xref: /freebsd/sys/dev/re/if_re.c (revision dba6dd177bdee890cf445fbe21a5dccefd5de18e)
1 /*
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  * 	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7.5K, so the max MTU possible with this
108  * driver is 7500 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/ethernet.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <net/bpf.h>
128 
129 #include <machine/bus_pio.h>
130 #include <machine/bus_memio.h>
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 
142 MODULE_DEPEND(re, pci, 1, 1, 1);
143 MODULE_DEPEND(re, ether, 1, 1, 1);
144 MODULE_DEPEND(re, miibus, 1, 1, 1);
145 
146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
147 #include "miibus_if.h"
148 
149 /*
150  * Default to using PIO access for this driver.
151  */
152 #define RE_USEIOSPACE
153 
154 #include <pci/if_rlreg.h>
155 
156 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static struct rl_type re_devs[] = {
162 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163 		"RealTek 8139C+ 10/100BaseTX" },
164 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165 		"RealTek 8169 Gigabit Ethernet" },
166 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167 		"RealTek 8169S Single-chip Gigabit Ethernet" },
168 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169 		"RealTek 8110S Single-chip Gigabit Ethernet" },
170 	{ 0, 0, 0, NULL }
171 };
172 
173 static struct rl_hwrev re_hwrevs[] = {
174 	{ RL_HWREV_8139, RL_8139,  "" },
175 	{ RL_HWREV_8139A, RL_8139, "A" },
176 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177 	{ RL_HWREV_8139B, RL_8139, "B" },
178 	{ RL_HWREV_8130, RL_8139, "8130" },
179 	{ RL_HWREV_8139C, RL_8139, "C" },
180 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182 	{ RL_HWREV_8169, RL_8169, "8169"},
183 	{ RL_HWREV_8169S, RL_8169, "8169S"},
184 	{ RL_HWREV_8110S, RL_8169, "8110S"},
185 	{ RL_HWREV_8100, RL_8139, "8100"},
186 	{ RL_HWREV_8101, RL_8139, "8101"},
187 	{ 0, 0, NULL }
188 };
189 
190 static int re_probe		(device_t);
191 static int re_attach		(device_t);
192 static int re_detach		(device_t);
193 
194 static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195 
196 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198 				    bus_size_t, int);
199 static int re_allocmem		(device_t, struct rl_softc *);
200 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201 static int re_rx_list_init	(struct rl_softc *);
202 static int re_tx_list_init	(struct rl_softc *);
203 static void re_rxeof		(struct rl_softc *);
204 static void re_txeof		(struct rl_softc *);
205 static void re_intr		(void *);
206 static void re_tick		(void *);
207 static void re_start		(struct ifnet *);
208 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209 static void re_init		(void *);
210 static void re_stop		(struct rl_softc *);
211 static void re_watchdog		(struct ifnet *);
212 static int re_suspend		(device_t);
213 static int re_resume		(device_t);
214 static void re_shutdown		(device_t);
215 static int re_ifmedia_upd	(struct ifnet *);
216 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217 
218 static void re_eeprom_putbyte	(struct rl_softc *, int);
219 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221 static int re_gmii_readreg	(device_t, int, int);
222 static int re_gmii_writereg	(device_t, int, int, int);
223 
224 static int re_miibus_readreg	(device_t, int, int);
225 static int re_miibus_writereg	(device_t, int, int, int);
226 static void re_miibus_statchg	(device_t);
227 
228 static uint32_t re_mchash	(const uint8_t *);
229 static void re_setmulti		(struct rl_softc *);
230 static void re_reset		(struct rl_softc *);
231 
232 static int re_diag		(struct rl_softc *);
233 
234 #ifdef RE_USEIOSPACE
235 #define RL_RES			SYS_RES_IOPORT
236 #define RL_RID			RL_PCI_LOIO
237 #else
238 #define RL_RES			SYS_RES_MEMORY
239 #define RL_RID			RL_PCI_LOMEM
240 #endif
241 
242 static device_method_t re_methods[] = {
243 	/* Device interface */
244 	DEVMETHOD(device_probe,		re_probe),
245 	DEVMETHOD(device_attach,	re_attach),
246 	DEVMETHOD(device_detach,	re_detach),
247 	DEVMETHOD(device_suspend,	re_suspend),
248 	DEVMETHOD(device_resume,	re_resume),
249 	DEVMETHOD(device_shutdown,	re_shutdown),
250 
251 	/* bus interface */
252 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254 
255 	/* MII interface */
256 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t re_driver = {
264 	"re",
265 	re_methods,
266 	sizeof(struct rl_softc)
267 };
268 
269 static devclass_t re_devclass;
270 
271 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274 
275 #define EE_SET(x)					\
276 	CSR_WRITE_1(sc, RL_EECMD,			\
277 		CSR_READ_1(sc, RL_EECMD) | x)
278 
279 #define EE_CLR(x)					\
280 	CSR_WRITE_1(sc, RL_EECMD,			\
281 		CSR_READ_1(sc, RL_EECMD) & ~x)
282 
283 /*
284  * Send a read command and address to the EEPROM, check for ACK.
285  */
286 static void
287 re_eeprom_putbyte(sc, addr)
288 	struct rl_softc		*sc;
289 	int			addr;
290 {
291 	register int		d, i;
292 
293 	d = addr | sc->rl_eecmd_read;
294 
295 	/*
296 	 * Feed in each bit and strobe the clock.
297 	 */
298 	for (i = 0x400; i; i >>= 1) {
299 		if (d & i) {
300 			EE_SET(RL_EE_DATAIN);
301 		} else {
302 			EE_CLR(RL_EE_DATAIN);
303 		}
304 		DELAY(100);
305 		EE_SET(RL_EE_CLK);
306 		DELAY(150);
307 		EE_CLR(RL_EE_CLK);
308 		DELAY(100);
309 	}
310 
311 	return;
312 }
313 
314 /*
315  * Read a word of data stored in the EEPROM at address 'addr.'
316  */
317 static void
318 re_eeprom_getword(sc, addr, dest)
319 	struct rl_softc		*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	register int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Enter EEPROM access mode. */
327 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
328 
329 	/*
330 	 * Send address of word we want to read.
331 	 */
332 	re_eeprom_putbyte(sc, addr);
333 
334 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
335 
336 	/*
337 	 * Start reading bits from EEPROM.
338 	 */
339 	for (i = 0x8000; i; i >>= 1) {
340 		EE_SET(RL_EE_CLK);
341 		DELAY(100);
342 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
343 			word |= i;
344 		EE_CLR(RL_EE_CLK);
345 		DELAY(100);
346 	}
347 
348 	/* Turn off EEPROM access mode. */
349 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
350 
351 	*dest = word;
352 
353 	return;
354 }
355 
356 /*
357  * Read a sequence of words from the EEPROM.
358  */
359 static void
360 re_read_eeprom(sc, dest, off, cnt, swap)
361 	struct rl_softc		*sc;
362 	caddr_t			dest;
363 	int			off;
364 	int			cnt;
365 	int			swap;
366 {
367 	int			i;
368 	u_int16_t		word = 0, *ptr;
369 
370 	for (i = 0; i < cnt; i++) {
371 		re_eeprom_getword(sc, off + i, &word);
372 		ptr = (u_int16_t *)(dest + (i * 2));
373 		if (swap)
374 			*ptr = ntohs(word);
375 		else
376 			*ptr = word;
377 	}
378 
379 	return;
380 }
381 
382 static int
383 re_gmii_readreg(dev, phy, reg)
384 	device_t		dev;
385 	int			phy, reg;
386 {
387 	struct rl_softc		*sc;
388 	u_int32_t		rval;
389 	int			i;
390 
391 	if (phy != 1)
392 		return(0);
393 
394 	sc = device_get_softc(dev);
395 
396 	/* Let the rgephy driver read the GMEDIASTAT register */
397 
398 	if (reg == RL_GMEDIASTAT) {
399 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
400 		return(rval);
401 	}
402 
403 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
404 	DELAY(1000);
405 
406 	for (i = 0; i < RL_TIMEOUT; i++) {
407 		rval = CSR_READ_4(sc, RL_PHYAR);
408 		if (rval & RL_PHYAR_BUSY)
409 			break;
410 		DELAY(100);
411 	}
412 
413 	if (i == RL_TIMEOUT) {
414 		printf ("re%d: PHY read failed\n", sc->rl_unit);
415 		return (0);
416 	}
417 
418 	return (rval & RL_PHYAR_PHYDATA);
419 }
420 
421 static int
422 re_gmii_writereg(dev, phy, reg, data)
423 	device_t		dev;
424 	int			phy, reg, data;
425 {
426 	struct rl_softc		*sc;
427 	u_int32_t		rval;
428 	int			i;
429 
430 	sc = device_get_softc(dev);
431 
432 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
433 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
434 	DELAY(1000);
435 
436 	for (i = 0; i < RL_TIMEOUT; i++) {
437 		rval = CSR_READ_4(sc, RL_PHYAR);
438 		if (!(rval & RL_PHYAR_BUSY))
439 			break;
440 		DELAY(100);
441 	}
442 
443 	if (i == RL_TIMEOUT) {
444 		printf ("re%d: PHY write failed\n", sc->rl_unit);
445 		return (0);
446 	}
447 
448 	return (0);
449 }
450 
451 static int
452 re_miibus_readreg(dev, phy, reg)
453 	device_t		dev;
454 	int			phy, reg;
455 {
456 	struct rl_softc		*sc;
457 	u_int16_t		rval = 0;
458 	u_int16_t		re8139_reg = 0;
459 
460 	sc = device_get_softc(dev);
461 	RL_LOCK(sc);
462 
463 	if (sc->rl_type == RL_8169) {
464 		rval = re_gmii_readreg(dev, phy, reg);
465 		RL_UNLOCK(sc);
466 		return (rval);
467 	}
468 
469 	/* Pretend the internal PHY is only at address 0 */
470 	if (phy) {
471 		RL_UNLOCK(sc);
472 		return(0);
473 	}
474 	switch(reg) {
475 	case MII_BMCR:
476 		re8139_reg = RL_BMCR;
477 		break;
478 	case MII_BMSR:
479 		re8139_reg = RL_BMSR;
480 		break;
481 	case MII_ANAR:
482 		re8139_reg = RL_ANAR;
483 		break;
484 	case MII_ANER:
485 		re8139_reg = RL_ANER;
486 		break;
487 	case MII_ANLPAR:
488 		re8139_reg = RL_LPAR;
489 		break;
490 	case MII_PHYIDR1:
491 	case MII_PHYIDR2:
492 		RL_UNLOCK(sc);
493 		return(0);
494 	/*
495 	 * Allow the rlphy driver to read the media status
496 	 * register. If we have a link partner which does not
497 	 * support NWAY, this is the register which will tell
498 	 * us the results of parallel detection.
499 	 */
500 	case RL_MEDIASTAT:
501 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
502 		RL_UNLOCK(sc);
503 		return(rval);
504 	default:
505 		printf("re%d: bad phy register\n", sc->rl_unit);
506 		RL_UNLOCK(sc);
507 		return(0);
508 	}
509 	rval = CSR_READ_2(sc, re8139_reg);
510 	RL_UNLOCK(sc);
511 	return(rval);
512 }
513 
514 static int
515 re_miibus_writereg(dev, phy, reg, data)
516 	device_t		dev;
517 	int			phy, reg, data;
518 {
519 	struct rl_softc		*sc;
520 	u_int16_t		re8139_reg = 0;
521 	int			rval = 0;
522 
523 	sc = device_get_softc(dev);
524 	RL_LOCK(sc);
525 
526 	if (sc->rl_type == RL_8169) {
527 		rval = re_gmii_writereg(dev, phy, reg, data);
528 		RL_UNLOCK(sc);
529 		return (rval);
530 	}
531 
532 	/* Pretend the internal PHY is only at address 0 */
533 	if (phy) {
534 		RL_UNLOCK(sc);
535 		return(0);
536 	}
537 	switch(reg) {
538 	case MII_BMCR:
539 		re8139_reg = RL_BMCR;
540 		break;
541 	case MII_BMSR:
542 		re8139_reg = RL_BMSR;
543 		break;
544 	case MII_ANAR:
545 		re8139_reg = RL_ANAR;
546 		break;
547 	case MII_ANER:
548 		re8139_reg = RL_ANER;
549 		break;
550 	case MII_ANLPAR:
551 		re8139_reg = RL_LPAR;
552 		break;
553 	case MII_PHYIDR1:
554 	case MII_PHYIDR2:
555 		RL_UNLOCK(sc);
556 		return(0);
557 		break;
558 	default:
559 		printf("re%d: bad phy register\n", sc->rl_unit);
560 		RL_UNLOCK(sc);
561 		return(0);
562 	}
563 	CSR_WRITE_2(sc, re8139_reg, data);
564 	RL_UNLOCK(sc);
565 	return(0);
566 }
567 
568 static void
569 re_miibus_statchg(dev)
570 	device_t		dev;
571 {
572 	return;
573 }
574 
575 /*
576  * Calculate CRC of a multicast group address, return the upper 6 bits.
577  */
578 static uint32_t
579 re_mchash(addr)
580 	const uint8_t *addr;
581 {
582 	uint32_t crc, carry;
583 	int idx, bit;
584 	uint8_t data;
585 
586 	/* Compute CRC for the address value. */
587 	crc = 0xFFFFFFFF; /* initial value */
588 
589 	for (idx = 0; idx < 6; idx++) {
590 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
591 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
592 			crc <<= 1;
593 			if (carry)
594 				crc = (crc ^ 0x04c11db6) | carry;
595 		}
596 	}
597 
598 	/* return the filter bit position */
599 	return(crc >> 26);
600 }
601 
602 /*
603  * Program the 64-bit multicast hash filter.
604  */
605 static void
606 re_setmulti(sc)
607 	struct rl_softc		*sc;
608 {
609 	struct ifnet		*ifp;
610 	int			h = 0;
611 	u_int32_t		hashes[2] = { 0, 0 };
612 	struct ifmultiaddr	*ifma;
613 	u_int32_t		rxfilt;
614 	int			mcnt = 0;
615 
616 	ifp = &sc->arpcom.ac_if;
617 
618 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
619 
620 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621 		rxfilt |= RL_RXCFG_RX_MULTI;
622 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
623 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
624 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
625 		return;
626 	}
627 
628 	/* first, zot all the existing hash bits */
629 	CSR_WRITE_4(sc, RL_MAR0, 0);
630 	CSR_WRITE_4(sc, RL_MAR4, 0);
631 
632 	/* now program new ones */
633 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
634 		if (ifma->ifma_addr->sa_family != AF_LINK)
635 			continue;
636 		h = re_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
637 		if (h < 32)
638 			hashes[0] |= (1 << h);
639 		else
640 			hashes[1] |= (1 << (h - 32));
641 		mcnt++;
642 	}
643 
644 	if (mcnt)
645 		rxfilt |= RL_RXCFG_RX_MULTI;
646 	else
647 		rxfilt &= ~RL_RXCFG_RX_MULTI;
648 
649 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
650 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
651 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
652 
653 	return;
654 }
655 
656 static void
657 re_reset(sc)
658 	struct rl_softc		*sc;
659 {
660 	register int		i;
661 
662 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
663 
664 	for (i = 0; i < RL_TIMEOUT; i++) {
665 		DELAY(10);
666 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
667 			break;
668 	}
669 	if (i == RL_TIMEOUT)
670 		printf("re%d: reset never completed!\n", sc->rl_unit);
671 
672 	CSR_WRITE_1(sc, 0x82, 1);
673 
674 	return;
675 }
676 
677 /*
678  * The following routine is designed to test for a defect on some
679  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
680  * lines connected to the bus, however for a 32-bit only card, they
681  * should be pulled high. The result of this defect is that the
682  * NIC will not work right if you plug it into a 64-bit slot: DMA
683  * operations will be done with 64-bit transfers, which will fail
684  * because the 64-bit data lines aren't connected.
685  *
686  * There's no way to work around this (short of talking a soldering
687  * iron to the board), however we can detect it. The method we use
688  * here is to put the NIC into digital loopback mode, set the receiver
689  * to promiscuous mode, and then try to send a frame. We then compare
690  * the frame data we sent to what was received. If the data matches,
691  * then the NIC is working correctly, otherwise we know the user has
692  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
693  * slot. In the latter case, there's no way the NIC can work correctly,
694  * so we print out a message on the console and abort the device attach.
695  */
696 
697 static int
698 re_diag(sc)
699 	struct rl_softc		*sc;
700 {
701 	struct ifnet		*ifp = &sc->arpcom.ac_if;
702 	struct mbuf		*m0;
703 	struct ether_header	*eh;
704 	struct rl_desc		*cur_rx;
705 	u_int16_t		status;
706 	u_int32_t		rxstat;
707 	int			total_len, i, error = 0;
708 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
709 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
710 
711 	/* Allocate a single mbuf */
712 
713 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
714 	if (m0 == NULL)
715 		return(ENOBUFS);
716 
717 	/*
718 	 * Initialize the NIC in test mode. This sets the chip up
719 	 * so that it can send and receive frames, but performs the
720 	 * following special functions:
721 	 * - Puts receiver in promiscuous mode
722 	 * - Enables digital loopback mode
723 	 * - Leaves interrupts turned off
724 	 */
725 
726 	ifp->if_flags |= IFF_PROMISC;
727 	sc->rl_testmode = 1;
728 	re_init(sc);
729 	re_stop(sc);
730 	DELAY(100000);
731 	re_init(sc);
732 
733 	/* Put some data in the mbuf */
734 
735 	eh = mtod(m0, struct ether_header *);
736 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
737 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
738 	eh->ether_type = htons(ETHERTYPE_IP);
739 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
740 
741 	/*
742 	 * Queue the packet, start transmission.
743 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
744 	 */
745 
746 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
747 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
748 	m0 = NULL;
749 
750 	/* Wait for it to propagate through the chip */
751 
752 	DELAY(100000);
753 	for (i = 0; i < RL_TIMEOUT; i++) {
754 		status = CSR_READ_2(sc, RL_ISR);
755 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
756 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
757 			break;
758 		DELAY(10);
759 	}
760 
761 	if (i == RL_TIMEOUT) {
762 		printf("re%d: diagnostic failed, failed to receive packet "
763 		    "in loopback mode\n", sc->rl_unit);
764 		error = EIO;
765 		goto done;
766 	}
767 
768 	/*
769 	 * The packet should have been dumped into the first
770 	 * entry in the RX DMA ring. Grab it from there.
771 	 */
772 
773 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
774 	    sc->rl_ldata.rl_rx_list_map,
775 	    BUS_DMASYNC_POSTREAD);
776 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
777 	    sc->rl_ldata.rl_rx_dmamap[0],
778 	    BUS_DMASYNC_POSTWRITE);
779 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
780 	    sc->rl_ldata.rl_rx_dmamap[0]);
781 
782 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
783 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
784 	eh = mtod(m0, struct ether_header *);
785 
786 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
787 	total_len = RL_RXBYTES(cur_rx);
788 	rxstat = le32toh(cur_rx->rl_cmdstat);
789 
790 	if (total_len != ETHER_MIN_LEN) {
791 		printf("re%d: diagnostic failed, received short packet\n",
792 		    sc->rl_unit);
793 		error = EIO;
794 		goto done;
795 	}
796 
797 	/* Test that the received packet data matches what we sent. */
798 
799 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
800 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
801 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
802 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
803 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
804 		    dst, ":", src, ":", ETHERTYPE_IP);
805 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
806 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
807 		    ntohs(eh->ether_type));
808 		printf("re%d: You may have a defective 32-bit NIC plugged "
809 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
810 		printf("re%d: Please re-install the NIC in a 32-bit slot "
811 		    "for proper operation.\n", sc->rl_unit);
812 		printf("re%d: Read the re(4) man page for more details.\n",
813 		    sc->rl_unit);
814 		error = EIO;
815 	}
816 
817 done:
818 	/* Turn interface off, release resources */
819 
820 	sc->rl_testmode = 0;
821 	ifp->if_flags &= ~IFF_PROMISC;
822 	re_stop(sc);
823 	if (m0 != NULL)
824 		m_freem(m0);
825 
826 	return (error);
827 }
828 
829 /*
830  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
831  * IDs against our list and return a device name if we find a match.
832  */
833 static int
834 re_probe(dev)
835 	device_t		dev;
836 {
837 	struct rl_type		*t;
838 	struct rl_softc		*sc;
839 	int			rid;
840 	u_int32_t		hwrev;
841 
842 	t = re_devs;
843 	sc = device_get_softc(dev);
844 
845 	while(t->rl_name != NULL) {
846 		if ((pci_get_vendor(dev) == t->rl_vid) &&
847 		    (pci_get_device(dev) == t->rl_did)) {
848 
849 			/*
850 			 * Temporarily map the I/O space
851 			 * so we can read the chip ID register.
852 			 */
853 			rid = RL_RID;
854 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
855 			    RF_ACTIVE);
856 			if (sc->rl_res == NULL) {
857 				device_printf(dev,
858 				    "couldn't map ports/memory\n");
859 				return(ENXIO);
860 			}
861 			sc->rl_btag = rman_get_bustag(sc->rl_res);
862 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
863 			mtx_init(&sc->rl_mtx,
864 			    device_get_nameunit(dev),
865 			    MTX_NETWORK_LOCK, MTX_DEF);
866 			RL_LOCK(sc);
867 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
868 			bus_release_resource(dev, RL_RES,
869 			    RL_RID, sc->rl_res);
870 			RL_UNLOCK(sc);
871 			mtx_destroy(&sc->rl_mtx);
872 			if (t->rl_basetype == hwrev) {
873 				device_set_desc(dev, t->rl_name);
874 				return(0);
875 			}
876 		}
877 		t++;
878 	}
879 
880 	return(ENXIO);
881 }
882 
883 /*
884  * This routine takes the segment list provided as the result of
885  * a bus_dma_map_load() operation and assigns the addresses/lengths
886  * to RealTek DMA descriptors. This can be called either by the RX
887  * code or the TX code. In the RX case, we'll probably wind up mapping
888  * at most one segment. For the TX case, there could be any number of
889  * segments since TX packets may span multiple mbufs. In either case,
890  * if the number of segments is larger than the rl_maxsegs limit
891  * specified by the caller, we abort the mapping operation. Sadly,
892  * whoever designed the buffer mapping API did not provide a way to
893  * return an error from here, so we have to fake it a bit.
894  */
895 
896 static void
897 re_dma_map_desc(arg, segs, nseg, mapsize, error)
898 	void			*arg;
899 	bus_dma_segment_t	*segs;
900 	int			nseg;
901 	bus_size_t		mapsize;
902 	int			error;
903 {
904 	struct rl_dmaload_arg	*ctx;
905 	struct rl_desc		*d = NULL;
906 	int			i = 0, idx;
907 
908 	if (error)
909 		return;
910 
911 	ctx = arg;
912 
913 	/* Signal error to caller if there's too many segments */
914 	if (nseg > ctx->rl_maxsegs) {
915 		ctx->rl_maxsegs = 0;
916 		return;
917 	}
918 
919 	/*
920 	 * Map the segment array into descriptors. Note that we set the
921 	 * start-of-frame and end-of-frame markers for either TX or RX, but
922 	 * they really only have meaning in the TX case. (In the RX case,
923 	 * it's the chip that tells us where packets begin and end.)
924 	 * We also keep track of the end of the ring and set the
925 	 * end-of-ring bits as needed, and we set the ownership bits
926 	 * in all except the very first descriptor. (The caller will
927 	 * set this descriptor later when it start transmission or
928 	 * reception.)
929 	 */
930 	idx = ctx->rl_idx;
931 	while(1) {
932 		u_int32_t		cmdstat;
933 		d = &ctx->rl_ring[idx];
934 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
935 			ctx->rl_maxsegs = 0;
936 			return;
937 		}
938 		cmdstat = segs[i].ds_len;
939 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
940 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
941 		if (i == 0)
942 			cmdstat |= RL_TDESC_CMD_SOF;
943 		else
944 			cmdstat |= RL_TDESC_CMD_OWN;
945 		if (idx == (RL_RX_DESC_CNT - 1))
946 			cmdstat |= RL_TDESC_CMD_EOR;
947 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
948 		i++;
949 		if (i == nseg)
950 			break;
951 		RL_DESC_INC(idx);
952 	}
953 
954 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
955 	ctx->rl_maxsegs = nseg;
956 	ctx->rl_idx = idx;
957 
958 	return;
959 }
960 
961 /*
962  * Map a single buffer address.
963  */
964 
965 static void
966 re_dma_map_addr(arg, segs, nseg, error)
967 	void			*arg;
968 	bus_dma_segment_t	*segs;
969 	int			nseg;
970 	int			error;
971 {
972 	u_int32_t		*addr;
973 
974 	if (error)
975 		return;
976 
977 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
978 	addr = arg;
979 	*addr = segs->ds_addr;
980 
981 	return;
982 }
983 
984 static int
985 re_allocmem(dev, sc)
986 	device_t		dev;
987 	struct rl_softc		*sc;
988 {
989 	int			error;
990 	int			nseg;
991 	int			i;
992 
993 	/*
994 	 * Allocate map for RX mbufs.
995 	 */
996 	nseg = 32;
997 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
998 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
999 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1000 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1001 	if (error) {
1002 		device_printf(dev, "could not allocate dma tag\n");
1003 		return (ENOMEM);
1004 	}
1005 
1006 	/*
1007 	 * Allocate map for TX descriptor list.
1008 	 */
1009 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1010 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1011             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1012 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1013 	if (error) {
1014 		device_printf(dev, "could not allocate dma tag\n");
1015 		return (ENOMEM);
1016 	}
1017 
1018 	/* Allocate DMA'able memory for the TX ring */
1019 
1020         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1021 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1022             &sc->rl_ldata.rl_tx_list_map);
1023         if (error)
1024                 return (ENOMEM);
1025 
1026 	/* Load the map for the TX ring. */
1027 
1028 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1029 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1030 	     RL_TX_LIST_SZ, re_dma_map_addr,
1031 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1032 
1033 	/* Create DMA maps for TX buffers */
1034 
1035 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1036 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1037 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1038 		if (error) {
1039 			device_printf(dev, "can't create DMA map for TX\n");
1040 			return(ENOMEM);
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * Allocate map for RX descriptor list.
1046 	 */
1047 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1048 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1049             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1050 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1051 	if (error) {
1052 		device_printf(dev, "could not allocate dma tag\n");
1053 		return (ENOMEM);
1054 	}
1055 
1056 	/* Allocate DMA'able memory for the RX ring */
1057 
1058         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1059 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1060             &sc->rl_ldata.rl_rx_list_map);
1061         if (error)
1062                 return (ENOMEM);
1063 
1064 	/* Load the map for the RX ring. */
1065 
1066 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1067 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1068 	     RL_TX_LIST_SZ, re_dma_map_addr,
1069 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1070 
1071 	/* Create DMA maps for RX buffers */
1072 
1073 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1074 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1075 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1076 		if (error) {
1077 			device_printf(dev, "can't create DMA map for RX\n");
1078 			return(ENOMEM);
1079 		}
1080 	}
1081 
1082 	return(0);
1083 }
1084 
1085 /*
1086  * Attach the interface. Allocate softc structures, do ifmedia
1087  * setup and ethernet/BPF attach.
1088  */
1089 static int
1090 re_attach(dev)
1091 	device_t		dev;
1092 {
1093 	u_char			eaddr[ETHER_ADDR_LEN];
1094 	u_int16_t		as[3];
1095 	struct rl_softc		*sc;
1096 	struct ifnet		*ifp;
1097 	struct rl_hwrev		*hw_rev;
1098 	int			hwrev;
1099 	u_int16_t		re_did = 0;
1100 	int			unit, error = 0, rid, i;
1101 
1102 	sc = device_get_softc(dev);
1103 	unit = device_get_unit(dev);
1104 
1105 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1106 	    MTX_DEF | MTX_RECURSE);
1107 #ifndef BURN_BRIDGES
1108 	/*
1109 	 * Handle power management nonsense.
1110 	 */
1111 
1112 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1113 		u_int32_t		iobase, membase, irq;
1114 
1115 		/* Save important PCI config data. */
1116 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1117 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1118 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1119 
1120 		/* Reset the power state. */
1121 		printf("re%d: chip is is in D%d power mode "
1122 		    "-- setting to D0\n", unit,
1123 		    pci_get_powerstate(dev));
1124 
1125 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1126 
1127 		/* Restore PCI config data. */
1128 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1129 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1130 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1131 	}
1132 #endif
1133 	/*
1134 	 * Map control/status registers.
1135 	 */
1136 	pci_enable_busmaster(dev);
1137 
1138 	rid = RL_RID;
1139 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1140 	    RF_ACTIVE);
1141 
1142 	if (sc->rl_res == NULL) {
1143 		printf ("re%d: couldn't map ports/memory\n", unit);
1144 		error = ENXIO;
1145 		goto fail;
1146 	}
1147 
1148 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1149 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1150 
1151 	/* Allocate interrupt */
1152 	rid = 0;
1153 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1154 	    RF_SHAREABLE | RF_ACTIVE);
1155 
1156 	if (sc->rl_irq == NULL) {
1157 		printf("re%d: couldn't map interrupt\n", unit);
1158 		error = ENXIO;
1159 		goto fail;
1160 	}
1161 
1162 	/* Reset the adapter. */
1163 	re_reset(sc);
1164 
1165 	hw_rev = re_hwrevs;
1166 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1167 	while (hw_rev->rl_desc != NULL) {
1168 		if (hw_rev->rl_rev == hwrev) {
1169 			sc->rl_type = hw_rev->rl_type;
1170 			break;
1171 		}
1172 		hw_rev++;
1173 	}
1174 
1175 	if (sc->rl_type == RL_8169) {
1176 
1177 		/* Set RX length mask */
1178 
1179 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1180 
1181 		/* Force station address autoload from the EEPROM */
1182 
1183 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1184 		for (i = 0; i < RL_TIMEOUT; i++) {
1185 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1186 				break;
1187 			DELAY(100);
1188 		}
1189 		if (i == RL_TIMEOUT)
1190 			printf ("re%d: eeprom autoload timed out\n", unit);
1191 
1192 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1193 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1194 	} else {
1195 
1196 		/* Set RX length mask */
1197 
1198 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1199 
1200 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1201 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1202 		if (re_did != 0x8129)
1203 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1204 
1205 		/*
1206 		 * Get station address from the EEPROM.
1207 		 */
1208 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1209 		for (i = 0; i < 3; i++) {
1210 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1211 			eaddr[(i * 2) + 1] = as[i] >> 8;
1212 		}
1213 	}
1214 
1215 	sc->rl_unit = unit;
1216 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1217 
1218 	/*
1219 	 * Allocate the parent bus DMA tag appropriate for PCI.
1220 	 */
1221 #define RL_NSEG_NEW 32
1222 	error = bus_dma_tag_create(NULL,	/* parent */
1223 			1, 0,			/* alignment, boundary */
1224 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1225 			BUS_SPACE_MAXADDR,	/* highaddr */
1226 			NULL, NULL,		/* filter, filterarg */
1227 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1228 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1229 			BUS_DMA_ALLOCNOW,	/* flags */
1230 			NULL, NULL,		/* lockfunc, lockarg */
1231 			&sc->rl_parent_tag);
1232 	if (error)
1233 		goto fail;
1234 
1235 	error = re_allocmem(dev, sc);
1236 
1237 	if (error)
1238 		goto fail;
1239 
1240 	/* Do MII setup */
1241 	if (mii_phy_probe(dev, &sc->rl_miibus,
1242 	    re_ifmedia_upd, re_ifmedia_sts)) {
1243 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1244 		error = ENXIO;
1245 		goto fail;
1246 	}
1247 
1248 	ifp = &sc->arpcom.ac_if;
1249 	ifp->if_softc = sc;
1250 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1251 	ifp->if_mtu = ETHERMTU;
1252 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1253 	ifp->if_ioctl = re_ioctl;
1254 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1255 	ifp->if_start = re_start;
1256 	ifp->if_hwassist = RE_CSUM_FEATURES;
1257 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1258 #ifdef DEVICE_POLLING
1259 	ifp->if_capabilities |= IFCAP_POLLING;
1260 #endif
1261 	ifp->if_watchdog = re_watchdog;
1262 	ifp->if_init = re_init;
1263 	if (sc->rl_type == RL_8169)
1264 		ifp->if_baudrate = 1000000000;
1265 	else
1266 		ifp->if_baudrate = 100000000;
1267 	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1268 	ifp->if_capenable = ifp->if_capabilities;
1269 
1270 	callout_handle_init(&sc->rl_stat_ch);
1271 
1272 	/*
1273 	 * Call MI attach routine.
1274 	 */
1275 	ether_ifattach(ifp, eaddr);
1276 
1277 	/* Perform hardware diagnostic. */
1278 	error = re_diag(sc);
1279 
1280 	if (error) {
1281 		printf("re%d: attach aborted due to hardware diag failure\n",
1282 		    unit);
1283 		ether_ifdetach(ifp);
1284 		goto fail;
1285 	}
1286 
1287 	/* Hook interrupt last to avoid having to lock softc */
1288 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1289 	    re_intr, sc, &sc->rl_intrhand);
1290 
1291 	if (error) {
1292 		printf("re%d: couldn't set up irq\n", unit);
1293 		ether_ifdetach(ifp);
1294 		goto fail;
1295 	}
1296 
1297 fail:
1298 	if (error)
1299 		re_detach(dev);
1300 
1301 	return (error);
1302 }
1303 
1304 /*
1305  * Shutdown hardware and free up resources. This can be called any
1306  * time after the mutex has been initialized. It is called in both
1307  * the error case in attach and the normal detach case so it needs
1308  * to be careful about only freeing resources that have actually been
1309  * allocated.
1310  */
1311 static int
1312 re_detach(dev)
1313 	device_t		dev;
1314 {
1315 	struct rl_softc		*sc;
1316 	struct ifnet		*ifp;
1317 	int			i;
1318 
1319 	sc = device_get_softc(dev);
1320 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1321 	RL_LOCK(sc);
1322 	ifp = &sc->arpcom.ac_if;
1323 
1324 	/* These should only be active if attach succeeded */
1325 	if (device_is_attached(dev)) {
1326 		re_stop(sc);
1327 		/*
1328 		 * Force off the IFF_UP flag here, in case someone
1329 		 * still had a BPF descriptor attached to this
1330 		 * interface. If they do, ether_ifattach() will cause
1331 		 * the BPF code to try and clear the promisc mode
1332 		 * flag, which will bubble down to re_ioctl(),
1333 		 * which will try to call re_init() again. This will
1334 		 * turn the NIC back on and restart the MII ticker,
1335 		 * which will panic the system when the kernel tries
1336 		 * to invoke the re_tick() function that isn't there
1337 		 * anymore.
1338 		 */
1339 		ifp->if_flags &= ~IFF_UP;
1340 		ether_ifdetach(ifp);
1341 	}
1342 	if (sc->rl_miibus)
1343 		device_delete_child(dev, sc->rl_miibus);
1344 	bus_generic_detach(dev);
1345 
1346 	if (sc->rl_intrhand)
1347 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1348 	if (sc->rl_irq)
1349 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1350 	if (sc->rl_res)
1351 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1352 
1353 
1354 	/* Unload and free the RX DMA ring memory and map */
1355 
1356 	if (sc->rl_ldata.rl_rx_list_tag) {
1357 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1358 		    sc->rl_ldata.rl_rx_list_map);
1359 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1360 		    sc->rl_ldata.rl_rx_list,
1361 		    sc->rl_ldata.rl_rx_list_map);
1362 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1363 	}
1364 
1365 	/* Unload and free the TX DMA ring memory and map */
1366 
1367 	if (sc->rl_ldata.rl_tx_list_tag) {
1368 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1369 		    sc->rl_ldata.rl_tx_list_map);
1370 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1371 		    sc->rl_ldata.rl_tx_list,
1372 		    sc->rl_ldata.rl_tx_list_map);
1373 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1374 	}
1375 
1376 	/* Destroy all the RX and TX buffer maps */
1377 
1378 	if (sc->rl_ldata.rl_mtag) {
1379 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1380 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1381 			    sc->rl_ldata.rl_tx_dmamap[i]);
1382 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1383 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1384 			    sc->rl_ldata.rl_rx_dmamap[i]);
1385 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1386 	}
1387 
1388 	/* Unload and free the stats buffer and map */
1389 
1390 	if (sc->rl_ldata.rl_stag) {
1391 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1392 		    sc->rl_ldata.rl_rx_list_map);
1393 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1394 		    sc->rl_ldata.rl_stats,
1395 		    sc->rl_ldata.rl_smap);
1396 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1397 	}
1398 
1399 	if (sc->rl_parent_tag)
1400 		bus_dma_tag_destroy(sc->rl_parent_tag);
1401 
1402 	RL_UNLOCK(sc);
1403 	mtx_destroy(&sc->rl_mtx);
1404 
1405 	return(0);
1406 }
1407 
1408 static int
1409 re_newbuf(sc, idx, m)
1410 	struct rl_softc		*sc;
1411 	int			idx;
1412 	struct mbuf		*m;
1413 {
1414 	struct rl_dmaload_arg	arg;
1415 	struct mbuf		*n = NULL;
1416 	int			error;
1417 
1418 	if (m == NULL) {
1419 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1420 		if (n == NULL)
1421 			return(ENOBUFS);
1422 		m = n;
1423 	} else
1424 		m->m_data = m->m_ext.ext_buf;
1425 
1426 	/*
1427 	 * Initialize mbuf length fields and fixup
1428 	 * alignment so that the frame payload is
1429 	 * longword aligned.
1430 	 */
1431 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1432 	m_adj(m, ETHER_ALIGN);
1433 
1434 	arg.sc = sc;
1435 	arg.rl_idx = idx;
1436 	arg.rl_maxsegs = 1;
1437 	arg.rl_flags = 0;
1438 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1439 
1440         error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1441 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1442 	    &arg, BUS_DMA_NOWAIT);
1443 	if (error || arg.rl_maxsegs != 1) {
1444 		if (n != NULL)
1445 			m_freem(n);
1446 		return (ENOMEM);
1447 	}
1448 
1449 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1450 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1451 
1452         bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1453 	    sc->rl_ldata.rl_rx_dmamap[idx],
1454 	    BUS_DMASYNC_PREREAD);
1455 
1456 	return(0);
1457 }
1458 
1459 static int
1460 re_tx_list_init(sc)
1461 	struct rl_softc		*sc;
1462 {
1463 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1464 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1465 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1466 
1467 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1468 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1469 	sc->rl_ldata.rl_tx_prodidx = 0;
1470 	sc->rl_ldata.rl_tx_considx = 0;
1471 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1472 
1473 	return(0);
1474 }
1475 
1476 static int
1477 re_rx_list_init(sc)
1478 	struct rl_softc		*sc;
1479 {
1480 	int			i;
1481 
1482 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1483 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1484 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1485 
1486 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1487 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1488 			return(ENOBUFS);
1489 	}
1490 
1491 	/* Flush the RX descriptors */
1492 
1493 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1494 	    sc->rl_ldata.rl_rx_list_map,
1495 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1496 
1497 	sc->rl_ldata.rl_rx_prodidx = 0;
1498 	sc->rl_head = sc->rl_tail = NULL;
1499 
1500 	return(0);
1501 }
1502 
1503 /*
1504  * RX handler for C+ and 8169. For the gigE chips, we support
1505  * the reception of jumbo frames that have been fragmented
1506  * across multiple 2K mbuf cluster buffers.
1507  */
1508 static void
1509 re_rxeof(sc)
1510 	struct rl_softc		*sc;
1511 {
1512 	struct mbuf		*m;
1513 	struct ifnet		*ifp;
1514 	int			i, total_len;
1515 	struct rl_desc		*cur_rx;
1516 	u_int32_t		rxstat, rxvlan;
1517 
1518 	RL_LOCK_ASSERT(sc);
1519 
1520 	ifp = &sc->arpcom.ac_if;
1521 	i = sc->rl_ldata.rl_rx_prodidx;
1522 
1523 	/* Invalidate the descriptor memory */
1524 
1525 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1526 	    sc->rl_ldata.rl_rx_list_map,
1527 	    BUS_DMASYNC_POSTREAD);
1528 
1529 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1530 
1531 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1532 		m = sc->rl_ldata.rl_rx_mbuf[i];
1533 		total_len = RL_RXBYTES(cur_rx);
1534 		rxstat = le32toh(cur_rx->rl_cmdstat);
1535 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1536 
1537 		/* Invalidate the RX mbuf and unload its map */
1538 
1539 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1540 		    sc->rl_ldata.rl_rx_dmamap[i],
1541 		    BUS_DMASYNC_POSTWRITE);
1542 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1543 		    sc->rl_ldata.rl_rx_dmamap[i]);
1544 
1545 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1546 			m->m_len = MCLBYTES - ETHER_ALIGN;
1547 			if (sc->rl_head == NULL)
1548 				sc->rl_head = sc->rl_tail = m;
1549 			else {
1550 				m->m_flags &= ~M_PKTHDR;
1551 				sc->rl_tail->m_next = m;
1552 				sc->rl_tail = m;
1553 			}
1554 			re_newbuf(sc, i, NULL);
1555 			RL_DESC_INC(i);
1556 			continue;
1557 		}
1558 
1559 		/*
1560 		 * NOTE: for the 8139C+, the frame length field
1561 		 * is always 12 bits in size, but for the gigE chips,
1562 		 * it is 13 bits (since the max RX frame length is 16K).
1563 		 * Unfortunately, all 32 bits in the status word
1564 		 * were already used, so to make room for the extra
1565 		 * length bit, RealTek took out the 'frame alignment
1566 		 * error' bit and shifted the other status bits
1567 		 * over one slot. The OWN, EOR, FS and LS bits are
1568 		 * still in the same places. We have already extracted
1569 		 * the frame length and checked the OWN bit, so rather
1570 		 * than using an alternate bit mapping, we shift the
1571 		 * status bits one space to the right so we can evaluate
1572 		 * them using the 8169 status as though it was in the
1573 		 * same format as that of the 8139C+.
1574 		 */
1575 		if (sc->rl_type == RL_8169)
1576 			rxstat >>= 1;
1577 
1578 		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1579 			ifp->if_ierrors++;
1580 			/*
1581 			 * If this is part of a multi-fragment packet,
1582 			 * discard all the pieces.
1583 			 */
1584 			if (sc->rl_head != NULL) {
1585 				m_freem(sc->rl_head);
1586 				sc->rl_head = sc->rl_tail = NULL;
1587 			}
1588 			re_newbuf(sc, i, m);
1589 			RL_DESC_INC(i);
1590 			continue;
1591 		}
1592 
1593 		/*
1594 		 * If allocating a replacement mbuf fails,
1595 		 * reload the current one.
1596 		 */
1597 
1598 		if (re_newbuf(sc, i, NULL)) {
1599 			ifp->if_ierrors++;
1600 			if (sc->rl_head != NULL) {
1601 				m_freem(sc->rl_head);
1602 				sc->rl_head = sc->rl_tail = NULL;
1603 			}
1604 			re_newbuf(sc, i, m);
1605 			RL_DESC_INC(i);
1606 			continue;
1607 		}
1608 
1609 		RL_DESC_INC(i);
1610 
1611 		if (sc->rl_head != NULL) {
1612 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1613 			/*
1614 			 * Special case: if there's 4 bytes or less
1615 			 * in this buffer, the mbuf can be discarded:
1616 			 * the last 4 bytes is the CRC, which we don't
1617 			 * care about anyway.
1618 			 */
1619 			if (m->m_len <= ETHER_CRC_LEN) {
1620 				sc->rl_tail->m_len -=
1621 				    (ETHER_CRC_LEN - m->m_len);
1622 				m_freem(m);
1623 			} else {
1624 				m->m_len -= ETHER_CRC_LEN;
1625 				m->m_flags &= ~M_PKTHDR;
1626 				sc->rl_tail->m_next = m;
1627 			}
1628 			m = sc->rl_head;
1629 			sc->rl_head = sc->rl_tail = NULL;
1630 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1631 		} else
1632 			m->m_pkthdr.len = m->m_len =
1633 			    (total_len - ETHER_CRC_LEN);
1634 
1635 		ifp->if_ipackets++;
1636 		m->m_pkthdr.rcvif = ifp;
1637 
1638 		/* Do RX checksumming if enabled */
1639 
1640 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1641 
1642 			/* Check IP header checksum */
1643 			if (rxstat & RL_RDESC_STAT_PROTOID)
1644 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1645 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1646 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1647 
1648 			/* Check TCP/UDP checksum */
1649 			if ((RL_TCPPKT(rxstat) &&
1650 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1651 			    (RL_UDPPKT(rxstat) &&
1652 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1653 				m->m_pkthdr.csum_flags |=
1654 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1655 				m->m_pkthdr.csum_data = 0xffff;
1656 			}
1657 		}
1658 
1659 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1660 			VLAN_INPUT_TAG(ifp, m,
1661 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1662 		RL_UNLOCK(sc);
1663 		(*ifp->if_input)(ifp, m);
1664 		RL_LOCK(sc);
1665 	}
1666 
1667 	/* Flush the RX DMA ring */
1668 
1669 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1670 	    sc->rl_ldata.rl_rx_list_map,
1671 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1672 
1673 	sc->rl_ldata.rl_rx_prodidx = i;
1674 
1675 	return;
1676 }
1677 
1678 static void
1679 re_txeof(sc)
1680 	struct rl_softc		*sc;
1681 {
1682 	struct ifnet		*ifp;
1683 	u_int32_t		txstat;
1684 	int			idx;
1685 
1686 	ifp = &sc->arpcom.ac_if;
1687 	idx = sc->rl_ldata.rl_tx_considx;
1688 
1689 	/* Invalidate the TX descriptor list */
1690 
1691 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1692 	    sc->rl_ldata.rl_tx_list_map,
1693 	    BUS_DMASYNC_POSTREAD);
1694 
1695 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1696 
1697 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1698 		if (txstat & RL_TDESC_CMD_OWN)
1699 			break;
1700 
1701 		/*
1702 		 * We only stash mbufs in the last descriptor
1703 		 * in a fragment chain, which also happens to
1704 		 * be the only place where the TX status bits
1705 		 * are valid.
1706 		 */
1707 
1708 		if (txstat & RL_TDESC_CMD_EOF) {
1709 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1710 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1711 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1712 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1713 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1714 			    RL_TDESC_STAT_COLCNT))
1715 				ifp->if_collisions++;
1716 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1717 				ifp->if_oerrors++;
1718 			else
1719 				ifp->if_opackets++;
1720 		}
1721 		sc->rl_ldata.rl_tx_free++;
1722 		RL_DESC_INC(idx);
1723 	}
1724 
1725 	/* No changes made to the TX ring, so no flush needed */
1726 
1727 	if (idx != sc->rl_ldata.rl_tx_considx) {
1728 		sc->rl_ldata.rl_tx_considx = idx;
1729 		ifp->if_flags &= ~IFF_OACTIVE;
1730 		ifp->if_timer = 0;
1731 	}
1732 
1733 	/*
1734 	 * If not all descriptors have been released reaped yet,
1735 	 * reload the timer so that we will eventually get another
1736 	 * interrupt that will cause us to re-enter this routine.
1737 	 * This is done in case the transmitter has gone idle.
1738 	 */
1739 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1740                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1741 
1742 	return;
1743 }
1744 
1745 static void
1746 re_tick(xsc)
1747 	void			*xsc;
1748 {
1749 	struct rl_softc		*sc;
1750 	struct mii_data		*mii;
1751 
1752 	sc = xsc;
1753 	RL_LOCK(sc);
1754 	mii = device_get_softc(sc->rl_miibus);
1755 
1756 	mii_tick(mii);
1757 
1758 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1759 	RL_UNLOCK(sc);
1760 
1761 	return;
1762 }
1763 
1764 #ifdef DEVICE_POLLING
1765 static void
1766 re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1767 {
1768 	struct rl_softc *sc = ifp->if_softc;
1769 
1770 	RL_LOCK(sc);
1771 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1772 		ether_poll_deregister(ifp);
1773 		cmd = POLL_DEREGISTER;
1774 	}
1775 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1776 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1777 		goto done;
1778 	}
1779 
1780 	sc->rxcycles = count;
1781 	re_rxeof(sc);
1782 	re_txeof(sc);
1783 
1784 	if (ifp->if_snd.ifq_head != NULL)
1785 		(*ifp->if_start)(ifp);
1786 
1787 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1788 		u_int16_t       status;
1789 
1790 		status = CSR_READ_2(sc, RL_ISR);
1791 		if (status == 0xffff)
1792 			goto done;
1793 		if (status)
1794 			CSR_WRITE_2(sc, RL_ISR, status);
1795 
1796 		/*
1797 		 * XXX check behaviour on receiver stalls.
1798 		 */
1799 
1800 		if (status & RL_ISR_SYSTEM_ERR) {
1801 			re_reset(sc);
1802 			re_init(sc);
1803 		}
1804 	}
1805 done:
1806 	RL_UNLOCK(sc);
1807 }
1808 #endif /* DEVICE_POLLING */
1809 
1810 static void
1811 re_intr(arg)
1812 	void			*arg;
1813 {
1814 	struct rl_softc		*sc;
1815 	struct ifnet		*ifp;
1816 	u_int16_t		status;
1817 
1818 	sc = arg;
1819 
1820 	if (sc->suspended) {
1821 		return;
1822 	}
1823 
1824 	RL_LOCK(sc);
1825 	ifp = &sc->arpcom.ac_if;
1826 
1827 	if (!(ifp->if_flags & IFF_UP)) {
1828 		RL_UNLOCK(sc);
1829 		return;
1830 	}
1831 
1832 #ifdef DEVICE_POLLING
1833 	if  (ifp->if_flags & IFF_POLLING)
1834 		goto done;
1835 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1836 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1837 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1838 		re_poll(ifp, 0, 1);
1839 		goto done;
1840 	}
1841 #endif /* DEVICE_POLLING */
1842 
1843 	for (;;) {
1844 
1845 		status = CSR_READ_2(sc, RL_ISR);
1846 		/* If the card has gone away the read returns 0xffff. */
1847 		if (status == 0xffff)
1848 			break;
1849 		if (status)
1850 			CSR_WRITE_2(sc, RL_ISR, status);
1851 
1852 		if ((status & RL_INTRS_CPLUS) == 0)
1853 			break;
1854 
1855 		if (status & RL_ISR_RX_OK)
1856 			re_rxeof(sc);
1857 
1858 		if (status & RL_ISR_RX_ERR)
1859 			re_rxeof(sc);
1860 
1861 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1862 		    (status & RL_ISR_TX_ERR) ||
1863 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1864 			re_txeof(sc);
1865 
1866 		if (status & RL_ISR_SYSTEM_ERR) {
1867 			re_reset(sc);
1868 			re_init(sc);
1869 		}
1870 
1871 		if (status & RL_ISR_LINKCHG) {
1872 			untimeout(re_tick, sc, sc->rl_stat_ch);
1873 			re_tick(sc);
1874 		}
1875 	}
1876 
1877 	if (ifp->if_snd.ifq_head != NULL)
1878 		(*ifp->if_start)(ifp);
1879 
1880 #ifdef DEVICE_POLLING
1881 done:
1882 #endif
1883 	RL_UNLOCK(sc);
1884 
1885 	return;
1886 }
1887 
1888 static int
1889 re_encap(sc, m_head, idx)
1890 	struct rl_softc		*sc;
1891 	struct mbuf		*m_head;
1892 	int			*idx;
1893 {
1894 	struct mbuf		*m_new = NULL;
1895 	struct rl_dmaload_arg	arg;
1896 	bus_dmamap_t		map;
1897 	int			error;
1898 	struct m_tag		*mtag;
1899 
1900 	if (sc->rl_ldata.rl_tx_free <= 4)
1901 		return(EFBIG);
1902 
1903 	/*
1904 	 * Set up checksum offload. Note: checksum offload bits must
1905 	 * appear in all descriptors of a multi-descriptor transmit
1906 	 * attempt. (This is according to testing done with an 8169
1907 	 * chip. I'm not sure if this is a requirement or a bug.)
1908 	 */
1909 
1910 	arg.rl_flags = 0;
1911 
1912 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1913 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1914 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1915 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1916 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1917 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1918 
1919 	arg.sc = sc;
1920 	arg.rl_idx = *idx;
1921 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1922 	if (arg.rl_maxsegs > 4)
1923 		arg.rl_maxsegs -= 4;
1924 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1925 
1926 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1927 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1928 	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1929 
1930 	if (error && error != EFBIG) {
1931 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1932 		return(ENOBUFS);
1933 	}
1934 
1935 	/* Too many segments to map, coalesce into a single mbuf */
1936 
1937 	if (error || arg.rl_maxsegs == 0) {
1938 		m_new = m_defrag(m_head, M_DONTWAIT);
1939 		if (m_new == NULL)
1940 			return(1);
1941 		else
1942 			m_head = m_new;
1943 
1944 		arg.sc = sc;
1945 		arg.rl_idx = *idx;
1946 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1947 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1948 
1949 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1950 		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1951 		if (error) {
1952 			printf("re%d: can't map mbuf (error %d)\n",
1953 			    sc->rl_unit, error);
1954 			return(EFBIG);
1955 		}
1956 	}
1957 
1958 	/*
1959 	 * Insure that the map for this transmission
1960 	 * is placed at the array index of the last descriptor
1961 	 * in this chain.
1962 	 */
1963 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1964 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1965 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1966 
1967 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1968 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1969 
1970 	/*
1971 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1972 	 * appear in the first descriptor of a multi-descriptor
1973 	 * transmission attempt.
1974 	 */
1975 
1976 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1977 	if (mtag != NULL)
1978 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1979 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1980 
1981 	/* Transfer ownership of packet to the chip. */
1982 
1983 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1984 	    htole32(RL_TDESC_CMD_OWN);
1985 	if (*idx != arg.rl_idx)
1986 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1987 		    htole32(RL_TDESC_CMD_OWN);
1988 
1989 	RL_DESC_INC(arg.rl_idx);
1990 	*idx = arg.rl_idx;
1991 
1992 	return(0);
1993 }
1994 
1995 /*
1996  * Main transmit routine for C+ and gigE NICs.
1997  */
1998 
1999 static void
2000 re_start(ifp)
2001 	struct ifnet		*ifp;
2002 {
2003 	struct rl_softc		*sc;
2004 	struct mbuf		*m_head = NULL;
2005 	int			idx;
2006 
2007 	sc = ifp->if_softc;
2008 	RL_LOCK(sc);
2009 
2010 	idx = sc->rl_ldata.rl_tx_prodidx;
2011 
2012 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2013 		IF_DEQUEUE(&ifp->if_snd, m_head);
2014 		if (m_head == NULL)
2015 			break;
2016 
2017 		if (re_encap(sc, m_head, &idx)) {
2018 			IF_PREPEND(&ifp->if_snd, m_head);
2019 			ifp->if_flags |= IFF_OACTIVE;
2020 			break;
2021 		}
2022 
2023 		/*
2024 		 * If there's a BPF listener, bounce a copy of this frame
2025 		 * to him.
2026 		 */
2027 		BPF_MTAP(ifp, m_head);
2028 	}
2029 
2030 	/* Flush the TX descriptors */
2031 
2032 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2033 	    sc->rl_ldata.rl_tx_list_map,
2034 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2035 
2036 	sc->rl_ldata.rl_tx_prodidx = idx;
2037 
2038 	/*
2039 	 * RealTek put the TX poll request register in a different
2040 	 * location on the 8169 gigE chip. I don't know why.
2041 	 */
2042 
2043 	if (sc->rl_type == RL_8169)
2044 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2045 	else
2046 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2047 
2048 	/*
2049 	 * Use the countdown timer for interrupt moderation.
2050 	 * 'TX done' interrupts are disabled. Instead, we reset the
2051 	 * countdown timer, which will begin counting until it hits
2052 	 * the value in the TIMERINT register, and then trigger an
2053 	 * interrupt. Each time we write to the TIMERCNT register,
2054 	 * the timer count is reset to 0.
2055 	 */
2056 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2057 
2058 	RL_UNLOCK(sc);
2059 
2060 	/*
2061 	 * Set a timeout in case the chip goes out to lunch.
2062 	 */
2063 	ifp->if_timer = 5;
2064 
2065 	return;
2066 }
2067 
2068 static void
2069 re_init(xsc)
2070 	void			*xsc;
2071 {
2072 	struct rl_softc		*sc = xsc;
2073 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2074 	struct mii_data		*mii;
2075 	u_int32_t		rxcfg = 0;
2076 
2077 	RL_LOCK(sc);
2078 	mii = device_get_softc(sc->rl_miibus);
2079 
2080 	/*
2081 	 * Cancel pending I/O and free all RX/TX buffers.
2082 	 */
2083 	re_stop(sc);
2084 
2085 	/*
2086 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2087 	 * RX checksum offload. We must configure the C+ register
2088 	 * before all others.
2089 	 */
2090 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2091 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2092 	    RL_CPLUSCMD_VLANSTRIP|
2093 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2094 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2095 
2096 	/*
2097 	 * Init our MAC address.  Even though the chipset
2098 	 * documentation doesn't mention it, we need to enter "Config
2099 	 * register write enable" mode to modify the ID registers.
2100 	 */
2101 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2102 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2103 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2104 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2105 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2106 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2107 
2108 	/*
2109 	 * For C+ mode, initialize the RX descriptors and mbufs.
2110 	 */
2111 	re_rx_list_init(sc);
2112 	re_tx_list_init(sc);
2113 
2114 	/*
2115 	 * Enable transmit and receive.
2116 	 */
2117 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2118 
2119 	/*
2120 	 * Set the initial TX and RX configuration.
2121 	 */
2122 	if (sc->rl_testmode) {
2123 		if (sc->rl_type == RL_8169)
2124 			CSR_WRITE_4(sc, RL_TXCFG,
2125 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2126 		else
2127 			CSR_WRITE_4(sc, RL_TXCFG,
2128 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2129 	} else
2130 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2131 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2132 
2133 	/* Set the individual bit to receive frames for this host only. */
2134 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2135 	rxcfg |= RL_RXCFG_RX_INDIV;
2136 
2137 	/* If we want promiscuous mode, set the allframes bit. */
2138 	if (ifp->if_flags & IFF_PROMISC) {
2139 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2140 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2141 	} else {
2142 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2143 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2144 	}
2145 
2146 	/*
2147 	 * Set capture broadcast bit to capture broadcast frames.
2148 	 */
2149 	if (ifp->if_flags & IFF_BROADCAST) {
2150 		rxcfg |= RL_RXCFG_RX_BROAD;
2151 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2152 	} else {
2153 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2154 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2155 	}
2156 
2157 	/*
2158 	 * Program the multicast filter, if necessary.
2159 	 */
2160 	re_setmulti(sc);
2161 
2162 #ifdef DEVICE_POLLING
2163 	/*
2164 	 * Disable interrupts if we are polling.
2165 	 */
2166 	if (ifp->if_flags & IFF_POLLING)
2167 		CSR_WRITE_2(sc, RL_IMR, 0);
2168 	else	/* otherwise ... */
2169 #endif /* DEVICE_POLLING */
2170 	/*
2171 	 * Enable interrupts.
2172 	 */
2173 	if (sc->rl_testmode)
2174 		CSR_WRITE_2(sc, RL_IMR, 0);
2175 	else
2176 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2177 
2178 	/* Set initial TX threshold */
2179 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2180 
2181 	/* Start RX/TX process. */
2182 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2183 #ifdef notdef
2184 	/* Enable receiver and transmitter. */
2185 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2186 #endif
2187 	/*
2188 	 * Load the addresses of the RX and TX lists into the chip.
2189 	 */
2190 
2191 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2192 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2193 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2194 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2195 
2196 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2197 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2198 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2199 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2200 
2201 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2202 
2203 	/*
2204 	 * Initialize the timer interrupt register so that
2205 	 * a timer interrupt will be generated once the timer
2206 	 * reaches a certain number of ticks. The timer is
2207 	 * reloaded on each transmit. This gives us TX interrupt
2208 	 * moderation, which dramatically improves TX frame rate.
2209 	 */
2210 
2211 	if (sc->rl_type == RL_8169)
2212 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2213 	else
2214 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2215 
2216 	/*
2217 	 * For 8169 gigE NICs, set the max allowed RX packet
2218 	 * size so we can receive jumbo frames.
2219 	 */
2220 	if (sc->rl_type == RL_8169)
2221 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2222 
2223 	if (sc->rl_testmode) {
2224 		RL_UNLOCK(sc);
2225 		return;
2226 	}
2227 
2228 	mii_mediachg(mii);
2229 
2230 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2231 
2232 	ifp->if_flags |= IFF_RUNNING;
2233 	ifp->if_flags &= ~IFF_OACTIVE;
2234 
2235 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2236 	RL_UNLOCK(sc);
2237 
2238 	return;
2239 }
2240 
2241 /*
2242  * Set media options.
2243  */
2244 static int
2245 re_ifmedia_upd(ifp)
2246 	struct ifnet		*ifp;
2247 {
2248 	struct rl_softc		*sc;
2249 	struct mii_data		*mii;
2250 
2251 	sc = ifp->if_softc;
2252 	mii = device_get_softc(sc->rl_miibus);
2253 	mii_mediachg(mii);
2254 
2255 	return(0);
2256 }
2257 
2258 /*
2259  * Report current media status.
2260  */
2261 static void
2262 re_ifmedia_sts(ifp, ifmr)
2263 	struct ifnet		*ifp;
2264 	struct ifmediareq	*ifmr;
2265 {
2266 	struct rl_softc		*sc;
2267 	struct mii_data		*mii;
2268 
2269 	sc = ifp->if_softc;
2270 	mii = device_get_softc(sc->rl_miibus);
2271 
2272 	mii_pollstat(mii);
2273 	ifmr->ifm_active = mii->mii_media_active;
2274 	ifmr->ifm_status = mii->mii_media_status;
2275 
2276 	return;
2277 }
2278 
2279 static int
2280 re_ioctl(ifp, command, data)
2281 	struct ifnet		*ifp;
2282 	u_long			command;
2283 	caddr_t			data;
2284 {
2285 	struct rl_softc		*sc = ifp->if_softc;
2286 	struct ifreq		*ifr = (struct ifreq *) data;
2287 	struct mii_data		*mii;
2288 	int			error = 0;
2289 
2290 	RL_LOCK(sc);
2291 
2292 	switch(command) {
2293 	case SIOCSIFMTU:
2294 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2295 			error = EINVAL;
2296 		ifp->if_mtu = ifr->ifr_mtu;
2297 		break;
2298 	case SIOCSIFFLAGS:
2299 		if (ifp->if_flags & IFF_UP) {
2300 			re_init(sc);
2301 		} else {
2302 			if (ifp->if_flags & IFF_RUNNING)
2303 				re_stop(sc);
2304 		}
2305 		error = 0;
2306 		break;
2307 	case SIOCADDMULTI:
2308 	case SIOCDELMULTI:
2309 		re_setmulti(sc);
2310 		error = 0;
2311 		break;
2312 	case SIOCGIFMEDIA:
2313 	case SIOCSIFMEDIA:
2314 		mii = device_get_softc(sc->rl_miibus);
2315 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2316 		break;
2317 	case SIOCSIFCAP:
2318 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2319 		ifp->if_capenable |=
2320 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2321 		if (ifp->if_capenable & IFCAP_TXCSUM)
2322 			ifp->if_hwassist = RE_CSUM_FEATURES;
2323 		else
2324 			ifp->if_hwassist = 0;
2325 		if (ifp->if_flags & IFF_RUNNING)
2326 			re_init(sc);
2327 		break;
2328 	default:
2329 		error = ether_ioctl(ifp, command, data);
2330 		break;
2331 	}
2332 
2333 	RL_UNLOCK(sc);
2334 
2335 	return(error);
2336 }
2337 
2338 static void
2339 re_watchdog(ifp)
2340 	struct ifnet		*ifp;
2341 {
2342 	struct rl_softc		*sc;
2343 
2344 	sc = ifp->if_softc;
2345 	RL_LOCK(sc);
2346 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2347 	ifp->if_oerrors++;
2348 
2349 	re_txeof(sc);
2350 	re_rxeof(sc);
2351 
2352 	re_init(sc);
2353 
2354 	RL_UNLOCK(sc);
2355 
2356 	return;
2357 }
2358 
2359 /*
2360  * Stop the adapter and free any mbufs allocated to the
2361  * RX and TX lists.
2362  */
2363 static void
2364 re_stop(sc)
2365 	struct rl_softc		*sc;
2366 {
2367 	register int		i;
2368 	struct ifnet		*ifp;
2369 
2370 	RL_LOCK(sc);
2371 	ifp = &sc->arpcom.ac_if;
2372 	ifp->if_timer = 0;
2373 
2374 	untimeout(re_tick, sc, sc->rl_stat_ch);
2375 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2376 #ifdef DEVICE_POLLING
2377 	ether_poll_deregister(ifp);
2378 #endif /* DEVICE_POLLING */
2379 
2380 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2381 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2382 
2383 	if (sc->rl_head != NULL) {
2384 		m_freem(sc->rl_head);
2385 		sc->rl_head = sc->rl_tail = NULL;
2386 	}
2387 
2388 	/* Free the TX list buffers. */
2389 
2390 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2391 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2392 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2393 			    sc->rl_ldata.rl_tx_dmamap[i]);
2394 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2395 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2396 		}
2397 	}
2398 
2399 	/* Free the RX list buffers. */
2400 
2401 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2402 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2403 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2404 			    sc->rl_ldata.rl_rx_dmamap[i]);
2405 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2406 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2407 		}
2408 	}
2409 
2410 	RL_UNLOCK(sc);
2411 	return;
2412 }
2413 
2414 /*
2415  * Device suspend routine.  Stop the interface and save some PCI
2416  * settings in case the BIOS doesn't restore them properly on
2417  * resume.
2418  */
2419 static int
2420 re_suspend(dev)
2421 	device_t		dev;
2422 {
2423 #ifndef BURN_BRIDGES
2424 	register int		i;
2425 #endif
2426 	struct rl_softc		*sc;
2427 
2428 	sc = device_get_softc(dev);
2429 
2430 	re_stop(sc);
2431 
2432 #ifndef BURN_BRIDGES
2433 	for (i = 0; i < 5; i++)
2434 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2435 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2436 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2437 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2438 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2439 #endif
2440 
2441 	sc->suspended = 1;
2442 
2443 	return (0);
2444 }
2445 
2446 /*
2447  * Device resume routine.  Restore some PCI settings in case the BIOS
2448  * doesn't, re-enable busmastering, and restart the interface if
2449  * appropriate.
2450  */
2451 static int
2452 re_resume(dev)
2453 	device_t		dev;
2454 {
2455 #ifndef BURN_BRIDGES
2456 	register int		i;
2457 #endif
2458 	struct rl_softc		*sc;
2459 	struct ifnet		*ifp;
2460 
2461 	sc = device_get_softc(dev);
2462 	ifp = &sc->arpcom.ac_if;
2463 
2464 #ifndef BURN_BRIDGES
2465 	/* better way to do this? */
2466 	for (i = 0; i < 5; i++)
2467 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2468 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2469 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2470 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2471 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2472 
2473 	/* reenable busmastering */
2474 	pci_enable_busmaster(dev);
2475 	pci_enable_io(dev, RL_RES);
2476 #endif
2477 
2478 	/* reinitialize interface if necessary */
2479 	if (ifp->if_flags & IFF_UP)
2480 		re_init(sc);
2481 
2482 	sc->suspended = 0;
2483 
2484 	return (0);
2485 }
2486 
2487 /*
2488  * Stop all chip I/O so that the kernel's probe routines don't
2489  * get confused by errant DMAs when rebooting.
2490  */
2491 static void
2492 re_shutdown(dev)
2493 	device_t		dev;
2494 {
2495 	struct rl_softc		*sc;
2496 
2497 	sc = device_get_softc(dev);
2498 
2499 	re_stop(sc);
2500 
2501 	return;
2502 }
2503