->re_crp;
1271 	struct safe_session *ses;
1272 	uint8_t hash[HASH_MAX_LEN];
1273 
1274 	ses = crypto_get_driver_session(crp->crp_session);
1275 	csp = crypto_get_params(crp->crp_session);
1276 
1277 	safestats.st_opackets++;
1278 	safestats.st_obytes += re->re_dst.mapsize;
1279 
1280 	safe_dma_sync(&sc->sc_ringalloc,
1281 		BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1282 	if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
1283 		device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
1284 			re->re_desc.d_csr,
1285 			re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
1286 		safestats.st_peoperr++;
1287 		crp->crp_etype = EIO;		/* something more meaningful? */
1288 	}
1289 
1290 	/*
1291 	 * XXX: Should crp_buf.cb_mbuf be updated to re->re_dst_m if
1292 	 * it is non-NULL?
1293 	 */
1294 
1295 	if (re->re_dst_map != NULL && re->re_dst_map != re->re_src_map) {
1296 		bus_dmamap_sync(sc->sc_dstdmat, re->re_dst_map,
1297 		    BUS_DMASYNC_POSTREAD);
1298 		bus_dmamap_unload(sc->sc_dstdmat, re->re_dst_map);
1299 		bus_dmamap_destroy(sc->sc_dstdmat, re->re_dst_map);
1300 	}
1301 	bus_dmamap_sync(sc->sc_srcdmat, re->re_src_map, BUS_DMASYNC_POSTWRITE);
1302 	bus_dmamap_unload(sc->sc_srcdmat, re->re_src_map);
1303 	bus_dmamap_destroy(sc->sc_srcdmat, re->re_src_map);
1304 
1305 	if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
1306 		if (csp->csp_auth_alg == CRYPTO_SHA1_HMAC) {
1307 			/*
1308 			 * SHA-1 ICV's are byte-swapped; fix 'em up
1309 			 * before copying them to their destination.
1310 			 */
1311 			re->re_sastate.sa_saved_indigest[0] =
1312 			    bswap32(re->re_sastate.sa_saved_indigest[0]);
1313 			re->re_sastate.sa_saved_indigest[1] =
1314 			    bswap32(re->re_sastate.sa_saved_indigest[1]);
1315 			re->re_sastate.sa_saved_indigest[2] =
1316 			    bswap32(re->re_sastate.sa_saved_indigest[2]);
1317 		}
1318 
1319 		if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
1320 			crypto_copydata(crp, crp->crp_digest_start,
1321 			    ses->ses_mlen, hash);
1322 			if (timingsafe_bcmp(re->re_sastate.sa_saved_indigest,
1323 			    hash, ses->ses_mlen) != 0)
1324 				crp->crp_etype = EBADMSG;
1325 		} else
1326 			crypto_copyback(crp, crp->crp_digest_start,
1327 			    ses->ses_mlen, re->re_sastate.sa_saved_indigest);
1328 	}
1329 	crypto_done(crp);
1330 }
1331 
1332 /*
1333  * Copy all data past offset from srcm to dstm.
1334  */
1335 static void
safe_mcopy(struct mbuf * srcm,struct mbuf * dstm,u_int offset)1336 safe_mcopy(struct mbuf *srcm, struct mbuf *dstm, u_int offset)
1337 {
1338 	u_int j, dlen, slen;
1339 	caddr_t dptr, sptr;
1340 
1341 	/*
1342 	 * Advance src and dst to offset.
1343 	 */
1344 	j = offset;
1345 	while (j >= srcm->m_len) {
1346 		j -= srcm->m_len;
1347 		srcm = srcm->m_next;
1348 		if (srcm == NULL)
1349 			return;
1350 	}
1351 	sptr = mtod(srcm, caddr_t) + j;
1352 	slen = srcm->m_len - j;
1353 
1354 	j = offset;
1355 	while (j >= dstm->m_len) {
1356 		j -= dstm->m_len;
1357 		dstm = dstm->m_next;
1358 		if (dstm == NULL)
1359 			return;
1360 	}
1361 	dptr = mtod(dstm, caddr_t) + j;
1362 	dlen = dstm->m_len - j;
1363 
1364 	/*
1365 	 * Copy everything that remains.
1366 	 */
1367 	for (;;) {
1368 		j = min(slen, dlen);
1369 		bcopy(sptr, dptr, j);
1370 		if (slen == j) {
1371 			srcm = srcm->m_next;
1372 			if (srcm == NULL)
1373 				return;
1374 			sptr = srcm->m_data;
1375 			slen = srcm->m_len;
1376 		} else
1377 			sptr += j, slen -= j;
1378 		if (dlen == j) {
1379 			dstm = dstm->m_next;
1380 			if (dstm == NULL)
1381 				return;
1382 			dptr = dstm->m_data;
1383 			dlen = dstm->m_len;
1384 		} else
1385 			dptr += j, dlen -= j;
1386 	}
1387 }
1388 
1389 #ifndef SAFE_NO_RNG
1390 #define	SAFE_RNG_MAXWAIT	1000
1391 
1392 static void
safe_rng_init(struct safe_softc * sc)1393 safe_rng_init(struct safe_softc *sc)
1394 {
1395 	u_int32_t w, v;
1396 	int i;
1397 
1398 	WRITE_REG(sc, SAFE_RNG_CTRL, 0);
1399 	/* use default value according to the manual */
1400 	WRITE_REG(sc, SAFE_RNG_CNFG, 0x834);	/* magic from SafeNet */
1401 	WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1402 
1403 	/*
1404 	 * There is a bug in rev 1.0 of the 1140 that when the RNG
1405 	 * is brought out of reset the ready status flag does not
1406 	 * work until the RNG has finished its internal initialization.
1407 	 *
1408 	 * So in order to determine the device is through its
1409 	 * initialization we must read the data register, using the
1410 	 * status reg in the read in case it is initialized.  Then read
1411 	 * the data register until it changes from the first read.
1412 	 * Once it changes read the data register until it changes
1413 	 * again.  At this time the RNG is considered initialized.
1414 	 * This could take between 750ms - 1000ms in time.
1415 	 */
1416 	i = 0;
1417 	w = READ_REG(sc, SAFE_RNG_OUT);
1418 	do {
1419 		v = READ_REG(sc, SAFE_RNG_OUT);
1420 		if (v != w) {
1421 			w = v;
1422 			break;
1423 		}
1424 		DELAY(10);
1425 	} while (++i < SAFE_RNG_MAXWAIT);
1426 
1427 	/* Wait Until data changes again */
1428 	i = 0;
1429 	do {
1430 		v = READ_REG(sc, SAFE_RNG_OUT);
1431 		if (v != w)
1432 			break;
1433 		DELAY(10);
1434 	} while (++i < SAFE_RNG_MAXWAIT);
1435 }
1436 
1437 static __inline void
safe_rng_disable_short_cycle(struct safe_softc * sc)1438 safe_rng_disable_short_cycle(struct safe_softc *sc)
1439 {
1440 	WRITE_REG(sc, SAFE_RNG_CTRL,
1441 		READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
1442 }
1443 
1444 static __inline void
safe_rng_enable_short_cycle(struct safe_softc * sc)1445 safe_rng_enable_short_cycle(struct safe_softc *sc)
1446 {
1447 	WRITE_REG(sc, SAFE_RNG_CTRL,
1448 		READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
1449 }
1450 
1451 static __inline u_int32_t
safe_rng_read(struct safe_softc * sc)1452 safe_rng_read(struct safe_softc *sc)
1453 {
1454 	int i;
1455 
1456 	i = 0;
1457 	while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
1458 		;
1459 	return READ_REG(sc, SAFE_RNG_OUT);
1460 }
1461 
1462 static void
safe_rng(void * arg)1463 safe_rng(void *arg)
1464 {
1465 	struct safe_softc *sc = arg;
1466 	u_int32_t buf[SAFE_RNG_MAXBUFSIZ];	/* NB: maybe move to softc */
1467 	u_int maxwords;
1468 	int i;
1469 
1470 	safestats.st_rng++;
1471 	/*
1472 	 * Fetch the next block of data.
1473 	 */
1474 	maxwords = safe_rngbufsize;
1475 	if (maxwords > SAFE_RNG_MAXBUFSIZ)
1476 		maxwords = SAFE_RNG_MAXBUFSIZ;
1477 retry:
1478 	for (i = 0; i < maxwords; i++)
1479 		buf[i] = safe_rng_read(sc);
1480 	/*
1481 	 * Check the comparator alarm count and reset the h/w if
1482 	 * it exceeds our threshold.  This guards against the
1483 	 * hardware oscillators resonating with external signals.
1484 	 */
1485 	if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
1486 		u_int32_t freq_inc, w;
1487 
1488 		DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
1489 			READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
1490 		safestats.st_rngalarm++;
1491 		safe_rng_enable_short_cycle(sc);
1492 		freq_inc = 18;
1493 		for (i = 0; i < 64; i++) {
1494 			w = READ_REG(sc, SAFE_RNG_CNFG);
1495 			freq_inc = ((w + freq_inc) & 0x3fL);
1496 			w = ((w & ~0x3fL) | freq_inc);
1497 			WRITE_REG(sc, SAFE_RNG_CNFG, w);
1498 
1499 			WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1500 
1501 			(void) safe_rng_read(sc);
1502 			DELAY(25);
1503 
1504 			if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
1505 				safe_rng_disable_short_cycle(sc);
1506 				goto retry;
1507 			}
1508 			freq_inc = 1;
1509 		}
1510 		safe_rng_disable_short_cycle(sc);
1511 	} else
1512 		WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
1513 
1514 	(*sc->sc_harvest)(sc->sc_rndtest, buf, maxwords*sizeof (u_int32_t));
1515 	callout_reset(&sc->sc_rngto,
1516 		hz * (safe_rnginterval ? safe_rnginterval : 1), safe_rng, sc);
1517 }
1518 #endif /* SAFE_NO_RNG */
1519 
1520 static void
safe_dmamap_cb(void * arg,bus_dma_segment_t * segs,int nseg,int error)1521 safe_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1522 {
1523 	bus_addr_t *paddr = (bus_addr_t*) arg;
1524 	*paddr = segs->ds_addr;
1525 }
1526 
1527 static int
safe_dma_malloc(struct safe_softc * sc,bus_size_t size,struct safe_dma_alloc * dma,int mapflags)1528 safe_dma_malloc(
1529 	struct safe_softc *sc,
1530 	bus_size_t size,
1531 	struct safe_dma_alloc *dma,
1532 	int mapflags
1533 )
1534 {
1535 	int r;
1536 
1537 	r = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
1538 			       sizeof(u_int32_t), 0,	/* alignment, bounds */
1539 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1540 			       BUS_SPACE_MAXADDR,	/* highaddr */
1541 			       NULL, NULL,		/* filter, filterarg */
1542 			       size,			/* maxsize */
1543 			       1,			/* nsegments */
1544 			       size,			/* maxsegsize */
1545 			       BUS_DMA_ALLOCNOW,	/* flags */
1546 			       NULL, NULL,		/* locking */
1547 			       &dma->dma_tag);
1548 	if (r != 0) {
1549 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1550 			"bus_dma_tag_create failed; error %u\n", r);
1551 		goto fail_0;
1552 	}
1553 
1554 	r = bus_dmamem_alloc(dma->dma_tag, (void**) &dma->dma_vaddr,
1555 			     BUS_DMA_NOWAIT, &dma->dma_map);
1556 	if (r != 0) {
1557 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1558 			"bus_dmammem_alloc failed; size %ju, error %u\n",
1559 			(uintmax_t)size, r);
1560 		goto fail_1;
1561 	}
1562 
1563 	r = bus_dmamap_load(dma->dma_tag, dma->dma_map, dma->dma_vaddr,
1564 		            size,
1565 			    safe_dmamap_cb,
1566 			    &dma->dma_paddr,
1567 			    mapflags | BUS_DMA_NOWAIT);
1568 	if (r != 0) {
1569 		device_printf(sc->sc_dev, "safe_dma_malloc: "
1570 			"bus_dmamap_load failed; error %u\n", r);
1571 		goto fail_2;
1572 	}
1573 
1574 	dma->dma_size = size;
1575 	return (0);
1576 
1577 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1578 fail_2:
1579 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1580 fail_1:
1581 	bus_dma_tag_destroy(dma->dma_tag);
1582 fail_0:
1583 	dma->dma_tag = NULL;
1584 	return (r);
1585 }
1586 
1587 static void
safe_dma_free(struct safe_softc * sc,struct safe_dma_alloc * dma)1588 safe_dma_free(struct safe_softc *sc, struct safe_dma_alloc *dma)
1589 {
1590 	bus_dmamap_unload(dma->dma_tag, dma->dma_map);
1591 	bus_dmamem_free(dma->dma_tag, dma->dma_vaddr, dma->dma_map);
1592 	bus_dma_tag_destroy(dma->dma_tag);
1593 }
1594 
1595 /*
1596  * Resets the board.  Values in the regesters are left as is
1597  * from the reset (i.e. initial values are assigned elsewhere).
1598  */
1599 static void
safe_reset_board(struct safe_softc * sc)1600 safe_reset_board(struct safe_softc *sc)
1601 {
1602 	u_int32_t v;
1603 	/*
1604 	 * Reset the device.  The manual says no delay
1605 	 * is needed between marking and clearing reset.
1606 	 */
1607 	v = READ_REG(sc, SAFE_PE_DMACFG) &~
1608 		(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
1609 		 SAFE_PE_DMACFG_SGRESET);
1610 	WRITE_REG(sc, SAFE_PE_DMACFG, v
1611 				    | SAFE_PE_DMACFG_PERESET
1612 				    | SAFE_PE_DMACFG_PDRRESET
1613 				    | SAFE_PE_DMACFG_SGRESET);
1614 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1615 }
1616 
1617 /*
1618  * Initialize registers we need to touch only once.
1619  */
1620 static void
safe_init_board(struct safe_softc * sc)1621 safe_init_board(struct safe_softc *sc)
1622 {
1623 	u_int32_t v, dwords;
1624 
1625 	v = READ_REG(sc, SAFE_PE_DMACFG);
1626 	v &=~ SAFE_PE_DMACFG_PEMODE;
1627 	v |= SAFE_PE_DMACFG_FSENA		/* failsafe enable */
1628 	  |  SAFE_PE_DMACFG_GPRPCI		/* gather ring on PCI */
1629 	  |  SAFE_PE_DMACFG_SPRPCI		/* scatter ring on PCI */
1630 	  |  SAFE_PE_DMACFG_ESDESC		/* endian-swap descriptors */
1631 	  |  SAFE_PE_DMACFG_ESSA		/* endian-swap SA's */
1632 	  |  SAFE_PE_DMACFG_ESPDESC		/* endian-swap part. desc's */
1633 	  ;
1634 	WRITE_REG(sc, SAFE_PE_DMACFG, v);
1635 #if 0
1636 	/* XXX select byte swap based on host byte order */
1637 	WRITE_REG(sc, SAFE_ENDIAN, 0x1b);
1638 #endif
1639 	if (sc->sc_chiprev == SAFE_REV(1,0)) {
1640 		/*
1641 		 * Avoid large PCI DMA transfers.  Rev 1.0 has a bug where
1642 		 * "target mode transfers" done while the chip is DMA'ing
1643 		 * >1020 bytes cause the hardware to lockup.  To avoid this
1644 		 * we reduce the max PCI transfer size and use small source
1645 		 * particle descriptors (<= 256 bytes).
1646 		 */
1647 		WRITE_REG(sc, SAFE_DMA_CFG, 256);
1648 		device_printf(sc->sc_dev,
1649 			"Reduce max DMA size to %u words for rev %u.%u WAR\n",
1650 			(READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff,
1651 			SAFE_REV_MAJ(sc->sc_chiprev),
1652 			SAFE_REV_MIN(sc->sc_chiprev));
1653 	}
1654 
1655 	/* NB: operands+results are overlaid */
1656 	WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
1657 	WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
1658 	/*
1659 	 * Configure ring entry size and number of items in the ring.
1660 	 */
1661 	KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
1662 		("PE ring entry not 32-bit aligned!"));
1663 	dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
1664 	WRITE_REG(sc, SAFE_PE_RINGCFG,
1665 		(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
1666 	WRITE_REG(sc, SAFE_PE_RINGPOLL, 0);	/* disable polling */
1667 
1668 	WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
1669 	WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
1670 	WRITE_REG(sc, SAFE_PE_PARTSIZE,
1671 		(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
1672 	/*
1673 	 * NB: destination particles are fixed size.  We use
1674 	 *     an mbuf cluster and require all results go to
1675 	 *     clusters or smaller.
1676 	 */
1677 	WRITE_REG(sc, SAFE_PE_PARTCFG, SAFE_MAX_DSIZE);
1678 
1679 	/* it's now safe to enable PE mode, do it */
1680 	WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
1681 
1682 	/*
1683 	 * Configure hardware to use level-triggered interrupts and
1684 	 * to interrupt after each descriptor is processed.
1685 	 */
1686 	WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
1687 	WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
1688 	WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
1689 }
1690 
1691 /*
1692  * Init PCI registers
1693  */
1694 static void
safe_init_pciregs(device_t dev)1695 safe_init_pciregs(device_t dev)
1696 {
1697 }
1698 
1699 /*
1700  * Clean up after a chip crash.
1701  * It is assumed that the caller in splimp()
1702  */
1703 static void
safe_cleanchip(struct safe_softc * sc)1704 safe_cleanchip(struct safe_softc *sc)
1705 {
1706 
1707 	if (sc->sc_nqchip != 0) {
1708 		struct safe_ringentry *re = sc->sc_back;
1709 
1710 		while (re != sc->sc_front) {
1711 			if (re->re_desc.d_csr != 0)
1712 				safe_free_entry(sc, re);
1713 			if (++re == sc->sc_ringtop)
1714 				re = sc->sc_ring;
1715 		}
1716 		sc->sc_back = re;
1717 		sc->sc_nqchip = 0;
1718 	}
1719 }
1720 
1721 /*
1722  * free a safe_q
1723  * It is assumed that the caller is within splimp().
1724  */
1725 static int
safe_free_entry(struct safe_softc * sc,struct safe_ringentry * re)1726 safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
1727 {
1728 	struct cryptop *crp;
1729 
1730 	/*
1731 	 * Free header MCR
1732 	 */
1733 	if (re->re_dst_m != NULL)
1734 		m_freem(re->re_dst_m);
1735 
1736 	crp = (struct cryptop *)re->re_crp;
1737 
1738 	re->re_desc.d_csr = 0;
1739 
1740 	crp->crp_etype = EFAULT;
1741 	crypto_done(crp);
1742 	return(0);
1743 }
1744 
1745 /*
1746  * Routine to reset the chip and clean up.
1747  * It is assumed that the caller is in splimp()
1748  */
1749 static void
safe_totalreset(struct safe_softc * sc)1750 safe_totalreset(struct safe_softc *sc)
1751 {
1752 	safe_reset_board(sc);
1753 	safe_init_board(sc);
1754 	safe_cleanchip(sc);
1755 }
1756 
1757 /*
1758  * Is the operand suitable aligned for direct DMA.  Each
1759  * segment must be aligned on a 32-bit boundary and all
1760  * but the last segment must be a multiple of 4 bytes.
1761  */
1762 static int
safe_dmamap_aligned(const struct safe_operand * op)1763 safe_dmamap_aligned(const struct safe_operand *op)
1764 {
1765 	int i;
1766 
1767 	for (i = 0; i < op->nsegs; i++) {
1768 		if (op->segs[i].ds_addr & 3)
1769 			return (0);
1770 		if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
1771 			return (0);
1772 	}
1773 	return (1);
1774 }
1775 
1776 /*
1777  * Is the operand suitable for direct DMA as the destination
1778  * of an operation.  The hardware requires that each ``particle''
1779  * but the last in an operation result have the same size.  We
1780  * fix that size at SAFE_MAX_DSIZE bytes.  This routine returns
1781  * 0 if some segment is not a multiple of this size, 1 if all
1782  * segments are exactly this size, or 2 if segments are at worst
1783  * a multiple of this size.
1784  */
1785 static int
safe_dmamap_uniform(const struct safe_operand * op)1786 safe_dmamap_uniform(const struct safe_operand *op)
1787 {
1788 	int result = 1;
1789 
1790 	if (op->nsegs > 0) {
1791 		int i;
1792 
1793 		for (i = 0; i < op->nsegs-1; i++) {
1794 			if (op->segs[i].ds_len % SAFE_MAX_DSIZE)
1795 				return (0);
1796 			if (op->segs[i].ds_len != SAFE_MAX_DSIZE)
1797 				result = 2;
1798 		}
1799 	}
1800 	return (result);
1801 }
1802 
1803 #ifdef SAFE_DEBUG
1804 static void
safe_dump_dmastatus(struct safe_softc * sc,const char * tag)1805 safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
1806 {
1807 	printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
1808 		, tag
1809 		, READ_REG(sc, SAFE_DMA_ENDIAN)
1810 		, READ_REG(sc, SAFE_DMA_SRCADDR)
1811 		, READ_REG(sc, SAFE_DMA_DSTADDR)
1812 		, READ_REG(sc, SAFE_DMA_STAT)
1813 	);
1814 }
1815 
1816 static void
safe_dump_intrstate(struct safe_softc * sc,const char * tag)1817 safe_dump_intrstate(struct safe_softc *sc, const char *tag)
1818 {
1819 	printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
1820 		, tag
1821 		, READ_REG(sc, SAFE_HI_CFG)
1822 		, READ_REG(sc, SAFE_HI_MASK)
1823 		, READ_REG(sc, SAFE_HI_DESC_CNT)
1824 		, READ_REG(sc, SAFE_HU_STAT)
1825 		, READ_REG(sc, SAFE_HM_STAT)
1826 	);
1827 }
1828 
1829 static void
safe_dump_ringstate(struct safe_softc * sc,const char * tag)1830 safe_dump_ringstate(struct safe_softc *sc, const char *tag)
1831 {
1832 	u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
1833 
1834 	/* NB: assume caller has lock on ring */
1835 	printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
1836 		tag,
1837 		estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
1838 		(unsigned long)(sc->sc_back - sc->sc_ring),
1839 		(unsigned long)(sc->sc_front - sc->sc_ring));
1840 }
1841 
1842 static void
safe_dump_request(struct safe_softc * sc,const char * tag,struct safe_ringentry * re)1843 safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
1844 {
1845 	int ix, nsegs;
1846 
1847 	ix = re - sc->sc_ring;
1848 	printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
1849 		, tag
1850 		, re, ix
1851 		, re->re_desc.d_csr
1852 		, re->re_desc.d_src
1853 		, re->re_desc.d_dst
1854 		, re->re_desc.d_sa
1855 		, re->re_desc.d_len
1856 	);
1857 	if (re->re_src.nsegs > 1) {
1858 		ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
1859 			sizeof(struct safe_pdesc);
1860 		for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
1861 			printf(" spd[%u] %p: %p size %u flags %x"
1862 				, ix, &sc->sc_spring[ix]
1863 				, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
1864 				, sc->sc_spring[ix].pd_size
1865 				, sc->sc_spring[ix].pd_flags
1866 			);
1867 			if (sc->sc_spring[ix].pd_size == 0)
1868 				printf(" (zero!)");
1869 			printf("\n");
1870 			if (++ix == SAFE_TOTAL_SPART)
1871 				ix = 0;
1872 		}
1873 	}
1874 	if (re->re_dst.nsegs > 1) {
1875 		ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
1876 			sizeof(struct safe_pdesc);
1877 		for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
1878 			printf(" dpd[%u] %p: %p flags %x\n"
1879 				, ix, &sc->sc_dpring[ix]
1880 				, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
1881 				, sc->sc_dpring[ix].pd_flags
1882 			);
1883 			if (++ix == SAFE_TOTAL_DPART)
1884 				ix = 0;
1885 		}
1886 	}
1887 	printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
1888 		re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
1889 	printf("sa: key %x %x %x %x %x %x %x %x\n"
1890 		, re->re_sa.sa_key[0]
1891 		, re->re_sa.sa_key[1]
1892 		, re->re_sa.sa_key[2]
1893 		, re->re_sa.sa_key[3]
1894 		, re->re_sa.sa_key[4]
1895 		, re->re_sa.sa_key[5]
1896 		, re->re_sa.sa_key[6]
1897 		, re->re_sa.sa_key[7]
1898 	);
1899 	printf("sa: indigest %x %x %x %x %x\n"
1900 		, re->re_sa.sa_indigest[0]
1901 		, re->re_sa.sa_indigest[1]
1902 		, re->re_sa.sa_indigest[2]
1903 		, re->re_sa.sa_indigest[3]
1904 		, re->re_sa.sa_indigest[4]
1905 	);
1906 	printf("sa: outdigest %x %x %x %x %x\n"
1907 		, re->re_sa.sa_outdigest[0]
1908 		, re->re_sa.sa_outdigest[1]
1909 		, re->re_sa.sa_outdigest[2]
1910 		, re->re_sa.sa_outdigest[3]
1911 		, re->re_sa.sa_outdigest[4]
1912 	);
1913 	printf("sr: iv %x %x %x %x\n"
1914 		, re->re_sastate.sa_saved_iv[0]
1915 		, re->re_sastate.sa_saved_iv[1]
1916 		, re->re_sastate.sa_saved_iv[2]
1917 		, re->re_sastate.sa_saved_iv[3]
1918 	);
1919 	printf("sr: hashbc %u indigest %x %x %x %x %x\n"
1920 		, re->re_sastate.sa_saved_hashbc
1921 		, re->re_sastate.sa_saved_indigest[0]
1922 		, re->re_sastate.sa_saved_indigest[1]
1923 		, re->re_sastate.sa_saved_indigest[2]
1924 		, re->re_sastate.sa_saved_indigest[3]
1925 		, re->re_sastate.sa_saved_indigest[4]
1926 	);
1927 }
1928 
1929 static void
safe_dump_ring(struct safe_softc * sc,const char * tag)1930 safe_dump_ring(struct safe_softc *sc, const char *tag)
1931 {
1932 	mtx_lock(&sc->sc_ringmtx);
1933 	printf("\nSafeNet Ring State:\n");
1934 	safe_dump_intrstate(sc, tag);
1935 	safe_dump_dmastatus(sc, tag);
1936 	safe_dump_ringstate(sc, tag);
1937 	if (sc->sc_nqchip) {
1938 		struct safe_ringentry *re = sc->sc_back;
1939 		do {
1940 			safe_dump_request(sc, tag, re);
1941 			if (++re == sc->sc_ringtop)
1942 				re = sc->sc_ring;
1943 		} while (re != sc->sc_front);
1944 	}
1945 	mtx_unlock(&sc->sc_ringmtx);
1946 }
1947 
1948 static int
sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)1949 sysctl_hw_safe_dump(SYSCTL_HANDLER_ARGS)
1950 {
1951 	char dmode[64];
1952 	int error;
1953 
1954 	strncpy(dmode, "", sizeof(dmode) - 1);
1955 	dmode[sizeof(dmode) - 1] = '\0';
1956 	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
1957 
1958 	if (error == 0 && req->newptr != NULL) {
1959 		struct safe_softc *sc = safec;
1960 
1961 		if (!sc)
1962 			return EINVAL;
1963 		if (strncmp(dmode, "dma", 3) == 0)
1964 			safe_dump_dmastatus(sc, "safe0");
1965 		else if (strncmp(dmode, "int", 3) == 0)
1966 			safe_dump_intrstate(sc, "safe0");
1967 		else if (strncmp(dmode, "ring", 4) == 0)
1968 			safe_dump_ring(sc, "safe0");
1969 		else
1970 			return EINVAL;
1971 	}
1972 	return error;
1973 }
1974 SYSCTL_PROC(_hw_safe, OID_AUTO, dump,
1975     CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 0, 0,
1976     sysctl_hw_safe_dump, "A",
1977     "Dump driver state");
1978 #endif /* SAFE_DEBUG */
1979