xref: /freebsd/sys/dev/rl/if_rl.c (revision db70ff37a051dfa19f6f3f0f0c5e3571aba91982)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 /*
48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49  * probably the worst PCI ethernet controller ever made, with the possible
50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51  * DMA, but it has a terrible interface that nullifies any performance
52  * gains that bus-master DMA usually offers.
53  *
54  * For transmission, the chip offers a series of four TX descriptor
55  * registers. Each transmit frame must be in a contiguous buffer, aligned
56  * on a longword (32-bit) boundary. This means we almost always have to
57  * do mbuf copies in order to transmit a frame, except in the unlikely
58  * case where a) the packet fits into a single mbuf, and b) the packet
59  * is 32-bit aligned within the mbuf's data area. The presence of only
60  * four descriptor registers means that we can never have more than four
61  * packets queued for transmission at any one time.
62  *
63  * Reception is not much better. The driver has to allocate a single large
64  * buffer area (up to 64K in size) into which the chip will DMA received
65  * frames. Because we don't know where within this region received packets
66  * will begin or end, we have no choice but to copy data from the buffer
67  * area into mbufs in order to pass the packets up to the higher protocol
68  * levels.
69  *
70  * It's impossible given this rotten design to really achieve decent
71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72  * some equally overmuscled CPU to drive it.
73  *
74  * On the bright side, the 8139 does have a built-in PHY, although
75  * rather than using an MDIO serial interface like most other NICs, the
76  * PHY registers are directly accessible through the 8139's register
77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78  * filter.
79  *
80  * The 8129 chip is an older version of the 8139 that uses an external PHY
81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
82  * the 8139 lets you directly access the on-board PHY registers. We need
83  * to select which interface to use depending on the chip type.
84  */
85 
86 #ifdef HAVE_KERNEL_OPTION_HEADERS
87 #include "opt_device_polling.h"
88 #endif
89 
90 #include <sys/param.h>
91 #include <sys/endian.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/if.h>
102 #include <net/if_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/mii_bitbang.h>
118 #include <dev/mii/miivar.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 
123 MODULE_DEPEND(rl, pci, 1, 1, 1);
124 MODULE_DEPEND(rl, ether, 1, 1, 1);
125 MODULE_DEPEND(rl, miibus, 1, 1, 1);
126 
127 /* "device miibus" required.  See GENERIC if you get errors here. */
128 #include "miibus_if.h"
129 
130 #include <dev/rl/if_rlreg.h>
131 
132 /*
133  * Various supported device vendors/types and their names.
134  */
135 static const struct rl_type rl_devs[] = {
136 	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
137 		"RealTek 8129 10/100BaseTX" },
138 	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
139 		"RealTek 8139 10/100BaseTX" },
140 	{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
141 		"RealTek 8139 10/100BaseTX" },
142 	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
143 		"RealTek 8139 10/100BaseTX CardBus" },
144 	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
145 		"RealTek 8100 10/100BaseTX" },
146 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
147 		"Accton MPX 5030/5038 10/100BaseTX" },
148 	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
149 		"Delta Electronics 8139 10/100BaseTX" },
150 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
151 		"Addtron Technology 8139 10/100BaseTX" },
152 	{ DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139,
153 		"D-Link DFE-520TX (rev. C1) 10/100BaseTX" },
154 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
155 		"D-Link DFE-530TX+ 10/100BaseTX" },
156 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
157 		"D-Link DFE-690TXD 10/100BaseTX" },
158 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
159 		"Nortel Networks 10/100BaseTX" },
160 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
161 		"Corega FEther CB-TXD" },
162 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
163 		"Corega FEtherII CB-TXD" },
164 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
165 		"Peppercon AG ROL-F" },
166 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
167 		"Planex FNW-3603-TX" },
168 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
169 		"Planex FNW-3800-TX" },
170 	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
171 		"Compaq HNE-300" },
172 	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
173 		"LevelOne FPC-0106TX" },
174 	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
175 		"Edimax EP-4103DL CardBus" }
176 };
177 
178 static int rl_attach(device_t);
179 static int rl_detach(device_t);
180 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181 static int rl_dma_alloc(struct rl_softc *);
182 static void rl_dma_free(struct rl_softc *);
183 static void rl_eeprom_putbyte(struct rl_softc *, int);
184 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
185 static int rl_encap(struct rl_softc *, struct mbuf **);
186 static int rl_list_tx_init(struct rl_softc *);
187 static int rl_list_rx_init(struct rl_softc *);
188 static int rl_ifmedia_upd(struct ifnet *);
189 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
190 static int rl_ioctl(struct ifnet *, u_long, caddr_t);
191 static void rl_intr(void *);
192 static void rl_init(void *);
193 static void rl_init_locked(struct rl_softc *sc);
194 static int rl_miibus_readreg(device_t, int, int);
195 static void rl_miibus_statchg(device_t);
196 static int rl_miibus_writereg(device_t, int, int, int);
197 #ifdef DEVICE_POLLING
198 static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
199 static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
200 #endif
201 static int rl_probe(device_t);
202 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
203 static void rl_reset(struct rl_softc *);
204 static int rl_resume(device_t);
205 static int rl_rxeof(struct rl_softc *);
206 static void rl_rxfilter(struct rl_softc *);
207 static int rl_shutdown(device_t);
208 static void rl_start(struct ifnet *);
209 static void rl_start_locked(struct ifnet *);
210 static void rl_stop(struct rl_softc *);
211 static int rl_suspend(device_t);
212 static void rl_tick(void *);
213 static void rl_txeof(struct rl_softc *);
214 static void rl_watchdog(struct rl_softc *);
215 static void rl_setwol(struct rl_softc *);
216 static void rl_clrwol(struct rl_softc *);
217 
218 /*
219  * MII bit-bang glue
220  */
221 static uint32_t rl_mii_bitbang_read(device_t);
222 static void rl_mii_bitbang_write(device_t, uint32_t);
223 
224 static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
225 	rl_mii_bitbang_read,
226 	rl_mii_bitbang_write,
227 	{
228 		RL_MII_DATAOUT,	/* MII_BIT_MDO */
229 		RL_MII_DATAIN,	/* MII_BIT_MDI */
230 		RL_MII_CLK,	/* MII_BIT_MDC */
231 		RL_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
232 		0,		/* MII_BIT_DIR_PHY_HOST */
233 	}
234 };
235 
236 static device_method_t rl_methods[] = {
237 	/* Device interface */
238 	DEVMETHOD(device_probe,		rl_probe),
239 	DEVMETHOD(device_attach,	rl_attach),
240 	DEVMETHOD(device_detach,	rl_detach),
241 	DEVMETHOD(device_suspend,	rl_suspend),
242 	DEVMETHOD(device_resume,	rl_resume),
243 	DEVMETHOD(device_shutdown,	rl_shutdown),
244 
245 	/* MII interface */
246 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
247 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
248 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
249 
250 	DEVMETHOD_END
251 };
252 
253 static driver_t rl_driver = {
254 	"rl",
255 	rl_methods,
256 	sizeof(struct rl_softc)
257 };
258 
259 static devclass_t rl_devclass;
260 
261 DRIVER_MODULE(rl, pci, rl_driver, rl_devclass, 0, 0);
262 MODULE_PNP_INFO("U16:vendor;U16:device", pci, rl, rl_devs,
263     nitems(rl_devs) - 1);
264 DRIVER_MODULE(rl, cardbus, rl_driver, rl_devclass, 0, 0);
265 DRIVER_MODULE(miibus, rl, miibus_driver, miibus_devclass, 0, 0);
266 
267 #define EE_SET(x)					\
268 	CSR_WRITE_1(sc, RL_EECMD,			\
269 		CSR_READ_1(sc, RL_EECMD) | x)
270 
271 #define EE_CLR(x)					\
272 	CSR_WRITE_1(sc, RL_EECMD,			\
273 		CSR_READ_1(sc, RL_EECMD) & ~x)
274 
275 /*
276  * Send a read command and address to the EEPROM, check for ACK.
277  */
278 static void
279 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
280 {
281 	int			d, i;
282 
283 	d = addr | sc->rl_eecmd_read;
284 
285 	/*
286 	 * Feed in each bit and strobe the clock.
287 	 */
288 	for (i = 0x400; i; i >>= 1) {
289 		if (d & i) {
290 			EE_SET(RL_EE_DATAIN);
291 		} else {
292 			EE_CLR(RL_EE_DATAIN);
293 		}
294 		DELAY(100);
295 		EE_SET(RL_EE_CLK);
296 		DELAY(150);
297 		EE_CLR(RL_EE_CLK);
298 		DELAY(100);
299 	}
300 }
301 
302 /*
303  * Read a word of data stored in the EEPROM at address 'addr.'
304  */
305 static void
306 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
307 {
308 	int			i;
309 	uint16_t		word = 0;
310 
311 	/* Enter EEPROM access mode. */
312 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
313 
314 	/*
315 	 * Send address of word we want to read.
316 	 */
317 	rl_eeprom_putbyte(sc, addr);
318 
319 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
320 
321 	/*
322 	 * Start reading bits from EEPROM.
323 	 */
324 	for (i = 0x8000; i; i >>= 1) {
325 		EE_SET(RL_EE_CLK);
326 		DELAY(100);
327 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
328 			word |= i;
329 		EE_CLR(RL_EE_CLK);
330 		DELAY(100);
331 	}
332 
333 	/* Turn off EEPROM access mode. */
334 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
335 
336 	*dest = word;
337 }
338 
339 /*
340  * Read a sequence of words from the EEPROM.
341  */
342 static void
343 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
344 {
345 	int			i;
346 	uint16_t		word = 0, *ptr;
347 
348 	for (i = 0; i < cnt; i++) {
349 		rl_eeprom_getword(sc, off + i, &word);
350 		ptr = (uint16_t *)(dest + (i * 2));
351 		if (swap)
352 			*ptr = ntohs(word);
353 		else
354 			*ptr = word;
355 	}
356 }
357 
358 /*
359  * Read the MII serial port for the MII bit-bang module.
360  */
361 static uint32_t
362 rl_mii_bitbang_read(device_t dev)
363 {
364 	struct rl_softc *sc;
365 	uint32_t val;
366 
367 	sc = device_get_softc(dev);
368 
369 	val = CSR_READ_1(sc, RL_MII);
370 	CSR_BARRIER(sc, RL_MII, 1,
371 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
372 
373 	return (val);
374 }
375 
376 /*
377  * Write the MII serial port for the MII bit-bang module.
378  */
379 static void
380 rl_mii_bitbang_write(device_t dev, uint32_t val)
381 {
382 	struct rl_softc *sc;
383 
384 	sc = device_get_softc(dev);
385 
386 	CSR_WRITE_1(sc, RL_MII, val);
387 	CSR_BARRIER(sc, RL_MII, 1,
388 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
389 }
390 
391 static int
392 rl_miibus_readreg(device_t dev, int phy, int reg)
393 {
394 	struct rl_softc		*sc;
395 	uint16_t		rl8139_reg;
396 
397 	sc = device_get_softc(dev);
398 
399 	if (sc->rl_type == RL_8139) {
400 		switch (reg) {
401 		case MII_BMCR:
402 			rl8139_reg = RL_BMCR;
403 			break;
404 		case MII_BMSR:
405 			rl8139_reg = RL_BMSR;
406 			break;
407 		case MII_ANAR:
408 			rl8139_reg = RL_ANAR;
409 			break;
410 		case MII_ANER:
411 			rl8139_reg = RL_ANER;
412 			break;
413 		case MII_ANLPAR:
414 			rl8139_reg = RL_LPAR;
415 			break;
416 		case MII_PHYIDR1:
417 		case MII_PHYIDR2:
418 			return (0);
419 		/*
420 		 * Allow the rlphy driver to read the media status
421 		 * register. If we have a link partner which does not
422 		 * support NWAY, this is the register which will tell
423 		 * us the results of parallel detection.
424 		 */
425 		case RL_MEDIASTAT:
426 			return (CSR_READ_1(sc, RL_MEDIASTAT));
427 		default:
428 			device_printf(sc->rl_dev, "bad phy register\n");
429 			return (0);
430 		}
431 		return (CSR_READ_2(sc, rl8139_reg));
432 	}
433 
434 	return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
435 }
436 
437 static int
438 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
439 {
440 	struct rl_softc		*sc;
441 	uint16_t		rl8139_reg;
442 
443 	sc = device_get_softc(dev);
444 
445 	if (sc->rl_type == RL_8139) {
446 		switch (reg) {
447 		case MII_BMCR:
448 			rl8139_reg = RL_BMCR;
449 			break;
450 		case MII_BMSR:
451 			rl8139_reg = RL_BMSR;
452 			break;
453 		case MII_ANAR:
454 			rl8139_reg = RL_ANAR;
455 			break;
456 		case MII_ANER:
457 			rl8139_reg = RL_ANER;
458 			break;
459 		case MII_ANLPAR:
460 			rl8139_reg = RL_LPAR;
461 			break;
462 		case MII_PHYIDR1:
463 		case MII_PHYIDR2:
464 			return (0);
465 			break;
466 		default:
467 			device_printf(sc->rl_dev, "bad phy register\n");
468 			return (0);
469 		}
470 		CSR_WRITE_2(sc, rl8139_reg, data);
471 		return (0);
472 	}
473 
474 	mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
475 
476 	return (0);
477 }
478 
479 static void
480 rl_miibus_statchg(device_t dev)
481 {
482 	struct rl_softc		*sc;
483 	struct ifnet		*ifp;
484 	struct mii_data		*mii;
485 
486 	sc = device_get_softc(dev);
487 	mii = device_get_softc(sc->rl_miibus);
488 	ifp = sc->rl_ifp;
489 	if (mii == NULL || ifp == NULL ||
490 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
491 		return;
492 
493 	sc->rl_flags &= ~RL_FLAG_LINK;
494 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
495 	    (IFM_ACTIVE | IFM_AVALID)) {
496 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
497 		case IFM_10_T:
498 		case IFM_100_TX:
499 			sc->rl_flags |= RL_FLAG_LINK;
500 			break;
501 		default:
502 			break;
503 		}
504 	}
505 	/*
506 	 * RealTek controllers do not provide any interface to
507 	 * Tx/Rx MACs for resolved speed, duplex and flow-control
508 	 * parameters.
509 	 */
510 }
511 
512 /*
513  * Program the 64-bit multicast hash filter.
514  */
515 static void
516 rl_rxfilter(struct rl_softc *sc)
517 {
518 	struct ifnet		*ifp = sc->rl_ifp;
519 	int			h = 0;
520 	uint32_t		hashes[2] = { 0, 0 };
521 	struct ifmultiaddr	*ifma;
522 	uint32_t		rxfilt;
523 
524 	RL_LOCK_ASSERT(sc);
525 
526 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
527 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
528 	    RL_RXCFG_RX_MULTI);
529 	/* Always accept frames destined for this host. */
530 	rxfilt |= RL_RXCFG_RX_INDIV;
531 	/* Set capture broadcast bit to capture broadcast frames. */
532 	if (ifp->if_flags & IFF_BROADCAST)
533 		rxfilt |= RL_RXCFG_RX_BROAD;
534 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
535 		rxfilt |= RL_RXCFG_RX_MULTI;
536 		if (ifp->if_flags & IFF_PROMISC)
537 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
538 		hashes[0] = 0xFFFFFFFF;
539 		hashes[1] = 0xFFFFFFFF;
540 	} else {
541 		/* Now program new ones. */
542 		if_maddr_rlock(ifp);
543 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
544 			if (ifma->ifma_addr->sa_family != AF_LINK)
545 				continue;
546 			h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
547 			    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
548 			if (h < 32)
549 				hashes[0] |= (1 << h);
550 			else
551 				hashes[1] |= (1 << (h - 32));
552 		}
553 		if_maddr_runlock(ifp);
554 		if (hashes[0] != 0 || hashes[1] != 0)
555 			rxfilt |= RL_RXCFG_RX_MULTI;
556 	}
557 
558 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
559 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
560 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
561 }
562 
563 static void
564 rl_reset(struct rl_softc *sc)
565 {
566 	int			i;
567 
568 	RL_LOCK_ASSERT(sc);
569 
570 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
571 
572 	for (i = 0; i < RL_TIMEOUT; i++) {
573 		DELAY(10);
574 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
575 			break;
576 	}
577 	if (i == RL_TIMEOUT)
578 		device_printf(sc->rl_dev, "reset never completed!\n");
579 }
580 
581 /*
582  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
583  * IDs against our list and return a device name if we find a match.
584  */
585 static int
586 rl_probe(device_t dev)
587 {
588 	const struct rl_type	*t;
589 	uint16_t		devid, revid, vendor;
590 	int			i;
591 
592 	vendor = pci_get_vendor(dev);
593 	devid = pci_get_device(dev);
594 	revid = pci_get_revid(dev);
595 
596 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
597 		if (revid == 0x20) {
598 			/* 8139C+, let re(4) take care of this device. */
599 			return (ENXIO);
600 		}
601 	}
602 	t = rl_devs;
603 	for (i = 0; i < nitems(rl_devs); i++, t++) {
604 		if (vendor == t->rl_vid && devid == t->rl_did) {
605 			device_set_desc(dev, t->rl_name);
606 			return (BUS_PROBE_DEFAULT);
607 		}
608 	}
609 
610 	return (ENXIO);
611 }
612 
613 struct rl_dmamap_arg {
614 	bus_addr_t	rl_busaddr;
615 };
616 
617 static void
618 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
619 {
620 	struct rl_dmamap_arg	*ctx;
621 
622 	if (error != 0)
623 		return;
624 
625 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
626 
627         ctx = (struct rl_dmamap_arg *)arg;
628         ctx->rl_busaddr = segs[0].ds_addr;
629 }
630 
631 /*
632  * Attach the interface. Allocate softc structures, do ifmedia
633  * setup and ethernet/BPF attach.
634  */
635 static int
636 rl_attach(device_t dev)
637 {
638 	uint8_t			eaddr[ETHER_ADDR_LEN];
639 	uint16_t		as[3];
640 	struct ifnet		*ifp;
641 	struct rl_softc		*sc;
642 	const struct rl_type	*t;
643 	struct sysctl_ctx_list	*ctx;
644 	struct sysctl_oid_list	*children;
645 	int			error = 0, hwrev, i, phy, pmc, rid;
646 	int			prefer_iomap, unit;
647 	uint16_t		rl_did = 0;
648 	char			tn[32];
649 
650 	sc = device_get_softc(dev);
651 	unit = device_get_unit(dev);
652 	sc->rl_dev = dev;
653 
654 	sc->rl_twister_enable = 0;
655 	snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
656 	TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
657 	ctx = device_get_sysctl_ctx(sc->rl_dev);
658 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
659 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
660 	   &sc->rl_twister_enable, 0, "");
661 
662 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
663 	    MTX_DEF);
664 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
665 
666 	pci_enable_busmaster(dev);
667 
668 
669 	/*
670 	 * Map control/status registers.
671 	 * Default to using PIO access for this driver. On SMP systems,
672 	 * there appear to be problems with memory mapped mode: it looks
673 	 * like doing too many memory mapped access back to back in rapid
674 	 * succession can hang the bus. I'm inclined to blame this on
675 	 * crummy design/construction on the part of RealTek. Memory
676 	 * mapped mode does appear to work on uniprocessor systems though.
677 	 */
678 	prefer_iomap = 1;
679 	snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
680 	TUNABLE_INT_FETCH(tn, &prefer_iomap);
681 	if (prefer_iomap) {
682 		sc->rl_res_id = PCIR_BAR(0);
683 		sc->rl_res_type = SYS_RES_IOPORT;
684 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
685 		    &sc->rl_res_id, RF_ACTIVE);
686 	}
687 	if (prefer_iomap == 0 || sc->rl_res == NULL) {
688 		sc->rl_res_id = PCIR_BAR(1);
689 		sc->rl_res_type = SYS_RES_MEMORY;
690 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
691 		    &sc->rl_res_id, RF_ACTIVE);
692 	}
693 	if (sc->rl_res == NULL) {
694 		device_printf(dev, "couldn't map ports/memory\n");
695 		error = ENXIO;
696 		goto fail;
697 	}
698 
699 #ifdef notdef
700 	/*
701 	 * Detect the Realtek 8139B. For some reason, this chip is very
702 	 * unstable when left to autoselect the media
703 	 * The best workaround is to set the device to the required
704 	 * media type or to set it to the 10 Meg speed.
705 	 */
706 	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
707 		device_printf(dev,
708 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
709 #endif
710 
711 	sc->rl_btag = rman_get_bustag(sc->rl_res);
712 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
713 
714 	/* Allocate interrupt */
715 	rid = 0;
716 	sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
717 	    RF_SHAREABLE | RF_ACTIVE);
718 
719 	if (sc->rl_irq[0] == NULL) {
720 		device_printf(dev, "couldn't map interrupt\n");
721 		error = ENXIO;
722 		goto fail;
723 	}
724 
725 	sc->rl_cfg0 = RL_8139_CFG0;
726 	sc->rl_cfg1 = RL_8139_CFG1;
727 	sc->rl_cfg2 = 0;
728 	sc->rl_cfg3 = RL_8139_CFG3;
729 	sc->rl_cfg4 = RL_8139_CFG4;
730 	sc->rl_cfg5 = RL_8139_CFG5;
731 
732 	/*
733 	 * Reset the adapter. Only take the lock here as it's needed in
734 	 * order to call rl_reset().
735 	 */
736 	RL_LOCK(sc);
737 	rl_reset(sc);
738 	RL_UNLOCK(sc);
739 
740 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
741 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
742 	if (rl_did != 0x8129)
743 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
744 
745 	/*
746 	 * Get station address from the EEPROM.
747 	 */
748 	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
749 	for (i = 0; i < 3; i++) {
750 		eaddr[(i * 2) + 0] = as[i] & 0xff;
751 		eaddr[(i * 2) + 1] = as[i] >> 8;
752 	}
753 
754 	/*
755 	 * Now read the exact device type from the EEPROM to find
756 	 * out if it's an 8129 or 8139.
757 	 */
758 	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
759 
760 	t = rl_devs;
761 	sc->rl_type = 0;
762 	while(t->rl_name != NULL) {
763 		if (rl_did == t->rl_did) {
764 			sc->rl_type = t->rl_basetype;
765 			break;
766 		}
767 		t++;
768 	}
769 
770 	if (sc->rl_type == 0) {
771 		device_printf(dev, "unknown device ID: %x assuming 8139\n",
772 		    rl_did);
773 		sc->rl_type = RL_8139;
774 		/*
775 		 * Read RL_IDR register to get ethernet address as accessing
776 		 * EEPROM may not extract correct address.
777 		 */
778 		for (i = 0; i < ETHER_ADDR_LEN; i++)
779 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
780 	}
781 
782 	if ((error = rl_dma_alloc(sc)) != 0)
783 		goto fail;
784 
785 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
786 	if (ifp == NULL) {
787 		device_printf(dev, "can not if_alloc()\n");
788 		error = ENOSPC;
789 		goto fail;
790 	}
791 
792 #define	RL_PHYAD_INTERNAL	0
793 
794 	/* Do MII setup */
795 	phy = MII_PHY_ANY;
796 	if (sc->rl_type == RL_8139)
797 		phy = RL_PHYAD_INTERNAL;
798 	error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
799 	    rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
800 	if (error != 0) {
801 		device_printf(dev, "attaching PHYs failed\n");
802 		goto fail;
803 	}
804 
805 	ifp->if_softc = sc;
806 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
807 	ifp->if_mtu = ETHERMTU;
808 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
809 	ifp->if_ioctl = rl_ioctl;
810 	ifp->if_start = rl_start;
811 	ifp->if_init = rl_init;
812 	ifp->if_capabilities = IFCAP_VLAN_MTU;
813 	/* Check WOL for RTL8139B or newer controllers. */
814 	if (sc->rl_type == RL_8139 &&
815 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
816 		hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
817 		switch (hwrev) {
818 		case RL_HWREV_8139B:
819 		case RL_HWREV_8130:
820 		case RL_HWREV_8139C:
821 		case RL_HWREV_8139D:
822 		case RL_HWREV_8101:
823 		case RL_HWREV_8100:
824 			ifp->if_capabilities |= IFCAP_WOL;
825 			/* Disable WOL. */
826 			rl_clrwol(sc);
827 			break;
828 		default:
829 			break;
830 		}
831 	}
832 	ifp->if_capenable = ifp->if_capabilities;
833 	ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
834 #ifdef DEVICE_POLLING
835 	ifp->if_capabilities |= IFCAP_POLLING;
836 #endif
837 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
838 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
839 	IFQ_SET_READY(&ifp->if_snd);
840 
841 	/*
842 	 * Call MI attach routine.
843 	 */
844 	ether_ifattach(ifp, eaddr);
845 
846 	/* Hook interrupt last to avoid having to lock softc */
847 	error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
848 	    NULL, rl_intr, sc, &sc->rl_intrhand[0]);
849 	if (error) {
850 		device_printf(sc->rl_dev, "couldn't set up irq\n");
851 		ether_ifdetach(ifp);
852 	}
853 
854 fail:
855 	if (error)
856 		rl_detach(dev);
857 
858 	return (error);
859 }
860 
861 /*
862  * Shutdown hardware and free up resources. This can be called any
863  * time after the mutex has been initialized. It is called in both
864  * the error case in attach and the normal detach case so it needs
865  * to be careful about only freeing resources that have actually been
866  * allocated.
867  */
868 static int
869 rl_detach(device_t dev)
870 {
871 	struct rl_softc		*sc;
872 	struct ifnet		*ifp;
873 
874 	sc = device_get_softc(dev);
875 	ifp = sc->rl_ifp;
876 
877 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
878 
879 #ifdef DEVICE_POLLING
880 	if (ifp->if_capenable & IFCAP_POLLING)
881 		ether_poll_deregister(ifp);
882 #endif
883 	/* These should only be active if attach succeeded */
884 	if (device_is_attached(dev)) {
885 		RL_LOCK(sc);
886 		rl_stop(sc);
887 		RL_UNLOCK(sc);
888 		callout_drain(&sc->rl_stat_callout);
889 		ether_ifdetach(ifp);
890 	}
891 #if 0
892 	sc->suspended = 1;
893 #endif
894 	if (sc->rl_miibus)
895 		device_delete_child(dev, sc->rl_miibus);
896 	bus_generic_detach(dev);
897 
898 	if (sc->rl_intrhand[0])
899 		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
900 	if (sc->rl_irq[0])
901 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
902 	if (sc->rl_res)
903 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
904 		    sc->rl_res);
905 
906 	if (ifp)
907 		if_free(ifp);
908 
909 	rl_dma_free(sc);
910 
911 	mtx_destroy(&sc->rl_mtx);
912 
913 	return (0);
914 }
915 
916 static int
917 rl_dma_alloc(struct rl_softc *sc)
918 {
919 	struct rl_dmamap_arg	ctx;
920 	int			error, i;
921 
922 	/*
923 	 * Allocate the parent bus DMA tag appropriate for PCI.
924 	 */
925 	error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev),	/* parent */
926 	    1, 0,			/* alignment, boundary */
927 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
928 	    BUS_SPACE_MAXADDR,		/* highaddr */
929 	    NULL, NULL,			/* filter, filterarg */
930 	    BUS_SPACE_MAXSIZE_32BIT, 0,	/* maxsize, nsegments */
931 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
932 	    0,				/* flags */
933 	    NULL, NULL,			/* lockfunc, lockarg */
934 	    &sc->rl_parent_tag);
935 	if (error) {
936                 device_printf(sc->rl_dev,
937 		    "failed to create parent DMA tag.\n");
938 		goto fail;
939 	}
940 	/* Create DMA tag for Rx memory block. */
941 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
942 	    RL_RX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
943 	    BUS_SPACE_MAXADDR,		/* lowaddr */
944 	    BUS_SPACE_MAXADDR,		/* highaddr */
945 	    NULL, NULL,			/* filter, filterarg */
946 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,	/* maxsize,nsegments */
947 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,	/* maxsegsize */
948 	    0,				/* flags */
949 	    NULL, NULL,			/* lockfunc, lockarg */
950 	    &sc->rl_cdata.rl_rx_tag);
951 	if (error) {
952                 device_printf(sc->rl_dev,
953 		    "failed to create Rx memory block DMA tag.\n");
954 		goto fail;
955 	}
956 	/* Create DMA tag for Tx buffer. */
957 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
958 	    RL_TX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
959 	    BUS_SPACE_MAXADDR,		/* lowaddr */
960 	    BUS_SPACE_MAXADDR,		/* highaddr */
961 	    NULL, NULL,			/* filter, filterarg */
962 	    MCLBYTES, 1,		/* maxsize, nsegments */
963 	    MCLBYTES,			/* maxsegsize */
964 	    0,				/* flags */
965 	    NULL, NULL,			/* lockfunc, lockarg */
966 	    &sc->rl_cdata.rl_tx_tag);
967 	if (error) {
968                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
969 		goto fail;
970 	}
971 
972 	/*
973 	 * Allocate DMA'able memory and load DMA map for Rx memory block.
974 	 */
975 	error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
976 	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
977 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
978 	if (error != 0) {
979 		device_printf(sc->rl_dev,
980 		    "failed to allocate Rx DMA memory block.\n");
981 		goto fail;
982 	}
983 	ctx.rl_busaddr = 0;
984 	error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
985 	    sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
986 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
987 	    BUS_DMA_NOWAIT);
988 	if (error != 0 || ctx.rl_busaddr == 0) {
989 		device_printf(sc->rl_dev,
990 		    "could not load Rx DMA memory block.\n");
991 		goto fail;
992 	}
993 	sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
994 
995 	/* Create DMA maps for Tx buffers. */
996 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
997 		sc->rl_cdata.rl_tx_chain[i] = NULL;
998 		sc->rl_cdata.rl_tx_dmamap[i] = NULL;
999 		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
1000 		    &sc->rl_cdata.rl_tx_dmamap[i]);
1001 		if (error != 0) {
1002 			device_printf(sc->rl_dev,
1003 			    "could not create Tx dmamap.\n");
1004 			goto fail;
1005 		}
1006 	}
1007 
1008 	/* Leave a few bytes before the start of the RX ring buffer. */
1009 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1010 	sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1011 
1012 fail:
1013 	return (error);
1014 }
1015 
1016 static void
1017 rl_dma_free(struct rl_softc *sc)
1018 {
1019 	int			i;
1020 
1021 	/* Rx memory block. */
1022 	if (sc->rl_cdata.rl_rx_tag != NULL) {
1023 		if (sc->rl_cdata.rl_rx_buf_paddr != 0)
1024 			bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1025 			    sc->rl_cdata.rl_rx_dmamap);
1026 		if (sc->rl_cdata.rl_rx_buf_ptr != NULL)
1027 			bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1028 			    sc->rl_cdata.rl_rx_buf_ptr,
1029 			    sc->rl_cdata.rl_rx_dmamap);
1030 		sc->rl_cdata.rl_rx_buf_ptr = NULL;
1031 		sc->rl_cdata.rl_rx_buf = NULL;
1032 		sc->rl_cdata.rl_rx_buf_paddr = 0;
1033 		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1034 		sc->rl_cdata.rl_tx_tag = NULL;
1035 	}
1036 
1037 	/* Tx buffers. */
1038 	if (sc->rl_cdata.rl_tx_tag != NULL) {
1039 		for (i = 0; i < RL_TX_LIST_CNT; i++) {
1040 			if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1041 				bus_dmamap_destroy(
1042 				    sc->rl_cdata.rl_tx_tag,
1043 				    sc->rl_cdata.rl_tx_dmamap[i]);
1044 				sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1045 			}
1046 		}
1047 		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1048 		sc->rl_cdata.rl_tx_tag = NULL;
1049 	}
1050 
1051 	if (sc->rl_parent_tag != NULL) {
1052 		bus_dma_tag_destroy(sc->rl_parent_tag);
1053 		sc->rl_parent_tag = NULL;
1054 	}
1055 }
1056 
1057 /*
1058  * Initialize the transmit descriptors.
1059  */
1060 static int
1061 rl_list_tx_init(struct rl_softc *sc)
1062 {
1063 	struct rl_chain_data	*cd;
1064 	int			i;
1065 
1066 	RL_LOCK_ASSERT(sc);
1067 
1068 	cd = &sc->rl_cdata;
1069 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1070 		cd->rl_tx_chain[i] = NULL;
1071 		CSR_WRITE_4(sc,
1072 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1073 	}
1074 
1075 	sc->rl_cdata.cur_tx = 0;
1076 	sc->rl_cdata.last_tx = 0;
1077 
1078 	return (0);
1079 }
1080 
1081 static int
1082 rl_list_rx_init(struct rl_softc *sc)
1083 {
1084 
1085 	RL_LOCK_ASSERT(sc);
1086 
1087 	bzero(sc->rl_cdata.rl_rx_buf_ptr,
1088 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1089 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1090 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1091 
1092 	return (0);
1093 }
1094 
1095 /*
1096  * A frame has been uploaded: pass the resulting mbuf chain up to
1097  * the higher level protocols.
1098  *
1099  * You know there's something wrong with a PCI bus-master chip design
1100  * when you have to use m_devget().
1101  *
1102  * The receive operation is badly documented in the datasheet, so I'll
1103  * attempt to document it here. The driver provides a buffer area and
1104  * places its base address in the RX buffer start address register.
1105  * The chip then begins copying frames into the RX buffer. Each frame
1106  * is preceded by a 32-bit RX status word which specifies the length
1107  * of the frame and certain other status bits. Each frame (starting with
1108  * the status word) is also 32-bit aligned. The frame length is in the
1109  * first 16 bits of the status word; the lower 15 bits correspond with
1110  * the 'rx status register' mentioned in the datasheet.
1111  *
1112  * Note: to make the Alpha happy, the frame payload needs to be aligned
1113  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1114  * as the offset argument to m_devget().
1115  */
1116 static int
1117 rl_rxeof(struct rl_softc *sc)
1118 {
1119 	struct mbuf		*m;
1120 	struct ifnet		*ifp = sc->rl_ifp;
1121 	uint8_t			*rxbufpos;
1122 	int			total_len = 0;
1123 	int			wrap = 0;
1124 	int			rx_npkts = 0;
1125 	uint32_t		rxstat;
1126 	uint16_t		cur_rx;
1127 	uint16_t		limit;
1128 	uint16_t		max_bytes, rx_bytes = 0;
1129 
1130 	RL_LOCK_ASSERT(sc);
1131 
1132 	bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1133 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1134 
1135 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1136 
1137 	/* Do not try to read past this point. */
1138 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1139 
1140 	if (limit < cur_rx)
1141 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1142 	else
1143 		max_bytes = limit - cur_rx;
1144 
1145 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1146 #ifdef DEVICE_POLLING
1147 		if (ifp->if_capenable & IFCAP_POLLING) {
1148 			if (sc->rxcycles <= 0)
1149 				break;
1150 			sc->rxcycles--;
1151 		}
1152 #endif
1153 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1154 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1155 
1156 		/*
1157 		 * Here's a totally undocumented fact for you. When the
1158 		 * RealTek chip is in the process of copying a packet into
1159 		 * RAM for you, the length will be 0xfff0. If you spot a
1160 		 * packet header with this value, you need to stop. The
1161 		 * datasheet makes absolutely no mention of this and
1162 		 * RealTek should be shot for this.
1163 		 */
1164 		total_len = rxstat >> 16;
1165 		if (total_len == RL_RXSTAT_UNFINISHED)
1166 			break;
1167 
1168 		if (!(rxstat & RL_RXSTAT_RXOK) ||
1169 		    total_len < ETHER_MIN_LEN ||
1170 		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1171 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1172 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1173 			rl_init_locked(sc);
1174 			return (rx_npkts);
1175 		}
1176 
1177 		/* No errors; receive the packet. */
1178 		rx_bytes += total_len + 4;
1179 
1180 		/*
1181 		 * XXX The RealTek chip includes the CRC with every
1182 		 * received frame, and there's no way to turn this
1183 		 * behavior off (at least, I can't find anything in
1184 		 * the manual that explains how to do it) so we have
1185 		 * to trim off the CRC manually.
1186 		 */
1187 		total_len -= ETHER_CRC_LEN;
1188 
1189 		/*
1190 		 * Avoid trying to read more bytes than we know
1191 		 * the chip has prepared for us.
1192 		 */
1193 		if (rx_bytes > max_bytes)
1194 			break;
1195 
1196 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1197 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1198 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1199 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1200 
1201 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1202 		if (total_len > wrap) {
1203 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1204 			    NULL);
1205 			if (m != NULL)
1206 				m_copyback(m, wrap, total_len - wrap,
1207 					sc->rl_cdata.rl_rx_buf);
1208 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1209 		} else {
1210 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1211 			    NULL);
1212 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1213 		}
1214 
1215 		/* Round up to 32-bit boundary. */
1216 		cur_rx = (cur_rx + 3) & ~3;
1217 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1218 
1219 		if (m == NULL) {
1220 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1221 			continue;
1222 		}
1223 
1224 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1225 		RL_UNLOCK(sc);
1226 		(*ifp->if_input)(ifp, m);
1227 		RL_LOCK(sc);
1228 		rx_npkts++;
1229 	}
1230 
1231 	/* No need to sync Rx memory block as we didn't modify it. */
1232 	return (rx_npkts);
1233 }
1234 
1235 /*
1236  * A frame was downloaded to the chip. It's safe for us to clean up
1237  * the list buffers.
1238  */
1239 static void
1240 rl_txeof(struct rl_softc *sc)
1241 {
1242 	struct ifnet		*ifp = sc->rl_ifp;
1243 	uint32_t		txstat;
1244 
1245 	RL_LOCK_ASSERT(sc);
1246 
1247 	/*
1248 	 * Go through our tx list and free mbufs for those
1249 	 * frames that have been uploaded.
1250 	 */
1251 	do {
1252 		if (RL_LAST_TXMBUF(sc) == NULL)
1253 			break;
1254 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1255 		if (!(txstat & (RL_TXSTAT_TX_OK|
1256 		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1257 			break;
1258 
1259 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & RL_TXSTAT_COLLCNT) >> 24);
1260 
1261 		bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1262 		    BUS_DMASYNC_POSTWRITE);
1263 		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1264 		m_freem(RL_LAST_TXMBUF(sc));
1265 		RL_LAST_TXMBUF(sc) = NULL;
1266 		/*
1267 		 * If there was a transmit underrun, bump the TX threshold.
1268 		 * Make sure not to overflow the 63 * 32byte we can address
1269 		 * with the 6 available bit.
1270 		 */
1271 		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1272 		    (sc->rl_txthresh < 2016))
1273 			sc->rl_txthresh += 32;
1274 		if (txstat & RL_TXSTAT_TX_OK)
1275 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1276 		else {
1277 			int			oldthresh;
1278 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1279 			if ((txstat & RL_TXSTAT_TXABRT) ||
1280 			    (txstat & RL_TXSTAT_OUTOFWIN))
1281 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1282 			oldthresh = sc->rl_txthresh;
1283 			/* error recovery */
1284 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1285 			rl_init_locked(sc);
1286 			/* restore original threshold */
1287 			sc->rl_txthresh = oldthresh;
1288 			return;
1289 		}
1290 		RL_INC(sc->rl_cdata.last_tx);
1291 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1292 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1293 
1294 	if (RL_LAST_TXMBUF(sc) == NULL)
1295 		sc->rl_watchdog_timer = 0;
1296 }
1297 
1298 static void
1299 rl_twister_update(struct rl_softc *sc)
1300 {
1301 	uint16_t linktest;
1302 	/*
1303 	 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1304 	 * Linux driver.  Values undocumented otherwise.
1305 	 */
1306 	static const uint32_t param[4][4] = {
1307 		{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1308 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1309 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1310 		{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1311 	};
1312 
1313 	/*
1314 	 * Tune the so-called twister registers of the RTL8139.  These
1315 	 * are used to compensate for impedance mismatches.  The
1316 	 * method for tuning these registers is undocumented and the
1317 	 * following procedure is collected from public sources.
1318 	 */
1319 	switch (sc->rl_twister)
1320 	{
1321 	case CHK_LINK:
1322 		/*
1323 		 * If we have a sufficient link, then we can proceed in
1324 		 * the state machine to the next stage.  If not, then
1325 		 * disable further tuning after writing sane defaults.
1326 		 */
1327 		if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1328 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1329 			sc->rl_twister = FIND_ROW;
1330 		} else {
1331 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1332 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1333 			CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1334 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1335 			sc->rl_twister = DONE;
1336 		}
1337 		break;
1338 	case FIND_ROW:
1339 		/*
1340 		 * Read how long it took to see the echo to find the tuning
1341 		 * row to use.
1342 		 */
1343 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1344 		if (linktest == RL_CSCFG_ROW3)
1345 			sc->rl_twist_row = 3;
1346 		else if (linktest == RL_CSCFG_ROW2)
1347 			sc->rl_twist_row = 2;
1348 		else if (linktest == RL_CSCFG_ROW1)
1349 			sc->rl_twist_row = 1;
1350 		else
1351 			sc->rl_twist_row = 0;
1352 		sc->rl_twist_col = 0;
1353 		sc->rl_twister = SET_PARAM;
1354 		break;
1355 	case SET_PARAM:
1356 		if (sc->rl_twist_col == 0)
1357 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1358 		CSR_WRITE_4(sc, RL_PARA7C,
1359 		    param[sc->rl_twist_row][sc->rl_twist_col]);
1360 		if (++sc->rl_twist_col == 4) {
1361 			if (sc->rl_twist_row == 3)
1362 				sc->rl_twister = RECHK_LONG;
1363 			else
1364 				sc->rl_twister = DONE;
1365 		}
1366 		break;
1367 	case RECHK_LONG:
1368 		/*
1369 		 * For long cables, we have to double check to make sure we
1370 		 * don't mistune.
1371 		 */
1372 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1373 		if (linktest == RL_CSCFG_ROW3)
1374 			sc->rl_twister = DONE;
1375 		else {
1376 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1377 			sc->rl_twister = RETUNE;
1378 		}
1379 		break;
1380 	case RETUNE:
1381 		/* Retune for a shorter cable (try column 2) */
1382 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1383 		CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1384 		CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1385 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1386 		sc->rl_twist_row--;
1387 		sc->rl_twist_col = 0;
1388 		sc->rl_twister = SET_PARAM;
1389 		break;
1390 
1391 	case DONE:
1392 		break;
1393 	}
1394 
1395 }
1396 
1397 static void
1398 rl_tick(void *xsc)
1399 {
1400 	struct rl_softc		*sc = xsc;
1401 	struct mii_data		*mii;
1402 	int ticks;
1403 
1404 	RL_LOCK_ASSERT(sc);
1405 	/*
1406 	 * If we're doing the twister cable calibration, then we need to defer
1407 	 * watchdog timeouts.  This is a no-op in normal operations, but
1408 	 * can falsely trigger when the cable calibration takes a while and
1409 	 * there was traffic ready to go when rl was started.
1410 	 *
1411 	 * We don't defer mii_tick since that updates the mii status, which
1412 	 * helps the twister process, at least according to similar patches
1413 	 * for the Linux driver I found online while doing the fixes.  Worst
1414 	 * case is a few extra mii reads during calibration.
1415 	 */
1416 	mii = device_get_softc(sc->rl_miibus);
1417 	mii_tick(mii);
1418 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1419 		rl_miibus_statchg(sc->rl_dev);
1420 	if (sc->rl_twister_enable) {
1421 		if (sc->rl_twister == DONE)
1422 			rl_watchdog(sc);
1423 		else
1424 			rl_twister_update(sc);
1425 		if (sc->rl_twister == DONE)
1426 			ticks = hz;
1427 		else
1428 			ticks = hz / 10;
1429 	} else {
1430 		rl_watchdog(sc);
1431 		ticks = hz;
1432 	}
1433 
1434 	callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1435 }
1436 
1437 #ifdef DEVICE_POLLING
1438 static int
1439 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1440 {
1441 	struct rl_softc *sc = ifp->if_softc;
1442 	int rx_npkts = 0;
1443 
1444 	RL_LOCK(sc);
1445 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1446 		rx_npkts = rl_poll_locked(ifp, cmd, count);
1447 	RL_UNLOCK(sc);
1448 	return (rx_npkts);
1449 }
1450 
1451 static int
1452 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1453 {
1454 	struct rl_softc *sc = ifp->if_softc;
1455 	int rx_npkts;
1456 
1457 	RL_LOCK_ASSERT(sc);
1458 
1459 	sc->rxcycles = count;
1460 	rx_npkts = rl_rxeof(sc);
1461 	rl_txeof(sc);
1462 
1463 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1464 		rl_start_locked(ifp);
1465 
1466 	if (cmd == POLL_AND_CHECK_STATUS) {
1467 		uint16_t	status;
1468 
1469 		/* We should also check the status register. */
1470 		status = CSR_READ_2(sc, RL_ISR);
1471 		if (status == 0xffff)
1472 			return (rx_npkts);
1473 		if (status != 0)
1474 			CSR_WRITE_2(sc, RL_ISR, status);
1475 
1476 		/* XXX We should check behaviour on receiver stalls. */
1477 
1478 		if (status & RL_ISR_SYSTEM_ERR) {
1479 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1480 			rl_init_locked(sc);
1481 		}
1482 	}
1483 	return (rx_npkts);
1484 }
1485 #endif /* DEVICE_POLLING */
1486 
1487 static void
1488 rl_intr(void *arg)
1489 {
1490 	struct rl_softc		*sc = arg;
1491 	struct ifnet		*ifp = sc->rl_ifp;
1492 	uint16_t		status;
1493 	int			count;
1494 
1495 	RL_LOCK(sc);
1496 
1497 	if (sc->suspended)
1498 		goto done_locked;
1499 
1500 #ifdef DEVICE_POLLING
1501 	if  (ifp->if_capenable & IFCAP_POLLING)
1502 		goto done_locked;
1503 #endif
1504 
1505 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1506 		goto done_locked2;
1507 	status = CSR_READ_2(sc, RL_ISR);
1508 	if (status == 0xffff || (status & RL_INTRS) == 0)
1509 		goto done_locked;
1510 	/*
1511 	 * Ours, disable further interrupts.
1512 	 */
1513 	CSR_WRITE_2(sc, RL_IMR, 0);
1514 	for (count = 16; count > 0; count--) {
1515 		CSR_WRITE_2(sc, RL_ISR, status);
1516 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1517 			if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
1518 				rl_rxeof(sc);
1519 			if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
1520 				rl_txeof(sc);
1521 			if (status & RL_ISR_SYSTEM_ERR) {
1522 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1523 				rl_init_locked(sc);
1524 				RL_UNLOCK(sc);
1525 				return;
1526 			}
1527 		}
1528 		status = CSR_READ_2(sc, RL_ISR);
1529 		/* If the card has gone away, the read returns 0xffff. */
1530 		if (status == 0xffff || (status & RL_INTRS) == 0)
1531 			break;
1532 	}
1533 
1534 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1535 		rl_start_locked(ifp);
1536 
1537 done_locked2:
1538 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1539 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1540 done_locked:
1541 	RL_UNLOCK(sc);
1542 }
1543 
1544 /*
1545  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1546  * pointers to the fragment pointers.
1547  */
1548 static int
1549 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1550 {
1551 	struct mbuf		*m;
1552 	bus_dma_segment_t	txsegs[1];
1553 	int			error, nsegs, padlen;
1554 
1555 	RL_LOCK_ASSERT(sc);
1556 
1557 	m = *m_head;
1558 	padlen = 0;
1559 	/*
1560 	 * Hardware doesn't auto-pad, so we have to make sure
1561 	 * pad short frames out to the minimum frame length.
1562 	 */
1563 	if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1564 		padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1565 	/*
1566 	 * The RealTek is brain damaged and wants longword-aligned
1567 	 * TX buffers, plus we can only have one fragment buffer
1568 	 * per packet. We have to copy pretty much all the time.
1569 	 */
1570 	if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1571 	    (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1572 		m = m_defrag(*m_head, M_NOWAIT);
1573 		if (m == NULL) {
1574 			m_freem(*m_head);
1575 			*m_head = NULL;
1576 			return (ENOMEM);
1577 		}
1578 	}
1579 	*m_head = m;
1580 
1581 	if (padlen > 0) {
1582 		/*
1583 		 * Make security-conscious people happy: zero out the
1584 		 * bytes in the pad area, since we don't know what
1585 		 * this mbuf cluster buffer's previous user might
1586 		 * have left in it.
1587 		 */
1588 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1589 		m->m_pkthdr.len += padlen;
1590 		m->m_len = m->m_pkthdr.len;
1591 	}
1592 
1593 	error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1594 	    RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1595 	if (error != 0)
1596 		return (error);
1597 	if (nsegs == 0) {
1598 		m_freem(*m_head);
1599 		*m_head = NULL;
1600 		return (EIO);
1601 	}
1602 
1603 	RL_CUR_TXMBUF(sc) = m;
1604 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1605 	    BUS_DMASYNC_PREWRITE);
1606 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1607 
1608 	return (0);
1609 }
1610 
1611 /*
1612  * Main transmit routine.
1613  */
1614 static void
1615 rl_start(struct ifnet *ifp)
1616 {
1617 	struct rl_softc		*sc = ifp->if_softc;
1618 
1619 	RL_LOCK(sc);
1620 	rl_start_locked(ifp);
1621 	RL_UNLOCK(sc);
1622 }
1623 
1624 static void
1625 rl_start_locked(struct ifnet *ifp)
1626 {
1627 	struct rl_softc		*sc = ifp->if_softc;
1628 	struct mbuf		*m_head = NULL;
1629 
1630 	RL_LOCK_ASSERT(sc);
1631 
1632 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1633 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1634 		return;
1635 
1636 	while (RL_CUR_TXMBUF(sc) == NULL) {
1637 
1638 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1639 
1640 		if (m_head == NULL)
1641 			break;
1642 
1643 		if (rl_encap(sc, &m_head)) {
1644 			if (m_head == NULL)
1645 				break;
1646 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1647 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1648 			break;
1649 		}
1650 
1651 		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1652 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1653 
1654 		/* Transmit the frame. */
1655 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1656 		    RL_TXTHRESH(sc->rl_txthresh) |
1657 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1658 
1659 		RL_INC(sc->rl_cdata.cur_tx);
1660 
1661 		/* Set a timeout in case the chip goes out to lunch. */
1662 		sc->rl_watchdog_timer = 5;
1663 	}
1664 
1665 	/*
1666 	 * We broke out of the loop because all our TX slots are
1667 	 * full. Mark the NIC as busy until it drains some of the
1668 	 * packets from the queue.
1669 	 */
1670 	if (RL_CUR_TXMBUF(sc) != NULL)
1671 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1672 }
1673 
1674 static void
1675 rl_init(void *xsc)
1676 {
1677 	struct rl_softc		*sc = xsc;
1678 
1679 	RL_LOCK(sc);
1680 	rl_init_locked(sc);
1681 	RL_UNLOCK(sc);
1682 }
1683 
1684 static void
1685 rl_init_locked(struct rl_softc *sc)
1686 {
1687 	struct ifnet		*ifp = sc->rl_ifp;
1688 	struct mii_data		*mii;
1689 	uint32_t		eaddr[2];
1690 
1691 	RL_LOCK_ASSERT(sc);
1692 
1693 	mii = device_get_softc(sc->rl_miibus);
1694 
1695 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1696 		return;
1697 
1698 	/*
1699 	 * Cancel pending I/O and free all RX/TX buffers.
1700 	 */
1701 	rl_stop(sc);
1702 
1703 	rl_reset(sc);
1704 	if (sc->rl_twister_enable) {
1705 		/*
1706 		 * Reset twister register tuning state.  The twister
1707 		 * registers and their tuning are undocumented, but
1708 		 * are necessary to cope with bad links.  rl_twister =
1709 		 * DONE here will disable this entirely.
1710 		 */
1711 		sc->rl_twister = CHK_LINK;
1712 	}
1713 
1714 	/*
1715 	 * Init our MAC address.  Even though the chipset
1716 	 * documentation doesn't mention it, we need to enter "Config
1717 	 * register write enable" mode to modify the ID registers.
1718 	 */
1719 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1720 	bzero(eaddr, sizeof(eaddr));
1721 	bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1722 	CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1723 	CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1724 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1725 
1726 	/* Init the RX memory block pointer register. */
1727 	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1728 	    RL_RX_8139_BUF_RESERVE);
1729 	/* Init TX descriptors. */
1730 	rl_list_tx_init(sc);
1731 	/* Init Rx memory block. */
1732 	rl_list_rx_init(sc);
1733 
1734 	/*
1735 	 * Enable transmit and receive.
1736 	 */
1737 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1738 
1739 	/*
1740 	 * Set the initial TX and RX configuration.
1741 	 */
1742 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1743 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1744 
1745 	/* Set RX filter. */
1746 	rl_rxfilter(sc);
1747 
1748 #ifdef DEVICE_POLLING
1749 	/* Disable interrupts if we are polling. */
1750 	if (ifp->if_capenable & IFCAP_POLLING)
1751 		CSR_WRITE_2(sc, RL_IMR, 0);
1752 	else
1753 #endif
1754 	/* Enable interrupts. */
1755 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1756 
1757 	/* Set initial TX threshold */
1758 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1759 
1760 	/* Start RX/TX process. */
1761 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1762 
1763 	/* Enable receiver and transmitter. */
1764 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1765 
1766 	sc->rl_flags &= ~RL_FLAG_LINK;
1767 	mii_mediachg(mii);
1768 
1769 	CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1770 
1771 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1772 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1773 
1774 	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1775 }
1776 
1777 /*
1778  * Set media options.
1779  */
1780 static int
1781 rl_ifmedia_upd(struct ifnet *ifp)
1782 {
1783 	struct rl_softc		*sc = ifp->if_softc;
1784 	struct mii_data		*mii;
1785 
1786 	mii = device_get_softc(sc->rl_miibus);
1787 
1788 	RL_LOCK(sc);
1789 	mii_mediachg(mii);
1790 	RL_UNLOCK(sc);
1791 
1792 	return (0);
1793 }
1794 
1795 /*
1796  * Report current media status.
1797  */
1798 static void
1799 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1800 {
1801 	struct rl_softc		*sc = ifp->if_softc;
1802 	struct mii_data		*mii;
1803 
1804 	mii = device_get_softc(sc->rl_miibus);
1805 
1806 	RL_LOCK(sc);
1807 	mii_pollstat(mii);
1808 	ifmr->ifm_active = mii->mii_media_active;
1809 	ifmr->ifm_status = mii->mii_media_status;
1810 	RL_UNLOCK(sc);
1811 }
1812 
1813 static int
1814 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1815 {
1816 	struct ifreq		*ifr = (struct ifreq *)data;
1817 	struct mii_data		*mii;
1818 	struct rl_softc		*sc = ifp->if_softc;
1819 	int			error = 0, mask;
1820 
1821 	switch (command) {
1822 	case SIOCSIFFLAGS:
1823 		RL_LOCK(sc);
1824 		if (ifp->if_flags & IFF_UP) {
1825 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1826 			    ((ifp->if_flags ^ sc->rl_if_flags) &
1827                             (IFF_PROMISC | IFF_ALLMULTI)))
1828 				rl_rxfilter(sc);
1829                         else
1830 				rl_init_locked(sc);
1831                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1832 			rl_stop(sc);
1833 		sc->rl_if_flags = ifp->if_flags;
1834 		RL_UNLOCK(sc);
1835 		break;
1836 	case SIOCADDMULTI:
1837 	case SIOCDELMULTI:
1838 		RL_LOCK(sc);
1839 		rl_rxfilter(sc);
1840 		RL_UNLOCK(sc);
1841 		break;
1842 	case SIOCGIFMEDIA:
1843 	case SIOCSIFMEDIA:
1844 		mii = device_get_softc(sc->rl_miibus);
1845 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1846 		break;
1847 	case SIOCSIFCAP:
1848 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1849 #ifdef DEVICE_POLLING
1850 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1851 		    !(ifp->if_capenable & IFCAP_POLLING)) {
1852 			error = ether_poll_register(rl_poll, ifp);
1853 			if (error)
1854 				return(error);
1855 			RL_LOCK(sc);
1856 			/* Disable interrupts */
1857 			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1858 			ifp->if_capenable |= IFCAP_POLLING;
1859 			RL_UNLOCK(sc);
1860 			return (error);
1861 
1862 		}
1863 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1864 		    ifp->if_capenable & IFCAP_POLLING) {
1865 			error = ether_poll_deregister(ifp);
1866 			/* Enable interrupts. */
1867 			RL_LOCK(sc);
1868 			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1869 			ifp->if_capenable &= ~IFCAP_POLLING;
1870 			RL_UNLOCK(sc);
1871 			return (error);
1872 		}
1873 #endif /* DEVICE_POLLING */
1874 		if ((mask & IFCAP_WOL) != 0 &&
1875 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1876 			if ((mask & IFCAP_WOL_UCAST) != 0)
1877 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
1878 			if ((mask & IFCAP_WOL_MCAST) != 0)
1879 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
1880 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1881 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1882 		}
1883 		break;
1884 	default:
1885 		error = ether_ioctl(ifp, command, data);
1886 		break;
1887 	}
1888 
1889 	return (error);
1890 }
1891 
1892 static void
1893 rl_watchdog(struct rl_softc *sc)
1894 {
1895 
1896 	RL_LOCK_ASSERT(sc);
1897 
1898 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1899 		return;
1900 
1901 	device_printf(sc->rl_dev, "watchdog timeout\n");
1902 	if_inc_counter(sc->rl_ifp, IFCOUNTER_OERRORS, 1);
1903 
1904 	rl_txeof(sc);
1905 	rl_rxeof(sc);
1906 	sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1907 	rl_init_locked(sc);
1908 }
1909 
1910 /*
1911  * Stop the adapter and free any mbufs allocated to the
1912  * RX and TX lists.
1913  */
1914 static void
1915 rl_stop(struct rl_softc *sc)
1916 {
1917 	int			i;
1918 	struct ifnet		*ifp = sc->rl_ifp;
1919 
1920 	RL_LOCK_ASSERT(sc);
1921 
1922 	sc->rl_watchdog_timer = 0;
1923 	callout_stop(&sc->rl_stat_callout);
1924 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1925 	sc->rl_flags &= ~RL_FLAG_LINK;
1926 
1927 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1928 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1929 	for (i = 0; i < RL_TIMEOUT; i++) {
1930 		DELAY(10);
1931 		if ((CSR_READ_1(sc, RL_COMMAND) &
1932 		    (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
1933 			break;
1934 	}
1935 	if (i == RL_TIMEOUT)
1936 		device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
1937 
1938 	/*
1939 	 * Free the TX list buffers.
1940 	 */
1941 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1942 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1943 			bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
1944 			    sc->rl_cdata.rl_tx_dmamap[i],
1945 			    BUS_DMASYNC_POSTWRITE);
1946 			bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1947 			    sc->rl_cdata.rl_tx_dmamap[i]);
1948 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1949 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1950 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1951 			    0x0000000);
1952 		}
1953 	}
1954 }
1955 
1956 /*
1957  * Device suspend routine.  Stop the interface and save some PCI
1958  * settings in case the BIOS doesn't restore them properly on
1959  * resume.
1960  */
1961 static int
1962 rl_suspend(device_t dev)
1963 {
1964 	struct rl_softc		*sc;
1965 
1966 	sc = device_get_softc(dev);
1967 
1968 	RL_LOCK(sc);
1969 	rl_stop(sc);
1970 	rl_setwol(sc);
1971 	sc->suspended = 1;
1972 	RL_UNLOCK(sc);
1973 
1974 	return (0);
1975 }
1976 
1977 /*
1978  * Device resume routine.  Restore some PCI settings in case the BIOS
1979  * doesn't, re-enable busmastering, and restart the interface if
1980  * appropriate.
1981  */
1982 static int
1983 rl_resume(device_t dev)
1984 {
1985 	struct rl_softc		*sc;
1986 	struct ifnet		*ifp;
1987 	int			pmc;
1988 	uint16_t		pmstat;
1989 
1990 	sc = device_get_softc(dev);
1991 	ifp = sc->rl_ifp;
1992 
1993 	RL_LOCK(sc);
1994 
1995 	if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
1996 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
1997 		/* Disable PME and clear PME status. */
1998 		pmstat = pci_read_config(sc->rl_dev,
1999 		    pmc + PCIR_POWER_STATUS, 2);
2000 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
2001 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2002 			pci_write_config(sc->rl_dev,
2003 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2004 		}
2005 		/*
2006 		 * Clear WOL matching such that normal Rx filtering
2007 		 * wouldn't interfere with WOL patterns.
2008 		 */
2009 		rl_clrwol(sc);
2010 	}
2011 
2012 	/* reinitialize interface if necessary */
2013 	if (ifp->if_flags & IFF_UP)
2014 		rl_init_locked(sc);
2015 
2016 	sc->suspended = 0;
2017 
2018 	RL_UNLOCK(sc);
2019 
2020 	return (0);
2021 }
2022 
2023 /*
2024  * Stop all chip I/O so that the kernel's probe routines don't
2025  * get confused by errant DMAs when rebooting.
2026  */
2027 static int
2028 rl_shutdown(device_t dev)
2029 {
2030 	struct rl_softc		*sc;
2031 
2032 	sc = device_get_softc(dev);
2033 
2034 	RL_LOCK(sc);
2035 	rl_stop(sc);
2036 	/*
2037 	 * Mark interface as down since otherwise we will panic if
2038 	 * interrupt comes in later on, which can happen in some
2039 	 * cases.
2040 	 */
2041 	sc->rl_ifp->if_flags &= ~IFF_UP;
2042 	rl_setwol(sc);
2043 	RL_UNLOCK(sc);
2044 
2045 	return (0);
2046 }
2047 
2048 static void
2049 rl_setwol(struct rl_softc *sc)
2050 {
2051 	struct ifnet		*ifp;
2052 	int			pmc;
2053 	uint16_t		pmstat;
2054 	uint8_t			v;
2055 
2056 	RL_LOCK_ASSERT(sc);
2057 
2058 	ifp = sc->rl_ifp;
2059 	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2060 		return;
2061 	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2062 		return;
2063 
2064 	/* Enable config register write. */
2065 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2066 
2067 	/* Enable PME. */
2068 	v = CSR_READ_1(sc, sc->rl_cfg1);
2069 	v &= ~RL_CFG1_PME;
2070 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2071 		v |= RL_CFG1_PME;
2072 	CSR_WRITE_1(sc, sc->rl_cfg1, v);
2073 
2074 	v = CSR_READ_1(sc, sc->rl_cfg3);
2075 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2076 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2077 		v |= RL_CFG3_WOL_MAGIC;
2078 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2079 
2080 	v = CSR_READ_1(sc, sc->rl_cfg5);
2081 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2082 	v &= ~RL_CFG5_WOL_LANWAKE;
2083 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2084 		v |= RL_CFG5_WOL_UCAST;
2085 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2086 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2087 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2088 		v |= RL_CFG5_WOL_LANWAKE;
2089 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2090 
2091 	/* Config register write done. */
2092 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2093 
2094 	/* Request PME if WOL is requested. */
2095 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2096 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2097 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2098 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2099 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2100 }
2101 
2102 static void
2103 rl_clrwol(struct rl_softc *sc)
2104 {
2105 	struct ifnet		*ifp;
2106 	uint8_t			v;
2107 
2108 	ifp = sc->rl_ifp;
2109 	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2110 		return;
2111 
2112 	/* Enable config register write. */
2113 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2114 
2115 	v = CSR_READ_1(sc, sc->rl_cfg3);
2116 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2117 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2118 
2119 	/* Config register write done. */
2120 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2121 
2122 	v = CSR_READ_1(sc, sc->rl_cfg5);
2123 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2124 	v &= ~RL_CFG5_WOL_LANWAKE;
2125 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2126 }
2127