xref: /freebsd/sys/dev/rl/if_rl.c (revision d5b0e70f7e04d971691517ce1304d86a1e367e2e)
1 /*-
2  * Copyright (c) 1997, 1998
3  *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8129/8139 PCI NIC driver
38  *
39  * Supports several extremely cheap PCI 10/100 adapters based on
40  * the RealTek chipset. Datasheets can be obtained from
41  * www.realtek.com.tw.
42  *
43  * Written by Bill Paul <wpaul@ctr.columbia.edu>
44  * Electrical Engineering Department
45  * Columbia University, New York City
46  */
47 /*
48  * The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
49  * probably the worst PCI ethernet controller ever made, with the possible
50  * exception of the FEAST chip made by SMC. The 8139 supports bus-master
51  * DMA, but it has a terrible interface that nullifies any performance
52  * gains that bus-master DMA usually offers.
53  *
54  * For transmission, the chip offers a series of four TX descriptor
55  * registers. Each transmit frame must be in a contiguous buffer, aligned
56  * on a longword (32-bit) boundary. This means we almost always have to
57  * do mbuf copies in order to transmit a frame, except in the unlikely
58  * case where a) the packet fits into a single mbuf, and b) the packet
59  * is 32-bit aligned within the mbuf's data area. The presence of only
60  * four descriptor registers means that we can never have more than four
61  * packets queued for transmission at any one time.
62  *
63  * Reception is not much better. The driver has to allocate a single large
64  * buffer area (up to 64K in size) into which the chip will DMA received
65  * frames. Because we don't know where within this region received packets
66  * will begin or end, we have no choice but to copy data from the buffer
67  * area into mbufs in order to pass the packets up to the higher protocol
68  * levels.
69  *
70  * It's impossible given this rotten design to really achieve decent
71  * performance at 100Mbps, unless you happen to have a 400Mhz PII or
72  * some equally overmuscled CPU to drive it.
73  *
74  * On the bright side, the 8139 does have a built-in PHY, although
75  * rather than using an MDIO serial interface like most other NICs, the
76  * PHY registers are directly accessible through the 8139's register
77  * space. The 8139 supports autonegotiation, as well as a 64-bit multicast
78  * filter.
79  *
80  * The 8129 chip is an older version of the 8139 that uses an external PHY
81  * chip. The 8129 has a serial MDIO interface for accessing the MII where
82  * the 8139 lets you directly access the on-board PHY registers. We need
83  * to select which interface to use depending on the chip type.
84  */
85 
86 #ifdef HAVE_KERNEL_OPTION_HEADERS
87 #include "opt_device_polling.h"
88 #endif
89 
90 #include <sys/param.h>
91 #include <sys/endian.h>
92 #include <sys/systm.h>
93 #include <sys/sockio.h>
94 #include <sys/mbuf.h>
95 #include <sys/malloc.h>
96 #include <sys/kernel.h>
97 #include <sys/module.h>
98 #include <sys/socket.h>
99 #include <sys/sysctl.h>
100 
101 #include <net/if.h>
102 #include <net/if_var.h>
103 #include <net/if_arp.h>
104 #include <net/ethernet.h>
105 #include <net/if_dl.h>
106 #include <net/if_media.h>
107 #include <net/if_types.h>
108 
109 #include <net/bpf.h>
110 
111 #include <machine/bus.h>
112 #include <machine/resource.h>
113 #include <sys/bus.h>
114 #include <sys/rman.h>
115 
116 #include <dev/mii/mii.h>
117 #include <dev/mii/mii_bitbang.h>
118 #include <dev/mii/miivar.h>
119 
120 #include <dev/pci/pcireg.h>
121 #include <dev/pci/pcivar.h>
122 
123 MODULE_DEPEND(rl, pci, 1, 1, 1);
124 MODULE_DEPEND(rl, ether, 1, 1, 1);
125 MODULE_DEPEND(rl, miibus, 1, 1, 1);
126 
127 /* "device miibus" required.  See GENERIC if you get errors here. */
128 #include "miibus_if.h"
129 
130 #include <dev/rl/if_rlreg.h>
131 
132 /*
133  * Various supported device vendors/types and their names.
134  */
135 static const struct rl_type rl_devs[] = {
136 	{ RT_VENDORID, RT_DEVICEID_8129, RL_8129,
137 		"RealTek 8129 10/100BaseTX" },
138 	{ RT_VENDORID, RT_DEVICEID_8139, RL_8139,
139 		"RealTek 8139 10/100BaseTX" },
140 	{ RT_VENDORID, RT_DEVICEID_8139D, RL_8139,
141 		"RealTek 8139 10/100BaseTX" },
142 	{ RT_VENDORID, RT_DEVICEID_8138, RL_8139,
143 		"RealTek 8139 10/100BaseTX CardBus" },
144 	{ RT_VENDORID, RT_DEVICEID_8100, RL_8139,
145 		"RealTek 8100 10/100BaseTX" },
146 	{ ACCTON_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
147 		"Accton MPX 5030/5038 10/100BaseTX" },
148 	{ DELTA_VENDORID, DELTA_DEVICEID_8139, RL_8139,
149 		"Delta Electronics 8139 10/100BaseTX" },
150 	{ ADDTRON_VENDORID, ADDTRON_DEVICEID_8139, RL_8139,
151 		"Addtron Technology 8139 10/100BaseTX" },
152 	{ DLINK_VENDORID, DLINK_DEVICEID_520TX_REVC1, RL_8139,
153 		"D-Link DFE-520TX (rev. C1) 10/100BaseTX" },
154 	{ DLINK_VENDORID, DLINK_DEVICEID_530TXPLUS, RL_8139,
155 		"D-Link DFE-530TX+ 10/100BaseTX" },
156 	{ DLINK_VENDORID, DLINK_DEVICEID_690TXD, RL_8139,
157 		"D-Link DFE-690TXD 10/100BaseTX" },
158 	{ NORTEL_VENDORID, ACCTON_DEVICEID_5030, RL_8139,
159 		"Nortel Networks 10/100BaseTX" },
160 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERCBTXD, RL_8139,
161 		"Corega FEther CB-TXD" },
162 	{ COREGA_VENDORID, COREGA_DEVICEID_FETHERIICBTXD, RL_8139,
163 		"Corega FEtherII CB-TXD" },
164 	{ PEPPERCON_VENDORID, PEPPERCON_DEVICEID_ROLF, RL_8139,
165 		"Peppercon AG ROL-F" },
166 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3603TX, RL_8139,
167 		"Planex FNW-3603-TX" },
168 	{ PLANEX_VENDORID, PLANEX_DEVICEID_FNW3800TX, RL_8139,
169 		"Planex FNW-3800-TX" },
170 	{ CP_VENDORID, RT_DEVICEID_8139, RL_8139,
171 		"Compaq HNE-300" },
172 	{ LEVEL1_VENDORID, LEVEL1_DEVICEID_FPC0106TX, RL_8139,
173 		"LevelOne FPC-0106TX" },
174 	{ EDIMAX_VENDORID, EDIMAX_DEVICEID_EP4103DL, RL_8139,
175 		"Edimax EP-4103DL CardBus" }
176 };
177 
178 static int rl_attach(device_t);
179 static int rl_detach(device_t);
180 static void rl_dmamap_cb(void *, bus_dma_segment_t *, int, int);
181 static int rl_dma_alloc(struct rl_softc *);
182 static void rl_dma_free(struct rl_softc *);
183 static void rl_eeprom_putbyte(struct rl_softc *, int);
184 static void rl_eeprom_getword(struct rl_softc *, int, uint16_t *);
185 static int rl_encap(struct rl_softc *, struct mbuf **);
186 static int rl_list_tx_init(struct rl_softc *);
187 static int rl_list_rx_init(struct rl_softc *);
188 static int rl_ifmedia_upd(struct ifnet *);
189 static void rl_ifmedia_sts(struct ifnet *, struct ifmediareq *);
190 static int rl_ioctl(struct ifnet *, u_long, caddr_t);
191 static void rl_intr(void *);
192 static void rl_init(void *);
193 static void rl_init_locked(struct rl_softc *sc);
194 static int rl_miibus_readreg(device_t, int, int);
195 static void rl_miibus_statchg(device_t);
196 static int rl_miibus_writereg(device_t, int, int, int);
197 #ifdef DEVICE_POLLING
198 static int rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count);
199 static int rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count);
200 #endif
201 static int rl_probe(device_t);
202 static void rl_read_eeprom(struct rl_softc *, uint8_t *, int, int, int);
203 static void rl_reset(struct rl_softc *);
204 static int rl_resume(device_t);
205 static int rl_rxeof(struct rl_softc *);
206 static void rl_rxfilter(struct rl_softc *);
207 static int rl_shutdown(device_t);
208 static void rl_start(struct ifnet *);
209 static void rl_start_locked(struct ifnet *);
210 static void rl_stop(struct rl_softc *);
211 static int rl_suspend(device_t);
212 static void rl_tick(void *);
213 static void rl_txeof(struct rl_softc *);
214 static void rl_watchdog(struct rl_softc *);
215 static void rl_setwol(struct rl_softc *);
216 static void rl_clrwol(struct rl_softc *);
217 
218 /*
219  * MII bit-bang glue
220  */
221 static uint32_t rl_mii_bitbang_read(device_t);
222 static void rl_mii_bitbang_write(device_t, uint32_t);
223 
224 static const struct mii_bitbang_ops rl_mii_bitbang_ops = {
225 	rl_mii_bitbang_read,
226 	rl_mii_bitbang_write,
227 	{
228 		RL_MII_DATAOUT,	/* MII_BIT_MDO */
229 		RL_MII_DATAIN,	/* MII_BIT_MDI */
230 		RL_MII_CLK,	/* MII_BIT_MDC */
231 		RL_MII_DIR,	/* MII_BIT_DIR_HOST_PHY */
232 		0,		/* MII_BIT_DIR_PHY_HOST */
233 	}
234 };
235 
236 static device_method_t rl_methods[] = {
237 	/* Device interface */
238 	DEVMETHOD(device_probe,		rl_probe),
239 	DEVMETHOD(device_attach,	rl_attach),
240 	DEVMETHOD(device_detach,	rl_detach),
241 	DEVMETHOD(device_suspend,	rl_suspend),
242 	DEVMETHOD(device_resume,	rl_resume),
243 	DEVMETHOD(device_shutdown,	rl_shutdown),
244 
245 	/* MII interface */
246 	DEVMETHOD(miibus_readreg,	rl_miibus_readreg),
247 	DEVMETHOD(miibus_writereg,	rl_miibus_writereg),
248 	DEVMETHOD(miibus_statchg,	rl_miibus_statchg),
249 
250 	DEVMETHOD_END
251 };
252 
253 static driver_t rl_driver = {
254 	"rl",
255 	rl_methods,
256 	sizeof(struct rl_softc)
257 };
258 
259 DRIVER_MODULE(rl, pci, rl_driver, 0, 0);
260 MODULE_PNP_INFO("U16:vendor;U16:device", pci, rl, rl_devs,
261     nitems(rl_devs) - 1);
262 DRIVER_MODULE(rl, cardbus, rl_driver, 0, 0);
263 DRIVER_MODULE(miibus, rl, miibus_driver, 0, 0);
264 
265 #define EE_SET(x)					\
266 	CSR_WRITE_1(sc, RL_EECMD,			\
267 		CSR_READ_1(sc, RL_EECMD) | x)
268 
269 #define EE_CLR(x)					\
270 	CSR_WRITE_1(sc, RL_EECMD,			\
271 		CSR_READ_1(sc, RL_EECMD) & ~x)
272 
273 /*
274  * Send a read command and address to the EEPROM, check for ACK.
275  */
276 static void
277 rl_eeprom_putbyte(struct rl_softc *sc, int addr)
278 {
279 	int			d, i;
280 
281 	d = addr | sc->rl_eecmd_read;
282 
283 	/*
284 	 * Feed in each bit and strobe the clock.
285 	 */
286 	for (i = 0x400; i; i >>= 1) {
287 		if (d & i) {
288 			EE_SET(RL_EE_DATAIN);
289 		} else {
290 			EE_CLR(RL_EE_DATAIN);
291 		}
292 		DELAY(100);
293 		EE_SET(RL_EE_CLK);
294 		DELAY(150);
295 		EE_CLR(RL_EE_CLK);
296 		DELAY(100);
297 	}
298 }
299 
300 /*
301  * Read a word of data stored in the EEPROM at address 'addr.'
302  */
303 static void
304 rl_eeprom_getword(struct rl_softc *sc, int addr, uint16_t *dest)
305 {
306 	int			i;
307 	uint16_t		word = 0;
308 
309 	/* Enter EEPROM access mode. */
310 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
311 
312 	/*
313 	 * Send address of word we want to read.
314 	 */
315 	rl_eeprom_putbyte(sc, addr);
316 
317 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
318 
319 	/*
320 	 * Start reading bits from EEPROM.
321 	 */
322 	for (i = 0x8000; i; i >>= 1) {
323 		EE_SET(RL_EE_CLK);
324 		DELAY(100);
325 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
326 			word |= i;
327 		EE_CLR(RL_EE_CLK);
328 		DELAY(100);
329 	}
330 
331 	/* Turn off EEPROM access mode. */
332 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
333 
334 	*dest = word;
335 }
336 
337 /*
338  * Read a sequence of words from the EEPROM.
339  */
340 static void
341 rl_read_eeprom(struct rl_softc *sc, uint8_t *dest, int off, int cnt, int swap)
342 {
343 	int			i;
344 	uint16_t		word = 0, *ptr;
345 
346 	for (i = 0; i < cnt; i++) {
347 		rl_eeprom_getword(sc, off + i, &word);
348 		ptr = (uint16_t *)(dest + (i * 2));
349 		if (swap)
350 			*ptr = ntohs(word);
351 		else
352 			*ptr = word;
353 	}
354 }
355 
356 /*
357  * Read the MII serial port for the MII bit-bang module.
358  */
359 static uint32_t
360 rl_mii_bitbang_read(device_t dev)
361 {
362 	struct rl_softc *sc;
363 	uint32_t val;
364 
365 	sc = device_get_softc(dev);
366 
367 	val = CSR_READ_1(sc, RL_MII);
368 	CSR_BARRIER(sc, RL_MII, 1,
369 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
370 
371 	return (val);
372 }
373 
374 /*
375  * Write the MII serial port for the MII bit-bang module.
376  */
377 static void
378 rl_mii_bitbang_write(device_t dev, uint32_t val)
379 {
380 	struct rl_softc *sc;
381 
382 	sc = device_get_softc(dev);
383 
384 	CSR_WRITE_1(sc, RL_MII, val);
385 	CSR_BARRIER(sc, RL_MII, 1,
386 	    BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
387 }
388 
389 static int
390 rl_miibus_readreg(device_t dev, int phy, int reg)
391 {
392 	struct rl_softc		*sc;
393 	uint16_t		rl8139_reg;
394 
395 	sc = device_get_softc(dev);
396 
397 	if (sc->rl_type == RL_8139) {
398 		switch (reg) {
399 		case MII_BMCR:
400 			rl8139_reg = RL_BMCR;
401 			break;
402 		case MII_BMSR:
403 			rl8139_reg = RL_BMSR;
404 			break;
405 		case MII_ANAR:
406 			rl8139_reg = RL_ANAR;
407 			break;
408 		case MII_ANER:
409 			rl8139_reg = RL_ANER;
410 			break;
411 		case MII_ANLPAR:
412 			rl8139_reg = RL_LPAR;
413 			break;
414 		case MII_PHYIDR1:
415 		case MII_PHYIDR2:
416 			return (0);
417 		/*
418 		 * Allow the rlphy driver to read the media status
419 		 * register. If we have a link partner which does not
420 		 * support NWAY, this is the register which will tell
421 		 * us the results of parallel detection.
422 		 */
423 		case RL_MEDIASTAT:
424 			return (CSR_READ_1(sc, RL_MEDIASTAT));
425 		default:
426 			device_printf(sc->rl_dev, "bad phy register\n");
427 			return (0);
428 		}
429 		return (CSR_READ_2(sc, rl8139_reg));
430 	}
431 
432 	return (mii_bitbang_readreg(dev, &rl_mii_bitbang_ops, phy, reg));
433 }
434 
435 static int
436 rl_miibus_writereg(device_t dev, int phy, int reg, int data)
437 {
438 	struct rl_softc		*sc;
439 	uint16_t		rl8139_reg;
440 
441 	sc = device_get_softc(dev);
442 
443 	if (sc->rl_type == RL_8139) {
444 		switch (reg) {
445 		case MII_BMCR:
446 			rl8139_reg = RL_BMCR;
447 			break;
448 		case MII_BMSR:
449 			rl8139_reg = RL_BMSR;
450 			break;
451 		case MII_ANAR:
452 			rl8139_reg = RL_ANAR;
453 			break;
454 		case MII_ANER:
455 			rl8139_reg = RL_ANER;
456 			break;
457 		case MII_ANLPAR:
458 			rl8139_reg = RL_LPAR;
459 			break;
460 		case MII_PHYIDR1:
461 		case MII_PHYIDR2:
462 			return (0);
463 			break;
464 		default:
465 			device_printf(sc->rl_dev, "bad phy register\n");
466 			return (0);
467 		}
468 		CSR_WRITE_2(sc, rl8139_reg, data);
469 		return (0);
470 	}
471 
472 	mii_bitbang_writereg(dev, &rl_mii_bitbang_ops, phy, reg, data);
473 
474 	return (0);
475 }
476 
477 static void
478 rl_miibus_statchg(device_t dev)
479 {
480 	struct rl_softc		*sc;
481 	struct ifnet		*ifp;
482 	struct mii_data		*mii;
483 
484 	sc = device_get_softc(dev);
485 	mii = device_get_softc(sc->rl_miibus);
486 	ifp = sc->rl_ifp;
487 	if (mii == NULL || ifp == NULL ||
488 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
489 		return;
490 
491 	sc->rl_flags &= ~RL_FLAG_LINK;
492 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
493 	    (IFM_ACTIVE | IFM_AVALID)) {
494 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
495 		case IFM_10_T:
496 		case IFM_100_TX:
497 			sc->rl_flags |= RL_FLAG_LINK;
498 			break;
499 		default:
500 			break;
501 		}
502 	}
503 	/*
504 	 * RealTek controllers do not provide any interface to
505 	 * Tx/Rx MACs for resolved speed, duplex and flow-control
506 	 * parameters.
507 	 */
508 }
509 
510 static u_int
511 rl_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
512 {
513 	uint32_t *hashes = arg;
514 	int h;
515 
516 	h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26;
517 	if (h < 32)
518 		hashes[0] |= (1 << h);
519 	else
520 		hashes[1] |= (1 << (h - 32));
521 
522 	return (1);
523 }
524 
525 /*
526  * Program the 64-bit multicast hash filter.
527  */
528 static void
529 rl_rxfilter(struct rl_softc *sc)
530 {
531 	struct ifnet		*ifp = sc->rl_ifp;
532 	uint32_t		hashes[2] = { 0, 0 };
533 	uint32_t		rxfilt;
534 
535 	RL_LOCK_ASSERT(sc);
536 
537 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
538 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_BROAD |
539 	    RL_RXCFG_RX_MULTI);
540 	/* Always accept frames destined for this host. */
541 	rxfilt |= RL_RXCFG_RX_INDIV;
542 	/* Set capture broadcast bit to capture broadcast frames. */
543 	if (ifp->if_flags & IFF_BROADCAST)
544 		rxfilt |= RL_RXCFG_RX_BROAD;
545 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
546 		rxfilt |= RL_RXCFG_RX_MULTI;
547 		if (ifp->if_flags & IFF_PROMISC)
548 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
549 		hashes[0] = 0xFFFFFFFF;
550 		hashes[1] = 0xFFFFFFFF;
551 	} else {
552 		/* Now program new ones. */
553 		if_foreach_llmaddr(ifp, rl_hash_maddr, hashes);
554 		if (hashes[0] != 0 || hashes[1] != 0)
555 			rxfilt |= RL_RXCFG_RX_MULTI;
556 	}
557 
558 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
559 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
560 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
561 }
562 
563 static void
564 rl_reset(struct rl_softc *sc)
565 {
566 	int			i;
567 
568 	RL_LOCK_ASSERT(sc);
569 
570 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
571 
572 	for (i = 0; i < RL_TIMEOUT; i++) {
573 		DELAY(10);
574 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
575 			break;
576 	}
577 	if (i == RL_TIMEOUT)
578 		device_printf(sc->rl_dev, "reset never completed!\n");
579 }
580 
581 /*
582  * Probe for a RealTek 8129/8139 chip. Check the PCI vendor and device
583  * IDs against our list and return a device name if we find a match.
584  */
585 static int
586 rl_probe(device_t dev)
587 {
588 	const struct rl_type	*t;
589 	uint16_t		devid, revid, vendor;
590 	int			i;
591 
592 	vendor = pci_get_vendor(dev);
593 	devid = pci_get_device(dev);
594 	revid = pci_get_revid(dev);
595 
596 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
597 		if (revid == 0x20) {
598 			/* 8139C+, let re(4) take care of this device. */
599 			return (ENXIO);
600 		}
601 	}
602 	t = rl_devs;
603 	for (i = 0; i < nitems(rl_devs); i++, t++) {
604 		if (vendor == t->rl_vid && devid == t->rl_did) {
605 			device_set_desc(dev, t->rl_name);
606 			return (BUS_PROBE_DEFAULT);
607 		}
608 	}
609 
610 	return (ENXIO);
611 }
612 
613 struct rl_dmamap_arg {
614 	bus_addr_t	rl_busaddr;
615 };
616 
617 static void
618 rl_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
619 {
620 	struct rl_dmamap_arg	*ctx;
621 
622 	if (error != 0)
623 		return;
624 
625 	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
626 
627         ctx = (struct rl_dmamap_arg *)arg;
628         ctx->rl_busaddr = segs[0].ds_addr;
629 }
630 
631 /*
632  * Attach the interface. Allocate softc structures, do ifmedia
633  * setup and ethernet/BPF attach.
634  */
635 static int
636 rl_attach(device_t dev)
637 {
638 	uint8_t			eaddr[ETHER_ADDR_LEN];
639 	uint16_t		as[3];
640 	struct ifnet		*ifp;
641 	struct rl_softc		*sc;
642 	const struct rl_type	*t;
643 	struct sysctl_ctx_list	*ctx;
644 	struct sysctl_oid_list	*children;
645 	int			error = 0, hwrev, i, phy, pmc, rid;
646 	int			prefer_iomap, unit;
647 	uint16_t		rl_did = 0;
648 	char			tn[32];
649 
650 	sc = device_get_softc(dev);
651 	unit = device_get_unit(dev);
652 	sc->rl_dev = dev;
653 
654 	sc->rl_twister_enable = 0;
655 	snprintf(tn, sizeof(tn), "dev.rl.%d.twister_enable", unit);
656 	TUNABLE_INT_FETCH(tn, &sc->rl_twister_enable);
657 	ctx = device_get_sysctl_ctx(sc->rl_dev);
658 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
659 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "twister_enable", CTLFLAG_RD,
660 	   &sc->rl_twister_enable, 0, "");
661 
662 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
663 	    MTX_DEF);
664 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
665 
666 	pci_enable_busmaster(dev);
667 
668 	/*
669 	 * Map control/status registers.
670 	 * Default to using PIO access for this driver. On SMP systems,
671 	 * there appear to be problems with memory mapped mode: it looks
672 	 * like doing too many memory mapped access back to back in rapid
673 	 * succession can hang the bus. I'm inclined to blame this on
674 	 * crummy design/construction on the part of RealTek. Memory
675 	 * mapped mode does appear to work on uniprocessor systems though.
676 	 */
677 	prefer_iomap = 1;
678 	snprintf(tn, sizeof(tn), "dev.rl.%d.prefer_iomap", unit);
679 	TUNABLE_INT_FETCH(tn, &prefer_iomap);
680 	if (prefer_iomap) {
681 		sc->rl_res_id = PCIR_BAR(0);
682 		sc->rl_res_type = SYS_RES_IOPORT;
683 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
684 		    &sc->rl_res_id, RF_ACTIVE);
685 	}
686 	if (prefer_iomap == 0 || sc->rl_res == NULL) {
687 		sc->rl_res_id = PCIR_BAR(1);
688 		sc->rl_res_type = SYS_RES_MEMORY;
689 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
690 		    &sc->rl_res_id, RF_ACTIVE);
691 	}
692 	if (sc->rl_res == NULL) {
693 		device_printf(dev, "couldn't map ports/memory\n");
694 		error = ENXIO;
695 		goto fail;
696 	}
697 
698 #ifdef notdef
699 	/*
700 	 * Detect the Realtek 8139B. For some reason, this chip is very
701 	 * unstable when left to autoselect the media
702 	 * The best workaround is to set the device to the required
703 	 * media type or to set it to the 10 Meg speed.
704 	 */
705 	if ((rman_get_end(sc->rl_res) - rman_get_start(sc->rl_res)) == 0xFF)
706 		device_printf(dev,
707 "Realtek 8139B detected. Warning, this may be unstable in autoselect mode\n");
708 #endif
709 
710 	sc->rl_btag = rman_get_bustag(sc->rl_res);
711 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
712 
713 	/* Allocate interrupt */
714 	rid = 0;
715 	sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
716 	    RF_SHAREABLE | RF_ACTIVE);
717 
718 	if (sc->rl_irq[0] == NULL) {
719 		device_printf(dev, "couldn't map interrupt\n");
720 		error = ENXIO;
721 		goto fail;
722 	}
723 
724 	sc->rl_cfg0 = RL_8139_CFG0;
725 	sc->rl_cfg1 = RL_8139_CFG1;
726 	sc->rl_cfg2 = 0;
727 	sc->rl_cfg3 = RL_8139_CFG3;
728 	sc->rl_cfg4 = RL_8139_CFG4;
729 	sc->rl_cfg5 = RL_8139_CFG5;
730 
731 	/*
732 	 * Reset the adapter. Only take the lock here as it's needed in
733 	 * order to call rl_reset().
734 	 */
735 	RL_LOCK(sc);
736 	rl_reset(sc);
737 	RL_UNLOCK(sc);
738 
739 	sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
740 	rl_read_eeprom(sc, (uint8_t *)&rl_did, 0, 1, 0);
741 	if (rl_did != 0x8129)
742 		sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
743 
744 	/*
745 	 * Get station address from the EEPROM.
746 	 */
747 	rl_read_eeprom(sc, (uint8_t *)as, RL_EE_EADDR, 3, 0);
748 	for (i = 0; i < 3; i++) {
749 		eaddr[(i * 2) + 0] = as[i] & 0xff;
750 		eaddr[(i * 2) + 1] = as[i] >> 8;
751 	}
752 
753 	/*
754 	 * Now read the exact device type from the EEPROM to find
755 	 * out if it's an 8129 or 8139.
756 	 */
757 	rl_read_eeprom(sc, (uint8_t *)&rl_did, RL_EE_PCI_DID, 1, 0);
758 
759 	t = rl_devs;
760 	sc->rl_type = 0;
761 	while(t->rl_name != NULL) {
762 		if (rl_did == t->rl_did) {
763 			sc->rl_type = t->rl_basetype;
764 			break;
765 		}
766 		t++;
767 	}
768 
769 	if (sc->rl_type == 0) {
770 		device_printf(dev, "unknown device ID: %x assuming 8139\n",
771 		    rl_did);
772 		sc->rl_type = RL_8139;
773 		/*
774 		 * Read RL_IDR register to get ethernet address as accessing
775 		 * EEPROM may not extract correct address.
776 		 */
777 		for (i = 0; i < ETHER_ADDR_LEN; i++)
778 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
779 	}
780 
781 	if ((error = rl_dma_alloc(sc)) != 0)
782 		goto fail;
783 
784 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
785 	if (ifp == NULL) {
786 		device_printf(dev, "can not if_alloc()\n");
787 		error = ENOSPC;
788 		goto fail;
789 	}
790 
791 #define	RL_PHYAD_INTERNAL	0
792 
793 	/* Do MII setup */
794 	phy = MII_PHY_ANY;
795 	if (sc->rl_type == RL_8139)
796 		phy = RL_PHYAD_INTERNAL;
797 	error = mii_attach(dev, &sc->rl_miibus, ifp, rl_ifmedia_upd,
798 	    rl_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
799 	if (error != 0) {
800 		device_printf(dev, "attaching PHYs failed\n");
801 		goto fail;
802 	}
803 
804 	ifp->if_softc = sc;
805 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
806 	ifp->if_mtu = ETHERMTU;
807 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
808 	ifp->if_ioctl = rl_ioctl;
809 	ifp->if_start = rl_start;
810 	ifp->if_init = rl_init;
811 	ifp->if_capabilities = IFCAP_VLAN_MTU;
812 	/* Check WOL for RTL8139B or newer controllers. */
813 	if (sc->rl_type == RL_8139 &&
814 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
815 		hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
816 		switch (hwrev) {
817 		case RL_HWREV_8139B:
818 		case RL_HWREV_8130:
819 		case RL_HWREV_8139C:
820 		case RL_HWREV_8139D:
821 		case RL_HWREV_8101:
822 		case RL_HWREV_8100:
823 			ifp->if_capabilities |= IFCAP_WOL;
824 			/* Disable WOL. */
825 			rl_clrwol(sc);
826 			break;
827 		default:
828 			break;
829 		}
830 	}
831 	ifp->if_capenable = ifp->if_capabilities;
832 	ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
833 #ifdef DEVICE_POLLING
834 	ifp->if_capabilities |= IFCAP_POLLING;
835 #endif
836 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
837 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
838 	IFQ_SET_READY(&ifp->if_snd);
839 
840 	/*
841 	 * Call MI attach routine.
842 	 */
843 	ether_ifattach(ifp, eaddr);
844 
845 	/* Hook interrupt last to avoid having to lock softc */
846 	error = bus_setup_intr(dev, sc->rl_irq[0], INTR_TYPE_NET | INTR_MPSAFE,
847 	    NULL, rl_intr, sc, &sc->rl_intrhand[0]);
848 	if (error) {
849 		device_printf(sc->rl_dev, "couldn't set up irq\n");
850 		ether_ifdetach(ifp);
851 	}
852 
853 fail:
854 	if (error)
855 		rl_detach(dev);
856 
857 	return (error);
858 }
859 
860 /*
861  * Shutdown hardware and free up resources. This can be called any
862  * time after the mutex has been initialized. It is called in both
863  * the error case in attach and the normal detach case so it needs
864  * to be careful about only freeing resources that have actually been
865  * allocated.
866  */
867 static int
868 rl_detach(device_t dev)
869 {
870 	struct rl_softc		*sc;
871 	struct ifnet		*ifp;
872 
873 	sc = device_get_softc(dev);
874 	ifp = sc->rl_ifp;
875 
876 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
877 
878 #ifdef DEVICE_POLLING
879 	if (ifp->if_capenable & IFCAP_POLLING)
880 		ether_poll_deregister(ifp);
881 #endif
882 	/* These should only be active if attach succeeded */
883 	if (device_is_attached(dev)) {
884 		RL_LOCK(sc);
885 		rl_stop(sc);
886 		RL_UNLOCK(sc);
887 		callout_drain(&sc->rl_stat_callout);
888 		ether_ifdetach(ifp);
889 	}
890 #if 0
891 	sc->suspended = 1;
892 #endif
893 	if (sc->rl_miibus)
894 		device_delete_child(dev, sc->rl_miibus);
895 	bus_generic_detach(dev);
896 
897 	if (sc->rl_intrhand[0])
898 		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
899 	if (sc->rl_irq[0])
900 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq[0]);
901 	if (sc->rl_res)
902 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
903 		    sc->rl_res);
904 
905 	if (ifp)
906 		if_free(ifp);
907 
908 	rl_dma_free(sc);
909 
910 	mtx_destroy(&sc->rl_mtx);
911 
912 	return (0);
913 }
914 
915 static int
916 rl_dma_alloc(struct rl_softc *sc)
917 {
918 	struct rl_dmamap_arg	ctx;
919 	int			error, i;
920 
921 	/*
922 	 * Allocate the parent bus DMA tag appropriate for PCI.
923 	 */
924 	error = bus_dma_tag_create(bus_get_dma_tag(sc->rl_dev),	/* parent */
925 	    1, 0,			/* alignment, boundary */
926 	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
927 	    BUS_SPACE_MAXADDR,		/* highaddr */
928 	    NULL, NULL,			/* filter, filterarg */
929 	    BUS_SPACE_MAXSIZE_32BIT, 0,	/* maxsize, nsegments */
930 	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
931 	    0,				/* flags */
932 	    NULL, NULL,			/* lockfunc, lockarg */
933 	    &sc->rl_parent_tag);
934 	if (error) {
935                 device_printf(sc->rl_dev,
936 		    "failed to create parent DMA tag.\n");
937 		goto fail;
938 	}
939 	/* Create DMA tag for Rx memory block. */
940 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
941 	    RL_RX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
942 	    BUS_SPACE_MAXADDR,		/* lowaddr */
943 	    BUS_SPACE_MAXADDR,		/* highaddr */
944 	    NULL, NULL,			/* filter, filterarg */
945 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, 1,	/* maxsize,nsegments */
946 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ,	/* maxsegsize */
947 	    0,				/* flags */
948 	    NULL, NULL,			/* lockfunc, lockarg */
949 	    &sc->rl_cdata.rl_rx_tag);
950 	if (error) {
951                 device_printf(sc->rl_dev,
952 		    "failed to create Rx memory block DMA tag.\n");
953 		goto fail;
954 	}
955 	/* Create DMA tag for Tx buffer. */
956 	error = bus_dma_tag_create(sc->rl_parent_tag,	/* parent */
957 	    RL_TX_8139_BUF_ALIGN, 0,	/* alignment, boundary */
958 	    BUS_SPACE_MAXADDR,		/* lowaddr */
959 	    BUS_SPACE_MAXADDR,		/* highaddr */
960 	    NULL, NULL,			/* filter, filterarg */
961 	    MCLBYTES, 1,		/* maxsize, nsegments */
962 	    MCLBYTES,			/* maxsegsize */
963 	    0,				/* flags */
964 	    NULL, NULL,			/* lockfunc, lockarg */
965 	    &sc->rl_cdata.rl_tx_tag);
966 	if (error) {
967                 device_printf(sc->rl_dev, "failed to create Tx DMA tag.\n");
968 		goto fail;
969 	}
970 
971 	/*
972 	 * Allocate DMA'able memory and load DMA map for Rx memory block.
973 	 */
974 	error = bus_dmamem_alloc(sc->rl_cdata.rl_rx_tag,
975 	    (void **)&sc->rl_cdata.rl_rx_buf, BUS_DMA_WAITOK |
976 	    BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->rl_cdata.rl_rx_dmamap);
977 	if (error != 0) {
978 		device_printf(sc->rl_dev,
979 		    "failed to allocate Rx DMA memory block.\n");
980 		goto fail;
981 	}
982 	ctx.rl_busaddr = 0;
983 	error = bus_dmamap_load(sc->rl_cdata.rl_rx_tag,
984 	    sc->rl_cdata.rl_rx_dmamap, sc->rl_cdata.rl_rx_buf,
985 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ, rl_dmamap_cb, &ctx,
986 	    BUS_DMA_NOWAIT);
987 	if (error != 0 || ctx.rl_busaddr == 0) {
988 		device_printf(sc->rl_dev,
989 		    "could not load Rx DMA memory block.\n");
990 		goto fail;
991 	}
992 	sc->rl_cdata.rl_rx_buf_paddr = ctx.rl_busaddr;
993 
994 	/* Create DMA maps for Tx buffers. */
995 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
996 		sc->rl_cdata.rl_tx_chain[i] = NULL;
997 		sc->rl_cdata.rl_tx_dmamap[i] = NULL;
998 		error = bus_dmamap_create(sc->rl_cdata.rl_tx_tag, 0,
999 		    &sc->rl_cdata.rl_tx_dmamap[i]);
1000 		if (error != 0) {
1001 			device_printf(sc->rl_dev,
1002 			    "could not create Tx dmamap.\n");
1003 			goto fail;
1004 		}
1005 	}
1006 
1007 	/* Leave a few bytes before the start of the RX ring buffer. */
1008 	sc->rl_cdata.rl_rx_buf_ptr = sc->rl_cdata.rl_rx_buf;
1009 	sc->rl_cdata.rl_rx_buf += RL_RX_8139_BUF_RESERVE;
1010 
1011 fail:
1012 	return (error);
1013 }
1014 
1015 static void
1016 rl_dma_free(struct rl_softc *sc)
1017 {
1018 	int			i;
1019 
1020 	/* Rx memory block. */
1021 	if (sc->rl_cdata.rl_rx_tag != NULL) {
1022 		if (sc->rl_cdata.rl_rx_buf_paddr != 0)
1023 			bus_dmamap_unload(sc->rl_cdata.rl_rx_tag,
1024 			    sc->rl_cdata.rl_rx_dmamap);
1025 		if (sc->rl_cdata.rl_rx_buf_ptr != NULL)
1026 			bus_dmamem_free(sc->rl_cdata.rl_rx_tag,
1027 			    sc->rl_cdata.rl_rx_buf_ptr,
1028 			    sc->rl_cdata.rl_rx_dmamap);
1029 		sc->rl_cdata.rl_rx_buf_ptr = NULL;
1030 		sc->rl_cdata.rl_rx_buf = NULL;
1031 		sc->rl_cdata.rl_rx_buf_paddr = 0;
1032 		bus_dma_tag_destroy(sc->rl_cdata.rl_rx_tag);
1033 		sc->rl_cdata.rl_tx_tag = NULL;
1034 	}
1035 
1036 	/* Tx buffers. */
1037 	if (sc->rl_cdata.rl_tx_tag != NULL) {
1038 		for (i = 0; i < RL_TX_LIST_CNT; i++) {
1039 			if (sc->rl_cdata.rl_tx_dmamap[i] != NULL) {
1040 				bus_dmamap_destroy(
1041 				    sc->rl_cdata.rl_tx_tag,
1042 				    sc->rl_cdata.rl_tx_dmamap[i]);
1043 				sc->rl_cdata.rl_tx_dmamap[i] = NULL;
1044 			}
1045 		}
1046 		bus_dma_tag_destroy(sc->rl_cdata.rl_tx_tag);
1047 		sc->rl_cdata.rl_tx_tag = NULL;
1048 	}
1049 
1050 	if (sc->rl_parent_tag != NULL) {
1051 		bus_dma_tag_destroy(sc->rl_parent_tag);
1052 		sc->rl_parent_tag = NULL;
1053 	}
1054 }
1055 
1056 /*
1057  * Initialize the transmit descriptors.
1058  */
1059 static int
1060 rl_list_tx_init(struct rl_softc *sc)
1061 {
1062 	struct rl_chain_data	*cd;
1063 	int			i;
1064 
1065 	RL_LOCK_ASSERT(sc);
1066 
1067 	cd = &sc->rl_cdata;
1068 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1069 		cd->rl_tx_chain[i] = NULL;
1070 		CSR_WRITE_4(sc,
1071 		    RL_TXADDR0 + (i * sizeof(uint32_t)), 0x0000000);
1072 	}
1073 
1074 	sc->rl_cdata.cur_tx = 0;
1075 	sc->rl_cdata.last_tx = 0;
1076 
1077 	return (0);
1078 }
1079 
1080 static int
1081 rl_list_rx_init(struct rl_softc *sc)
1082 {
1083 
1084 	RL_LOCK_ASSERT(sc);
1085 
1086 	bzero(sc->rl_cdata.rl_rx_buf_ptr,
1087 	    RL_RXBUFLEN + RL_RX_8139_BUF_GUARD_SZ);
1088 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, sc->rl_cdata.rl_rx_dmamap,
1089 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1090 
1091 	return (0);
1092 }
1093 
1094 /*
1095  * A frame has been uploaded: pass the resulting mbuf chain up to
1096  * the higher level protocols.
1097  *
1098  * You know there's something wrong with a PCI bus-master chip design
1099  * when you have to use m_devget().
1100  *
1101  * The receive operation is badly documented in the datasheet, so I'll
1102  * attempt to document it here. The driver provides a buffer area and
1103  * places its base address in the RX buffer start address register.
1104  * The chip then begins copying frames into the RX buffer. Each frame
1105  * is preceded by a 32-bit RX status word which specifies the length
1106  * of the frame and certain other status bits. Each frame (starting with
1107  * the status word) is also 32-bit aligned. The frame length is in the
1108  * first 16 bits of the status word; the lower 15 bits correspond with
1109  * the 'rx status register' mentioned in the datasheet.
1110  *
1111  * Note: to make the Alpha happy, the frame payload needs to be aligned
1112  * on a 32-bit boundary. To achieve this, we pass RL_ETHER_ALIGN (2 bytes)
1113  * as the offset argument to m_devget().
1114  */
1115 static int
1116 rl_rxeof(struct rl_softc *sc)
1117 {
1118 	struct mbuf		*m;
1119 	struct ifnet		*ifp = sc->rl_ifp;
1120 	uint8_t			*rxbufpos;
1121 	int			total_len = 0;
1122 	int			wrap = 0;
1123 	int			rx_npkts = 0;
1124 	uint32_t		rxstat;
1125 	uint16_t		cur_rx;
1126 	uint16_t		limit;
1127 	uint16_t		max_bytes, rx_bytes = 0;
1128 
1129 	RL_LOCK_ASSERT(sc);
1130 
1131 	bus_dmamap_sync(sc->rl_cdata.rl_rx_tag, sc->rl_cdata.rl_rx_dmamap,
1132 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1133 
1134 	cur_rx = (CSR_READ_2(sc, RL_CURRXADDR) + 16) % RL_RXBUFLEN;
1135 
1136 	/* Do not try to read past this point. */
1137 	limit = CSR_READ_2(sc, RL_CURRXBUF) % RL_RXBUFLEN;
1138 
1139 	if (limit < cur_rx)
1140 		max_bytes = (RL_RXBUFLEN - cur_rx) + limit;
1141 	else
1142 		max_bytes = limit - cur_rx;
1143 
1144 	while((CSR_READ_1(sc, RL_COMMAND) & RL_CMD_EMPTY_RXBUF) == 0) {
1145 #ifdef DEVICE_POLLING
1146 		if (ifp->if_capenable & IFCAP_POLLING) {
1147 			if (sc->rxcycles <= 0)
1148 				break;
1149 			sc->rxcycles--;
1150 		}
1151 #endif
1152 		rxbufpos = sc->rl_cdata.rl_rx_buf + cur_rx;
1153 		rxstat = le32toh(*(uint32_t *)rxbufpos);
1154 
1155 		/*
1156 		 * Here's a totally undocumented fact for you. When the
1157 		 * RealTek chip is in the process of copying a packet into
1158 		 * RAM for you, the length will be 0xfff0. If you spot a
1159 		 * packet header with this value, you need to stop. The
1160 		 * datasheet makes absolutely no mention of this and
1161 		 * RealTek should be shot for this.
1162 		 */
1163 		total_len = rxstat >> 16;
1164 		if (total_len == RL_RXSTAT_UNFINISHED)
1165 			break;
1166 
1167 		if (!(rxstat & RL_RXSTAT_RXOK) ||
1168 		    total_len < ETHER_MIN_LEN ||
1169 		    total_len > ETHER_MAX_LEN + ETHER_VLAN_ENCAP_LEN) {
1170 			if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
1171 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1172 			rl_init_locked(sc);
1173 			return (rx_npkts);
1174 		}
1175 
1176 		/* No errors; receive the packet. */
1177 		rx_bytes += total_len + 4;
1178 
1179 		/*
1180 		 * XXX The RealTek chip includes the CRC with every
1181 		 * received frame, and there's no way to turn this
1182 		 * behavior off (at least, I can't find anything in
1183 		 * the manual that explains how to do it) so we have
1184 		 * to trim off the CRC manually.
1185 		 */
1186 		total_len -= ETHER_CRC_LEN;
1187 
1188 		/*
1189 		 * Avoid trying to read more bytes than we know
1190 		 * the chip has prepared for us.
1191 		 */
1192 		if (rx_bytes > max_bytes)
1193 			break;
1194 
1195 		rxbufpos = sc->rl_cdata.rl_rx_buf +
1196 			((cur_rx + sizeof(uint32_t)) % RL_RXBUFLEN);
1197 		if (rxbufpos == (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN))
1198 			rxbufpos = sc->rl_cdata.rl_rx_buf;
1199 
1200 		wrap = (sc->rl_cdata.rl_rx_buf + RL_RXBUFLEN) - rxbufpos;
1201 		if (total_len > wrap) {
1202 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1203 			    NULL);
1204 			if (m != NULL)
1205 				m_copyback(m, wrap, total_len - wrap,
1206 					sc->rl_cdata.rl_rx_buf);
1207 			cur_rx = (total_len - wrap + ETHER_CRC_LEN);
1208 		} else {
1209 			m = m_devget(rxbufpos, total_len, RL_ETHER_ALIGN, ifp,
1210 			    NULL);
1211 			cur_rx += total_len + 4 + ETHER_CRC_LEN;
1212 		}
1213 
1214 		/* Round up to 32-bit boundary. */
1215 		cur_rx = (cur_rx + 3) & ~3;
1216 		CSR_WRITE_2(sc, RL_CURRXADDR, cur_rx - 16);
1217 
1218 		if (m == NULL) {
1219 			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
1220 			continue;
1221 		}
1222 
1223 		if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
1224 		RL_UNLOCK(sc);
1225 		(*ifp->if_input)(ifp, m);
1226 		RL_LOCK(sc);
1227 		rx_npkts++;
1228 	}
1229 
1230 	/* No need to sync Rx memory block as we didn't modify it. */
1231 	return (rx_npkts);
1232 }
1233 
1234 /*
1235  * A frame was downloaded to the chip. It's safe for us to clean up
1236  * the list buffers.
1237  */
1238 static void
1239 rl_txeof(struct rl_softc *sc)
1240 {
1241 	struct ifnet		*ifp = sc->rl_ifp;
1242 	uint32_t		txstat;
1243 
1244 	RL_LOCK_ASSERT(sc);
1245 
1246 	/*
1247 	 * Go through our tx list and free mbufs for those
1248 	 * frames that have been uploaded.
1249 	 */
1250 	do {
1251 		if (RL_LAST_TXMBUF(sc) == NULL)
1252 			break;
1253 		txstat = CSR_READ_4(sc, RL_LAST_TXSTAT(sc));
1254 		if (!(txstat & (RL_TXSTAT_TX_OK|
1255 		    RL_TXSTAT_TX_UNDERRUN|RL_TXSTAT_TXABRT)))
1256 			break;
1257 
1258 		if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (txstat & RL_TXSTAT_COLLCNT) >> 24);
1259 
1260 		bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc),
1261 		    BUS_DMASYNC_POSTWRITE);
1262 		bus_dmamap_unload(sc->rl_cdata.rl_tx_tag, RL_LAST_DMAMAP(sc));
1263 		m_freem(RL_LAST_TXMBUF(sc));
1264 		RL_LAST_TXMBUF(sc) = NULL;
1265 		/*
1266 		 * If there was a transmit underrun, bump the TX threshold.
1267 		 * Make sure not to overflow the 63 * 32byte we can address
1268 		 * with the 6 available bit.
1269 		 */
1270 		if ((txstat & RL_TXSTAT_TX_UNDERRUN) &&
1271 		    (sc->rl_txthresh < 2016))
1272 			sc->rl_txthresh += 32;
1273 		if (txstat & RL_TXSTAT_TX_OK)
1274 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
1275 		else {
1276 			int			oldthresh;
1277 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1278 			if ((txstat & RL_TXSTAT_TXABRT) ||
1279 			    (txstat & RL_TXSTAT_OUTOFWIN))
1280 				CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1281 			oldthresh = sc->rl_txthresh;
1282 			/* error recovery */
1283 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1284 			rl_init_locked(sc);
1285 			/* restore original threshold */
1286 			sc->rl_txthresh = oldthresh;
1287 			return;
1288 		}
1289 		RL_INC(sc->rl_cdata.last_tx);
1290 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1291 	} while (sc->rl_cdata.last_tx != sc->rl_cdata.cur_tx);
1292 
1293 	if (RL_LAST_TXMBUF(sc) == NULL)
1294 		sc->rl_watchdog_timer = 0;
1295 }
1296 
1297 static void
1298 rl_twister_update(struct rl_softc *sc)
1299 {
1300 	uint16_t linktest;
1301 	/*
1302 	 * Table provided by RealTek (Kinston <shangh@realtek.com.tw>) for
1303 	 * Linux driver.  Values undocumented otherwise.
1304 	 */
1305 	static const uint32_t param[4][4] = {
1306 		{0xcb39de43, 0xcb39ce43, 0xfb38de03, 0xcb38de43},
1307 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1308 		{0xcb39de43, 0xcb39ce43, 0xcb39ce83, 0xcb39ce83},
1309 		{0xbb39de43, 0xbb39ce43, 0xbb39ce83, 0xbb39ce83}
1310 	};
1311 
1312 	/*
1313 	 * Tune the so-called twister registers of the RTL8139.  These
1314 	 * are used to compensate for impedance mismatches.  The
1315 	 * method for tuning these registers is undocumented and the
1316 	 * following procedure is collected from public sources.
1317 	 */
1318 	switch (sc->rl_twister)
1319 	{
1320 	case CHK_LINK:
1321 		/*
1322 		 * If we have a sufficient link, then we can proceed in
1323 		 * the state machine to the next stage.  If not, then
1324 		 * disable further tuning after writing sane defaults.
1325 		 */
1326 		if (CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_LINK_OK) {
1327 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_OFF_CMD);
1328 			sc->rl_twister = FIND_ROW;
1329 		} else {
1330 			CSR_WRITE_2(sc, RL_CSCFG, RL_CSCFG_LINK_DOWN_CMD);
1331 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1332 			CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1333 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1334 			sc->rl_twister = DONE;
1335 		}
1336 		break;
1337 	case FIND_ROW:
1338 		/*
1339 		 * Read how long it took to see the echo to find the tuning
1340 		 * row to use.
1341 		 */
1342 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1343 		if (linktest == RL_CSCFG_ROW3)
1344 			sc->rl_twist_row = 3;
1345 		else if (linktest == RL_CSCFG_ROW2)
1346 			sc->rl_twist_row = 2;
1347 		else if (linktest == RL_CSCFG_ROW1)
1348 			sc->rl_twist_row = 1;
1349 		else
1350 			sc->rl_twist_row = 0;
1351 		sc->rl_twist_col = 0;
1352 		sc->rl_twister = SET_PARAM;
1353 		break;
1354 	case SET_PARAM:
1355 		if (sc->rl_twist_col == 0)
1356 			CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1357 		CSR_WRITE_4(sc, RL_PARA7C,
1358 		    param[sc->rl_twist_row][sc->rl_twist_col]);
1359 		if (++sc->rl_twist_col == 4) {
1360 			if (sc->rl_twist_row == 3)
1361 				sc->rl_twister = RECHK_LONG;
1362 			else
1363 				sc->rl_twister = DONE;
1364 		}
1365 		break;
1366 	case RECHK_LONG:
1367 		/*
1368 		 * For long cables, we have to double check to make sure we
1369 		 * don't mistune.
1370 		 */
1371 		linktest = CSR_READ_2(sc, RL_CSCFG) & RL_CSCFG_STATUS;
1372 		if (linktest == RL_CSCFG_ROW3)
1373 			sc->rl_twister = DONE;
1374 		else {
1375 			CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_RETUNE);
1376 			sc->rl_twister = RETUNE;
1377 		}
1378 		break;
1379 	case RETUNE:
1380 		/* Retune for a shorter cable (try column 2) */
1381 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_CBL_TEST);
1382 		CSR_WRITE_4(sc, RL_PARA78, RL_PARA78_DEF);
1383 		CSR_WRITE_4(sc, RL_PARA7C, RL_PARA7C_DEF);
1384 		CSR_WRITE_4(sc, RL_NWAYTST, RL_NWAYTST_RESET);
1385 		sc->rl_twist_row--;
1386 		sc->rl_twist_col = 0;
1387 		sc->rl_twister = SET_PARAM;
1388 		break;
1389 
1390 	case DONE:
1391 		break;
1392 	}
1393 
1394 }
1395 
1396 static void
1397 rl_tick(void *xsc)
1398 {
1399 	struct rl_softc		*sc = xsc;
1400 	struct mii_data		*mii;
1401 	int ticks;
1402 
1403 	RL_LOCK_ASSERT(sc);
1404 	/*
1405 	 * If we're doing the twister cable calibration, then we need to defer
1406 	 * watchdog timeouts.  This is a no-op in normal operations, but
1407 	 * can falsely trigger when the cable calibration takes a while and
1408 	 * there was traffic ready to go when rl was started.
1409 	 *
1410 	 * We don't defer mii_tick since that updates the mii status, which
1411 	 * helps the twister process, at least according to similar patches
1412 	 * for the Linux driver I found online while doing the fixes.  Worst
1413 	 * case is a few extra mii reads during calibration.
1414 	 */
1415 	mii = device_get_softc(sc->rl_miibus);
1416 	mii_tick(mii);
1417 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
1418 		rl_miibus_statchg(sc->rl_dev);
1419 	if (sc->rl_twister_enable) {
1420 		if (sc->rl_twister == DONE)
1421 			rl_watchdog(sc);
1422 		else
1423 			rl_twister_update(sc);
1424 		if (sc->rl_twister == DONE)
1425 			ticks = hz;
1426 		else
1427 			ticks = hz / 10;
1428 	} else {
1429 		rl_watchdog(sc);
1430 		ticks = hz;
1431 	}
1432 
1433 	callout_reset(&sc->rl_stat_callout, ticks, rl_tick, sc);
1434 }
1435 
1436 #ifdef DEVICE_POLLING
1437 static int
1438 rl_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1439 {
1440 	struct rl_softc *sc = ifp->if_softc;
1441 	int rx_npkts = 0;
1442 
1443 	RL_LOCK(sc);
1444 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1445 		rx_npkts = rl_poll_locked(ifp, cmd, count);
1446 	RL_UNLOCK(sc);
1447 	return (rx_npkts);
1448 }
1449 
1450 static int
1451 rl_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1452 {
1453 	struct rl_softc *sc = ifp->if_softc;
1454 	int rx_npkts;
1455 
1456 	RL_LOCK_ASSERT(sc);
1457 
1458 	sc->rxcycles = count;
1459 	rx_npkts = rl_rxeof(sc);
1460 	rl_txeof(sc);
1461 
1462 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1463 		rl_start_locked(ifp);
1464 
1465 	if (cmd == POLL_AND_CHECK_STATUS) {
1466 		uint16_t	status;
1467 
1468 		/* We should also check the status register. */
1469 		status = CSR_READ_2(sc, RL_ISR);
1470 		if (status == 0xffff)
1471 			return (rx_npkts);
1472 		if (status != 0)
1473 			CSR_WRITE_2(sc, RL_ISR, status);
1474 
1475 		/* XXX We should check behaviour on receiver stalls. */
1476 
1477 		if (status & RL_ISR_SYSTEM_ERR) {
1478 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1479 			rl_init_locked(sc);
1480 		}
1481 	}
1482 	return (rx_npkts);
1483 }
1484 #endif /* DEVICE_POLLING */
1485 
1486 static void
1487 rl_intr(void *arg)
1488 {
1489 	struct rl_softc		*sc = arg;
1490 	struct ifnet		*ifp = sc->rl_ifp;
1491 	uint16_t		status;
1492 	int			count;
1493 
1494 	RL_LOCK(sc);
1495 
1496 	if (sc->suspended)
1497 		goto done_locked;
1498 
1499 #ifdef DEVICE_POLLING
1500 	if  (ifp->if_capenable & IFCAP_POLLING)
1501 		goto done_locked;
1502 #endif
1503 
1504 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1505 		goto done_locked2;
1506 	status = CSR_READ_2(sc, RL_ISR);
1507 	if (status == 0xffff || (status & RL_INTRS) == 0)
1508 		goto done_locked;
1509 	/*
1510 	 * Ours, disable further interrupts.
1511 	 */
1512 	CSR_WRITE_2(sc, RL_IMR, 0);
1513 	for (count = 16; count > 0; count--) {
1514 		CSR_WRITE_2(sc, RL_ISR, status);
1515 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1516 			if (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR))
1517 				rl_rxeof(sc);
1518 			if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR))
1519 				rl_txeof(sc);
1520 			if (status & RL_ISR_SYSTEM_ERR) {
1521 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1522 				rl_init_locked(sc);
1523 				RL_UNLOCK(sc);
1524 				return;
1525 			}
1526 		}
1527 		status = CSR_READ_2(sc, RL_ISR);
1528 		/* If the card has gone away, the read returns 0xffff. */
1529 		if (status == 0xffff || (status & RL_INTRS) == 0)
1530 			break;
1531 	}
1532 
1533 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1534 		rl_start_locked(ifp);
1535 
1536 done_locked2:
1537 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1538 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1539 done_locked:
1540 	RL_UNLOCK(sc);
1541 }
1542 
1543 /*
1544  * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
1545  * pointers to the fragment pointers.
1546  */
1547 static int
1548 rl_encap(struct rl_softc *sc, struct mbuf **m_head)
1549 {
1550 	struct mbuf		*m;
1551 	bus_dma_segment_t	txsegs[1];
1552 	int			error, nsegs, padlen;
1553 
1554 	RL_LOCK_ASSERT(sc);
1555 
1556 	m = *m_head;
1557 	padlen = 0;
1558 	/*
1559 	 * Hardware doesn't auto-pad, so we have to make sure
1560 	 * pad short frames out to the minimum frame length.
1561 	 */
1562 	if (m->m_pkthdr.len < RL_MIN_FRAMELEN)
1563 		padlen = RL_MIN_FRAMELEN - m->m_pkthdr.len;
1564 	/*
1565 	 * The RealTek is brain damaged and wants longword-aligned
1566 	 * TX buffers, plus we can only have one fragment buffer
1567 	 * per packet. We have to copy pretty much all the time.
1568 	 */
1569 	if (m->m_next != NULL || (mtod(m, uintptr_t) & 3) != 0 ||
1570 	    (padlen > 0 && M_TRAILINGSPACE(m) < padlen)) {
1571 		m = m_defrag(*m_head, M_NOWAIT);
1572 		if (m == NULL) {
1573 			m_freem(*m_head);
1574 			*m_head = NULL;
1575 			return (ENOMEM);
1576 		}
1577 	}
1578 	*m_head = m;
1579 
1580 	if (padlen > 0) {
1581 		/*
1582 		 * Make security-conscious people happy: zero out the
1583 		 * bytes in the pad area, since we don't know what
1584 		 * this mbuf cluster buffer's previous user might
1585 		 * have left in it.
1586 		 */
1587 		bzero(mtod(m, char *) + m->m_pkthdr.len, padlen);
1588 		m->m_pkthdr.len += padlen;
1589 		m->m_len = m->m_pkthdr.len;
1590 	}
1591 
1592 	error = bus_dmamap_load_mbuf_sg(sc->rl_cdata.rl_tx_tag,
1593 	    RL_CUR_DMAMAP(sc), m, txsegs, &nsegs, 0);
1594 	if (error != 0)
1595 		return (error);
1596 	if (nsegs == 0) {
1597 		m_freem(*m_head);
1598 		*m_head = NULL;
1599 		return (EIO);
1600 	}
1601 
1602 	RL_CUR_TXMBUF(sc) = m;
1603 	bus_dmamap_sync(sc->rl_cdata.rl_tx_tag, RL_CUR_DMAMAP(sc),
1604 	    BUS_DMASYNC_PREWRITE);
1605 	CSR_WRITE_4(sc, RL_CUR_TXADDR(sc), RL_ADDR_LO(txsegs[0].ds_addr));
1606 
1607 	return (0);
1608 }
1609 
1610 /*
1611  * Main transmit routine.
1612  */
1613 static void
1614 rl_start(struct ifnet *ifp)
1615 {
1616 	struct rl_softc		*sc = ifp->if_softc;
1617 
1618 	RL_LOCK(sc);
1619 	rl_start_locked(ifp);
1620 	RL_UNLOCK(sc);
1621 }
1622 
1623 static void
1624 rl_start_locked(struct ifnet *ifp)
1625 {
1626 	struct rl_softc		*sc = ifp->if_softc;
1627 	struct mbuf		*m_head = NULL;
1628 
1629 	RL_LOCK_ASSERT(sc);
1630 
1631 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1632 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
1633 		return;
1634 
1635 	while (RL_CUR_TXMBUF(sc) == NULL) {
1636 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1637 
1638 		if (m_head == NULL)
1639 			break;
1640 
1641 		if (rl_encap(sc, &m_head)) {
1642 			if (m_head == NULL)
1643 				break;
1644 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1645 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1646 			break;
1647 		}
1648 
1649 		/* Pass a copy of this mbuf chain to the bpf subsystem. */
1650 		BPF_MTAP(ifp, RL_CUR_TXMBUF(sc));
1651 
1652 		/* Transmit the frame. */
1653 		CSR_WRITE_4(sc, RL_CUR_TXSTAT(sc),
1654 		    RL_TXTHRESH(sc->rl_txthresh) |
1655 		    RL_CUR_TXMBUF(sc)->m_pkthdr.len);
1656 
1657 		RL_INC(sc->rl_cdata.cur_tx);
1658 
1659 		/* Set a timeout in case the chip goes out to lunch. */
1660 		sc->rl_watchdog_timer = 5;
1661 	}
1662 
1663 	/*
1664 	 * We broke out of the loop because all our TX slots are
1665 	 * full. Mark the NIC as busy until it drains some of the
1666 	 * packets from the queue.
1667 	 */
1668 	if (RL_CUR_TXMBUF(sc) != NULL)
1669 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1670 }
1671 
1672 static void
1673 rl_init(void *xsc)
1674 {
1675 	struct rl_softc		*sc = xsc;
1676 
1677 	RL_LOCK(sc);
1678 	rl_init_locked(sc);
1679 	RL_UNLOCK(sc);
1680 }
1681 
1682 static void
1683 rl_init_locked(struct rl_softc *sc)
1684 {
1685 	struct ifnet		*ifp = sc->rl_ifp;
1686 	struct mii_data		*mii;
1687 	uint32_t		eaddr[2];
1688 
1689 	RL_LOCK_ASSERT(sc);
1690 
1691 	mii = device_get_softc(sc->rl_miibus);
1692 
1693 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1694 		return;
1695 
1696 	/*
1697 	 * Cancel pending I/O and free all RX/TX buffers.
1698 	 */
1699 	rl_stop(sc);
1700 
1701 	rl_reset(sc);
1702 	if (sc->rl_twister_enable) {
1703 		/*
1704 		 * Reset twister register tuning state.  The twister
1705 		 * registers and their tuning are undocumented, but
1706 		 * are necessary to cope with bad links.  rl_twister =
1707 		 * DONE here will disable this entirely.
1708 		 */
1709 		sc->rl_twister = CHK_LINK;
1710 	}
1711 
1712 	/*
1713 	 * Init our MAC address.  Even though the chipset
1714 	 * documentation doesn't mention it, we need to enter "Config
1715 	 * register write enable" mode to modify the ID registers.
1716 	 */
1717 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
1718 	bzero(eaddr, sizeof(eaddr));
1719 	bcopy(IF_LLADDR(sc->rl_ifp), eaddr, ETHER_ADDR_LEN);
1720 	CSR_WRITE_STREAM_4(sc, RL_IDR0, eaddr[0]);
1721 	CSR_WRITE_STREAM_4(sc, RL_IDR4, eaddr[1]);
1722 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1723 
1724 	/* Init the RX memory block pointer register. */
1725 	CSR_WRITE_4(sc, RL_RXADDR, sc->rl_cdata.rl_rx_buf_paddr +
1726 	    RL_RX_8139_BUF_RESERVE);
1727 	/* Init TX descriptors. */
1728 	rl_list_tx_init(sc);
1729 	/* Init Rx memory block. */
1730 	rl_list_rx_init(sc);
1731 
1732 	/*
1733 	 * Enable transmit and receive.
1734 	 */
1735 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1736 
1737 	/*
1738 	 * Set the initial TX and RX configuration.
1739 	 */
1740 	CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
1741 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
1742 
1743 	/* Set RX filter. */
1744 	rl_rxfilter(sc);
1745 
1746 #ifdef DEVICE_POLLING
1747 	/* Disable interrupts if we are polling. */
1748 	if (ifp->if_capenable & IFCAP_POLLING)
1749 		CSR_WRITE_2(sc, RL_IMR, 0);
1750 	else
1751 #endif
1752 	/* Enable interrupts. */
1753 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1754 
1755 	/* Set initial TX threshold */
1756 	sc->rl_txthresh = RL_TX_THRESH_INIT;
1757 
1758 	/* Start RX/TX process. */
1759 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
1760 
1761 	/* Enable receiver and transmitter. */
1762 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
1763 
1764 	sc->rl_flags &= ~RL_FLAG_LINK;
1765 	mii_mediachg(mii);
1766 
1767 	CSR_WRITE_1(sc, sc->rl_cfg1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
1768 
1769 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1770 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1771 
1772 	callout_reset(&sc->rl_stat_callout, hz, rl_tick, sc);
1773 }
1774 
1775 /*
1776  * Set media options.
1777  */
1778 static int
1779 rl_ifmedia_upd(struct ifnet *ifp)
1780 {
1781 	struct rl_softc		*sc = ifp->if_softc;
1782 	struct mii_data		*mii;
1783 
1784 	mii = device_get_softc(sc->rl_miibus);
1785 
1786 	RL_LOCK(sc);
1787 	mii_mediachg(mii);
1788 	RL_UNLOCK(sc);
1789 
1790 	return (0);
1791 }
1792 
1793 /*
1794  * Report current media status.
1795  */
1796 static void
1797 rl_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
1798 {
1799 	struct rl_softc		*sc = ifp->if_softc;
1800 	struct mii_data		*mii;
1801 
1802 	mii = device_get_softc(sc->rl_miibus);
1803 
1804 	RL_LOCK(sc);
1805 	mii_pollstat(mii);
1806 	ifmr->ifm_active = mii->mii_media_active;
1807 	ifmr->ifm_status = mii->mii_media_status;
1808 	RL_UNLOCK(sc);
1809 }
1810 
1811 static int
1812 rl_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
1813 {
1814 	struct ifreq		*ifr = (struct ifreq *)data;
1815 	struct mii_data		*mii;
1816 	struct rl_softc		*sc = ifp->if_softc;
1817 	int			error = 0, mask;
1818 
1819 	switch (command) {
1820 	case SIOCSIFFLAGS:
1821 		RL_LOCK(sc);
1822 		if (ifp->if_flags & IFF_UP) {
1823 			if (ifp->if_drv_flags & IFF_DRV_RUNNING &&
1824 			    ((ifp->if_flags ^ sc->rl_if_flags) &
1825                             (IFF_PROMISC | IFF_ALLMULTI)))
1826 				rl_rxfilter(sc);
1827                         else
1828 				rl_init_locked(sc);
1829                 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1830 			rl_stop(sc);
1831 		sc->rl_if_flags = ifp->if_flags;
1832 		RL_UNLOCK(sc);
1833 		break;
1834 	case SIOCADDMULTI:
1835 	case SIOCDELMULTI:
1836 		RL_LOCK(sc);
1837 		rl_rxfilter(sc);
1838 		RL_UNLOCK(sc);
1839 		break;
1840 	case SIOCGIFMEDIA:
1841 	case SIOCSIFMEDIA:
1842 		mii = device_get_softc(sc->rl_miibus);
1843 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
1844 		break;
1845 	case SIOCSIFCAP:
1846 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1847 #ifdef DEVICE_POLLING
1848 		if (ifr->ifr_reqcap & IFCAP_POLLING &&
1849 		    !(ifp->if_capenable & IFCAP_POLLING)) {
1850 			error = ether_poll_register(rl_poll, ifp);
1851 			if (error)
1852 				return(error);
1853 			RL_LOCK(sc);
1854 			/* Disable interrupts */
1855 			CSR_WRITE_2(sc, RL_IMR, 0x0000);
1856 			ifp->if_capenable |= IFCAP_POLLING;
1857 			RL_UNLOCK(sc);
1858 			return (error);
1859 
1860 		}
1861 		if (!(ifr->ifr_reqcap & IFCAP_POLLING) &&
1862 		    ifp->if_capenable & IFCAP_POLLING) {
1863 			error = ether_poll_deregister(ifp);
1864 			/* Enable interrupts. */
1865 			RL_LOCK(sc);
1866 			CSR_WRITE_2(sc, RL_IMR, RL_INTRS);
1867 			ifp->if_capenable &= ~IFCAP_POLLING;
1868 			RL_UNLOCK(sc);
1869 			return (error);
1870 		}
1871 #endif /* DEVICE_POLLING */
1872 		if ((mask & IFCAP_WOL) != 0 &&
1873 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
1874 			if ((mask & IFCAP_WOL_UCAST) != 0)
1875 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
1876 			if ((mask & IFCAP_WOL_MCAST) != 0)
1877 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
1878 			if ((mask & IFCAP_WOL_MAGIC) != 0)
1879 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1880 		}
1881 		break;
1882 	default:
1883 		error = ether_ioctl(ifp, command, data);
1884 		break;
1885 	}
1886 
1887 	return (error);
1888 }
1889 
1890 static void
1891 rl_watchdog(struct rl_softc *sc)
1892 {
1893 
1894 	RL_LOCK_ASSERT(sc);
1895 
1896 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer >0)
1897 		return;
1898 
1899 	device_printf(sc->rl_dev, "watchdog timeout\n");
1900 	if_inc_counter(sc->rl_ifp, IFCOUNTER_OERRORS, 1);
1901 
1902 	rl_txeof(sc);
1903 	rl_rxeof(sc);
1904 	sc->rl_ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1905 	rl_init_locked(sc);
1906 }
1907 
1908 /*
1909  * Stop the adapter and free any mbufs allocated to the
1910  * RX and TX lists.
1911  */
1912 static void
1913 rl_stop(struct rl_softc *sc)
1914 {
1915 	int			i;
1916 	struct ifnet		*ifp = sc->rl_ifp;
1917 
1918 	RL_LOCK_ASSERT(sc);
1919 
1920 	sc->rl_watchdog_timer = 0;
1921 	callout_stop(&sc->rl_stat_callout);
1922 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
1923 	sc->rl_flags &= ~RL_FLAG_LINK;
1924 
1925 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
1926 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
1927 	for (i = 0; i < RL_TIMEOUT; i++) {
1928 		DELAY(10);
1929 		if ((CSR_READ_1(sc, RL_COMMAND) &
1930 		    (RL_CMD_RX_ENB | RL_CMD_TX_ENB)) == 0)
1931 			break;
1932 	}
1933 	if (i == RL_TIMEOUT)
1934 		device_printf(sc->rl_dev, "Unable to stop Tx/Rx MAC\n");
1935 
1936 	/*
1937 	 * Free the TX list buffers.
1938 	 */
1939 	for (i = 0; i < RL_TX_LIST_CNT; i++) {
1940 		if (sc->rl_cdata.rl_tx_chain[i] != NULL) {
1941 			bus_dmamap_sync(sc->rl_cdata.rl_tx_tag,
1942 			    sc->rl_cdata.rl_tx_dmamap[i],
1943 			    BUS_DMASYNC_POSTWRITE);
1944 			bus_dmamap_unload(sc->rl_cdata.rl_tx_tag,
1945 			    sc->rl_cdata.rl_tx_dmamap[i]);
1946 			m_freem(sc->rl_cdata.rl_tx_chain[i]);
1947 			sc->rl_cdata.rl_tx_chain[i] = NULL;
1948 			CSR_WRITE_4(sc, RL_TXADDR0 + (i * sizeof(uint32_t)),
1949 			    0x0000000);
1950 		}
1951 	}
1952 }
1953 
1954 /*
1955  * Device suspend routine.  Stop the interface and save some PCI
1956  * settings in case the BIOS doesn't restore them properly on
1957  * resume.
1958  */
1959 static int
1960 rl_suspend(device_t dev)
1961 {
1962 	struct rl_softc		*sc;
1963 
1964 	sc = device_get_softc(dev);
1965 
1966 	RL_LOCK(sc);
1967 	rl_stop(sc);
1968 	rl_setwol(sc);
1969 	sc->suspended = 1;
1970 	RL_UNLOCK(sc);
1971 
1972 	return (0);
1973 }
1974 
1975 /*
1976  * Device resume routine.  Restore some PCI settings in case the BIOS
1977  * doesn't, re-enable busmastering, and restart the interface if
1978  * appropriate.
1979  */
1980 static int
1981 rl_resume(device_t dev)
1982 {
1983 	struct rl_softc		*sc;
1984 	struct ifnet		*ifp;
1985 	int			pmc;
1986 	uint16_t		pmstat;
1987 
1988 	sc = device_get_softc(dev);
1989 	ifp = sc->rl_ifp;
1990 
1991 	RL_LOCK(sc);
1992 
1993 	if ((ifp->if_capabilities & IFCAP_WOL) != 0 &&
1994 	    pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) == 0) {
1995 		/* Disable PME and clear PME status. */
1996 		pmstat = pci_read_config(sc->rl_dev,
1997 		    pmc + PCIR_POWER_STATUS, 2);
1998 		if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
1999 			pmstat &= ~PCIM_PSTAT_PMEENABLE;
2000 			pci_write_config(sc->rl_dev,
2001 			    pmc + PCIR_POWER_STATUS, pmstat, 2);
2002 		}
2003 		/*
2004 		 * Clear WOL matching such that normal Rx filtering
2005 		 * wouldn't interfere with WOL patterns.
2006 		 */
2007 		rl_clrwol(sc);
2008 	}
2009 
2010 	/* reinitialize interface if necessary */
2011 	if (ifp->if_flags & IFF_UP)
2012 		rl_init_locked(sc);
2013 
2014 	sc->suspended = 0;
2015 
2016 	RL_UNLOCK(sc);
2017 
2018 	return (0);
2019 }
2020 
2021 /*
2022  * Stop all chip I/O so that the kernel's probe routines don't
2023  * get confused by errant DMAs when rebooting.
2024  */
2025 static int
2026 rl_shutdown(device_t dev)
2027 {
2028 	struct rl_softc		*sc;
2029 
2030 	sc = device_get_softc(dev);
2031 
2032 	RL_LOCK(sc);
2033 	rl_stop(sc);
2034 	/*
2035 	 * Mark interface as down since otherwise we will panic if
2036 	 * interrupt comes in later on, which can happen in some
2037 	 * cases.
2038 	 */
2039 	sc->rl_ifp->if_flags &= ~IFF_UP;
2040 	rl_setwol(sc);
2041 	RL_UNLOCK(sc);
2042 
2043 	return (0);
2044 }
2045 
2046 static void
2047 rl_setwol(struct rl_softc *sc)
2048 {
2049 	struct ifnet		*ifp;
2050 	int			pmc;
2051 	uint16_t		pmstat;
2052 	uint8_t			v;
2053 
2054 	RL_LOCK_ASSERT(sc);
2055 
2056 	ifp = sc->rl_ifp;
2057 	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2058 		return;
2059 	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2060 		return;
2061 
2062 	/* Enable config register write. */
2063 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2064 
2065 	/* Enable PME. */
2066 	v = CSR_READ_1(sc, sc->rl_cfg1);
2067 	v &= ~RL_CFG1_PME;
2068 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2069 		v |= RL_CFG1_PME;
2070 	CSR_WRITE_1(sc, sc->rl_cfg1, v);
2071 
2072 	v = CSR_READ_1(sc, sc->rl_cfg3);
2073 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2074 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2075 		v |= RL_CFG3_WOL_MAGIC;
2076 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2077 
2078 	v = CSR_READ_1(sc, sc->rl_cfg5);
2079 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2080 	v &= ~RL_CFG5_WOL_LANWAKE;
2081 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
2082 		v |= RL_CFG5_WOL_UCAST;
2083 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
2084 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
2085 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2086 		v |= RL_CFG5_WOL_LANWAKE;
2087 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2088 
2089 	/* Config register write done. */
2090 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2091 
2092 	/* Request PME if WOL is requested. */
2093 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
2094 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
2095 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2096 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
2097 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
2098 }
2099 
2100 static void
2101 rl_clrwol(struct rl_softc *sc)
2102 {
2103 	struct ifnet		*ifp;
2104 	uint8_t			v;
2105 
2106 	ifp = sc->rl_ifp;
2107 	if ((ifp->if_capabilities & IFCAP_WOL) == 0)
2108 		return;
2109 
2110 	/* Enable config register write. */
2111 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2112 
2113 	v = CSR_READ_1(sc, sc->rl_cfg3);
2114 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2115 	CSR_WRITE_1(sc, sc->rl_cfg3, v);
2116 
2117 	/* Config register write done. */
2118 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2119 
2120 	v = CSR_READ_1(sc, sc->rl_cfg5);
2121 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
2122 	v &= ~RL_CFG5_WOL_LANWAKE;
2123 	CSR_WRITE_1(sc, sc->rl_cfg5, v);
2124 }
2125