xref: /freebsd/sys/dev/re/if_re.c (revision f7c4bd95ba735bd6a5454b4953945a99cefbb80c)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/taskqueue.h>
127 
128 #include <net/if.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/if_vlan_var.h>
135 
136 #include <net/bpf.h>
137 
138 #include <machine/bus.h>
139 #include <machine/resource.h>
140 #include <sys/bus.h>
141 #include <sys/rman.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 
149 #include <pci/if_rlreg.h>
150 
151 MODULE_DEPEND(re, pci, 1, 1, 1);
152 MODULE_DEPEND(re, ether, 1, 1, 1);
153 MODULE_DEPEND(re, miibus, 1, 1, 1);
154 
155 /* "device miibus" required.  See GENERIC if you get errors here. */
156 #include "miibus_if.h"
157 
158 /* Tunables. */
159 static int msi_disable = 1;
160 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
161 
162 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
163 
164 /*
165  * Various supported device vendors/types and their names.
166  */
167 static struct rl_type re_devs[] = {
168 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
169 	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 	{ RT_VENDORID, RT_DEVICEID_8139, 0,
171 	    "RealTek 8139C+ 10/100BaseTX" },
172 	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
173 	    "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" },
174 	{ RT_VENDORID, RT_DEVICEID_8168, 0,
175 	    "RealTek 8168/8168B/8168C/8168CP/8111B/8111C/8111CP PCIe "
176 	    "Gigabit Ethernet" },
177 	{ RT_VENDORID, RT_DEVICEID_8169, 0,
178 	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
179 	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
180 	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
181 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
182 	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
183 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
184 	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
185 	{ USR_VENDORID, USR_DEVICEID_997902, 0,
186 	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
187 };
188 
189 static struct rl_hwrev re_hwrevs[] = {
190 	{ RL_HWREV_8139, RL_8139,  "" },
191 	{ RL_HWREV_8139A, RL_8139, "A" },
192 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
193 	{ RL_HWREV_8139B, RL_8139, "B" },
194 	{ RL_HWREV_8130, RL_8139, "8130" },
195 	{ RL_HWREV_8139C, RL_8139, "C" },
196 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
197 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
198 	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
199 	{ RL_HWREV_8169, RL_8169, "8169"},
200 	{ RL_HWREV_8169S, RL_8169, "8169S"},
201 	{ RL_HWREV_8110S, RL_8169, "8110S"},
202 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
203 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
204 	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL"},
205 	{ RL_HWREV_8100, RL_8139, "8100"},
206 	{ RL_HWREV_8101, RL_8139, "8101"},
207 	{ RL_HWREV_8100E, RL_8169, "8100E"},
208 	{ RL_HWREV_8101E, RL_8169, "8101E"},
209 	{ RL_HWREV_8102E, RL_8169, "8102E"},
210 	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
211 	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
212 	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
213 	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
214 	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
215 	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
216 	{ 0, 0, NULL }
217 };
218 
219 static int re_probe		(device_t);
220 static int re_attach		(device_t);
221 static int re_detach		(device_t);
222 
223 static int re_encap		(struct rl_softc *, struct mbuf **);
224 
225 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
226 static int re_allocmem		(device_t, struct rl_softc *);
227 static __inline void re_discard_rxbuf
228 				(struct rl_softc *, int);
229 static int re_newbuf		(struct rl_softc *, int);
230 static int re_rx_list_init	(struct rl_softc *);
231 static int re_tx_list_init	(struct rl_softc *);
232 #ifdef RE_FIXUP_RX
233 static __inline void re_fixup_rx
234 				(struct mbuf *);
235 #endif
236 static int re_rxeof		(struct rl_softc *);
237 static void re_txeof		(struct rl_softc *);
238 #ifdef DEVICE_POLLING
239 static void re_poll		(struct ifnet *, enum poll_cmd, int);
240 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
241 #endif
242 static int re_intr		(void *);
243 static void re_tick		(void *);
244 static void re_tx_task		(void *, int);
245 static void re_int_task		(void *, int);
246 static void re_start		(struct ifnet *);
247 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
248 static void re_init		(void *);
249 static void re_init_locked	(struct rl_softc *);
250 static void re_stop		(struct rl_softc *);
251 static void re_watchdog		(struct rl_softc *);
252 static int re_suspend		(device_t);
253 static int re_resume		(device_t);
254 static int re_shutdown		(device_t);
255 static int re_ifmedia_upd	(struct ifnet *);
256 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
257 
258 static void re_eeprom_putbyte	(struct rl_softc *, int);
259 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
260 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
261 static int re_gmii_readreg	(device_t, int, int);
262 static int re_gmii_writereg	(device_t, int, int, int);
263 
264 static int re_miibus_readreg	(device_t, int, int);
265 static int re_miibus_writereg	(device_t, int, int, int);
266 static void re_miibus_statchg	(device_t);
267 
268 static void re_setmulti		(struct rl_softc *);
269 static void re_reset		(struct rl_softc *);
270 static void re_setwol		(struct rl_softc *);
271 static void re_clrwol		(struct rl_softc *);
272 
273 #ifdef RE_DIAG
274 static int re_diag		(struct rl_softc *);
275 #endif
276 
277 static device_method_t re_methods[] = {
278 	/* Device interface */
279 	DEVMETHOD(device_probe,		re_probe),
280 	DEVMETHOD(device_attach,	re_attach),
281 	DEVMETHOD(device_detach,	re_detach),
282 	DEVMETHOD(device_suspend,	re_suspend),
283 	DEVMETHOD(device_resume,	re_resume),
284 	DEVMETHOD(device_shutdown,	re_shutdown),
285 
286 	/* bus interface */
287 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
288 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
289 
290 	/* MII interface */
291 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
292 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
293 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
294 
295 	{ 0, 0 }
296 };
297 
298 static driver_t re_driver = {
299 	"re",
300 	re_methods,
301 	sizeof(struct rl_softc)
302 };
303 
304 static devclass_t re_devclass;
305 
306 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
307 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
308 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
309 
310 #define EE_SET(x)					\
311 	CSR_WRITE_1(sc, RL_EECMD,			\
312 		CSR_READ_1(sc, RL_EECMD) | x)
313 
314 #define EE_CLR(x)					\
315 	CSR_WRITE_1(sc, RL_EECMD,			\
316 		CSR_READ_1(sc, RL_EECMD) & ~x)
317 
318 /*
319  * Send a read command and address to the EEPROM, check for ACK.
320  */
321 static void
322 re_eeprom_putbyte(sc, addr)
323 	struct rl_softc		*sc;
324 	int			addr;
325 {
326 	register int		d, i;
327 
328 	d = addr | (RL_9346_READ << sc->rl_eewidth);
329 
330 	/*
331 	 * Feed in each bit and strobe the clock.
332 	 */
333 
334 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
335 		if (d & i) {
336 			EE_SET(RL_EE_DATAIN);
337 		} else {
338 			EE_CLR(RL_EE_DATAIN);
339 		}
340 		DELAY(100);
341 		EE_SET(RL_EE_CLK);
342 		DELAY(150);
343 		EE_CLR(RL_EE_CLK);
344 		DELAY(100);
345 	}
346 
347 	return;
348 }
349 
350 /*
351  * Read a word of data stored in the EEPROM at address 'addr.'
352  */
353 static void
354 re_eeprom_getword(sc, addr, dest)
355 	struct rl_softc		*sc;
356 	int			addr;
357 	u_int16_t		*dest;
358 {
359 	register int		i;
360 	u_int16_t		word = 0;
361 
362 	/*
363 	 * Send address of word we want to read.
364 	 */
365 	re_eeprom_putbyte(sc, addr);
366 
367 	/*
368 	 * Start reading bits from EEPROM.
369 	 */
370 	for (i = 0x8000; i; i >>= 1) {
371 		EE_SET(RL_EE_CLK);
372 		DELAY(100);
373 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
374 			word |= i;
375 		EE_CLR(RL_EE_CLK);
376 		DELAY(100);
377 	}
378 
379 	*dest = word;
380 
381 	return;
382 }
383 
384 /*
385  * Read a sequence of words from the EEPROM.
386  */
387 static void
388 re_read_eeprom(sc, dest, off, cnt)
389 	struct rl_softc		*sc;
390 	caddr_t			dest;
391 	int			off;
392 	int			cnt;
393 {
394 	int			i;
395 	u_int16_t		word = 0, *ptr;
396 
397 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
398 
399         DELAY(100);
400 
401 	for (i = 0; i < cnt; i++) {
402 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
403 		re_eeprom_getword(sc, off + i, &word);
404 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
405 		ptr = (u_int16_t *)(dest + (i * 2));
406                 *ptr = word;
407 	}
408 
409 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
410 
411 	return;
412 }
413 
414 static int
415 re_gmii_readreg(dev, phy, reg)
416 	device_t		dev;
417 	int			phy, reg;
418 {
419 	struct rl_softc		*sc;
420 	u_int32_t		rval;
421 	int			i;
422 
423 	if (phy != 1)
424 		return (0);
425 
426 	sc = device_get_softc(dev);
427 
428 	/* Let the rgephy driver read the GMEDIASTAT register */
429 
430 	if (reg == RL_GMEDIASTAT) {
431 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
432 		return (rval);
433 	}
434 
435 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
436 	DELAY(1000);
437 
438 	for (i = 0; i < RL_TIMEOUT; i++) {
439 		rval = CSR_READ_4(sc, RL_PHYAR);
440 		if (rval & RL_PHYAR_BUSY)
441 			break;
442 		DELAY(100);
443 	}
444 
445 	if (i == RL_TIMEOUT) {
446 		device_printf(sc->rl_dev, "PHY read failed\n");
447 		return (0);
448 	}
449 
450 	return (rval & RL_PHYAR_PHYDATA);
451 }
452 
453 static int
454 re_gmii_writereg(dev, phy, reg, data)
455 	device_t		dev;
456 	int			phy, reg, data;
457 {
458 	struct rl_softc		*sc;
459 	u_int32_t		rval;
460 	int			i;
461 
462 	sc = device_get_softc(dev);
463 
464 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
465 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
466 	DELAY(1000);
467 
468 	for (i = 0; i < RL_TIMEOUT; i++) {
469 		rval = CSR_READ_4(sc, RL_PHYAR);
470 		if (!(rval & RL_PHYAR_BUSY))
471 			break;
472 		DELAY(100);
473 	}
474 
475 	if (i == RL_TIMEOUT) {
476 		device_printf(sc->rl_dev, "PHY write failed\n");
477 		return (0);
478 	}
479 
480 	return (0);
481 }
482 
483 static int
484 re_miibus_readreg(dev, phy, reg)
485 	device_t		dev;
486 	int			phy, reg;
487 {
488 	struct rl_softc		*sc;
489 	u_int16_t		rval = 0;
490 	u_int16_t		re8139_reg = 0;
491 
492 	sc = device_get_softc(dev);
493 
494 	if (sc->rl_type == RL_8169) {
495 		rval = re_gmii_readreg(dev, phy, reg);
496 		return (rval);
497 	}
498 
499 	/* Pretend the internal PHY is only at address 0 */
500 	if (phy) {
501 		return (0);
502 	}
503 	switch (reg) {
504 	case MII_BMCR:
505 		re8139_reg = RL_BMCR;
506 		break;
507 	case MII_BMSR:
508 		re8139_reg = RL_BMSR;
509 		break;
510 	case MII_ANAR:
511 		re8139_reg = RL_ANAR;
512 		break;
513 	case MII_ANER:
514 		re8139_reg = RL_ANER;
515 		break;
516 	case MII_ANLPAR:
517 		re8139_reg = RL_LPAR;
518 		break;
519 	case MII_PHYIDR1:
520 	case MII_PHYIDR2:
521 		return (0);
522 	/*
523 	 * Allow the rlphy driver to read the media status
524 	 * register. If we have a link partner which does not
525 	 * support NWAY, this is the register which will tell
526 	 * us the results of parallel detection.
527 	 */
528 	case RL_MEDIASTAT:
529 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
530 		return (rval);
531 	default:
532 		device_printf(sc->rl_dev, "bad phy register\n");
533 		return (0);
534 	}
535 	rval = CSR_READ_2(sc, re8139_reg);
536 	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
537 		/* 8139C+ has different bit layout. */
538 		rval &= ~(BMCR_LOOP | BMCR_ISO);
539 	}
540 	return (rval);
541 }
542 
543 static int
544 re_miibus_writereg(dev, phy, reg, data)
545 	device_t		dev;
546 	int			phy, reg, data;
547 {
548 	struct rl_softc		*sc;
549 	u_int16_t		re8139_reg = 0;
550 	int			rval = 0;
551 
552 	sc = device_get_softc(dev);
553 
554 	if (sc->rl_type == RL_8169) {
555 		rval = re_gmii_writereg(dev, phy, reg, data);
556 		return (rval);
557 	}
558 
559 	/* Pretend the internal PHY is only at address 0 */
560 	if (phy)
561 		return (0);
562 
563 	switch (reg) {
564 	case MII_BMCR:
565 		re8139_reg = RL_BMCR;
566 		if (sc->rl_type == RL_8139CPLUS) {
567 			/* 8139C+ has different bit layout. */
568 			data &= ~(BMCR_LOOP | BMCR_ISO);
569 		}
570 		break;
571 	case MII_BMSR:
572 		re8139_reg = RL_BMSR;
573 		break;
574 	case MII_ANAR:
575 		re8139_reg = RL_ANAR;
576 		break;
577 	case MII_ANER:
578 		re8139_reg = RL_ANER;
579 		break;
580 	case MII_ANLPAR:
581 		re8139_reg = RL_LPAR;
582 		break;
583 	case MII_PHYIDR1:
584 	case MII_PHYIDR2:
585 		return (0);
586 		break;
587 	default:
588 		device_printf(sc->rl_dev, "bad phy register\n");
589 		return (0);
590 	}
591 	CSR_WRITE_2(sc, re8139_reg, data);
592 	return (0);
593 }
594 
595 static void
596 re_miibus_statchg(dev)
597 	device_t		dev;
598 {
599 
600 }
601 
602 /*
603  * Program the 64-bit multicast hash filter.
604  */
605 static void
606 re_setmulti(sc)
607 	struct rl_softc		*sc;
608 {
609 	struct ifnet		*ifp;
610 	int			h = 0;
611 	u_int32_t		hashes[2] = { 0, 0 };
612 	struct ifmultiaddr	*ifma;
613 	u_int32_t		rxfilt;
614 	int			mcnt = 0;
615 
616 	RL_LOCK_ASSERT(sc);
617 
618 	ifp = sc->rl_ifp;
619 
620 
621 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
622 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
623 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
624 		if (ifp->if_flags & IFF_PROMISC)
625 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
626 		/*
627 		 * Unlike other hardwares, we have to explicitly set
628 		 * RL_RXCFG_RX_MULTI to receive multicast frames in
629 		 * promiscuous mode.
630 		 */
631 		rxfilt |= RL_RXCFG_RX_MULTI;
632 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
633 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
634 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
635 		return;
636 	}
637 
638 	/* first, zot all the existing hash bits */
639 	CSR_WRITE_4(sc, RL_MAR0, 0);
640 	CSR_WRITE_4(sc, RL_MAR4, 0);
641 
642 	/* now program new ones */
643 	IF_ADDR_LOCK(ifp);
644 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
645 		if (ifma->ifma_addr->sa_family != AF_LINK)
646 			continue;
647 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
648 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
649 		if (h < 32)
650 			hashes[0] |= (1 << h);
651 		else
652 			hashes[1] |= (1 << (h - 32));
653 		mcnt++;
654 	}
655 	IF_ADDR_UNLOCK(ifp);
656 
657 	if (mcnt)
658 		rxfilt |= RL_RXCFG_RX_MULTI;
659 	else
660 		rxfilt &= ~RL_RXCFG_RX_MULTI;
661 
662 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
663 
664 	/*
665 	 * For some unfathomable reason, RealTek decided to reverse
666 	 * the order of the multicast hash registers in the PCI Express
667 	 * parts. This means we have to write the hash pattern in reverse
668 	 * order for those devices.
669 	 */
670 
671 	if ((sc->rl_flags & RL_FLAG_INVMAR) != 0) {
672 		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
673 		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
674 	} else {
675 		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
676 		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
677 	}
678 }
679 
680 static void
681 re_reset(sc)
682 	struct rl_softc		*sc;
683 {
684 	register int		i;
685 
686 	RL_LOCK_ASSERT(sc);
687 
688 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
689 
690 	for (i = 0; i < RL_TIMEOUT; i++) {
691 		DELAY(10);
692 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
693 			break;
694 	}
695 	if (i == RL_TIMEOUT)
696 		device_printf(sc->rl_dev, "reset never completed!\n");
697 
698 	CSR_WRITE_1(sc, 0x82, 1);
699 }
700 
701 #ifdef RE_DIAG
702 
703 /*
704  * The following routine is designed to test for a defect on some
705  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
706  * lines connected to the bus, however for a 32-bit only card, they
707  * should be pulled high. The result of this defect is that the
708  * NIC will not work right if you plug it into a 64-bit slot: DMA
709  * operations will be done with 64-bit transfers, which will fail
710  * because the 64-bit data lines aren't connected.
711  *
712  * There's no way to work around this (short of talking a soldering
713  * iron to the board), however we can detect it. The method we use
714  * here is to put the NIC into digital loopback mode, set the receiver
715  * to promiscuous mode, and then try to send a frame. We then compare
716  * the frame data we sent to what was received. If the data matches,
717  * then the NIC is working correctly, otherwise we know the user has
718  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
719  * slot. In the latter case, there's no way the NIC can work correctly,
720  * so we print out a message on the console and abort the device attach.
721  */
722 
723 static int
724 re_diag(sc)
725 	struct rl_softc		*sc;
726 {
727 	struct ifnet		*ifp = sc->rl_ifp;
728 	struct mbuf		*m0;
729 	struct ether_header	*eh;
730 	struct rl_desc		*cur_rx;
731 	u_int16_t		status;
732 	u_int32_t		rxstat;
733 	int			total_len, i, error = 0, phyaddr;
734 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
735 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
736 
737 	/* Allocate a single mbuf */
738 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
739 	if (m0 == NULL)
740 		return (ENOBUFS);
741 
742 	RL_LOCK(sc);
743 
744 	/*
745 	 * Initialize the NIC in test mode. This sets the chip up
746 	 * so that it can send and receive frames, but performs the
747 	 * following special functions:
748 	 * - Puts receiver in promiscuous mode
749 	 * - Enables digital loopback mode
750 	 * - Leaves interrupts turned off
751 	 */
752 
753 	ifp->if_flags |= IFF_PROMISC;
754 	sc->rl_testmode = 1;
755 	re_reset(sc);
756 	re_init_locked(sc);
757 	sc->rl_flags |= RL_FLAG_LINK;
758 	if (sc->rl_type == RL_8169)
759 		phyaddr = 1;
760 	else
761 		phyaddr = 0;
762 
763 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
764 	for (i = 0; i < RL_TIMEOUT; i++) {
765 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
766 		if (!(status & BMCR_RESET))
767 			break;
768 	}
769 
770 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
771 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
772 
773 	DELAY(100000);
774 
775 	/* Put some data in the mbuf */
776 
777 	eh = mtod(m0, struct ether_header *);
778 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
779 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
780 	eh->ether_type = htons(ETHERTYPE_IP);
781 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
782 
783 	/*
784 	 * Queue the packet, start transmission.
785 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
786 	 */
787 
788 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
789 	RL_UNLOCK(sc);
790 	/* XXX: re_diag must not be called when in ALTQ mode */
791 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
792 	RL_LOCK(sc);
793 	m0 = NULL;
794 
795 	/* Wait for it to propagate through the chip */
796 
797 	DELAY(100000);
798 	for (i = 0; i < RL_TIMEOUT; i++) {
799 		status = CSR_READ_2(sc, RL_ISR);
800 		CSR_WRITE_2(sc, RL_ISR, status);
801 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
802 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
803 			break;
804 		DELAY(10);
805 	}
806 
807 	if (i == RL_TIMEOUT) {
808 		device_printf(sc->rl_dev,
809 		    "diagnostic failed, failed to receive packet in"
810 		    " loopback mode\n");
811 		error = EIO;
812 		goto done;
813 	}
814 
815 	/*
816 	 * The packet should have been dumped into the first
817 	 * entry in the RX DMA ring. Grab it from there.
818 	 */
819 
820 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
821 	    sc->rl_ldata.rl_rx_list_map,
822 	    BUS_DMASYNC_POSTREAD);
823 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
824 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
825 	    BUS_DMASYNC_POSTREAD);
826 	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
827 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
828 
829 	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
830 	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
831 	eh = mtod(m0, struct ether_header *);
832 
833 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
834 	total_len = RL_RXBYTES(cur_rx);
835 	rxstat = le32toh(cur_rx->rl_cmdstat);
836 
837 	if (total_len != ETHER_MIN_LEN) {
838 		device_printf(sc->rl_dev,
839 		    "diagnostic failed, received short packet\n");
840 		error = EIO;
841 		goto done;
842 	}
843 
844 	/* Test that the received packet data matches what we sent. */
845 
846 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
847 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
848 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
849 		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
850 		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
851 		    dst, ":", src, ":", ETHERTYPE_IP);
852 		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
853 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
854 		    ntohs(eh->ether_type));
855 		device_printf(sc->rl_dev, "You may have a defective 32-bit "
856 		    "NIC plugged into a 64-bit PCI slot.\n");
857 		device_printf(sc->rl_dev, "Please re-install the NIC in a "
858 		    "32-bit slot for proper operation.\n");
859 		device_printf(sc->rl_dev, "Read the re(4) man page for more "
860 		    "details.\n");
861 		error = EIO;
862 	}
863 
864 done:
865 	/* Turn interface off, release resources */
866 
867 	sc->rl_testmode = 0;
868 	sc->rl_flags &= ~RL_FLAG_LINK;
869 	ifp->if_flags &= ~IFF_PROMISC;
870 	re_stop(sc);
871 	if (m0 != NULL)
872 		m_freem(m0);
873 
874 	RL_UNLOCK(sc);
875 
876 	return (error);
877 }
878 
879 #endif
880 
881 /*
882  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
883  * IDs against our list and return a device name if we find a match.
884  */
885 static int
886 re_probe(dev)
887 	device_t		dev;
888 {
889 	struct rl_type		*t;
890 	uint16_t		devid, vendor;
891 	uint16_t		revid, sdevid;
892 	int			i;
893 
894 	vendor = pci_get_vendor(dev);
895 	devid = pci_get_device(dev);
896 	revid = pci_get_revid(dev);
897 	sdevid = pci_get_subdevice(dev);
898 
899 	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
900 		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
901 			/*
902 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
903 			 * Rev. 2 is supported by sk(4).
904 			 */
905 			return (ENXIO);
906 		}
907 	}
908 
909 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
910 		if (revid != 0x20) {
911 			/* 8139, let rl(4) take care of this device. */
912 			return (ENXIO);
913 		}
914 	}
915 
916 	t = re_devs;
917 	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
918 		if (vendor == t->rl_vid && devid == t->rl_did) {
919 			device_set_desc(dev, t->rl_name);
920 			return (BUS_PROBE_DEFAULT);
921 		}
922 	}
923 
924 	return (ENXIO);
925 }
926 
927 /*
928  * Map a single buffer address.
929  */
930 
931 static void
932 re_dma_map_addr(arg, segs, nseg, error)
933 	void			*arg;
934 	bus_dma_segment_t	*segs;
935 	int			nseg;
936 	int			error;
937 {
938 	bus_addr_t		*addr;
939 
940 	if (error)
941 		return;
942 
943 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
944 	addr = arg;
945 	*addr = segs->ds_addr;
946 }
947 
948 static int
949 re_allocmem(dev, sc)
950 	device_t		dev;
951 	struct rl_softc		*sc;
952 {
953 	bus_size_t		rx_list_size, tx_list_size;
954 	int			error;
955 	int			i;
956 
957 	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
958 	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
959 
960 	/*
961 	 * Allocate the parent bus DMA tag appropriate for PCI.
962 	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
963 	 * register should be set. However some RealTek chips are known
964 	 * to be buggy on DAC handling, therefore disable DAC by limiting
965 	 * DMA address space to 32bit. PCIe variants of RealTek chips
966 	 * may not have the limitation but I took safer path.
967 	 */
968 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
969 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
970 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
971 	    NULL, NULL, &sc->rl_parent_tag);
972 	if (error) {
973 		device_printf(dev, "could not allocate parent DMA tag\n");
974 		return (error);
975 	}
976 
977 	/*
978 	 * Allocate map for TX mbufs.
979 	 */
980 	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
981 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
982 	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
983 	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
984 	if (error) {
985 		device_printf(dev, "could not allocate TX DMA tag\n");
986 		return (error);
987 	}
988 
989 	/*
990 	 * Allocate map for RX mbufs.
991 	 */
992 
993 	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
994 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
995 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
996 	if (error) {
997 		device_printf(dev, "could not allocate RX DMA tag\n");
998 		return (error);
999 	}
1000 
1001 	/*
1002 	 * Allocate map for TX descriptor list.
1003 	 */
1004 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1005 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1006 	    NULL, tx_list_size, 1, tx_list_size, 0,
1007 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1008 	if (error) {
1009 		device_printf(dev, "could not allocate TX DMA ring tag\n");
1010 		return (error);
1011 	}
1012 
1013 	/* Allocate DMA'able memory for the TX ring */
1014 
1015 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1016 	    (void **)&sc->rl_ldata.rl_tx_list,
1017 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1018 	    &sc->rl_ldata.rl_tx_list_map);
1019 	if (error) {
1020 		device_printf(dev, "could not allocate TX DMA ring\n");
1021 		return (error);
1022 	}
1023 
1024 	/* Load the map for the TX ring. */
1025 
1026 	sc->rl_ldata.rl_tx_list_addr = 0;
1027 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1028 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1029 	     tx_list_size, re_dma_map_addr,
1030 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1031 	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1032 		device_printf(dev, "could not load TX DMA ring\n");
1033 		return (ENOMEM);
1034 	}
1035 
1036 	/* Create DMA maps for TX buffers */
1037 
1038 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1039 		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1040 		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1041 		if (error) {
1042 			device_printf(dev, "could not create DMA map for TX\n");
1043 			return (error);
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * Allocate map for RX descriptor list.
1049 	 */
1050 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1051 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1052 	    NULL, rx_list_size, 1, rx_list_size, 0,
1053 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1054 	if (error) {
1055 		device_printf(dev, "could not create RX DMA ring tag\n");
1056 		return (error);
1057 	}
1058 
1059 	/* Allocate DMA'able memory for the RX ring */
1060 
1061 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1062 	    (void **)&sc->rl_ldata.rl_rx_list,
1063 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1064 	    &sc->rl_ldata.rl_rx_list_map);
1065 	if (error) {
1066 		device_printf(dev, "could not allocate RX DMA ring\n");
1067 		return (error);
1068 	}
1069 
1070 	/* Load the map for the RX ring. */
1071 
1072 	sc->rl_ldata.rl_rx_list_addr = 0;
1073 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1074 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1075 	     rx_list_size, re_dma_map_addr,
1076 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1077 	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1078 		device_printf(dev, "could not load RX DMA ring\n");
1079 		return (ENOMEM);
1080 	}
1081 
1082 	/* Create DMA maps for RX buffers */
1083 
1084 	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1085 	    &sc->rl_ldata.rl_rx_sparemap);
1086 	if (error) {
1087 		device_printf(dev, "could not create spare DMA map for RX\n");
1088 		return (error);
1089 	}
1090 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1091 		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1092 		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1093 		if (error) {
1094 			device_printf(dev, "could not create DMA map for RX\n");
1095 			return (error);
1096 		}
1097 	}
1098 
1099 	return (0);
1100 }
1101 
1102 /*
1103  * Attach the interface. Allocate softc structures, do ifmedia
1104  * setup and ethernet/BPF attach.
1105  */
1106 static int
1107 re_attach(dev)
1108 	device_t		dev;
1109 {
1110 	u_char			eaddr[ETHER_ADDR_LEN];
1111 	u_int16_t		as[ETHER_ADDR_LEN / 2];
1112 	struct rl_softc		*sc;
1113 	struct ifnet		*ifp;
1114 	struct rl_hwrev		*hw_rev;
1115 	int			hwrev;
1116 	u_int16_t		devid, re_did = 0;
1117 	int			error = 0, rid, i;
1118 	int			msic, reg;
1119 	uint8_t			cfg;
1120 
1121 	sc = device_get_softc(dev);
1122 	sc->rl_dev = dev;
1123 
1124 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1125 	    MTX_DEF);
1126 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1127 
1128 	/*
1129 	 * Map control/status registers.
1130 	 */
1131 	pci_enable_busmaster(dev);
1132 
1133 	devid = pci_get_device(dev);
1134 	/* Prefer memory space register mapping over IO space. */
1135 	sc->rl_res_id = PCIR_BAR(1);
1136 	sc->rl_res_type = SYS_RES_MEMORY;
1137 	/* RTL8168/8101E seems to use different BARs. */
1138 	if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1139 		sc->rl_res_id = PCIR_BAR(2);
1140 	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1141 	    &sc->rl_res_id, RF_ACTIVE);
1142 
1143 	if (sc->rl_res == NULL) {
1144 		sc->rl_res_id = PCIR_BAR(0);
1145 		sc->rl_res_type = SYS_RES_IOPORT;
1146 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1147 		    &sc->rl_res_id, RF_ACTIVE);
1148 		if (sc->rl_res == NULL) {
1149 			device_printf(dev, "couldn't map ports/memory\n");
1150 			error = ENXIO;
1151 			goto fail;
1152 		}
1153 	}
1154 
1155 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1156 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1157 
1158 	msic = 0;
1159 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1160 		msic = pci_msi_count(dev);
1161 		if (bootverbose)
1162 			device_printf(dev, "MSI count : %d\n", msic);
1163 	}
1164 	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1165 		if (pci_alloc_msi(dev, &msic) == 0) {
1166 			if (msic == RL_MSI_MESSAGES) {
1167 				device_printf(dev, "Using %d MSI messages\n",
1168 				    msic);
1169 				sc->rl_flags |= RL_FLAG_MSI;
1170 				/* Explicitly set MSI enable bit. */
1171 				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1172 				cfg = CSR_READ_1(sc, RL_CFG2);
1173 				cfg |= RL_CFG2_MSI;
1174 				CSR_WRITE_1(sc, RL_CFG2, cfg);
1175 				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1176 			} else
1177 				pci_release_msi(dev);
1178 		}
1179 	}
1180 
1181 	/* Allocate interrupt */
1182 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1183 		rid = 0;
1184 		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1185 		    RF_SHAREABLE | RF_ACTIVE);
1186 		if (sc->rl_irq[0] == NULL) {
1187 			device_printf(dev, "couldn't allocate IRQ resources\n");
1188 			error = ENXIO;
1189 			goto fail;
1190 		}
1191 	} else {
1192 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1193 			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1194 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1195 			if (sc->rl_irq[i] == NULL) {
1196 				device_printf(dev,
1197 				    "couldn't llocate IRQ resources for "
1198 				    "message %d\n", rid);
1199 				error = ENXIO;
1200 				goto fail;
1201 			}
1202 		}
1203 	}
1204 
1205 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1206 		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1207 		cfg = CSR_READ_1(sc, RL_CFG2);
1208 		if ((cfg & RL_CFG2_MSI) != 0) {
1209 			device_printf(dev, "turning off MSI enable bit.\n");
1210 			cfg &= ~RL_CFG2_MSI;
1211 			CSR_WRITE_1(sc, RL_CFG2, cfg);
1212 		}
1213 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1214 	}
1215 
1216 	/* Reset the adapter. */
1217 	RL_LOCK(sc);
1218 	re_reset(sc);
1219 	RL_UNLOCK(sc);
1220 
1221 	hw_rev = re_hwrevs;
1222 	hwrev = CSR_READ_4(sc, RL_TXCFG);
1223 	device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1224 	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1225 	hwrev &= RL_TXCFG_HWREV;
1226 	while (hw_rev->rl_desc != NULL) {
1227 		if (hw_rev->rl_rev == hwrev) {
1228 			sc->rl_type = hw_rev->rl_type;
1229 			break;
1230 		}
1231 		hw_rev++;
1232 	}
1233 	if (hw_rev->rl_desc == NULL) {
1234 		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1235 		error = ENXIO;
1236 		goto fail;
1237 	}
1238 
1239 	switch (hw_rev->rl_rev) {
1240 	case RL_HWREV_8139CPLUS:
1241 		sc->rl_flags |= RL_FLAG_NOJUMBO;
1242 		break;
1243 	case RL_HWREV_8100E:
1244 	case RL_HWREV_8101E:
1245 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1246 		    RL_FLAG_PHYWAKE;
1247 		break;
1248 	case RL_HWREV_8102E:
1249 	case RL_HWREV_8102EL:
1250 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1251 		    RL_FLAG_PHYWAKE | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT;
1252 		break;
1253 	case RL_HWREV_8168_SPIN1:
1254 	case RL_HWREV_8168_SPIN2:
1255 	case RL_HWREV_8168_SPIN3:
1256 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1257 		    RL_FLAG_MACSTAT;
1258 		break;
1259 	case RL_HWREV_8168C:
1260 	case RL_HWREV_8168C_SPIN2:
1261 	case RL_HWREV_8168CP:
1262 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1263 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT;
1264 		/*
1265 		 * These controllers support jumbo frame but it seems
1266 		 * that enabling it requires touching additional magic
1267 		 * registers. Depending on MAC revisions some
1268 		 * controllers need to disable checksum offload. So
1269 		 * disable jumbo frame until I have better idea what
1270 		 * it really requires to make it support.
1271 		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1272 		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1273 		 */
1274 		sc->rl_flags |= RL_FLAG_NOJUMBO;
1275 		break;
1276 	case RL_HWREV_8169_8110SB:
1277 	case RL_HWREV_8169_8110SC:
1278 	case RL_HWREV_8169_8110SBL:
1279 		sc->rl_flags |= RL_FLAG_PHYWAKE;
1280 		break;
1281 	default:
1282 		break;
1283 	}
1284 
1285 	/* Enable PME. */
1286 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1287 	cfg = CSR_READ_1(sc, RL_CFG1);
1288 	cfg |= RL_CFG1_PME;
1289 	CSR_WRITE_1(sc, RL_CFG1, cfg);
1290 	cfg = CSR_READ_1(sc, RL_CFG5);
1291 	cfg &= RL_CFG5_PME_STS;
1292 	CSR_WRITE_1(sc, RL_CFG5, cfg);
1293 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1294 
1295 	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1296 		/*
1297 		 * XXX Should have a better way to extract station
1298 		 * address from EEPROM.
1299 		 */
1300 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1301 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1302 	} else {
1303 		sc->rl_eewidth = RL_9356_ADDR_LEN;
1304 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1305 		if (re_did != 0x8129)
1306 			sc->rl_eewidth = RL_9346_ADDR_LEN;
1307 
1308 		/*
1309 		 * Get station address from the EEPROM.
1310 		 */
1311 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1312 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1313 			as[i] = le16toh(as[i]);
1314 		bcopy(as, eaddr, sizeof(eaddr));
1315 	}
1316 
1317 	if (sc->rl_type == RL_8169) {
1318 		/* Set RX length mask and number of descriptors. */
1319 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1320 		sc->rl_txstart = RL_GTXSTART;
1321 		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1322 		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1323 	} else {
1324 		/* Set RX length mask and number of descriptors. */
1325 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1326 		sc->rl_txstart = RL_TXSTART;
1327 		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1328 		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1329 	}
1330 
1331 	error = re_allocmem(dev, sc);
1332 	if (error)
1333 		goto fail;
1334 
1335 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1336 	if (ifp == NULL) {
1337 		device_printf(dev, "can not if_alloc()\n");
1338 		error = ENOSPC;
1339 		goto fail;
1340 	}
1341 
1342 	/* Take PHY out of power down mode. */
1343 	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1344 		re_gmii_writereg(dev, 1, 0x1f, 0);
1345 		re_gmii_writereg(dev, 1, 0x0e, 0);
1346 	}
1347 
1348 	/* Do MII setup */
1349 	if (mii_phy_probe(dev, &sc->rl_miibus,
1350 	    re_ifmedia_upd, re_ifmedia_sts)) {
1351 		device_printf(dev, "MII without any phy!\n");
1352 		error = ENXIO;
1353 		goto fail;
1354 	}
1355 
1356 	ifp->if_softc = sc;
1357 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1358 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1359 	ifp->if_ioctl = re_ioctl;
1360 	ifp->if_start = re_start;
1361 	ifp->if_hwassist = RE_CSUM_FEATURES;
1362 	ifp->if_capabilities = IFCAP_HWCSUM;
1363 	ifp->if_capenable = ifp->if_capabilities;
1364 	ifp->if_init = re_init;
1365 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1366 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1367 	IFQ_SET_READY(&ifp->if_snd);
1368 
1369 	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1370 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1371 
1372 	/*
1373 	 * XXX
1374 	 * Still have no idea how to make TSO work on 8168C, 8168CP,
1375 	 * 8111C and 8111CP.
1376 	 */
1377 	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1378 		ifp->if_hwassist |= CSUM_TSO;
1379 		ifp->if_capabilities |= IFCAP_TSO4;
1380 	}
1381 
1382 	/*
1383 	 * Call MI attach routine.
1384 	 */
1385 	ether_ifattach(ifp, eaddr);
1386 
1387 	/* VLAN capability setup */
1388 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1389 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1390 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1391 	/* Enable WOL if PM is supported. */
1392 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1393 		ifp->if_capabilities |= IFCAP_WOL;
1394 	ifp->if_capenable = ifp->if_capabilities;
1395 #ifdef DEVICE_POLLING
1396 	ifp->if_capabilities |= IFCAP_POLLING;
1397 #endif
1398 	/*
1399 	 * Tell the upper layer(s) we support long frames.
1400 	 * Must appear after the call to ether_ifattach() because
1401 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1402 	 */
1403 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1404 
1405 #ifdef RE_DIAG
1406 	/*
1407 	 * Perform hardware diagnostic on the original RTL8169.
1408 	 * Some 32-bit cards were incorrectly wired and would
1409 	 * malfunction if plugged into a 64-bit slot.
1410 	 */
1411 
1412 	if (hwrev == RL_HWREV_8169) {
1413 		error = re_diag(sc);
1414 		if (error) {
1415 			device_printf(dev,
1416 		    	"attach aborted due to hardware diag failure\n");
1417 			ether_ifdetach(ifp);
1418 			goto fail;
1419 		}
1420 	}
1421 #endif
1422 
1423 	/* Hook interrupt last to avoid having to lock softc */
1424 	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1425 		error = bus_setup_intr(dev, sc->rl_irq[0],
1426 		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1427 		    &sc->rl_intrhand[0]);
1428 	else {
1429 		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1430 			error = bus_setup_intr(dev, sc->rl_irq[i],
1431 			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1432 		    	    &sc->rl_intrhand[i]);
1433 			if (error != 0)
1434 				break;
1435 		}
1436 	}
1437 	if (error) {
1438 		device_printf(dev, "couldn't set up irq\n");
1439 		ether_ifdetach(ifp);
1440 	}
1441 
1442 fail:
1443 
1444 	if (error)
1445 		re_detach(dev);
1446 
1447 	return (error);
1448 }
1449 
1450 /*
1451  * Shutdown hardware and free up resources. This can be called any
1452  * time after the mutex has been initialized. It is called in both
1453  * the error case in attach and the normal detach case so it needs
1454  * to be careful about only freeing resources that have actually been
1455  * allocated.
1456  */
1457 static int
1458 re_detach(dev)
1459 	device_t		dev;
1460 {
1461 	struct rl_softc		*sc;
1462 	struct ifnet		*ifp;
1463 	int			i, rid;
1464 
1465 	sc = device_get_softc(dev);
1466 	ifp = sc->rl_ifp;
1467 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1468 
1469 	/* These should only be active if attach succeeded */
1470 	if (device_is_attached(dev)) {
1471 #ifdef DEVICE_POLLING
1472 		if (ifp->if_capenable & IFCAP_POLLING)
1473 			ether_poll_deregister(ifp);
1474 #endif
1475 		RL_LOCK(sc);
1476 #if 0
1477 		sc->suspended = 1;
1478 #endif
1479 		re_stop(sc);
1480 		RL_UNLOCK(sc);
1481 		callout_drain(&sc->rl_stat_callout);
1482 		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1483 		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1484 		/*
1485 		 * Force off the IFF_UP flag here, in case someone
1486 		 * still had a BPF descriptor attached to this
1487 		 * interface. If they do, ether_ifdetach() will cause
1488 		 * the BPF code to try and clear the promisc mode
1489 		 * flag, which will bubble down to re_ioctl(),
1490 		 * which will try to call re_init() again. This will
1491 		 * turn the NIC back on and restart the MII ticker,
1492 		 * which will panic the system when the kernel tries
1493 		 * to invoke the re_tick() function that isn't there
1494 		 * anymore.
1495 		 */
1496 		ifp->if_flags &= ~IFF_UP;
1497 		ether_ifdetach(ifp);
1498 	}
1499 	if (sc->rl_miibus)
1500 		device_delete_child(dev, sc->rl_miibus);
1501 	bus_generic_detach(dev);
1502 
1503 	/*
1504 	 * The rest is resource deallocation, so we should already be
1505 	 * stopped here.
1506 	 */
1507 
1508 	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1509 		if (sc->rl_intrhand[i] != NULL) {
1510 			bus_teardown_intr(dev, sc->rl_irq[i],
1511 			    sc->rl_intrhand[i]);
1512 			sc->rl_intrhand[i] = NULL;
1513 		}
1514 	}
1515 	if (ifp != NULL)
1516 		if_free(ifp);
1517 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1518 		if (sc->rl_irq[0] != NULL) {
1519 			bus_release_resource(dev, SYS_RES_IRQ, 0,
1520 			    sc->rl_irq[0]);
1521 			sc->rl_irq[0] = NULL;
1522 		}
1523 	} else {
1524 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1525 			if (sc->rl_irq[i] != NULL) {
1526 				bus_release_resource(dev, SYS_RES_IRQ, rid,
1527 				    sc->rl_irq[i]);
1528 				sc->rl_irq[i] = NULL;
1529 			}
1530 		}
1531 		pci_release_msi(dev);
1532 	}
1533 	if (sc->rl_res)
1534 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1535 		    sc->rl_res);
1536 
1537 	/* Unload and free the RX DMA ring memory and map */
1538 
1539 	if (sc->rl_ldata.rl_rx_list_tag) {
1540 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1541 		    sc->rl_ldata.rl_rx_list_map);
1542 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1543 		    sc->rl_ldata.rl_rx_list,
1544 		    sc->rl_ldata.rl_rx_list_map);
1545 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1546 	}
1547 
1548 	/* Unload and free the TX DMA ring memory and map */
1549 
1550 	if (sc->rl_ldata.rl_tx_list_tag) {
1551 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1552 		    sc->rl_ldata.rl_tx_list_map);
1553 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1554 		    sc->rl_ldata.rl_tx_list,
1555 		    sc->rl_ldata.rl_tx_list_map);
1556 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1557 	}
1558 
1559 	/* Destroy all the RX and TX buffer maps */
1560 
1561 	if (sc->rl_ldata.rl_tx_mtag) {
1562 		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1563 			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1564 			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1565 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1566 	}
1567 	if (sc->rl_ldata.rl_rx_mtag) {
1568 		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1569 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1570 			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1571 		if (sc->rl_ldata.rl_rx_sparemap)
1572 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1573 			    sc->rl_ldata.rl_rx_sparemap);
1574 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1575 	}
1576 
1577 	/* Unload and free the stats buffer and map */
1578 
1579 	if (sc->rl_ldata.rl_stag) {
1580 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1581 		    sc->rl_ldata.rl_rx_list_map);
1582 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1583 		    sc->rl_ldata.rl_stats,
1584 		    sc->rl_ldata.rl_smap);
1585 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1586 	}
1587 
1588 	if (sc->rl_parent_tag)
1589 		bus_dma_tag_destroy(sc->rl_parent_tag);
1590 
1591 	mtx_destroy(&sc->rl_mtx);
1592 
1593 	return (0);
1594 }
1595 
1596 static __inline void
1597 re_discard_rxbuf(sc, idx)
1598 	struct rl_softc		*sc;
1599 	int			idx;
1600 {
1601 	struct rl_desc		*desc;
1602 	struct rl_rxdesc	*rxd;
1603 	uint32_t		cmdstat;
1604 
1605 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1606 	desc = &sc->rl_ldata.rl_rx_list[idx];
1607 	desc->rl_vlanctl = 0;
1608 	cmdstat = rxd->rx_size;
1609 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1610 		cmdstat |= RL_RDESC_CMD_EOR;
1611 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1612 }
1613 
1614 static int
1615 re_newbuf(sc, idx)
1616 	struct rl_softc		*sc;
1617 	int			idx;
1618 {
1619 	struct mbuf		*m;
1620 	struct rl_rxdesc	*rxd;
1621 	bus_dma_segment_t	segs[1];
1622 	bus_dmamap_t		map;
1623 	struct rl_desc		*desc;
1624 	uint32_t		cmdstat;
1625 	int			error, nsegs;
1626 
1627 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1628 	if (m == NULL)
1629 		return (ENOBUFS);
1630 
1631 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1632 #ifdef RE_FIXUP_RX
1633 	/*
1634 	 * This is part of an evil trick to deal with non-x86 platforms.
1635 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1636 	 * boundaries, but that will hose non-x86 machines. To get around
1637 	 * this, we leave some empty space at the start of each buffer
1638 	 * and for non-x86 hosts, we copy the buffer back six bytes
1639 	 * to achieve word alignment. This is slightly more efficient
1640 	 * than allocating a new buffer, copying the contents, and
1641 	 * discarding the old buffer.
1642 	 */
1643 	m_adj(m, RE_ETHER_ALIGN);
1644 #endif
1645 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1646 	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1647 	if (error != 0) {
1648 		m_freem(m);
1649 		return (ENOBUFS);
1650 	}
1651 	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1652 
1653 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1654 	if (rxd->rx_m != NULL) {
1655 		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1656 		    BUS_DMASYNC_POSTREAD);
1657 		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1658 	}
1659 
1660 	rxd->rx_m = m;
1661 	map = rxd->rx_dmamap;
1662 	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1663 	rxd->rx_size = segs[0].ds_len;
1664 	sc->rl_ldata.rl_rx_sparemap = map;
1665 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1666 	    BUS_DMASYNC_PREREAD);
1667 
1668 	desc = &sc->rl_ldata.rl_rx_list[idx];
1669 	desc->rl_vlanctl = 0;
1670 	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1671 	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1672 	cmdstat = segs[0].ds_len;
1673 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1674 		cmdstat |= RL_RDESC_CMD_EOR;
1675 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1676 
1677 	return (0);
1678 }
1679 
1680 #ifdef RE_FIXUP_RX
1681 static __inline void
1682 re_fixup_rx(m)
1683 	struct mbuf		*m;
1684 {
1685 	int                     i;
1686 	uint16_t                *src, *dst;
1687 
1688 	src = mtod(m, uint16_t *);
1689 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1690 
1691 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1692 		*dst++ = *src++;
1693 
1694 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1695 
1696 	return;
1697 }
1698 #endif
1699 
1700 static int
1701 re_tx_list_init(sc)
1702 	struct rl_softc		*sc;
1703 {
1704 	struct rl_desc		*desc;
1705 	int			i;
1706 
1707 	RL_LOCK_ASSERT(sc);
1708 
1709 	bzero(sc->rl_ldata.rl_tx_list,
1710 	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1711 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1712 		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1713 	/* Set EOR. */
1714 	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1715 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1716 
1717 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1718 	    sc->rl_ldata.rl_tx_list_map,
1719 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1720 
1721 	sc->rl_ldata.rl_tx_prodidx = 0;
1722 	sc->rl_ldata.rl_tx_considx = 0;
1723 	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1724 
1725 	return (0);
1726 }
1727 
1728 static int
1729 re_rx_list_init(sc)
1730 	struct rl_softc		*sc;
1731 {
1732 	int			error, i;
1733 
1734 	bzero(sc->rl_ldata.rl_rx_list,
1735 	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1736 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1737 		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1738 		if ((error = re_newbuf(sc, i)) != 0)
1739 			return (error);
1740 	}
1741 
1742 	/* Flush the RX descriptors */
1743 
1744 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1745 	    sc->rl_ldata.rl_rx_list_map,
1746 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1747 
1748 	sc->rl_ldata.rl_rx_prodidx = 0;
1749 	sc->rl_head = sc->rl_tail = NULL;
1750 
1751 	return (0);
1752 }
1753 
1754 /*
1755  * RX handler for C+ and 8169. For the gigE chips, we support
1756  * the reception of jumbo frames that have been fragmented
1757  * across multiple 2K mbuf cluster buffers.
1758  */
1759 static int
1760 re_rxeof(sc)
1761 	struct rl_softc		*sc;
1762 {
1763 	struct mbuf		*m;
1764 	struct ifnet		*ifp;
1765 	int			i, total_len;
1766 	struct rl_desc		*cur_rx;
1767 	u_int32_t		rxstat, rxvlan;
1768 	int			maxpkt = 16;
1769 
1770 	RL_LOCK_ASSERT(sc);
1771 
1772 	ifp = sc->rl_ifp;
1773 
1774 	/* Invalidate the descriptor memory */
1775 
1776 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1777 	    sc->rl_ldata.rl_rx_list_map,
1778 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1779 
1780 	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1781 	    i = RL_RX_DESC_NXT(sc, i)) {
1782 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1783 		rxstat = le32toh(cur_rx->rl_cmdstat);
1784 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1785 			break;
1786 		total_len = rxstat & sc->rl_rxlenmask;
1787 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1788 		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1789 
1790 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1791 			if (re_newbuf(sc, i) != 0) {
1792 				/*
1793 				 * If this is part of a multi-fragment packet,
1794 				 * discard all the pieces.
1795 				 */
1796 				if (sc->rl_head != NULL) {
1797 					m_freem(sc->rl_head);
1798 					sc->rl_head = sc->rl_tail = NULL;
1799 				}
1800 				re_discard_rxbuf(sc, i);
1801 				continue;
1802 			}
1803 			m->m_len = RE_RX_DESC_BUFLEN;
1804 			if (sc->rl_head == NULL)
1805 				sc->rl_head = sc->rl_tail = m;
1806 			else {
1807 				m->m_flags &= ~M_PKTHDR;
1808 				sc->rl_tail->m_next = m;
1809 				sc->rl_tail = m;
1810 			}
1811 			continue;
1812 		}
1813 
1814 		/*
1815 		 * NOTE: for the 8139C+, the frame length field
1816 		 * is always 12 bits in size, but for the gigE chips,
1817 		 * it is 13 bits (since the max RX frame length is 16K).
1818 		 * Unfortunately, all 32 bits in the status word
1819 		 * were already used, so to make room for the extra
1820 		 * length bit, RealTek took out the 'frame alignment
1821 		 * error' bit and shifted the other status bits
1822 		 * over one slot. The OWN, EOR, FS and LS bits are
1823 		 * still in the same places. We have already extracted
1824 		 * the frame length and checked the OWN bit, so rather
1825 		 * than using an alternate bit mapping, we shift the
1826 		 * status bits one space to the right so we can evaluate
1827 		 * them using the 8169 status as though it was in the
1828 		 * same format as that of the 8139C+.
1829 		 */
1830 		if (sc->rl_type == RL_8169)
1831 			rxstat >>= 1;
1832 
1833 		/*
1834 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1835 		 * set, but if CRC is clear, it will still be a valid frame.
1836 		 */
1837 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1838 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1839 			ifp->if_ierrors++;
1840 			/*
1841 			 * If this is part of a multi-fragment packet,
1842 			 * discard all the pieces.
1843 			 */
1844 			if (sc->rl_head != NULL) {
1845 				m_freem(sc->rl_head);
1846 				sc->rl_head = sc->rl_tail = NULL;
1847 			}
1848 			re_discard_rxbuf(sc, i);
1849 			continue;
1850 		}
1851 
1852 		/*
1853 		 * If allocating a replacement mbuf fails,
1854 		 * reload the current one.
1855 		 */
1856 
1857 		if (re_newbuf(sc, i) != 0) {
1858 			ifp->if_iqdrops++;
1859 			if (sc->rl_head != NULL) {
1860 				m_freem(sc->rl_head);
1861 				sc->rl_head = sc->rl_tail = NULL;
1862 			}
1863 			re_discard_rxbuf(sc, i);
1864 			continue;
1865 		}
1866 
1867 		if (sc->rl_head != NULL) {
1868 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1869 			if (m->m_len == 0)
1870 				m->m_len = RE_RX_DESC_BUFLEN;
1871 			/*
1872 			 * Special case: if there's 4 bytes or less
1873 			 * in this buffer, the mbuf can be discarded:
1874 			 * the last 4 bytes is the CRC, which we don't
1875 			 * care about anyway.
1876 			 */
1877 			if (m->m_len <= ETHER_CRC_LEN) {
1878 				sc->rl_tail->m_len -=
1879 				    (ETHER_CRC_LEN - m->m_len);
1880 				m_freem(m);
1881 			} else {
1882 				m->m_len -= ETHER_CRC_LEN;
1883 				m->m_flags &= ~M_PKTHDR;
1884 				sc->rl_tail->m_next = m;
1885 			}
1886 			m = sc->rl_head;
1887 			sc->rl_head = sc->rl_tail = NULL;
1888 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1889 		} else
1890 			m->m_pkthdr.len = m->m_len =
1891 			    (total_len - ETHER_CRC_LEN);
1892 
1893 #ifdef RE_FIXUP_RX
1894 		re_fixup_rx(m);
1895 #endif
1896 		ifp->if_ipackets++;
1897 		m->m_pkthdr.rcvif = ifp;
1898 
1899 		/* Do RX checksumming if enabled */
1900 
1901 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1902 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1903 				/* Check IP header checksum */
1904 				if (rxstat & RL_RDESC_STAT_PROTOID)
1905 					m->m_pkthdr.csum_flags |=
1906 					    CSUM_IP_CHECKED;
1907 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1908 					m->m_pkthdr.csum_flags |=
1909 					    CSUM_IP_VALID;
1910 
1911 				/* Check TCP/UDP checksum */
1912 				if ((RL_TCPPKT(rxstat) &&
1913 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1914 				    (RL_UDPPKT(rxstat) &&
1915 				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1916 					m->m_pkthdr.csum_flags |=
1917 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1918 					m->m_pkthdr.csum_data = 0xffff;
1919 				}
1920 			} else {
1921 				/*
1922 				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
1923 				 */
1924 				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1925 				    (rxvlan & RL_RDESC_IPV4))
1926 					m->m_pkthdr.csum_flags |=
1927 					    CSUM_IP_CHECKED;
1928 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
1929 				    (rxvlan & RL_RDESC_IPV4))
1930 					m->m_pkthdr.csum_flags |=
1931 					    CSUM_IP_VALID;
1932 				if (((rxstat & RL_RDESC_STAT_TCP) &&
1933 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1934 				    ((rxstat & RL_RDESC_STAT_UDP) &&
1935 				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1936 					m->m_pkthdr.csum_flags |=
1937 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1938 					m->m_pkthdr.csum_data = 0xffff;
1939 				}
1940 			}
1941 		}
1942 		maxpkt--;
1943 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1944 			m->m_pkthdr.ether_vtag =
1945 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1946 			m->m_flags |= M_VLANTAG;
1947 		}
1948 		RL_UNLOCK(sc);
1949 		(*ifp->if_input)(ifp, m);
1950 		RL_LOCK(sc);
1951 	}
1952 
1953 	/* Flush the RX DMA ring */
1954 
1955 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1956 	    sc->rl_ldata.rl_rx_list_map,
1957 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1958 
1959 	sc->rl_ldata.rl_rx_prodidx = i;
1960 
1961 	if (maxpkt)
1962 		return(EAGAIN);
1963 
1964 	return(0);
1965 }
1966 
1967 static void
1968 re_txeof(sc)
1969 	struct rl_softc		*sc;
1970 {
1971 	struct ifnet		*ifp;
1972 	struct rl_txdesc	*txd;
1973 	u_int32_t		txstat;
1974 	int			cons;
1975 
1976 	cons = sc->rl_ldata.rl_tx_considx;
1977 	if (cons == sc->rl_ldata.rl_tx_prodidx)
1978 		return;
1979 
1980 	ifp = sc->rl_ifp;
1981 	/* Invalidate the TX descriptor list */
1982 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1983 	    sc->rl_ldata.rl_tx_list_map,
1984 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1985 
1986 	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1987 	    cons = RL_TX_DESC_NXT(sc, cons)) {
1988 		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1989 		if (txstat & RL_TDESC_STAT_OWN)
1990 			break;
1991 		/*
1992 		 * We only stash mbufs in the last descriptor
1993 		 * in a fragment chain, which also happens to
1994 		 * be the only place where the TX status bits
1995 		 * are valid.
1996 		 */
1997 		if (txstat & RL_TDESC_CMD_EOF) {
1998 			txd = &sc->rl_ldata.rl_tx_desc[cons];
1999 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2000 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2001 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2002 			    txd->tx_dmamap);
2003 			KASSERT(txd->tx_m != NULL,
2004 			    ("%s: freeing NULL mbufs!", __func__));
2005 			m_freem(txd->tx_m);
2006 			txd->tx_m = NULL;
2007 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2008 			    RL_TDESC_STAT_COLCNT))
2009 				ifp->if_collisions++;
2010 			if (txstat & RL_TDESC_STAT_TXERRSUM)
2011 				ifp->if_oerrors++;
2012 			else
2013 				ifp->if_opackets++;
2014 		}
2015 		sc->rl_ldata.rl_tx_free++;
2016 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2017 	}
2018 	sc->rl_ldata.rl_tx_considx = cons;
2019 
2020 	/* No changes made to the TX ring, so no flush needed */
2021 
2022 	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2023 		/*
2024 		 * Some chips will ignore a second TX request issued
2025 		 * while an existing transmission is in progress. If
2026 		 * the transmitter goes idle but there are still
2027 		 * packets waiting to be sent, we need to restart the
2028 		 * channel here to flush them out. This only seems to
2029 		 * be required with the PCIe devices.
2030 		 */
2031 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2032 
2033 #ifdef RE_TX_MODERATION
2034 		/*
2035 		 * If not all descriptors have been reaped yet, reload
2036 		 * the timer so that we will eventually get another
2037 		 * interrupt that will cause us to re-enter this routine.
2038 		 * This is done in case the transmitter has gone idle.
2039 		 */
2040 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2041 #endif
2042 	} else
2043 		sc->rl_watchdog_timer = 0;
2044 }
2045 
2046 static void
2047 re_tick(xsc)
2048 	void			*xsc;
2049 {
2050 	struct rl_softc		*sc;
2051 	struct mii_data		*mii;
2052 	struct ifnet		*ifp;
2053 
2054 	sc = xsc;
2055 	ifp = sc->rl_ifp;
2056 
2057 	RL_LOCK_ASSERT(sc);
2058 
2059 	re_watchdog(sc);
2060 
2061 	mii = device_get_softc(sc->rl_miibus);
2062 	mii_tick(mii);
2063 	if ((sc->rl_flags & RL_FLAG_LINK) != 0) {
2064 		if (!(mii->mii_media_status & IFM_ACTIVE))
2065 			sc->rl_flags &= ~RL_FLAG_LINK;
2066 	} else {
2067 		if (mii->mii_media_status & IFM_ACTIVE &&
2068 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2069 			sc->rl_flags |= RL_FLAG_LINK;
2070 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2071 				taskqueue_enqueue_fast(taskqueue_fast,
2072 				    &sc->rl_txtask);
2073 		}
2074 	}
2075 
2076 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2077 }
2078 
2079 #ifdef DEVICE_POLLING
2080 static void
2081 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2082 {
2083 	struct rl_softc *sc = ifp->if_softc;
2084 
2085 	RL_LOCK(sc);
2086 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2087 		re_poll_locked(ifp, cmd, count);
2088 	RL_UNLOCK(sc);
2089 }
2090 
2091 static void
2092 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2093 {
2094 	struct rl_softc *sc = ifp->if_softc;
2095 
2096 	RL_LOCK_ASSERT(sc);
2097 
2098 	sc->rxcycles = count;
2099 	re_rxeof(sc);
2100 	re_txeof(sc);
2101 
2102 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2103 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2104 
2105 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2106 		u_int16_t       status;
2107 
2108 		status = CSR_READ_2(sc, RL_ISR);
2109 		if (status == 0xffff)
2110 			return;
2111 		if (status)
2112 			CSR_WRITE_2(sc, RL_ISR, status);
2113 
2114 		/*
2115 		 * XXX check behaviour on receiver stalls.
2116 		 */
2117 
2118 		if (status & RL_ISR_SYSTEM_ERR) {
2119 			re_reset(sc);
2120 			re_init_locked(sc);
2121 		}
2122 	}
2123 }
2124 #endif /* DEVICE_POLLING */
2125 
2126 static int
2127 re_intr(arg)
2128 	void			*arg;
2129 {
2130 	struct rl_softc		*sc;
2131 	uint16_t		status;
2132 
2133 	sc = arg;
2134 
2135 	status = CSR_READ_2(sc, RL_ISR);
2136 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2137                 return (FILTER_STRAY);
2138 	CSR_WRITE_2(sc, RL_IMR, 0);
2139 
2140 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2141 
2142 	return (FILTER_HANDLED);
2143 }
2144 
2145 static void
2146 re_int_task(arg, npending)
2147 	void			*arg;
2148 	int			npending;
2149 {
2150 	struct rl_softc		*sc;
2151 	struct ifnet		*ifp;
2152 	u_int16_t		status;
2153 	int			rval = 0;
2154 
2155 	sc = arg;
2156 	ifp = sc->rl_ifp;
2157 
2158 	RL_LOCK(sc);
2159 
2160 	status = CSR_READ_2(sc, RL_ISR);
2161         CSR_WRITE_2(sc, RL_ISR, status);
2162 
2163 	if (sc->suspended ||
2164 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2165 		RL_UNLOCK(sc);
2166 		return;
2167 	}
2168 
2169 #ifdef DEVICE_POLLING
2170 	if  (ifp->if_capenable & IFCAP_POLLING) {
2171 		RL_UNLOCK(sc);
2172 		return;
2173 	}
2174 #endif
2175 
2176 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2177 		rval = re_rxeof(sc);
2178 
2179 #ifdef RE_TX_MODERATION
2180 	if (status & (RL_ISR_TIMEOUT_EXPIRED|
2181 #else
2182 	if (status & (RL_ISR_TX_OK|
2183 #endif
2184 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2185 		re_txeof(sc);
2186 
2187 	if (status & RL_ISR_SYSTEM_ERR) {
2188 		re_reset(sc);
2189 		re_init_locked(sc);
2190 	}
2191 
2192 	if (status & RL_ISR_LINKCHG) {
2193 		callout_stop(&sc->rl_stat_callout);
2194 		re_tick(sc);
2195 	}
2196 
2197 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2198 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2199 
2200 	RL_UNLOCK(sc);
2201 
2202         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2203 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2204 		return;
2205 	}
2206 
2207 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2208 
2209 	return;
2210 }
2211 
2212 static int
2213 re_encap(sc, m_head)
2214 	struct rl_softc		*sc;
2215 	struct mbuf		**m_head;
2216 {
2217 	struct rl_txdesc	*txd, *txd_last;
2218 	bus_dma_segment_t	segs[RL_NTXSEGS];
2219 	bus_dmamap_t		map;
2220 	struct mbuf		*m_new;
2221 	struct rl_desc		*desc;
2222 	int			nsegs, prod;
2223 	int			i, error, ei, si;
2224 	int			padlen;
2225 	uint32_t		cmdstat, csum_flags, vlanctl;
2226 
2227 	RL_LOCK_ASSERT(sc);
2228 	M_ASSERTPKTHDR((*m_head));
2229 
2230 	/*
2231 	 * With some of the RealTek chips, using the checksum offload
2232 	 * support in conjunction with the autopadding feature results
2233 	 * in the transmission of corrupt frames. For example, if we
2234 	 * need to send a really small IP fragment that's less than 60
2235 	 * bytes in size, and IP header checksumming is enabled, the
2236 	 * resulting ethernet frame that appears on the wire will
2237 	 * have garbled payload. To work around this, if TX IP checksum
2238 	 * offload is enabled, we always manually pad short frames out
2239 	 * to the minimum ethernet frame size.
2240 	 */
2241 	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
2242 	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2243 	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2244 		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2245 		if (M_WRITABLE(*m_head) == 0) {
2246 			/* Get a writable copy. */
2247 			m_new = m_dup(*m_head, M_DONTWAIT);
2248 			m_freem(*m_head);
2249 			if (m_new == NULL) {
2250 				*m_head = NULL;
2251 				return (ENOBUFS);
2252 			}
2253 			*m_head = m_new;
2254 		}
2255 		if ((*m_head)->m_next != NULL ||
2256 		    M_TRAILINGSPACE(*m_head) < padlen) {
2257 			m_new = m_defrag(*m_head, M_DONTWAIT);
2258 			if (m_new == NULL) {
2259 				m_freem(*m_head);
2260 				*m_head = NULL;
2261 				return (ENOBUFS);
2262 			}
2263 		} else
2264 			m_new = *m_head;
2265 
2266 		/*
2267 		 * Manually pad short frames, and zero the pad space
2268 		 * to avoid leaking data.
2269 		 */
2270 		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2271 		m_new->m_pkthdr.len += padlen;
2272 		m_new->m_len = m_new->m_pkthdr.len;
2273 		*m_head = m_new;
2274 	}
2275 
2276 	prod = sc->rl_ldata.rl_tx_prodidx;
2277 	txd = &sc->rl_ldata.rl_tx_desc[prod];
2278 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2279 	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2280 	if (error == EFBIG) {
2281 		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2282 		if (m_new == NULL) {
2283 			m_freem(*m_head);
2284 			*m_head = NULL;
2285 			return (ENOBUFS);
2286 		}
2287 		*m_head = m_new;
2288 		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2289 		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2290 		if (error != 0) {
2291 			m_freem(*m_head);
2292 			*m_head = NULL;
2293 			return (error);
2294 		}
2295 	} else if (error != 0)
2296 		return (error);
2297 	if (nsegs == 0) {
2298 		m_freem(*m_head);
2299 		*m_head = NULL;
2300 		return (EIO);
2301 	}
2302 
2303 	/* Check for number of available descriptors. */
2304 	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2305 		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2306 		return (ENOBUFS);
2307 	}
2308 
2309 	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2310 	    BUS_DMASYNC_PREWRITE);
2311 
2312 	/*
2313 	 * Set up checksum offload. Note: checksum offload bits must
2314 	 * appear in all descriptors of a multi-descriptor transmit
2315 	 * attempt. This is according to testing done with an 8169
2316 	 * chip. This is a requirement.
2317 	 */
2318 	vlanctl = 0;
2319 	csum_flags = 0;
2320 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2321 		csum_flags = RL_TDESC_CMD_LGSEND |
2322 		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2323 		    RL_TDESC_CMD_MSSVAL_SHIFT);
2324 	else {
2325 		/*
2326 		 * Unconditionally enable IP checksum if TCP or UDP
2327 		 * checksum is required. Otherwise, TCP/UDP checksum
2328 		 * does't make effects.
2329 		 */
2330 		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2331 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2332 				csum_flags |= RL_TDESC_CMD_IPCSUM;
2333 				if (((*m_head)->m_pkthdr.csum_flags &
2334 				    CSUM_TCP) != 0)
2335 					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2336 				if (((*m_head)->m_pkthdr.csum_flags &
2337 				    CSUM_UDP) != 0)
2338 					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2339 			} else {
2340 				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2341 				if (((*m_head)->m_pkthdr.csum_flags &
2342 				    CSUM_TCP) != 0)
2343 					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2344 				if (((*m_head)->m_pkthdr.csum_flags &
2345 				    CSUM_UDP) != 0)
2346 					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2347 			}
2348 		}
2349 	}
2350 
2351 	/*
2352 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2353 	 * appear in all descriptors of a multi-descriptor
2354 	 * transmission attempt.
2355 	 */
2356 	if ((*m_head)->m_flags & M_VLANTAG)
2357 		vlanctl |= htons((*m_head)->m_pkthdr.ether_vtag) |
2358 		    RL_TDESC_VLANCTL_TAG;
2359 
2360 	si = prod;
2361 	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2362 		desc = &sc->rl_ldata.rl_tx_list[prod];
2363 		desc->rl_vlanctl = htole32(vlanctl);
2364 		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2365 		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2366 		cmdstat = segs[i].ds_len;
2367 		if (i != 0)
2368 			cmdstat |= RL_TDESC_CMD_OWN;
2369 		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2370 			cmdstat |= RL_TDESC_CMD_EOR;
2371 		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2372 		sc->rl_ldata.rl_tx_free--;
2373 	}
2374 	/* Update producer index. */
2375 	sc->rl_ldata.rl_tx_prodidx = prod;
2376 
2377 	/* Set EOF on the last descriptor. */
2378 	ei = RL_TX_DESC_PRV(sc, prod);
2379 	desc = &sc->rl_ldata.rl_tx_list[ei];
2380 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2381 
2382 	desc = &sc->rl_ldata.rl_tx_list[si];
2383 	/* Set SOF and transfer ownership of packet to the chip. */
2384 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2385 
2386 	/*
2387 	 * Insure that the map for this transmission
2388 	 * is placed at the array index of the last descriptor
2389 	 * in this chain.  (Swap last and first dmamaps.)
2390 	 */
2391 	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2392 	map = txd->tx_dmamap;
2393 	txd->tx_dmamap = txd_last->tx_dmamap;
2394 	txd_last->tx_dmamap = map;
2395 	txd_last->tx_m = *m_head;
2396 
2397 	return (0);
2398 }
2399 
2400 static void
2401 re_tx_task(arg, npending)
2402 	void			*arg;
2403 	int			npending;
2404 {
2405 	struct ifnet		*ifp;
2406 
2407 	ifp = arg;
2408 	re_start(ifp);
2409 
2410 	return;
2411 }
2412 
2413 /*
2414  * Main transmit routine for C+ and gigE NICs.
2415  */
2416 static void
2417 re_start(ifp)
2418 	struct ifnet		*ifp;
2419 {
2420 	struct rl_softc		*sc;
2421 	struct mbuf		*m_head;
2422 	int			queued;
2423 
2424 	sc = ifp->if_softc;
2425 
2426 	RL_LOCK(sc);
2427 
2428 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2429 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2430 		RL_UNLOCK(sc);
2431 		return;
2432 	}
2433 
2434 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2435 	    sc->rl_ldata.rl_tx_free > 1;) {
2436 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2437 		if (m_head == NULL)
2438 			break;
2439 
2440 		if (re_encap(sc, &m_head) != 0) {
2441 			if (m_head == NULL)
2442 				break;
2443 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2444 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2445 			break;
2446 		}
2447 
2448 		/*
2449 		 * If there's a BPF listener, bounce a copy of this frame
2450 		 * to him.
2451 		 */
2452 		ETHER_BPF_MTAP(ifp, m_head);
2453 
2454 		queued++;
2455 	}
2456 
2457 	if (queued == 0) {
2458 #ifdef RE_TX_MODERATION
2459 		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2460 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2461 #endif
2462 		RL_UNLOCK(sc);
2463 		return;
2464 	}
2465 
2466 	/* Flush the TX descriptors */
2467 
2468 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2469 	    sc->rl_ldata.rl_tx_list_map,
2470 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2471 
2472 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2473 
2474 #ifdef RE_TX_MODERATION
2475 	/*
2476 	 * Use the countdown timer for interrupt moderation.
2477 	 * 'TX done' interrupts are disabled. Instead, we reset the
2478 	 * countdown timer, which will begin counting until it hits
2479 	 * the value in the TIMERINT register, and then trigger an
2480 	 * interrupt. Each time we write to the TIMERCNT register,
2481 	 * the timer count is reset to 0.
2482 	 */
2483 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2484 #endif
2485 
2486 	/*
2487 	 * Set a timeout in case the chip goes out to lunch.
2488 	 */
2489 	sc->rl_watchdog_timer = 5;
2490 
2491 	RL_UNLOCK(sc);
2492 
2493 	return;
2494 }
2495 
2496 static void
2497 re_init(xsc)
2498 	void			*xsc;
2499 {
2500 	struct rl_softc		*sc = xsc;
2501 
2502 	RL_LOCK(sc);
2503 	re_init_locked(sc);
2504 	RL_UNLOCK(sc);
2505 }
2506 
2507 static void
2508 re_init_locked(sc)
2509 	struct rl_softc		*sc;
2510 {
2511 	struct ifnet		*ifp = sc->rl_ifp;
2512 	struct mii_data		*mii;
2513 	u_int32_t		rxcfg = 0;
2514 	uint16_t		cfg;
2515 	union {
2516 		uint32_t align_dummy;
2517 		u_char eaddr[ETHER_ADDR_LEN];
2518         } eaddr;
2519 
2520 	RL_LOCK_ASSERT(sc);
2521 
2522 	mii = device_get_softc(sc->rl_miibus);
2523 
2524 	/*
2525 	 * Cancel pending I/O and free all RX/TX buffers.
2526 	 */
2527 	re_stop(sc);
2528 
2529 	/*
2530 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2531 	 * RX checksum offload. We must configure the C+ register
2532 	 * before all others.
2533 	 */
2534 	cfg = RL_CPLUSCMD_PCI_MRW;
2535 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2536 		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2537 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2538 		cfg |= RL_CPLUSCMD_VLANSTRIP;
2539 	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2540 		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2541 		/* XXX magic. */
2542 		cfg |= 0x0001;
2543 	} else
2544 		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2545 	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2546 
2547 	/*
2548 	 * Init our MAC address.  Even though the chipset
2549 	 * documentation doesn't mention it, we need to enter "Config
2550 	 * register write enable" mode to modify the ID registers.
2551 	 */
2552 	/* Copy MAC address on stack to align. */
2553 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2554 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2555 	CSR_WRITE_4(sc, RL_IDR0,
2556 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2557 	CSR_WRITE_4(sc, RL_IDR4,
2558 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2559 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2560 
2561 	/*
2562 	 * For C+ mode, initialize the RX descriptors and mbufs.
2563 	 */
2564 	re_rx_list_init(sc);
2565 	re_tx_list_init(sc);
2566 
2567 	/*
2568 	 * Load the addresses of the RX and TX lists into the chip.
2569 	 */
2570 
2571 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2572 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2573 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2574 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2575 
2576 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2577 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2578 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2579 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2580 
2581 	/*
2582 	 * Enable transmit and receive.
2583 	 */
2584 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2585 
2586 	/*
2587 	 * Set the initial TX and RX configuration.
2588 	 */
2589 	if (sc->rl_testmode) {
2590 		if (sc->rl_type == RL_8169)
2591 			CSR_WRITE_4(sc, RL_TXCFG,
2592 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2593 		else
2594 			CSR_WRITE_4(sc, RL_TXCFG,
2595 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2596 	} else
2597 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2598 
2599 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2600 
2601 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2602 
2603 	/* Set the individual bit to receive frames for this host only. */
2604 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2605 	rxcfg |= RL_RXCFG_RX_INDIV;
2606 
2607 	/* If we want promiscuous mode, set the allframes bit. */
2608 	if (ifp->if_flags & IFF_PROMISC)
2609 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2610 	else
2611 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2612 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2613 
2614 	/*
2615 	 * Set capture broadcast bit to capture broadcast frames.
2616 	 */
2617 	if (ifp->if_flags & IFF_BROADCAST)
2618 		rxcfg |= RL_RXCFG_RX_BROAD;
2619 	else
2620 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2621 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2622 
2623 	/*
2624 	 * Program the multicast filter, if necessary.
2625 	 */
2626 	re_setmulti(sc);
2627 
2628 #ifdef DEVICE_POLLING
2629 	/*
2630 	 * Disable interrupts if we are polling.
2631 	 */
2632 	if (ifp->if_capenable & IFCAP_POLLING)
2633 		CSR_WRITE_2(sc, RL_IMR, 0);
2634 	else	/* otherwise ... */
2635 #endif
2636 
2637 	/*
2638 	 * Enable interrupts.
2639 	 */
2640 	if (sc->rl_testmode)
2641 		CSR_WRITE_2(sc, RL_IMR, 0);
2642 	else
2643 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2644 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2645 
2646 	/* Set initial TX threshold */
2647 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2648 
2649 	/* Start RX/TX process. */
2650 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2651 #ifdef notdef
2652 	/* Enable receiver and transmitter. */
2653 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2654 #endif
2655 
2656 #ifdef RE_TX_MODERATION
2657 	/*
2658 	 * Initialize the timer interrupt register so that
2659 	 * a timer interrupt will be generated once the timer
2660 	 * reaches a certain number of ticks. The timer is
2661 	 * reloaded on each transmit. This gives us TX interrupt
2662 	 * moderation, which dramatically improves TX frame rate.
2663 	 */
2664 	if (sc->rl_type == RL_8169)
2665 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2666 	else
2667 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2668 #endif
2669 
2670 	/*
2671 	 * For 8169 gigE NICs, set the max allowed RX packet
2672 	 * size so we can receive jumbo frames.
2673 	 */
2674 	if (sc->rl_type == RL_8169)
2675 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2676 
2677 	if (sc->rl_testmode)
2678 		return;
2679 
2680 	mii_mediachg(mii);
2681 
2682 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2683 
2684 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2685 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2686 
2687 	sc->rl_flags &= ~RL_FLAG_LINK;
2688 	sc->rl_watchdog_timer = 0;
2689 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2690 }
2691 
2692 /*
2693  * Set media options.
2694  */
2695 static int
2696 re_ifmedia_upd(ifp)
2697 	struct ifnet		*ifp;
2698 {
2699 	struct rl_softc		*sc;
2700 	struct mii_data		*mii;
2701 
2702 	sc = ifp->if_softc;
2703 	mii = device_get_softc(sc->rl_miibus);
2704 	RL_LOCK(sc);
2705 	mii_mediachg(mii);
2706 	RL_UNLOCK(sc);
2707 
2708 	return (0);
2709 }
2710 
2711 /*
2712  * Report current media status.
2713  */
2714 static void
2715 re_ifmedia_sts(ifp, ifmr)
2716 	struct ifnet		*ifp;
2717 	struct ifmediareq	*ifmr;
2718 {
2719 	struct rl_softc		*sc;
2720 	struct mii_data		*mii;
2721 
2722 	sc = ifp->if_softc;
2723 	mii = device_get_softc(sc->rl_miibus);
2724 
2725 	RL_LOCK(sc);
2726 	mii_pollstat(mii);
2727 	RL_UNLOCK(sc);
2728 	ifmr->ifm_active = mii->mii_media_active;
2729 	ifmr->ifm_status = mii->mii_media_status;
2730 }
2731 
2732 static int
2733 re_ioctl(ifp, command, data)
2734 	struct ifnet		*ifp;
2735 	u_long			command;
2736 	caddr_t			data;
2737 {
2738 	struct rl_softc		*sc = ifp->if_softc;
2739 	struct ifreq		*ifr = (struct ifreq *) data;
2740 	struct mii_data		*mii;
2741 	int			error = 0;
2742 
2743 	switch (command) {
2744 	case SIOCSIFMTU:
2745 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2746 			error = EINVAL;
2747 			break;
2748 		}
2749 		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2750 		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2751 			error = EINVAL;
2752 			break;
2753 		}
2754 		RL_LOCK(sc);
2755 		if (ifp->if_mtu != ifr->ifr_mtu)
2756 			ifp->if_mtu = ifr->ifr_mtu;
2757 		RL_UNLOCK(sc);
2758 		break;
2759 	case SIOCSIFFLAGS:
2760 		RL_LOCK(sc);
2761 		if ((ifp->if_flags & IFF_UP) != 0) {
2762 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2763 				if (((ifp->if_flags ^ sc->rl_if_flags)
2764 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2765 					re_setmulti(sc);
2766 			} else
2767 				re_init_locked(sc);
2768 		} else {
2769 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2770 				re_stop(sc);
2771 		}
2772 		sc->rl_if_flags = ifp->if_flags;
2773 		RL_UNLOCK(sc);
2774 		break;
2775 	case SIOCADDMULTI:
2776 	case SIOCDELMULTI:
2777 		RL_LOCK(sc);
2778 		re_setmulti(sc);
2779 		RL_UNLOCK(sc);
2780 		break;
2781 	case SIOCGIFMEDIA:
2782 	case SIOCSIFMEDIA:
2783 		mii = device_get_softc(sc->rl_miibus);
2784 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2785 		break;
2786 	case SIOCSIFCAP:
2787 	    {
2788 		int mask, reinit;
2789 
2790 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2791 		reinit = 0;
2792 #ifdef DEVICE_POLLING
2793 		if (mask & IFCAP_POLLING) {
2794 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2795 				error = ether_poll_register(re_poll, ifp);
2796 				if (error)
2797 					return(error);
2798 				RL_LOCK(sc);
2799 				/* Disable interrupts */
2800 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2801 				ifp->if_capenable |= IFCAP_POLLING;
2802 				RL_UNLOCK(sc);
2803 			} else {
2804 				error = ether_poll_deregister(ifp);
2805 				/* Enable interrupts. */
2806 				RL_LOCK(sc);
2807 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2808 				ifp->if_capenable &= ~IFCAP_POLLING;
2809 				RL_UNLOCK(sc);
2810 			}
2811 		}
2812 #endif /* DEVICE_POLLING */
2813 		if (mask & IFCAP_HWCSUM) {
2814 			ifp->if_capenable ^= IFCAP_HWCSUM;
2815 			if (ifp->if_capenable & IFCAP_TXCSUM)
2816 				ifp->if_hwassist |= RE_CSUM_FEATURES;
2817 			else
2818 				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2819 			reinit = 1;
2820 		}
2821 		if (mask & IFCAP_VLAN_HWTAGGING) {
2822 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2823 			reinit = 1;
2824 		}
2825 		if (mask & IFCAP_TSO4) {
2826 			ifp->if_capenable ^= IFCAP_TSO4;
2827 			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2828 			    (IFCAP_TSO4 & ifp->if_capabilities))
2829 				ifp->if_hwassist |= CSUM_TSO;
2830 			else
2831 				ifp->if_hwassist &= ~CSUM_TSO;
2832 		}
2833 		if ((mask & IFCAP_WOL) != 0 &&
2834 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2835 			if ((mask & IFCAP_WOL_UCAST) != 0)
2836 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2837 			if ((mask & IFCAP_WOL_MCAST) != 0)
2838 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2839 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2840 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2841 		}
2842 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2843 			re_init(sc);
2844 		VLAN_CAPABILITIES(ifp);
2845 	    }
2846 		break;
2847 	default:
2848 		error = ether_ioctl(ifp, command, data);
2849 		break;
2850 	}
2851 
2852 	return (error);
2853 }
2854 
2855 static void
2856 re_watchdog(sc)
2857 	struct rl_softc		*sc;
2858 {
2859 
2860 	RL_LOCK_ASSERT(sc);
2861 
2862 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2863 		return;
2864 
2865 	device_printf(sc->rl_dev, "watchdog timeout\n");
2866 	sc->rl_ifp->if_oerrors++;
2867 
2868 	re_txeof(sc);
2869 	re_rxeof(sc);
2870 	re_init_locked(sc);
2871 }
2872 
2873 /*
2874  * Stop the adapter and free any mbufs allocated to the
2875  * RX and TX lists.
2876  */
2877 static void
2878 re_stop(sc)
2879 	struct rl_softc		*sc;
2880 {
2881 	register int		i;
2882 	struct ifnet		*ifp;
2883 	struct rl_txdesc	*txd;
2884 	struct rl_rxdesc	*rxd;
2885 
2886 	RL_LOCK_ASSERT(sc);
2887 
2888 	ifp = sc->rl_ifp;
2889 
2890 	sc->rl_watchdog_timer = 0;
2891 	callout_stop(&sc->rl_stat_callout);
2892 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2893 
2894 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2895 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2896 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2897 
2898 	if (sc->rl_head != NULL) {
2899 		m_freem(sc->rl_head);
2900 		sc->rl_head = sc->rl_tail = NULL;
2901 	}
2902 
2903 	/* Free the TX list buffers. */
2904 
2905 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2906 		txd = &sc->rl_ldata.rl_tx_desc[i];
2907 		if (txd->tx_m != NULL) {
2908 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2909 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2910 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2911 			    txd->tx_dmamap);
2912 			m_freem(txd->tx_m);
2913 			txd->tx_m = NULL;
2914 		}
2915 	}
2916 
2917 	/* Free the RX list buffers. */
2918 
2919 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2920 		rxd = &sc->rl_ldata.rl_rx_desc[i];
2921 		if (rxd->rx_m != NULL) {
2922 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2923 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2924 			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2925 			    rxd->rx_dmamap);
2926 			m_freem(rxd->rx_m);
2927 			rxd->rx_m = NULL;
2928 		}
2929 	}
2930 }
2931 
2932 /*
2933  * Device suspend routine.  Stop the interface and save some PCI
2934  * settings in case the BIOS doesn't restore them properly on
2935  * resume.
2936  */
2937 static int
2938 re_suspend(dev)
2939 	device_t		dev;
2940 {
2941 	struct rl_softc		*sc;
2942 
2943 	sc = device_get_softc(dev);
2944 
2945 	RL_LOCK(sc);
2946 	re_stop(sc);
2947 	re_setwol(sc);
2948 	sc->suspended = 1;
2949 	RL_UNLOCK(sc);
2950 
2951 	return (0);
2952 }
2953 
2954 /*
2955  * Device resume routine.  Restore some PCI settings in case the BIOS
2956  * doesn't, re-enable busmastering, and restart the interface if
2957  * appropriate.
2958  */
2959 static int
2960 re_resume(dev)
2961 	device_t		dev;
2962 {
2963 	struct rl_softc		*sc;
2964 	struct ifnet		*ifp;
2965 
2966 	sc = device_get_softc(dev);
2967 
2968 	RL_LOCK(sc);
2969 
2970 	ifp = sc->rl_ifp;
2971 
2972 	/* reinitialize interface if necessary */
2973 	if (ifp->if_flags & IFF_UP)
2974 		re_init_locked(sc);
2975 
2976 	/*
2977 	 * Clear WOL matching such that normal Rx filtering
2978 	 * wouldn't interfere with WOL patterns.
2979 	 */
2980 	re_clrwol(sc);
2981 	sc->suspended = 0;
2982 	RL_UNLOCK(sc);
2983 
2984 	return (0);
2985 }
2986 
2987 /*
2988  * Stop all chip I/O so that the kernel's probe routines don't
2989  * get confused by errant DMAs when rebooting.
2990  */
2991 static int
2992 re_shutdown(dev)
2993 	device_t		dev;
2994 {
2995 	struct rl_softc		*sc;
2996 
2997 	sc = device_get_softc(dev);
2998 
2999 	RL_LOCK(sc);
3000 	re_stop(sc);
3001 	/*
3002 	 * Mark interface as down since otherwise we will panic if
3003 	 * interrupt comes in later on, which can happen in some
3004 	 * cases.
3005 	 */
3006 	sc->rl_ifp->if_flags &= ~IFF_UP;
3007 	re_setwol(sc);
3008 	RL_UNLOCK(sc);
3009 
3010 	return (0);
3011 }
3012 
3013 static void
3014 re_setwol(sc)
3015 	struct rl_softc		*sc;
3016 {
3017 	struct ifnet		*ifp;
3018 	int			pmc;
3019 	uint16_t		pmstat;
3020 	uint8_t			v;
3021 
3022 	RL_LOCK_ASSERT(sc);
3023 
3024 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3025 		return;
3026 
3027 	ifp = sc->rl_ifp;
3028 	/* Enable config register write. */
3029 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3030 
3031 	/* Enable PME. */
3032 	v = CSR_READ_1(sc, RL_CFG1);
3033 	v &= ~RL_CFG1_PME;
3034 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3035 		v |= RL_CFG1_PME;
3036 	CSR_WRITE_1(sc, RL_CFG1, v);
3037 
3038 	v = CSR_READ_1(sc, RL_CFG3);
3039 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3040 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3041 		v |= RL_CFG3_WOL_MAGIC;
3042 	CSR_WRITE_1(sc, RL_CFG3, v);
3043 
3044 	/* Config register write done. */
3045 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3046 
3047 	v = CSR_READ_1(sc, RL_CFG5);
3048 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3049 	v &= ~RL_CFG5_WOL_LANWAKE;
3050 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3051 		v |= RL_CFG5_WOL_UCAST;
3052 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3053 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3054 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3055 		v |= RL_CFG5_WOL_LANWAKE;
3056 	CSR_WRITE_1(sc, RL_CFG5, v);
3057 
3058 	/*
3059 	 * It seems that hardware resets its link speed to 100Mbps in
3060 	 * power down mode so switching to 100Mbps in driver is not
3061 	 * needed.
3062 	 */
3063 
3064 	/* Request PME if WOL is requested. */
3065 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3066 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3067 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3068 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3069 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3070 }
3071 
3072 static void
3073 re_clrwol(sc)
3074 	struct rl_softc		*sc;
3075 {
3076 	int			pmc;
3077 	uint8_t			v;
3078 
3079 	RL_LOCK_ASSERT(sc);
3080 
3081 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3082 		return;
3083 
3084 	/* Enable config register write. */
3085 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3086 
3087 	v = CSR_READ_1(sc, RL_CFG3);
3088 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3089 	CSR_WRITE_1(sc, RL_CFG3, v);
3090 
3091 	/* Config register write done. */
3092 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3093 
3094 	v = CSR_READ_1(sc, RL_CFG5);
3095 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3096 	v &= ~RL_CFG5_WOL_LANWAKE;
3097 	CSR_WRITE_1(sc, RL_CFG5, v);
3098 }
3099