1 /*- 2 * Copyright (c) 1997, 1998 3 * Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * RealTek 8129/8139 PCI NIC driver 38 * 39 * Supports several extremely cheap PCI 10/100 adapters based on 40 * the RealTek chipset. Datasheets can be obtained from 41 * www.realtek.com.tw. 42 * 43 * Written by Bill Paul <wpaul@ctr.columbia.edu> 44 * Electrical Engineering Department 45 * Columbia University, New York City 46 */ 47 /* 48 * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is 49 * probably the worst PCI ethernet controller ever made, with the possible 50 * exception of the FEAST chip made by SMC. The 8139 supports bus-master 51 * DMA, but it has a terrible interface that nullifies any performance 52 * gains that bus-master DMA usually offers. 53 * 54 * For transmission, the chip offers a series of four TX descriptor 55 * registers. Each transmit frame must be in a contiguous buffer, aligned 56 * on a longword (32-bit) boundary. This means we almost always have to 57 * do mbuf copies in order to transmit a frame, except in the unlikely 58 * case where a) the packet fits into a single mbuf, and b) the packet 59 * is 32-bit aligned within the mbuf's data area. The presence of only 60 * four descriptor registers means that we can never have more than four 61 * packets queued for transmission at any one time. 62 * 63 * Reception is not much better. The driver has to allocate a single large 64 * buffer area (up to 64K in size) into which the chip will DMA received 65 * frames. Because we don't know where within this region received packets 66 * will begin or end, we have no choice but to copy data from the buffer 67 * area into mbufs in order to pass the packets up to the higher protocol 68 * levels. 69 * 70 * It's impossible given this rotten design to really achieve decent 71 * performance at 100Mbps, unless you happen to have a 400Mhz PII or 72 * some equally overmuscled CPU to drive it. 73 * 74 * On the bright side, the 8139 does have a built-in PHY, although 75 * rather than using an MDIO serial interface like most other NICs, the 76 * PHY registers are directly accessible through the 8139's register 77 * space. The 8139 supports autonegotiation, as well as a 64-bit multicast 78 * filter. 79 * 80 * The 8129 chip is an older version of the 8139 that uses an external PHY 81 * chip. The 8129 has a serial MDIO interface for accessing the MII where 82 * the 8139 lets you directly access the on-board PHY registers. We need 83 * to select which interface to use depending on the chip type. 84 */ 85 86 #ifdef HAVE_KERNEL_OPTION_HEADERS 87 #include "opt_device_polling.h" 88 #endif 89 90 #include <sys/param.h> 91 #include <sys/endian.h> 92 #include <sys/systm.h> 93 #include <sys/sockio.h> 94 #include <sys/mbuf.h> 95 #include <sys/malloc.h> 96 #include <sys/kernel.h> 97 #include <sys/module.h> 98 #include <sys/socket.h> 99 #include <sys/sysctl.h> 100 101 #include <net/if.h> 102 #include <net/if_var.h> 103 #include <net/if_arp.h> 104 #include <net/ethernet.h> 105 #include <net/if_dl.h> 106 #include <net/if_media.h> 107 #include <net/if_types.h> 108 109 #include <net/bpf.h> 110 111 #include <machine/bus.h> 112 #include <machine/resource.h> 113 #include <sys/bus.h> 114 #include <sys/rman.h> 115 116 #include <dev/mii/mii.h> 117 #include <dev/mii/mii_bitbang.h> 118 #include <dev/mii/miivar.h> 119 120 #include <dev/pci/pcireg.h> 121 #include <dev/pci/pcivar.h> 122 123 MODULE_DEPEND(rl, pci, 1, 1, 1); 124 MODULE_DEPEND(rl, ether, 1, 1, 1); 125 MODULE_DEPEND(rl, miibus, 1, 1, 1); 126 127 /* "device miibus" required. See GENERIC if you get errors here. */ 128 #include "miibus_if.h" 129 130 #include <dev/rl/if_rlreg.h> 131 132 /* 133 * Various supported device vendors/types and their names. 134 */ 135 static const struct rl_type rl_devs[] = { 136 { RT_VENDORID, RT_DEVICEID_8129, RL_8129, 137 "RealTek 8129 10/100BaseTX" }, 138 { RT_VENDORID, RT_DEVICEID_8139, RL_8139, 139 "RealTek 8139 10/100BaseTX" }, 140 { RT_VENDORID, RT_DEVICEID_8139D, RL_8139, 141 "RealTek 8139 10/100BaseTX" }, 142 { RT_VENDORID, RT_DEVICEID_8138, RL_8139, 143 "RealTek 8139 10/100BaseTX CardBus" }, 144 { RT_VENDORID, RT_DEVICEID_8100, RL_8139, 145 "RealTek 8100 10/100BaseTX" }, 146 { ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139, 147 "Accton MPX 5030/5038 10/100BaseTX" }, 148 { DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139, 149 "Delta Electronics 8139 10/100BaseTX" }, 150 { ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139, 151 "Addtron Technology 8139 10/100BaseTX" }, 152 { DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139, 153 "D-Link DFE-520TX (rev. C1) 10/100BaseTX" }, 154 { DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139, 155 "D-Link DFE-530TX+ 10/100BaseTX" }, 156 { DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139, 157 "D-Link DFE-690TXD 10/100BaseTX" }, 158 { NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139, 159 "Nortel Networks 10/100BaseTX" }, 160 { COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139, 161 "Corega FEther CB-TXD" }, 162 { COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139, 163 "Corega FEtherII CB-TXD" }, 164 { PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139, 165 "Peppercon AG ROL-F" }, 166 { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139, 167 "Planex FNW-3603-TX" }, 168 { PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139, 169 "Planex FNW-3800-TX" }, 170 { CP_VENDORID, RT_DEVICEID_8139, RL_8139, 171 "Compaq HNE-300" }, 172 { LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139, 173 "LevelOne FPC-0106TX" }, 174 { EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139, 175 "Edimax EP-4103DL CardBus" } 176 }; 177 178 static int rl_attach(device_t); 179 static int rl_detach(device_t); 180 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int); 181 static int rl_dma_alloc(struct rl_softc *); 182 static void rl_dma_free(struct rl_softc *); 183 static void rl_eeprom_putbyte(struct rl_softc *, int); 184 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *); 185 static int rl_encap(struct rl_softc *, struct mbuf **); 186 static int rl_list_tx_init(struct rl_softc *); 187 static int rl_list_rx_init(struct rl_softc *); 188 static int rl_ifmedia_upd(struct ifnet *); 189 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *); 190 static int rl_ioctl(struct ifnet *, u_long, caddr_t); 191 static void rl_intr(void *); 192 static void rl_init(void *); 193 static void rl_init_locked(struct rl_softc *sc); 194 static int rl_miibus_readreg(device_t, int, int); 195 static void rl_miibus_statchg(device_t); 196 static int rl_miibus_writereg(device_t, int, int, int); 197 #ifdef DEVICE_POLLING 198 static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count); 199 static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count); 200 #endif 201 static int rl_probe(device_t); 202 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int); 203 static void rl_reset(struct rl_softc *); 204 static int rl_resume(device_t); 205 static int rl_rxeof(struct rl_softc *); 206 static void rl_rxfilter(struct rl_softc *); 207 static int rl_shutdown(device_t); 208 static void rl_start(struct ifnet *); 209 static void rl_start_locked(struct ifnet *); 210 static void rl_stop(struct rl_softc *); 211 static int rl_suspend(device_t); 212 static void rl_tick(void *); 213 static void rl_txeof(struct rl_softc *); 214 static void rl_watchdog(struct rl_softc *); 215 static void rl_setwol(struct rl_softc *); 216 static void rl_clrwol(struct rl_softc *); 217 218 /* 219 * MII bit-bang glue 220 */ 221 static uint32_t rl_mii_bitbang_read(device_t); 222 static void rl_mii_bitbang_write(device_t, uint32_t); 223 224 static const struct mii_bitbang_ops rl_mii_bitbang_ops = { 225 rl_mii_bitbang_read, 226 rl_mii_bitbang_write, 227 { 228 RL_MII_DATAOUT, /* MII_BIT_MDO */ 229 RL_MII_DATAIN, /* MII_BIT_MDI */ 230 RL_MII_CLK, /* MII_BIT_MDC */ 231 RL_MII_DIR, /* MII_BIT_DIR_HOST_PHY */ 232 0, /* MII_BIT_DIR_PHY_HOST */ 233 } 234 }; 235 236 static device_method_t rl_methods[] = { 237 /* Device interface */ 238 DEVMETHOD(device_probe, rl_probe), 239 DEVMETHOD(device_attach, rl_attach), 240 DEVMETHOD(device_detach, rl_detach), 241 DEVMETHOD(device_suspend, rl_suspend), 242 DEVMETHOD(device_resume, rl_resume), 243 DEVMETHOD(device_shutdown, rl_shutdown), 244 245 /* MII interface */ 246 DEVMETHOD(miibus_readreg, rl_miibus_readreg), 247 DEVMETHOD(miibus_writereg, rl_miibus_writereg), 248 DEVMETHOD(miibus_statchg, rl_miibus_statchg), 249 250 DEVMETHOD_END 251 }; 252 253 static driver_t rl_driver = { 254 "rl", 255 rl_methods, 256 sizeof(struct rl_softc) 257 }; 258 259 static devclass_t rl_devclass; 260 261 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0); 262 MODULE_PNP_INFO("U16:vendor;U16:device", pci, rl, rl_devs, 263 nitems(rl_devs) - 1); 264 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0); 265 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0); 266 267 #define EE_SET(x) \ 268 CSR_WRITE_1(sc, RL_EECMD, \ 269 CSR_READ_1(sc, RL_EECMD) | x) 270 271 #define EE_CLR(x) \ 272 CSR_WRITE_1(sc, RL_EECMD, \ 273 CSR_READ_1(sc, RL_EECMD) & ~x) 274 275 /* 276 * Send a read command and address to the EEPROM, check for ACK. 277 */ 278 static void 279 rl_eeprom_putbyte(struct rl_softc *sc, int addr) 280 { 281 int d, i; 282 283 d = addr | sc->rl_eecmd_read; 284 285 /* 286 * Feed in each bit and strobe the clock. 287 */ 288 for (i = 0x400; i; i >>= 1) { 289 if (d & i) { 290 EE_SET(RL_EE_DATAIN); 291 } else { 292 EE_CLR(RL_EE_DATAIN); 293 } 294 DELAY(100); 295 EE_SET(RL_EE_CLK); 296 DELAY(150); 297 EE_CLR(RL_EE_CLK); 298 DELAY(100); 299 } 300 } 301 302 /* 303 * Read a word of data stored in the EEPROM at address 'addr.' 304 */ 305 static void 306 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest) 307 { 308 int i; 309 uint16_t word = 0; 310 311 /* Enter EEPROM access mode. */ 312 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); 313 314 /* 315 * Send address of word we want to read. 316 */ 317 rl_eeprom_putbyte(sc, addr); 318 319 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); 320 321 /* 322 * Start reading bits from EEPROM. 323 */ 324 for (i = 0x8000; i; i >>= 1) { 325 EE_SET(RL_EE_CLK); 326 DELAY(100); 327 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) 328 word |= i; 329 EE_CLR(RL_EE_CLK); 330 DELAY(100); 331 } 332 333 /* Turn off EEPROM access mode. */ 334 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 335 336 *dest = word; 337 } 338 339 /* 340 * Read a sequence of words from the EEPROM. 341 */ 342 static void 343 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap) 344 { 345 int i; 346 uint16_t word = 0, *ptr; 347 348 for (i = 0; i < cnt; i++) { 349 rl_eeprom_getword(sc, off + i, &word); 350 ptr = (uint16_t *)(dest + (i * 2)); 351 if (swap) 352 *ptr = ntohs(word); 353 else 354 *ptr = word; 355 } 356 } 357 358 /* 359 * Read the MII serial port for the MII bit-bang module. 360 */ 361 static uint32_t 362 rl_mii_bitbang_read(device_t dev) 363 { 364 struct rl_softc *sc; 365 uint32_t val; 366 367 sc = device_get_softc(dev); 368 369 val = CSR_READ_1(sc, RL_MII); 370 CSR_BARRIER(sc, RL_MII, 1, 371 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 372 373 return (val); 374 } 375 376 /* 377 * Write the MII serial port for the MII bit-bang module. 378 */ 379 static void 380 rl_mii_bitbang_write(device_t dev, uint32_t val) 381 { 382 struct rl_softc *sc; 383 384 sc = device_get_softc(dev); 385 386 CSR_WRITE_1(sc, RL_MII, val); 387 CSR_BARRIER(sc, RL_MII, 1, 388 BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE); 389 } 390 391 static int 392 rl_miibus_readreg(device_t dev, int phy, int reg) 393 { 394 struct rl_softc *sc; 395 uint16_t rl8139_reg; 396 397 sc = device_get_softc(dev); 398 399 if (sc->rl_type == RL_8139) { 400 switch (reg) { 401 case MII_BMCR: 402 rl8139_reg = RL_BMCR; 403 break; 404 case MII_BMSR: 405 rl8139_reg = RL_BMSR; 406 break; 407 case MII_ANAR: 408 rl8139_reg = RL_ANAR; 409 break; 410 case MII_ANER: 411 rl8139_reg = RL_ANER; 412 break; 413 case MII_ANLPAR: 414 rl8139_reg = RL_LPAR; 415 break; 416 case MII_PHYIDR1: 417 case MII_PHYIDR2: 418 return (0); 419 /* 420 * Allow the rlphy driver to read the media status 421 * register. If we have a link partner which does not 422 * support NWAY, this is the register which will tell 423 * us the results of parallel detection. 424 */ 425 case RL_MEDIASTAT: 426 return (CSR_READ_1(sc, RL_MEDIASTAT)); 427 default: 428 device_printf(sc->rl_dev, "bad phy register\n"); 429 return (0); 430 } 431 return (CSR_READ_2(sc, rl8139_reg)); 432 } 433 434 return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg)); 435 } 436 437 static int 438 rl_miibus_writereg(device_t dev, int phy, int reg, int data) 439 { 440 struct rl_softc *sc; 441 uint16_t rl8139_reg; 442 443 sc = device_get_softc(dev); 444 445 if (sc->rl_type == RL_8139) { 446 switch (reg) { 447 case MII_BMCR: 448 rl8139_reg = RL_BMCR; 449 break; 450 case MII_BMSR: 451 rl8139_reg = RL_BMSR; 452 break; 453 case MII_ANAR: 454 rl8139_reg = RL_ANAR; 455 break; 456 case MII_ANER: 457 rl8139_reg = RL_ANER; 458 break; 459 case MII_ANLPAR: 460 rl8139_reg = RL_LPAR; 461 break; 462 case MII_PHYIDR1: 463 case MII_PHYIDR2: 464 return (0); 465 break; 466 default: 467 device_printf(sc->rl_dev, "bad phy register\n"); 468 return (0); 469 } 470 CSR_WRITE_2(sc, rl8139_reg, data); 471 return (0); 472 } 473 474 mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data); 475 476 return (0); 477 } 478 479 static void 480 rl_miibus_statchg(device_t dev) 481 { 482 struct rl_softc *sc; 483 struct ifnet *ifp; 484 struct mii_data *mii; 485 486 sc = device_get_softc(dev); 487 mii = device_get_softc(sc->rl_miibus); 488 ifp = sc->rl_ifp; 489 if (mii == NULL || ifp == NULL || 490 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 491 return; 492 493 sc->rl_flags &= ~RL_FLAG_LINK; 494 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 495 (IFM_ACTIVE | IFM_AVALID)) { 496 switch (IFM_SUBTYPE(mii->mii_media_active)) { 497 case IFM_10_T: 498 case IFM_100_TX: 499 sc->rl_flags |= RL_FLAG_LINK; 500 break; 501 default: 502 break; 503 } 504 } 505 /* 506 * RealTek controllers do not provide any interface to 507 * Tx/Rx MACs for resolved speed, duplex and flow-control 508 * parameters. 509 */ 510 } 511 512 static u_int 513 rl_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 514 { 515 uint32_t *hashes = arg; 516 int h; 517 518 h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26; 519 if (h < 32) 520 hashes[0] |= (1 << h); 521 else 522 hashes[1] |= (1 << (h - 32)); 523 524 return (1); 525 } 526 527 /* 528 * Program the 64-bit multicast hash filter. 529 */ 530 static void 531 rl_rxfilter(struct rl_softc *sc) 532 { 533 struct ifnet *ifp = sc->rl_ifp; 534 uint32_t hashes[2] = { 0, 0 }; 535 uint32_t rxfilt; 536 537 RL_LOCK_ASSERT(sc); 538 539 rxfilt = CSR_READ_4(sc, RL_RXCFG); 540 rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD | 541 RL_RXCFG_RX_MULTI); 542 /* Always accept frames destined for this host. */ 543 rxfilt |= RL_RXCFG_RX_INDIV; 544 /* Set capture broadcast bit to capture broadcast frames. */ 545 if (ifp->if_flags & IFF_BROADCAST) 546 rxfilt |= RL_RXCFG_RX_BROAD; 547 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 548 rxfilt |= RL_RXCFG_RX_MULTI; 549 if (ifp->if_flags & IFF_PROMISC) 550 rxfilt |= RL_RXCFG_RX_ALLPHYS; 551 hashes[0] = 0xFFFFFFFF; 552 hashes[1] = 0xFFFFFFFF; 553 } else { 554 /* Now program new ones. */ 555 if_foreach_llmaddr(ifp, rl_hash_maddr, hashes); 556 if (hashes[0] != 0 || hashes[1] != 0) 557 rxfilt |= RL_RXCFG_RX_MULTI; 558 } 559 560 CSR_WRITE_4(sc, RL_MAR0, hashes[0]); 561 CSR_WRITE_4(sc, RL_MAR4, hashes[1]); 562 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 563 } 564 565 static void 566 rl_reset(struct rl_softc *sc) 567 { 568 int i; 569 570 RL_LOCK_ASSERT(sc); 571 572 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); 573 574 for (i = 0; i < RL_TIMEOUT; i++) { 575 DELAY(10); 576 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) 577 break; 578 } 579 if (i == RL_TIMEOUT) 580 device_printf(sc->rl_dev, "reset never completed!\n"); 581 } 582 583 /* 584 * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device 585 * IDs against our list and return a device name if we find a match. 586 */ 587 static int 588 rl_probe(device_t dev) 589 { 590 const struct rl_type *t; 591 uint16_t devid, revid, vendor; 592 int i; 593 594 vendor = pci_get_vendor(dev); 595 devid = pci_get_device(dev); 596 revid = pci_get_revid(dev); 597 598 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { 599 if (revid == 0x20) { 600 /* 8139C+, let re(4) take care of this device. */ 601 return (ENXIO); 602 } 603 } 604 t = rl_devs; 605 for (i = 0; i < nitems(rl_devs); i++, t++) { 606 if (vendor == t->rl_vid && devid == t->rl_did) { 607 device_set_desc(dev, t->rl_name); 608 return (BUS_PROBE_DEFAULT); 609 } 610 } 611 612 return (ENXIO); 613 } 614 615 struct rl_dmamap_arg { 616 bus_addr_t rl_busaddr; 617 }; 618 619 static void 620 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error) 621 { 622 struct rl_dmamap_arg *ctx; 623 624 if (error != 0) 625 return; 626 627 KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); 628 629 ctx = (struct rl_dmamap_arg *)arg; 630 ctx->rl_busaddr = segs[0].ds_addr; 631 } 632 633 /* 634 * Attach the interface. Allocate softc structures, do ifmedia 635 * setup and ethernet/BPF attach. 636 */ 637 static int 638 rl_attach(device_t dev) 639 { 640 uint8_t eaddr[ETHER_ADDR_LEN]; 641 uint16_t as[3]; 642 struct ifnet *ifp; 643 struct rl_softc *sc; 644 const struct rl_type *t; 645 struct sysctl_ctx_list *ctx; 646 struct sysctl_oid_list *children; 647 int error = 0, hwrev, i, phy, pmc, rid; 648 int prefer_iomap, unit; 649 uint16_t rl_did = 0; 650 char tn[32]; 651 652 sc = device_get_softc(dev); 653 unit = device_get_unit(dev); 654 sc->rl_dev = dev; 655 656 sc->rl_twister_enable = 0; 657 snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit); 658 TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable); 659 ctx = device_get_sysctl_ctx(sc->rl_dev); 660 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev)); 661 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD, 662 &sc->rl_twister_enable, 0, ""); 663 664 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 665 MTX_DEF); 666 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); 667 668 pci_enable_busmaster(dev); 669 670 /* 671 * Map control/status registers. 672 * Default to using PIO access for this driver. On SMP systems, 673 * there appear to be problems with memory mapped mode: it looks 674 * like doing too many memory mapped access back to back in rapid 675 * succession can hang the bus. I'm inclined to blame this on 676 * crummy design/construction on the part of RealTek. Memory 677 * mapped mode does appear to work on uniprocessor systems though. 678 */ 679 prefer_iomap = 1; 680 snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit); 681 TUNABLE_INT_FETCH(tn, &prefer_iomap); 682 if (prefer_iomap) { 683 sc->rl_res_id = PCIR_BAR(0); 684 sc->rl_res_type = SYS_RES_IOPORT; 685 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 686 &sc->rl_res_id, RF_ACTIVE); 687 } 688 if (prefer_iomap == 0 || sc->rl_res == NULL) { 689 sc->rl_res_id = PCIR_BAR(1); 690 sc->rl_res_type = SYS_RES_MEMORY; 691 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 692 &sc->rl_res_id, RF_ACTIVE); 693 } 694 if (sc->rl_res == NULL) { 695 device_printf(dev, "couldn't map ports/memory\n"); 696 error = ENXIO; 697 goto fail; 698 } 699 700 #ifdef notdef 701 /* 702 * Detect the Realtek 8139B. For some reason, this chip is very 703 * unstable when left to autoselect the media 704 * The best workaround is to set the device to the required 705 * media type or to set it to the 10 Meg speed. 706 */ 707 if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF) 708 device_printf(dev, 709 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n"); 710 #endif 711 712 sc->rl_btag = rman_get_bustag(sc->rl_res); 713 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 714 715 /* Allocate interrupt */ 716 rid = 0; 717 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 718 RF_SHAREABLE | RF_ACTIVE); 719 720 if (sc->rl_irq[0] == NULL) { 721 device_printf(dev, "couldn't map interrupt\n"); 722 error = ENXIO; 723 goto fail; 724 } 725 726 sc->rl_cfg0 = RL_8139_CFG0; 727 sc->rl_cfg1 = RL_8139_CFG1; 728 sc->rl_cfg2 = 0; 729 sc->rl_cfg3 = RL_8139_CFG3; 730 sc->rl_cfg4 = RL_8139_CFG4; 731 sc->rl_cfg5 = RL_8139_CFG5; 732 733 /* 734 * Reset the adapter. Only take the lock here as it's needed in 735 * order to call rl_reset(). 736 */ 737 RL_LOCK(sc); 738 rl_reset(sc); 739 RL_UNLOCK(sc); 740 741 sc->rl_eecmd_read = RL_EECMD_READ_6BIT; 742 rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0); 743 if (rl_did != 0x8129) 744 sc->rl_eecmd_read = RL_EECMD_READ_8BIT; 745 746 /* 747 * Get station address from the EEPROM. 748 */ 749 rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0); 750 for (i = 0; i < 3; i++) { 751 eaddr[(i * 2) + 0] = as[i] & 0xff; 752 eaddr[(i * 2) + 1] = as[i] >> 8; 753 } 754 755 /* 756 * Now read the exact device type from the EEPROM to find 757 * out if it's an 8129 or 8139. 758 */ 759 rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0); 760 761 t = rl_devs; 762 sc->rl_type = 0; 763 while(t->rl_name != NULL) { 764 if (rl_did == t->rl_did) { 765 sc->rl_type = t->rl_basetype; 766 break; 767 } 768 t++; 769 } 770 771 if (sc->rl_type == 0) { 772 device_printf(dev, "unknown device ID: %x assuming 8139\n", 773 rl_did); 774 sc->rl_type = RL_8139; 775 /* 776 * Read RL_IDR register to get ethernet address as accessing 777 * EEPROM may not extract correct address. 778 */ 779 for (i = 0; i < ETHER_ADDR_LEN; i++) 780 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); 781 } 782 783 if ((error = rl_dma_alloc(sc)) != 0) 784 goto fail; 785 786 ifp = sc->rl_ifp = if_alloc(IFT_ETHER); 787 if (ifp == NULL) { 788 device_printf(dev, "can not if_alloc()\n"); 789 error = ENOSPC; 790 goto fail; 791 } 792 793 #define RL_PHYAD_INTERNAL 0 794 795 /* Do MII setup */ 796 phy = MII_PHY_ANY; 797 if (sc->rl_type == RL_8139) 798 phy = RL_PHYAD_INTERNAL; 799 error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd, 800 rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); 801 if (error != 0) { 802 device_printf(dev, "attaching PHYs failed\n"); 803 goto fail; 804 } 805 806 ifp->if_softc = sc; 807 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 808 ifp->if_mtu = ETHERMTU; 809 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 810 ifp->if_ioctl = rl_ioctl; 811 ifp->if_start = rl_start; 812 ifp->if_init = rl_init; 813 ifp->if_capabilities = IFCAP_VLAN_MTU; 814 /* Check WOL for RTL8139B or newer controllers. */ 815 if (sc->rl_type == RL_8139 && 816 pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) { 817 hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; 818 switch (hwrev) { 819 case RL_HWREV_8139B: 820 case RL_HWREV_8130: 821 case RL_HWREV_8139C: 822 case RL_HWREV_8139D: 823 case RL_HWREV_8101: 824 case RL_HWREV_8100: 825 ifp->if_capabilities |= IFCAP_WOL; 826 /* Disable WOL. */ 827 rl_clrwol(sc); 828 break; 829 default: 830 break; 831 } 832 } 833 ifp->if_capenable = ifp->if_capabilities; 834 ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST); 835 #ifdef DEVICE_POLLING 836 ifp->if_capabilities |= IFCAP_POLLING; 837 #endif 838 IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen); 839 ifp->if_snd.ifq_drv_maxlen = ifqmaxlen; 840 IFQ_SET_READY(&ifp->if_snd); 841 842 /* 843 * Call MI attach routine. 844 */ 845 ether_ifattach(ifp, eaddr); 846 847 /* Hook interrupt last to avoid having to lock softc */ 848 error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE, 849 NULL, rl_intr, sc, &sc->rl_intrhand[0]); 850 if (error) { 851 device_printf(sc->rl_dev, "couldn't set up irq\n"); 852 ether_ifdetach(ifp); 853 } 854 855 fail: 856 if (error) 857 rl_detach(dev); 858 859 return (error); 860 } 861 862 /* 863 * Shutdown hardware and free up resources. This can be called any 864 * time after the mutex has been initialized. It is called in both 865 * the error case in attach and the normal detach case so it needs 866 * to be careful about only freeing resources that have actually been 867 * allocated. 868 */ 869 static int 870 rl_detach(device_t dev) 871 { 872 struct rl_softc *sc; 873 struct ifnet *ifp; 874 875 sc = device_get_softc(dev); 876 ifp = sc->rl_ifp; 877 878 KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized")); 879 880 #ifdef DEVICE_POLLING 881 if (ifp->if_capenable & IFCAP_POLLING) 882 ether_poll_deregister(ifp); 883 #endif 884 /* These should only be active if attach succeeded */ 885 if (device_is_attached(dev)) { 886 RL_LOCK(sc); 887 rl_stop(sc); 888 RL_UNLOCK(sc); 889 callout_drain(&sc->rl_stat_callout); 890 ether_ifdetach(ifp); 891 } 892 #if 0 893 sc->suspended = 1; 894 #endif 895 if (sc->rl_miibus) 896 device_delete_child(dev, sc->rl_miibus); 897 bus_generic_detach(dev); 898 899 if (sc->rl_intrhand[0]) 900 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]); 901 if (sc->rl_irq[0]) 902 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]); 903 if (sc->rl_res) 904 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, 905 sc->rl_res); 906 907 if (ifp) 908 if_free(ifp); 909 910 rl_dma_free(sc); 911 912 mtx_destroy(&sc->rl_mtx); 913 914 return (0); 915 } 916 917 static int 918 rl_dma_alloc(struct rl_softc *sc) 919 { 920 struct rl_dmamap_arg ctx; 921 int error, i; 922 923 /* 924 * Allocate the parent bus DMA tag appropriate for PCI. 925 */ 926 error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev), /* parent */ 927 1, 0, /* alignment, boundary */ 928 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 929 BUS_SPACE_MAXADDR, /* highaddr */ 930 NULL, NULL, /* filter, filterarg */ 931 BUS_SPACE_MAXSIZE_32BIT, 0, /* maxsize, nsegments */ 932 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 933 0, /* flags */ 934 NULL, NULL, /* lockfunc, lockarg */ 935 &sc->rl_parent_tag); 936 if (error) { 937 device_printf(sc->rl_dev, 938 "failed to create parent DMA tag.\n"); 939 goto fail; 940 } 941 /* Create DMA tag for Rx memory block. */ 942 error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */ 943 RL_RX_8139_BUF_ALIGN, 0, /* alignment, boundary */ 944 BUS_SPACE_MAXADDR, /* lowaddr */ 945 BUS_SPACE_MAXADDR, /* highaddr */ 946 NULL, NULL, /* filter, filterarg */ 947 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1, /* maxsize,nsegments */ 948 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, /* maxsegsize */ 949 0, /* flags */ 950 NULL, NULL, /* lockfunc, lockarg */ 951 &sc->rl_cdata.rl_rx_tag); 952 if (error) { 953 device_printf(sc->rl_dev, 954 "failed to create Rx memory block DMA tag.\n"); 955 goto fail; 956 } 957 /* Create DMA tag for Tx buffer. */ 958 error = bus_dma_tag_create(sc->rl_parent_tag, /* parent */ 959 RL_TX_8139_BUF_ALIGN, 0, /* alignment, boundary */ 960 BUS_SPACE_MAXADDR, /* lowaddr */ 961 BUS_SPACE_MAXADDR, /* highaddr */ 962 NULL, NULL, /* filter, filterarg */ 963 MCLBYTES, 1, /* maxsize, nsegments */ 964 MCLBYTES, /* maxsegsize */ 965 0, /* flags */ 966 NULL, NULL, /* lockfunc, lockarg */ 967 &sc->rl_cdata.rl_tx_tag); 968 if (error) { 969 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n"); 970 goto fail; 971 } 972 973 /* 974 * Allocate DMA'able memory and load DMA map for Rx memory block. 975 */ 976 error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag, 977 (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK | 978 BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap); 979 if (error != 0) { 980 device_printf(sc->rl_dev, 981 "failed to allocate Rx DMA memory block.\n"); 982 goto fail; 983 } 984 ctx.rl_busaddr = 0; 985 error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag, 986 sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf, 987 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx, 988 BUS_DMA_NOWAIT); 989 if (error != 0 || ctx.rl_busaddr == 0) { 990 device_printf(sc->rl_dev, 991 "could not load Rx DMA memory block.\n"); 992 goto fail; 993 } 994 sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr; 995 996 /* Create DMA maps for Tx buffers. */ 997 for (i = 0; i < RL_TX_LIST_CNT; i++) { 998 sc->rl_cdata.rl_tx_chain[i] = NULL; 999 sc->rl_cdata.rl_tx_dmamap[i] = NULL; 1000 error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0, 1001 &sc->rl_cdata.rl_tx_dmamap[i]); 1002 if (error != 0) { 1003 device_printf(sc->rl_dev, 1004 "could not create Tx dmamap.\n"); 1005 goto fail; 1006 } 1007 } 1008 1009 /* Leave a few bytes before the start of the RX ring buffer. */ 1010 sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf; 1011 sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE; 1012 1013 fail: 1014 return (error); 1015 } 1016 1017 static void 1018 rl_dma_free(struct rl_softc *sc) 1019 { 1020 int i; 1021 1022 /* Rx memory block. */ 1023 if (sc->rl_cdata.rl_rx_tag != NULL) { 1024 if (sc->rl_cdata.rl_rx_buf_paddr != 0) 1025 bus_dmamap_unload(sc->rl_cdata.rl_rx_tag, 1026 sc->rl_cdata.rl_rx_dmamap); 1027 if (sc->rl_cdata.rl_rx_buf_ptr != NULL) 1028 bus_dmamem_free(sc->rl_cdata.rl_rx_tag, 1029 sc->rl_cdata.rl_rx_buf_ptr, 1030 sc->rl_cdata.rl_rx_dmamap); 1031 sc->rl_cdata.rl_rx_buf_ptr = NULL; 1032 sc->rl_cdata.rl_rx_buf = NULL; 1033 sc->rl_cdata.rl_rx_buf_paddr = 0; 1034 bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag); 1035 sc->rl_cdata.rl_tx_tag = NULL; 1036 } 1037 1038 /* Tx buffers. */ 1039 if (sc->rl_cdata.rl_tx_tag != NULL) { 1040 for (i = 0; i < RL_TX_LIST_CNT; i++) { 1041 if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) { 1042 bus_dmamap_destroy( 1043 sc->rl_cdata.rl_tx_tag, 1044 sc->rl_cdata.rl_tx_dmamap[i]); 1045 sc->rl_cdata.rl_tx_dmamap[i] = NULL; 1046 } 1047 } 1048 bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag); 1049 sc->rl_cdata.rl_tx_tag = NULL; 1050 } 1051 1052 if (sc->rl_parent_tag != NULL) { 1053 bus_dma_tag_destroy(sc->rl_parent_tag); 1054 sc->rl_parent_tag = NULL; 1055 } 1056 } 1057 1058 /* 1059 * Initialize the transmit descriptors. 1060 */ 1061 static int 1062 rl_list_tx_init(struct rl_softc *sc) 1063 { 1064 struct rl_chain_data *cd; 1065 int i; 1066 1067 RL_LOCK_ASSERT(sc); 1068 1069 cd = &sc->rl_cdata; 1070 for (i = 0; i < RL_TX_LIST_CNT; i++) { 1071 cd->rl_tx_chain[i] = NULL; 1072 CSR_WRITE_4(sc, 1073 RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000); 1074 } 1075 1076 sc->rl_cdata.cur_tx = 0; 1077 sc->rl_cdata.last_tx = 0; 1078 1079 return (0); 1080 } 1081 1082 static int 1083 rl_list_rx_init(struct rl_softc *sc) 1084 { 1085 1086 RL_LOCK_ASSERT(sc); 1087 1088 bzero(sc->rl_cdata.rl_rx_buf_ptr, 1089 RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ); 1090 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap, 1091 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1092 1093 return (0); 1094 } 1095 1096 /* 1097 * A frame has been uploaded: pass the resulting mbuf chain up to 1098 * the higher level protocols. 1099 * 1100 * You know there's something wrong with a PCI bus-master chip design 1101 * when you have to use m_devget(). 1102 * 1103 * The receive operation is badly documented in the datasheet, so I'll 1104 * attempt to document it here. The driver provides a buffer area and 1105 * places its base address in the RX buffer start address register. 1106 * The chip then begins copying frames into the RX buffer. Each frame 1107 * is preceded by a 32-bit RX status word which specifies the length 1108 * of the frame and certain other status bits. Each frame (starting with 1109 * the status word) is also 32-bit aligned. The frame length is in the 1110 * first 16 bits of the status word; the lower 15 bits correspond with 1111 * the 'rx status register' mentioned in the datasheet. 1112 * 1113 * Note: to make the Alpha happy, the frame payload needs to be aligned 1114 * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes) 1115 * as the offset argument to m_devget(). 1116 */ 1117 static int 1118 rl_rxeof(struct rl_softc *sc) 1119 { 1120 struct mbuf *m; 1121 struct ifnet *ifp = sc->rl_ifp; 1122 uint8_t *rxbufpos; 1123 int total_len = 0; 1124 int wrap = 0; 1125 int rx_npkts = 0; 1126 uint32_t rxstat; 1127 uint16_t cur_rx; 1128 uint16_t limit; 1129 uint16_t max_bytes, rx_bytes = 0; 1130 1131 RL_LOCK_ASSERT(sc); 1132 1133 bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap, 1134 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1135 1136 cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN; 1137 1138 /* Do not try to read past this point. */ 1139 limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN; 1140 1141 if (limit < cur_rx) 1142 max_bytes = (RL_RXBUFLEN - cur_rx) + limit; 1143 else 1144 max_bytes = limit - cur_rx; 1145 1146 while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) { 1147 #ifdef DEVICE_POLLING 1148 if (ifp->if_capenable & IFCAP_POLLING) { 1149 if (sc->rxcycles <= 0) 1150 break; 1151 sc->rxcycles--; 1152 } 1153 #endif 1154 rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx; 1155 rxstat = le32toh(*(uint32_t *)rxbufpos); 1156 1157 /* 1158 * Here's a totally undocumented fact for you. When the 1159 * RealTek chip is in the process of copying a packet into 1160 * RAM for you, the length will be 0xfff0. If you spot a 1161 * packet header with this value, you need to stop. The 1162 * datasheet makes absolutely no mention of this and 1163 * RealTek should be shot for this. 1164 */ 1165 total_len = rxstat >> 16; 1166 if (total_len == RL_RXSTAT_UNFINISHED) 1167 break; 1168 1169 if (!(rxstat & RL_RXSTAT_RXOK) || 1170 total_len < ETHER_MIN_LEN || 1171 total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) { 1172 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 1173 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1174 rl_init_locked(sc); 1175 return (rx_npkts); 1176 } 1177 1178 /* No errors; receive the packet. */ 1179 rx_bytes += total_len + 4; 1180 1181 /* 1182 * XXX The RealTek chip includes the CRC with every 1183 * received frame, and there's no way to turn this 1184 * behavior off (at least, I can't find anything in 1185 * the manual that explains how to do it) so we have 1186 * to trim off the CRC manually. 1187 */ 1188 total_len -= ETHER_CRC_LEN; 1189 1190 /* 1191 * Avoid trying to read more bytes than we know 1192 * the chip has prepared for us. 1193 */ 1194 if (rx_bytes > max_bytes) 1195 break; 1196 1197 rxbufpos = sc->rl_cdata.rl_rx_buf + 1198 ((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN); 1199 if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN)) 1200 rxbufpos = sc->rl_cdata.rl_rx_buf; 1201 1202 wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos; 1203 if (total_len > wrap) { 1204 m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp, 1205 NULL); 1206 if (m != NULL) 1207 m_copyback(m, wrap, total_len - wrap, 1208 sc->rl_cdata.rl_rx_buf); 1209 cur_rx = (total_len - wrap + ETHER_CRC_LEN); 1210 } else { 1211 m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp, 1212 NULL); 1213 cur_rx += total_len + 4 + ETHER_CRC_LEN; 1214 } 1215 1216 /* Round up to 32-bit boundary. */ 1217 cur_rx = (cur_rx + 3) & ~3; 1218 CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16); 1219 1220 if (m == NULL) { 1221 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 1222 continue; 1223 } 1224 1225 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 1226 RL_UNLOCK(sc); 1227 (*ifp->if_input)(ifp, m); 1228 RL_LOCK(sc); 1229 rx_npkts++; 1230 } 1231 1232 /* No need to sync Rx memory block as we didn't modify it. */ 1233 return (rx_npkts); 1234 } 1235 1236 /* 1237 * A frame was downloaded to the chip. It's safe for us to clean up 1238 * the list buffers. 1239 */ 1240 static void 1241 rl_txeof(struct rl_softc *sc) 1242 { 1243 struct ifnet *ifp = sc->rl_ifp; 1244 uint32_t txstat; 1245 1246 RL_LOCK_ASSERT(sc); 1247 1248 /* 1249 * Go through our tx list and free mbufs for those 1250 * frames that have been uploaded. 1251 */ 1252 do { 1253 if (RL_LAST_TXMBUF(sc) == NULL) 1254 break; 1255 txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc)); 1256 if (!(txstat & (RL_TXSTAT_TX_OK| 1257 RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT))) 1258 break; 1259 1260 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & RL_TXSTAT_COLLCNT) >> 24); 1261 1262 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc), 1263 BUS_DMASYNC_POSTWRITE); 1264 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc)); 1265 m_freem(RL_LAST_TXMBUF(sc)); 1266 RL_LAST_TXMBUF(sc) = NULL; 1267 /* 1268 * If there was a transmit underrun, bump the TX threshold. 1269 * Make sure not to overflow the 63 * 32byte we can address 1270 * with the 6 available bit. 1271 */ 1272 if ((txstat & RL_TXSTAT_TX_UNDERRUN) && 1273 (sc->rl_txthresh < 2016)) 1274 sc->rl_txthresh += 32; 1275 if (txstat & RL_TXSTAT_TX_OK) 1276 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 1277 else { 1278 int oldthresh; 1279 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 1280 if ((txstat & RL_TXSTAT_TXABRT) || 1281 (txstat & RL_TXSTAT_OUTOFWIN)) 1282 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 1283 oldthresh = sc->rl_txthresh; 1284 /* error recovery */ 1285 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1286 rl_init_locked(sc); 1287 /* restore original threshold */ 1288 sc->rl_txthresh = oldthresh; 1289 return; 1290 } 1291 RL_INC(sc->rl_cdata.last_tx); 1292 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1293 } while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx); 1294 1295 if (RL_LAST_TXMBUF(sc) == NULL) 1296 sc->rl_watchdog_timer = 0; 1297 } 1298 1299 static void 1300 rl_twister_update(struct rl_softc *sc) 1301 { 1302 uint16_t linktest; 1303 /* 1304 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for 1305 * Linux driver. Values undocumented otherwise. 1306 */ 1307 static const uint32_t param[4][4] = { 1308 {0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43}, 1309 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83}, 1310 {0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83}, 1311 {0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83} 1312 }; 1313 1314 /* 1315 * Tune the so-called twister registers of the RTL8139. These 1316 * are used to compensate for impedance mismatches. The 1317 * method for tuning these registers is undocumented and the 1318 * following procedure is collected from public sources. 1319 */ 1320 switch (sc->rl_twister) 1321 { 1322 case CHK_LINK: 1323 /* 1324 * If we have a sufficient link, then we can proceed in 1325 * the state machine to the next stage. If not, then 1326 * disable further tuning after writing sane defaults. 1327 */ 1328 if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) { 1329 CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD); 1330 sc->rl_twister = FIND_ROW; 1331 } else { 1332 CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD); 1333 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST); 1334 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF); 1335 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF); 1336 sc->rl_twister = DONE; 1337 } 1338 break; 1339 case FIND_ROW: 1340 /* 1341 * Read how long it took to see the echo to find the tuning 1342 * row to use. 1343 */ 1344 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS; 1345 if (linktest == RL_CSCFG_ROW3) 1346 sc->rl_twist_row = 3; 1347 else if (linktest == RL_CSCFG_ROW2) 1348 sc->rl_twist_row = 2; 1349 else if (linktest == RL_CSCFG_ROW1) 1350 sc->rl_twist_row = 1; 1351 else 1352 sc->rl_twist_row = 0; 1353 sc->rl_twist_col = 0; 1354 sc->rl_twister = SET_PARAM; 1355 break; 1356 case SET_PARAM: 1357 if (sc->rl_twist_col == 0) 1358 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET); 1359 CSR_WRITE_4(sc, RL_PARA7C, 1360 param[sc->rl_twist_row][sc->rl_twist_col]); 1361 if (++sc->rl_twist_col == 4) { 1362 if (sc->rl_twist_row == 3) 1363 sc->rl_twister = RECHK_LONG; 1364 else 1365 sc->rl_twister = DONE; 1366 } 1367 break; 1368 case RECHK_LONG: 1369 /* 1370 * For long cables, we have to double check to make sure we 1371 * don't mistune. 1372 */ 1373 linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS; 1374 if (linktest == RL_CSCFG_ROW3) 1375 sc->rl_twister = DONE; 1376 else { 1377 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE); 1378 sc->rl_twister = RETUNE; 1379 } 1380 break; 1381 case RETUNE: 1382 /* Retune for a shorter cable (try column 2) */ 1383 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST); 1384 CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF); 1385 CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF); 1386 CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET); 1387 sc->rl_twist_row--; 1388 sc->rl_twist_col = 0; 1389 sc->rl_twister = SET_PARAM; 1390 break; 1391 1392 case DONE: 1393 break; 1394 } 1395 1396 } 1397 1398 static void 1399 rl_tick(void *xsc) 1400 { 1401 struct rl_softc *sc = xsc; 1402 struct mii_data *mii; 1403 int ticks; 1404 1405 RL_LOCK_ASSERT(sc); 1406 /* 1407 * If we're doing the twister cable calibration, then we need to defer 1408 * watchdog timeouts. This is a no-op in normal operations, but 1409 * can falsely trigger when the cable calibration takes a while and 1410 * there was traffic ready to go when rl was started. 1411 * 1412 * We don't defer mii_tick since that updates the mii status, which 1413 * helps the twister process, at least according to similar patches 1414 * for the Linux driver I found online while doing the fixes. Worst 1415 * case is a few extra mii reads during calibration. 1416 */ 1417 mii = device_get_softc(sc->rl_miibus); 1418 mii_tick(mii); 1419 if ((sc->rl_flags & RL_FLAG_LINK) == 0) 1420 rl_miibus_statchg(sc->rl_dev); 1421 if (sc->rl_twister_enable) { 1422 if (sc->rl_twister == DONE) 1423 rl_watchdog(sc); 1424 else 1425 rl_twister_update(sc); 1426 if (sc->rl_twister == DONE) 1427 ticks = hz; 1428 else 1429 ticks = hz / 10; 1430 } else { 1431 rl_watchdog(sc); 1432 ticks = hz; 1433 } 1434 1435 callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc); 1436 } 1437 1438 #ifdef DEVICE_POLLING 1439 static int 1440 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1441 { 1442 struct rl_softc *sc = ifp->if_softc; 1443 int rx_npkts = 0; 1444 1445 RL_LOCK(sc); 1446 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1447 rx_npkts = rl_poll_locked(ifp, cmd, count); 1448 RL_UNLOCK(sc); 1449 return (rx_npkts); 1450 } 1451 1452 static int 1453 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 1454 { 1455 struct rl_softc *sc = ifp->if_softc; 1456 int rx_npkts; 1457 1458 RL_LOCK_ASSERT(sc); 1459 1460 sc->rxcycles = count; 1461 rx_npkts = rl_rxeof(sc); 1462 rl_txeof(sc); 1463 1464 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1465 rl_start_locked(ifp); 1466 1467 if (cmd == POLL_AND_CHECK_STATUS) { 1468 uint16_t status; 1469 1470 /* We should also check the status register. */ 1471 status = CSR_READ_2(sc, RL_ISR); 1472 if (status == 0xffff) 1473 return (rx_npkts); 1474 if (status != 0) 1475 CSR_WRITE_2(sc, RL_ISR, status); 1476 1477 /* XXX We should check behaviour on receiver stalls. */ 1478 1479 if (status & RL_ISR_SYSTEM_ERR) { 1480 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1481 rl_init_locked(sc); 1482 } 1483 } 1484 return (rx_npkts); 1485 } 1486 #endif /* DEVICE_POLLING */ 1487 1488 static void 1489 rl_intr(void *arg) 1490 { 1491 struct rl_softc *sc = arg; 1492 struct ifnet *ifp = sc->rl_ifp; 1493 uint16_t status; 1494 int count; 1495 1496 RL_LOCK(sc); 1497 1498 if (sc->suspended) 1499 goto done_locked; 1500 1501 #ifdef DEVICE_POLLING 1502 if (ifp->if_capenable & IFCAP_POLLING) 1503 goto done_locked; 1504 #endif 1505 1506 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1507 goto done_locked2; 1508 status = CSR_READ_2(sc, RL_ISR); 1509 if (status == 0xffff || (status & RL_INTRS) == 0) 1510 goto done_locked; 1511 /* 1512 * Ours, disable further interrupts. 1513 */ 1514 CSR_WRITE_2(sc, RL_IMR, 0); 1515 for (count = 16; count > 0; count--) { 1516 CSR_WRITE_2(sc, RL_ISR, status); 1517 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1518 if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR)) 1519 rl_rxeof(sc); 1520 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR)) 1521 rl_txeof(sc); 1522 if (status & RL_ISR_SYSTEM_ERR) { 1523 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1524 rl_init_locked(sc); 1525 RL_UNLOCK(sc); 1526 return; 1527 } 1528 } 1529 status = CSR_READ_2(sc, RL_ISR); 1530 /* If the card has gone away, the read returns 0xffff. */ 1531 if (status == 0xffff || (status & RL_INTRS) == 0) 1532 break; 1533 } 1534 1535 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1536 rl_start_locked(ifp); 1537 1538 done_locked2: 1539 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1540 CSR_WRITE_2(sc, RL_IMR, RL_INTRS); 1541 done_locked: 1542 RL_UNLOCK(sc); 1543 } 1544 1545 /* 1546 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data 1547 * pointers to the fragment pointers. 1548 */ 1549 static int 1550 rl_encap(struct rl_softc *sc, struct mbuf **m_head) 1551 { 1552 struct mbuf *m; 1553 bus_dma_segment_t txsegs[1]; 1554 int error, nsegs, padlen; 1555 1556 RL_LOCK_ASSERT(sc); 1557 1558 m = *m_head; 1559 padlen = 0; 1560 /* 1561 * Hardware doesn't auto-pad, so we have to make sure 1562 * pad short frames out to the minimum frame length. 1563 */ 1564 if (m->m_pkthdr.len < RL_MIN_FRAMELEN) 1565 padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len; 1566 /* 1567 * The RealTek is brain damaged and wants longword-aligned 1568 * TX buffers, plus we can only have one fragment buffer 1569 * per packet. We have to copy pretty much all the time. 1570 */ 1571 if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 || 1572 (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) { 1573 m = m_defrag(*m_head, M_NOWAIT); 1574 if (m == NULL) { 1575 m_freem(*m_head); 1576 *m_head = NULL; 1577 return (ENOMEM); 1578 } 1579 } 1580 *m_head = m; 1581 1582 if (padlen > 0) { 1583 /* 1584 * Make security-conscious people happy: zero out the 1585 * bytes in the pad area, since we don't know what 1586 * this mbuf cluster buffer's previous user might 1587 * have left in it. 1588 */ 1589 bzero(mtod(m, char *) + m->m_pkthdr.len, padlen); 1590 m->m_pkthdr.len += padlen; 1591 m->m_len = m->m_pkthdr.len; 1592 } 1593 1594 error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag, 1595 RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0); 1596 if (error != 0) 1597 return (error); 1598 if (nsegs == 0) { 1599 m_freem(*m_head); 1600 *m_head = NULL; 1601 return (EIO); 1602 } 1603 1604 RL_CUR_TXMBUF(sc) = m; 1605 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc), 1606 BUS_DMASYNC_PREWRITE); 1607 CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr)); 1608 1609 return (0); 1610 } 1611 1612 /* 1613 * Main transmit routine. 1614 */ 1615 static void 1616 rl_start(struct ifnet *ifp) 1617 { 1618 struct rl_softc *sc = ifp->if_softc; 1619 1620 RL_LOCK(sc); 1621 rl_start_locked(ifp); 1622 RL_UNLOCK(sc); 1623 } 1624 1625 static void 1626 rl_start_locked(struct ifnet *ifp) 1627 { 1628 struct rl_softc *sc = ifp->if_softc; 1629 struct mbuf *m_head = NULL; 1630 1631 RL_LOCK_ASSERT(sc); 1632 1633 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 1634 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) 1635 return; 1636 1637 while (RL_CUR_TXMBUF(sc) == NULL) { 1638 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 1639 1640 if (m_head == NULL) 1641 break; 1642 1643 if (rl_encap(sc, &m_head)) { 1644 if (m_head == NULL) 1645 break; 1646 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 1647 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1648 break; 1649 } 1650 1651 /* Pass a copy of this mbuf chain to the bpf subsystem. */ 1652 BPF_MTAP(ifp, RL_CUR_TXMBUF(sc)); 1653 1654 /* Transmit the frame. */ 1655 CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc), 1656 RL_TXTHRESH(sc->rl_txthresh) | 1657 RL_CUR_TXMBUF(sc)->m_pkthdr.len); 1658 1659 RL_INC(sc->rl_cdata.cur_tx); 1660 1661 /* Set a timeout in case the chip goes out to lunch. */ 1662 sc->rl_watchdog_timer = 5; 1663 } 1664 1665 /* 1666 * We broke out of the loop because all our TX slots are 1667 * full. Mark the NIC as busy until it drains some of the 1668 * packets from the queue. 1669 */ 1670 if (RL_CUR_TXMBUF(sc) != NULL) 1671 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1672 } 1673 1674 static void 1675 rl_init(void *xsc) 1676 { 1677 struct rl_softc *sc = xsc; 1678 1679 RL_LOCK(sc); 1680 rl_init_locked(sc); 1681 RL_UNLOCK(sc); 1682 } 1683 1684 static void 1685 rl_init_locked(struct rl_softc *sc) 1686 { 1687 struct ifnet *ifp = sc->rl_ifp; 1688 struct mii_data *mii; 1689 uint32_t eaddr[2]; 1690 1691 RL_LOCK_ASSERT(sc); 1692 1693 mii = device_get_softc(sc->rl_miibus); 1694 1695 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 1696 return; 1697 1698 /* 1699 * Cancel pending I/O and free all RX/TX buffers. 1700 */ 1701 rl_stop(sc); 1702 1703 rl_reset(sc); 1704 if (sc->rl_twister_enable) { 1705 /* 1706 * Reset twister register tuning state. The twister 1707 * registers and their tuning are undocumented, but 1708 * are necessary to cope with bad links. rl_twister = 1709 * DONE here will disable this entirely. 1710 */ 1711 sc->rl_twister = CHK_LINK; 1712 } 1713 1714 /* 1715 * Init our MAC address. Even though the chipset 1716 * documentation doesn't mention it, we need to enter "Config 1717 * register write enable" mode to modify the ID registers. 1718 */ 1719 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 1720 bzero(eaddr, sizeof(eaddr)); 1721 bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN); 1722 CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]); 1723 CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]); 1724 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1725 1726 /* Init the RX memory block pointer register. */ 1727 CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr + 1728 RL_RX_8139_BUF_RESERVE); 1729 /* Init TX descriptors. */ 1730 rl_list_tx_init(sc); 1731 /* Init Rx memory block. */ 1732 rl_list_rx_init(sc); 1733 1734 /* 1735 * Enable transmit and receive. 1736 */ 1737 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 1738 1739 /* 1740 * Set the initial TX and RX configuration. 1741 */ 1742 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 1743 CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); 1744 1745 /* Set RX filter. */ 1746 rl_rxfilter(sc); 1747 1748 #ifdef DEVICE_POLLING 1749 /* Disable interrupts if we are polling. */ 1750 if (ifp->if_capenable & IFCAP_POLLING) 1751 CSR_WRITE_2(sc, RL_IMR, 0); 1752 else 1753 #endif 1754 /* Enable interrupts. */ 1755 CSR_WRITE_2(sc, RL_IMR, RL_INTRS); 1756 1757 /* Set initial TX threshold */ 1758 sc->rl_txthresh = RL_TX_THRESH_INIT; 1759 1760 /* Start RX/TX process. */ 1761 CSR_WRITE_4(sc, RL_MISSEDPKT, 0); 1762 1763 /* Enable receiver and transmitter. */ 1764 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 1765 1766 sc->rl_flags &= ~RL_FLAG_LINK; 1767 mii_mediachg(mii); 1768 1769 CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX); 1770 1771 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1772 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1773 1774 callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc); 1775 } 1776 1777 /* 1778 * Set media options. 1779 */ 1780 static int 1781 rl_ifmedia_upd(struct ifnet *ifp) 1782 { 1783 struct rl_softc *sc = ifp->if_softc; 1784 struct mii_data *mii; 1785 1786 mii = device_get_softc(sc->rl_miibus); 1787 1788 RL_LOCK(sc); 1789 mii_mediachg(mii); 1790 RL_UNLOCK(sc); 1791 1792 return (0); 1793 } 1794 1795 /* 1796 * Report current media status. 1797 */ 1798 static void 1799 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 1800 { 1801 struct rl_softc *sc = ifp->if_softc; 1802 struct mii_data *mii; 1803 1804 mii = device_get_softc(sc->rl_miibus); 1805 1806 RL_LOCK(sc); 1807 mii_pollstat(mii); 1808 ifmr->ifm_active = mii->mii_media_active; 1809 ifmr->ifm_status = mii->mii_media_status; 1810 RL_UNLOCK(sc); 1811 } 1812 1813 static int 1814 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 1815 { 1816 struct ifreq *ifr = (struct ifreq *)data; 1817 struct mii_data *mii; 1818 struct rl_softc *sc = ifp->if_softc; 1819 int error = 0, mask; 1820 1821 switch (command) { 1822 case SIOCSIFFLAGS: 1823 RL_LOCK(sc); 1824 if (ifp->if_flags & IFF_UP) { 1825 if (ifp->if_drv_flags & IFF_DRV_RUNNING && 1826 ((ifp->if_flags ^ sc->rl_if_flags) & 1827 (IFF_PROMISC | IFF_ALLMULTI))) 1828 rl_rxfilter(sc); 1829 else 1830 rl_init_locked(sc); 1831 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1832 rl_stop(sc); 1833 sc->rl_if_flags = ifp->if_flags; 1834 RL_UNLOCK(sc); 1835 break; 1836 case SIOCADDMULTI: 1837 case SIOCDELMULTI: 1838 RL_LOCK(sc); 1839 rl_rxfilter(sc); 1840 RL_UNLOCK(sc); 1841 break; 1842 case SIOCGIFMEDIA: 1843 case SIOCSIFMEDIA: 1844 mii = device_get_softc(sc->rl_miibus); 1845 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 1846 break; 1847 case SIOCSIFCAP: 1848 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 1849 #ifdef DEVICE_POLLING 1850 if (ifr->ifr_reqcap & IFCAP_POLLING && 1851 !(ifp->if_capenable & IFCAP_POLLING)) { 1852 error = ether_poll_register(rl_poll, ifp); 1853 if (error) 1854 return(error); 1855 RL_LOCK(sc); 1856 /* Disable interrupts */ 1857 CSR_WRITE_2(sc, RL_IMR, 0x0000); 1858 ifp->if_capenable |= IFCAP_POLLING; 1859 RL_UNLOCK(sc); 1860 return (error); 1861 1862 } 1863 if (!(ifr->ifr_reqcap & IFCAP_POLLING) && 1864 ifp->if_capenable & IFCAP_POLLING) { 1865 error = ether_poll_deregister(ifp); 1866 /* Enable interrupts. */ 1867 RL_LOCK(sc); 1868 CSR_WRITE_2(sc, RL_IMR, RL_INTRS); 1869 ifp->if_capenable &= ~IFCAP_POLLING; 1870 RL_UNLOCK(sc); 1871 return (error); 1872 } 1873 #endif /* DEVICE_POLLING */ 1874 if ((mask & IFCAP_WOL) != 0 && 1875 (ifp->if_capabilities & IFCAP_WOL) != 0) { 1876 if ((mask & IFCAP_WOL_UCAST) != 0) 1877 ifp->if_capenable ^= IFCAP_WOL_UCAST; 1878 if ((mask & IFCAP_WOL_MCAST) != 0) 1879 ifp->if_capenable ^= IFCAP_WOL_MCAST; 1880 if ((mask & IFCAP_WOL_MAGIC) != 0) 1881 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 1882 } 1883 break; 1884 default: 1885 error = ether_ioctl(ifp, command, data); 1886 break; 1887 } 1888 1889 return (error); 1890 } 1891 1892 static void 1893 rl_watchdog(struct rl_softc *sc) 1894 { 1895 1896 RL_LOCK_ASSERT(sc); 1897 1898 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0) 1899 return; 1900 1901 device_printf(sc->rl_dev, "watchdog timeout\n"); 1902 if_inc_counter(sc->rl_ifp, IFCOUNTER_OERRORS, 1); 1903 1904 rl_txeof(sc); 1905 rl_rxeof(sc); 1906 sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 1907 rl_init_locked(sc); 1908 } 1909 1910 /* 1911 * Stop the adapter and free any mbufs allocated to the 1912 * RX and TX lists. 1913 */ 1914 static void 1915 rl_stop(struct rl_softc *sc) 1916 { 1917 int i; 1918 struct ifnet *ifp = sc->rl_ifp; 1919 1920 RL_LOCK_ASSERT(sc); 1921 1922 sc->rl_watchdog_timer = 0; 1923 callout_stop(&sc->rl_stat_callout); 1924 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 1925 sc->rl_flags &= ~RL_FLAG_LINK; 1926 1927 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 1928 CSR_WRITE_2(sc, RL_IMR, 0x0000); 1929 for (i = 0; i < RL_TIMEOUT; i++) { 1930 DELAY(10); 1931 if ((CSR_READ_1(sc, RL_COMMAND) & 1932 (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0) 1933 break; 1934 } 1935 if (i == RL_TIMEOUT) 1936 device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n"); 1937 1938 /* 1939 * Free the TX list buffers. 1940 */ 1941 for (i = 0; i < RL_TX_LIST_CNT; i++) { 1942 if (sc->rl_cdata.rl_tx_chain[i] != NULL) { 1943 bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, 1944 sc->rl_cdata.rl_tx_dmamap[i], 1945 BUS_DMASYNC_POSTWRITE); 1946 bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, 1947 sc->rl_cdata.rl_tx_dmamap[i]); 1948 m_freem(sc->rl_cdata.rl_tx_chain[i]); 1949 sc->rl_cdata.rl_tx_chain[i] = NULL; 1950 CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)), 1951 0x0000000); 1952 } 1953 } 1954 } 1955 1956 /* 1957 * Device suspend routine. Stop the interface and save some PCI 1958 * settings in case the BIOS doesn't restore them properly on 1959 * resume. 1960 */ 1961 static int 1962 rl_suspend(device_t dev) 1963 { 1964 struct rl_softc *sc; 1965 1966 sc = device_get_softc(dev); 1967 1968 RL_LOCK(sc); 1969 rl_stop(sc); 1970 rl_setwol(sc); 1971 sc->suspended = 1; 1972 RL_UNLOCK(sc); 1973 1974 return (0); 1975 } 1976 1977 /* 1978 * Device resume routine. Restore some PCI settings in case the BIOS 1979 * doesn't, re-enable busmastering, and restart the interface if 1980 * appropriate. 1981 */ 1982 static int 1983 rl_resume(device_t dev) 1984 { 1985 struct rl_softc *sc; 1986 struct ifnet *ifp; 1987 int pmc; 1988 uint16_t pmstat; 1989 1990 sc = device_get_softc(dev); 1991 ifp = sc->rl_ifp; 1992 1993 RL_LOCK(sc); 1994 1995 if ((ifp->if_capabilities & IFCAP_WOL) != 0 && 1996 pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) { 1997 /* Disable PME and clear PME status. */ 1998 pmstat = pci_read_config(sc->rl_dev, 1999 pmc + PCIR_POWER_STATUS, 2); 2000 if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) { 2001 pmstat &= ~PCIM_PSTAT_PMEENABLE; 2002 pci_write_config(sc->rl_dev, 2003 pmc + PCIR_POWER_STATUS, pmstat, 2); 2004 } 2005 /* 2006 * Clear WOL matching such that normal Rx filtering 2007 * wouldn't interfere with WOL patterns. 2008 */ 2009 rl_clrwol(sc); 2010 } 2011 2012 /* reinitialize interface if necessary */ 2013 if (ifp->if_flags & IFF_UP) 2014 rl_init_locked(sc); 2015 2016 sc->suspended = 0; 2017 2018 RL_UNLOCK(sc); 2019 2020 return (0); 2021 } 2022 2023 /* 2024 * Stop all chip I/O so that the kernel's probe routines don't 2025 * get confused by errant DMAs when rebooting. 2026 */ 2027 static int 2028 rl_shutdown(device_t dev) 2029 { 2030 struct rl_softc *sc; 2031 2032 sc = device_get_softc(dev); 2033 2034 RL_LOCK(sc); 2035 rl_stop(sc); 2036 /* 2037 * Mark interface as down since otherwise we will panic if 2038 * interrupt comes in later on, which can happen in some 2039 * cases. 2040 */ 2041 sc->rl_ifp->if_flags &= ~IFF_UP; 2042 rl_setwol(sc); 2043 RL_UNLOCK(sc); 2044 2045 return (0); 2046 } 2047 2048 static void 2049 rl_setwol(struct rl_softc *sc) 2050 { 2051 struct ifnet *ifp; 2052 int pmc; 2053 uint16_t pmstat; 2054 uint8_t v; 2055 2056 RL_LOCK_ASSERT(sc); 2057 2058 ifp = sc->rl_ifp; 2059 if ((ifp->if_capabilities & IFCAP_WOL) == 0) 2060 return; 2061 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 2062 return; 2063 2064 /* Enable config register write. */ 2065 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 2066 2067 /* Enable PME. */ 2068 v = CSR_READ_1(sc, sc->rl_cfg1); 2069 v &= ~RL_CFG1_PME; 2070 if ((ifp->if_capenable & IFCAP_WOL) != 0) 2071 v |= RL_CFG1_PME; 2072 CSR_WRITE_1(sc, sc->rl_cfg1, v); 2073 2074 v = CSR_READ_1(sc, sc->rl_cfg3); 2075 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 2076 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 2077 v |= RL_CFG3_WOL_MAGIC; 2078 CSR_WRITE_1(sc, sc->rl_cfg3, v); 2079 2080 v = CSR_READ_1(sc, sc->rl_cfg5); 2081 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 2082 v &= ~RL_CFG5_WOL_LANWAKE; 2083 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 2084 v |= RL_CFG5_WOL_UCAST; 2085 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 2086 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; 2087 if ((ifp->if_capenable & IFCAP_WOL) != 0) 2088 v |= RL_CFG5_WOL_LANWAKE; 2089 CSR_WRITE_1(sc, sc->rl_cfg5, v); 2090 2091 /* Config register write done. */ 2092 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 2093 2094 /* Request PME if WOL is requested. */ 2095 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); 2096 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 2097 if ((ifp->if_capenable & IFCAP_WOL) != 0) 2098 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 2099 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 2100 } 2101 2102 static void 2103 rl_clrwol(struct rl_softc *sc) 2104 { 2105 struct ifnet *ifp; 2106 uint8_t v; 2107 2108 ifp = sc->rl_ifp; 2109 if ((ifp->if_capabilities & IFCAP_WOL) == 0) 2110 return; 2111 2112 /* Enable config register write. */ 2113 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 2114 2115 v = CSR_READ_1(sc, sc->rl_cfg3); 2116 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 2117 CSR_WRITE_1(sc, sc->rl_cfg3, v); 2118 2119 /* Config register write done. */ 2120 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 2121 2122 v = CSR_READ_1(sc, sc->rl_cfg5); 2123 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 2124 v &= ~RL_CFG5_WOL_LANWAKE; 2125 CSR_WRITE_1(sc, sc->rl_cfg5, v); 2126 } 2127