1 /*- 2 * Copyright (c) 1997, 1998-2003 3 * Bill Paul <wpaul@windriver.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Networking Software Engineer 41 * Wind River Systems 42 */ 43 44 /* 45 * This driver is designed to support RealTek's next generation of 46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, 48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. 49 * 50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 51 * with the older 8139 family, however it also supports a special 52 * C+ mode of operation that provides several new performance enhancing 53 * features. These include: 54 * 55 * o Descriptor based DMA mechanism. Each descriptor represents 56 * a single packet fragment. Data buffers may be aligned on 57 * any byte boundary. 58 * 59 * o 64-bit DMA 60 * 61 * o TCP/IP checksum offload for both RX and TX 62 * 63 * o High and normal priority transmit DMA rings 64 * 65 * o VLAN tag insertion and extraction 66 * 67 * o TCP large send (segmentation offload) 68 * 69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 70 * programming API is fairly straightforward. The RX filtering, EEPROM 71 * access and PHY access is the same as it is on the older 8139 series 72 * chips. 73 * 74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 75 * same programming API and feature set as the 8139C+ with the following 76 * differences and additions: 77 * 78 * o 1000Mbps mode 79 * 80 * o Jumbo frames 81 * 82 * o GMII and TBI ports/registers for interfacing with copper 83 * or fiber PHYs 84 * 85 * o RX and TX DMA rings can have up to 1024 descriptors 86 * (the 8139C+ allows a maximum of 64) 87 * 88 * o Slight differences in register layout from the 8139C+ 89 * 90 * The TX start and timer interrupt registers are at different locations 91 * on the 8169 than they are on the 8139C+. Also, the status word in the 92 * RX descriptor has a slightly different bit layout. The 8169 does not 93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 94 * copper gigE PHY. 95 * 96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 97 * (the 'S' stands for 'single-chip'). These devices have the same 98 * programming API as the older 8169, but also have some vendor-specific 99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 101 * 102 * This driver takes advantage of the RX and TX checksum offload and 103 * VLAN tag insertion/extraction features. It also implements TX 104 * interrupt moderation using the timer interrupt registers, which 105 * significantly reduces TX interrupt load. There is also support 106 * for jumbo frames, however the 8169/8169S/8110S can not transmit 107 * jumbo frames larger than 7440, so the max MTU possible with this 108 * driver is 7422 bytes. 109 */ 110 111 #ifdef HAVE_KERNEL_OPTION_HEADERS 112 #include "opt_device_polling.h" 113 #endif 114 115 #include <sys/param.h> 116 #include <sys/endian.h> 117 #include <sys/systm.h> 118 #include <sys/sockio.h> 119 #include <sys/mbuf.h> 120 #include <sys/malloc.h> 121 #include <sys/module.h> 122 #include <sys/kernel.h> 123 #include <sys/socket.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/taskqueue.h> 127 128 #include <net/if.h> 129 #include <net/if_arp.h> 130 #include <net/ethernet.h> 131 #include <net/if_dl.h> 132 #include <net/if_media.h> 133 #include <net/if_types.h> 134 #include <net/if_vlan_var.h> 135 136 #include <net/bpf.h> 137 138 #include <machine/bus.h> 139 #include <machine/resource.h> 140 #include <sys/bus.h> 141 #include <sys/rman.h> 142 143 #include <dev/mii/mii.h> 144 #include <dev/mii/miivar.h> 145 146 #include <dev/pci/pcireg.h> 147 #include <dev/pci/pcivar.h> 148 149 MODULE_DEPEND(re, pci, 1, 1, 1); 150 MODULE_DEPEND(re, ether, 1, 1, 1); 151 MODULE_DEPEND(re, miibus, 1, 1, 1); 152 153 /* "device miibus" required. See GENERIC if you get errors here. */ 154 #include "miibus_if.h" 155 156 /* 157 * Default to using PIO access for this driver. 158 */ 159 #define RE_USEIOSPACE 160 161 #include <pci/if_rlreg.h> 162 163 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 164 165 /* 166 * Various supported device vendors/types and their names. 167 */ 168 static struct rl_type re_devs[] = { 169 { DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S, 170 "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, 171 { RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS, 172 "RealTek 8139C+ 10/100BaseTX" }, 173 { RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E, 174 "RealTek 8101E PCIe 10/100baseTX" }, 175 { RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168, 176 "RealTek 8168B/8111B PCIe Gigabit Ethernet" }, 177 { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169, 178 "RealTek 8169 Gigabit Ethernet" }, 179 { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S, 180 "RealTek 8169S Single-chip Gigabit Ethernet" }, 181 { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB, 182 "RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" }, 183 { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SC, 184 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" }, 185 { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S, 186 "RealTek 8110S Single-chip Gigabit Ethernet" }, 187 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S, 188 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, 189 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S, 190 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, 191 { 0, 0, 0, NULL } 192 }; 193 194 static struct rl_hwrev re_hwrevs[] = { 195 { RL_HWREV_8139, RL_8139, "" }, 196 { RL_HWREV_8139A, RL_8139, "A" }, 197 { RL_HWREV_8139AG, RL_8139, "A-G" }, 198 { RL_HWREV_8139B, RL_8139, "B" }, 199 { RL_HWREV_8130, RL_8139, "8130" }, 200 { RL_HWREV_8139C, RL_8139, "C" }, 201 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" }, 202 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"}, 203 { RL_HWREV_8168, RL_8169, "8168"}, 204 { RL_HWREV_8169, RL_8169, "8169"}, 205 { RL_HWREV_8169S, RL_8169, "8169S"}, 206 { RL_HWREV_8110S, RL_8169, "8110S"}, 207 { RL_HWREV_8169_8110SB, RL_8169, "8169SB"}, 208 { RL_HWREV_8169_8110SC, RL_8169, "8169SC"}, 209 { RL_HWREV_8100, RL_8139, "8100"}, 210 { RL_HWREV_8101, RL_8139, "8101"}, 211 { RL_HWREV_8100E, RL_8169, "8100E"}, 212 { RL_HWREV_8101E, RL_8169, "8101E"}, 213 { 0, 0, NULL } 214 }; 215 216 static int re_probe (device_t); 217 static int re_attach (device_t); 218 static int re_detach (device_t); 219 220 static int re_encap (struct rl_softc *, struct mbuf **, int *); 221 222 static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); 223 static void re_dma_map_desc (void *, bus_dma_segment_t *, int, 224 bus_size_t, int); 225 static int re_allocmem (device_t, struct rl_softc *); 226 static int re_newbuf (struct rl_softc *, int, struct mbuf *); 227 static int re_rx_list_init (struct rl_softc *); 228 static int re_tx_list_init (struct rl_softc *); 229 #ifdef RE_FIXUP_RX 230 static __inline void re_fixup_rx 231 (struct mbuf *); 232 #endif 233 static int re_rxeof (struct rl_softc *); 234 static void re_txeof (struct rl_softc *); 235 #ifdef DEVICE_POLLING 236 static void re_poll (struct ifnet *, enum poll_cmd, int); 237 static void re_poll_locked (struct ifnet *, enum poll_cmd, int); 238 #endif 239 static void re_intr (void *); 240 static void re_tick (void *); 241 static void re_tx_task (void *, int); 242 static void re_int_task (void *, int); 243 static void re_start (struct ifnet *); 244 static int re_ioctl (struct ifnet *, u_long, caddr_t); 245 static void re_init (void *); 246 static void re_init_locked (struct rl_softc *); 247 static void re_stop (struct rl_softc *); 248 static void re_watchdog (struct ifnet *); 249 static int re_suspend (device_t); 250 static int re_resume (device_t); 251 static void re_shutdown (device_t); 252 static int re_ifmedia_upd (struct ifnet *); 253 static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); 254 255 static void re_eeprom_putbyte (struct rl_softc *, int); 256 static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); 257 static void re_read_eeprom (struct rl_softc *, caddr_t, int, int); 258 static int re_gmii_readreg (device_t, int, int); 259 static int re_gmii_writereg (device_t, int, int, int); 260 261 static int re_miibus_readreg (device_t, int, int); 262 static int re_miibus_writereg (device_t, int, int, int); 263 static void re_miibus_statchg (device_t); 264 265 static void re_setmulti (struct rl_softc *); 266 static void re_reset (struct rl_softc *); 267 268 #ifdef RE_DIAG 269 static int re_diag (struct rl_softc *); 270 #endif 271 272 #ifdef RE_USEIOSPACE 273 #define RL_RES SYS_RES_IOPORT 274 #define RL_RID RL_PCI_LOIO 275 #else 276 #define RL_RES SYS_RES_MEMORY 277 #define RL_RID RL_PCI_LOMEM 278 #endif 279 280 static device_method_t re_methods[] = { 281 /* Device interface */ 282 DEVMETHOD(device_probe, re_probe), 283 DEVMETHOD(device_attach, re_attach), 284 DEVMETHOD(device_detach, re_detach), 285 DEVMETHOD(device_suspend, re_suspend), 286 DEVMETHOD(device_resume, re_resume), 287 DEVMETHOD(device_shutdown, re_shutdown), 288 289 /* bus interface */ 290 DEVMETHOD(bus_print_child, bus_generic_print_child), 291 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 292 293 /* MII interface */ 294 DEVMETHOD(miibus_readreg, re_miibus_readreg), 295 DEVMETHOD(miibus_writereg, re_miibus_writereg), 296 DEVMETHOD(miibus_statchg, re_miibus_statchg), 297 298 { 0, 0 } 299 }; 300 301 static driver_t re_driver = { 302 "re", 303 re_methods, 304 sizeof(struct rl_softc) 305 }; 306 307 static devclass_t re_devclass; 308 309 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0); 310 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0); 311 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0); 312 313 #define EE_SET(x) \ 314 CSR_WRITE_1(sc, RL_EECMD, \ 315 CSR_READ_1(sc, RL_EECMD) | x) 316 317 #define EE_CLR(x) \ 318 CSR_WRITE_1(sc, RL_EECMD, \ 319 CSR_READ_1(sc, RL_EECMD) & ~x) 320 321 /* 322 * Send a read command and address to the EEPROM, check for ACK. 323 */ 324 static void 325 re_eeprom_putbyte(sc, addr) 326 struct rl_softc *sc; 327 int addr; 328 { 329 register int d, i; 330 331 d = addr | (RL_9346_READ << sc->rl_eewidth); 332 333 /* 334 * Feed in each bit and strobe the clock. 335 */ 336 337 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { 338 if (d & i) { 339 EE_SET(RL_EE_DATAIN); 340 } else { 341 EE_CLR(RL_EE_DATAIN); 342 } 343 DELAY(100); 344 EE_SET(RL_EE_CLK); 345 DELAY(150); 346 EE_CLR(RL_EE_CLK); 347 DELAY(100); 348 } 349 350 return; 351 } 352 353 /* 354 * Read a word of data stored in the EEPROM at address 'addr.' 355 */ 356 static void 357 re_eeprom_getword(sc, addr, dest) 358 struct rl_softc *sc; 359 int addr; 360 u_int16_t *dest; 361 { 362 register int i; 363 u_int16_t word = 0; 364 365 /* 366 * Send address of word we want to read. 367 */ 368 re_eeprom_putbyte(sc, addr); 369 370 /* 371 * Start reading bits from EEPROM. 372 */ 373 for (i = 0x8000; i; i >>= 1) { 374 EE_SET(RL_EE_CLK); 375 DELAY(100); 376 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) 377 word |= i; 378 EE_CLR(RL_EE_CLK); 379 DELAY(100); 380 } 381 382 *dest = word; 383 384 return; 385 } 386 387 /* 388 * Read a sequence of words from the EEPROM. 389 */ 390 static void 391 re_read_eeprom(sc, dest, off, cnt) 392 struct rl_softc *sc; 393 caddr_t dest; 394 int off; 395 int cnt; 396 { 397 int i; 398 u_int16_t word = 0, *ptr; 399 400 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 401 402 DELAY(100); 403 404 for (i = 0; i < cnt; i++) { 405 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); 406 re_eeprom_getword(sc, off + i, &word); 407 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); 408 ptr = (u_int16_t *)(dest + (i * 2)); 409 *ptr = le16toh(word); 410 } 411 412 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 413 414 return; 415 } 416 417 static int 418 re_gmii_readreg(dev, phy, reg) 419 device_t dev; 420 int phy, reg; 421 { 422 struct rl_softc *sc; 423 u_int32_t rval; 424 int i; 425 426 if (phy != 1) 427 return (0); 428 429 sc = device_get_softc(dev); 430 431 /* Let the rgephy driver read the GMEDIASTAT register */ 432 433 if (reg == RL_GMEDIASTAT) { 434 rval = CSR_READ_1(sc, RL_GMEDIASTAT); 435 return (rval); 436 } 437 438 CSR_WRITE_4(sc, RL_PHYAR, reg << 16); 439 DELAY(1000); 440 441 for (i = 0; i < RL_TIMEOUT; i++) { 442 rval = CSR_READ_4(sc, RL_PHYAR); 443 if (rval & RL_PHYAR_BUSY) 444 break; 445 DELAY(100); 446 } 447 448 if (i == RL_TIMEOUT) { 449 if_printf(sc->rl_ifp, "PHY read failed\n"); 450 return (0); 451 } 452 453 return (rval & RL_PHYAR_PHYDATA); 454 } 455 456 static int 457 re_gmii_writereg(dev, phy, reg, data) 458 device_t dev; 459 int phy, reg, data; 460 { 461 struct rl_softc *sc; 462 u_int32_t rval; 463 int i; 464 465 sc = device_get_softc(dev); 466 467 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | 468 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); 469 DELAY(1000); 470 471 for (i = 0; i < RL_TIMEOUT; i++) { 472 rval = CSR_READ_4(sc, RL_PHYAR); 473 if (!(rval & RL_PHYAR_BUSY)) 474 break; 475 DELAY(100); 476 } 477 478 if (i == RL_TIMEOUT) { 479 if_printf(sc->rl_ifp, "PHY write failed\n"); 480 return (0); 481 } 482 483 return (0); 484 } 485 486 static int 487 re_miibus_readreg(dev, phy, reg) 488 device_t dev; 489 int phy, reg; 490 { 491 struct rl_softc *sc; 492 u_int16_t rval = 0; 493 u_int16_t re8139_reg = 0; 494 495 sc = device_get_softc(dev); 496 497 if (sc->rl_type == RL_8169) { 498 rval = re_gmii_readreg(dev, phy, reg); 499 return (rval); 500 } 501 502 /* Pretend the internal PHY is only at address 0 */ 503 if (phy) { 504 return (0); 505 } 506 switch (reg) { 507 case MII_BMCR: 508 re8139_reg = RL_BMCR; 509 break; 510 case MII_BMSR: 511 re8139_reg = RL_BMSR; 512 break; 513 case MII_ANAR: 514 re8139_reg = RL_ANAR; 515 break; 516 case MII_ANER: 517 re8139_reg = RL_ANER; 518 break; 519 case MII_ANLPAR: 520 re8139_reg = RL_LPAR; 521 break; 522 case MII_PHYIDR1: 523 case MII_PHYIDR2: 524 return (0); 525 /* 526 * Allow the rlphy driver to read the media status 527 * register. If we have a link partner which does not 528 * support NWAY, this is the register which will tell 529 * us the results of parallel detection. 530 */ 531 case RL_MEDIASTAT: 532 rval = CSR_READ_1(sc, RL_MEDIASTAT); 533 return (rval); 534 default: 535 if_printf(sc->rl_ifp, "bad phy register\n"); 536 return (0); 537 } 538 rval = CSR_READ_2(sc, re8139_reg); 539 return (rval); 540 } 541 542 static int 543 re_miibus_writereg(dev, phy, reg, data) 544 device_t dev; 545 int phy, reg, data; 546 { 547 struct rl_softc *sc; 548 u_int16_t re8139_reg = 0; 549 int rval = 0; 550 551 sc = device_get_softc(dev); 552 553 if (sc->rl_type == RL_8169) { 554 rval = re_gmii_writereg(dev, phy, reg, data); 555 return (rval); 556 } 557 558 /* Pretend the internal PHY is only at address 0 */ 559 if (phy) 560 return (0); 561 562 switch (reg) { 563 case MII_BMCR: 564 re8139_reg = RL_BMCR; 565 break; 566 case MII_BMSR: 567 re8139_reg = RL_BMSR; 568 break; 569 case MII_ANAR: 570 re8139_reg = RL_ANAR; 571 break; 572 case MII_ANER: 573 re8139_reg = RL_ANER; 574 break; 575 case MII_ANLPAR: 576 re8139_reg = RL_LPAR; 577 break; 578 case MII_PHYIDR1: 579 case MII_PHYIDR2: 580 return (0); 581 break; 582 default: 583 if_printf(sc->rl_ifp, "bad phy register\n"); 584 return (0); 585 } 586 CSR_WRITE_2(sc, re8139_reg, data); 587 return (0); 588 } 589 590 static void 591 re_miibus_statchg(dev) 592 device_t dev; 593 { 594 595 } 596 597 /* 598 * Program the 64-bit multicast hash filter. 599 */ 600 static void 601 re_setmulti(sc) 602 struct rl_softc *sc; 603 { 604 struct ifnet *ifp; 605 int h = 0; 606 u_int32_t hashes[2] = { 0, 0 }; 607 struct ifmultiaddr *ifma; 608 u_int32_t rxfilt; 609 int mcnt = 0; 610 611 RL_LOCK_ASSERT(sc); 612 613 ifp = sc->rl_ifp; 614 615 rxfilt = CSR_READ_4(sc, RL_RXCFG); 616 617 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 618 rxfilt |= RL_RXCFG_RX_MULTI; 619 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 620 CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF); 621 CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF); 622 return; 623 } 624 625 /* first, zot all the existing hash bits */ 626 CSR_WRITE_4(sc, RL_MAR0, 0); 627 CSR_WRITE_4(sc, RL_MAR4, 0); 628 629 /* now program new ones */ 630 IF_ADDR_LOCK(ifp); 631 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 632 if (ifma->ifma_addr->sa_family != AF_LINK) 633 continue; 634 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 635 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 636 if (h < 32) 637 hashes[0] |= (1 << h); 638 else 639 hashes[1] |= (1 << (h - 32)); 640 mcnt++; 641 } 642 IF_ADDR_UNLOCK(ifp); 643 644 if (mcnt) 645 rxfilt |= RL_RXCFG_RX_MULTI; 646 else 647 rxfilt &= ~RL_RXCFG_RX_MULTI; 648 649 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 650 CSR_WRITE_4(sc, RL_MAR0, hashes[0]); 651 CSR_WRITE_4(sc, RL_MAR4, hashes[1]); 652 } 653 654 static void 655 re_reset(sc) 656 struct rl_softc *sc; 657 { 658 register int i; 659 660 RL_LOCK_ASSERT(sc); 661 662 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); 663 664 for (i = 0; i < RL_TIMEOUT; i++) { 665 DELAY(10); 666 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) 667 break; 668 } 669 if (i == RL_TIMEOUT) 670 if_printf(sc->rl_ifp, "reset never completed!\n"); 671 672 CSR_WRITE_1(sc, 0x82, 1); 673 } 674 675 #ifdef RE_DIAG 676 677 /* 678 * The following routine is designed to test for a defect on some 679 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 680 * lines connected to the bus, however for a 32-bit only card, they 681 * should be pulled high. The result of this defect is that the 682 * NIC will not work right if you plug it into a 64-bit slot: DMA 683 * operations will be done with 64-bit transfers, which will fail 684 * because the 64-bit data lines aren't connected. 685 * 686 * There's no way to work around this (short of talking a soldering 687 * iron to the board), however we can detect it. The method we use 688 * here is to put the NIC into digital loopback mode, set the receiver 689 * to promiscuous mode, and then try to send a frame. We then compare 690 * the frame data we sent to what was received. If the data matches, 691 * then the NIC is working correctly, otherwise we know the user has 692 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 693 * slot. In the latter case, there's no way the NIC can work correctly, 694 * so we print out a message on the console and abort the device attach. 695 */ 696 697 static int 698 re_diag(sc) 699 struct rl_softc *sc; 700 { 701 struct ifnet *ifp = sc->rl_ifp; 702 struct mbuf *m0; 703 struct ether_header *eh; 704 struct rl_desc *cur_rx; 705 u_int16_t status; 706 u_int32_t rxstat; 707 int total_len, i, error = 0, phyaddr; 708 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 709 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 710 711 /* Allocate a single mbuf */ 712 MGETHDR(m0, M_DONTWAIT, MT_DATA); 713 if (m0 == NULL) 714 return (ENOBUFS); 715 716 RL_LOCK(sc); 717 718 /* 719 * Initialize the NIC in test mode. This sets the chip up 720 * so that it can send and receive frames, but performs the 721 * following special functions: 722 * - Puts receiver in promiscuous mode 723 * - Enables digital loopback mode 724 * - Leaves interrupts turned off 725 */ 726 727 ifp->if_flags |= IFF_PROMISC; 728 sc->rl_testmode = 1; 729 re_reset(sc); 730 re_init_locked(sc); 731 sc->rl_link = 1; 732 if (sc->rl_type == RL_8169) 733 phyaddr = 1; 734 else 735 phyaddr = 0; 736 737 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET); 738 for (i = 0; i < RL_TIMEOUT; i++) { 739 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR); 740 if (!(status & BMCR_RESET)) 741 break; 742 } 743 744 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP); 745 CSR_WRITE_2(sc, RL_ISR, RL_INTRS); 746 747 DELAY(100000); 748 749 /* Put some data in the mbuf */ 750 751 eh = mtod(m0, struct ether_header *); 752 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); 753 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); 754 eh->ether_type = htons(ETHERTYPE_IP); 755 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 756 757 /* 758 * Queue the packet, start transmission. 759 * Note: IF_HANDOFF() ultimately calls re_start() for us. 760 */ 761 762 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 763 RL_UNLOCK(sc); 764 /* XXX: re_diag must not be called when in ALTQ mode */ 765 IF_HANDOFF(&ifp->if_snd, m0, ifp); 766 RL_LOCK(sc); 767 m0 = NULL; 768 769 /* Wait for it to propagate through the chip */ 770 771 DELAY(100000); 772 for (i = 0; i < RL_TIMEOUT; i++) { 773 status = CSR_READ_2(sc, RL_ISR); 774 CSR_WRITE_2(sc, RL_ISR, status); 775 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == 776 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) 777 break; 778 DELAY(10); 779 } 780 781 if (i == RL_TIMEOUT) { 782 if_printf(ifp, "diagnostic failed, failed to receive packet " 783 "in loopback mode\n"); 784 error = EIO; 785 goto done; 786 } 787 788 /* 789 * The packet should have been dumped into the first 790 * entry in the RX DMA ring. Grab it from there. 791 */ 792 793 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 794 sc->rl_ldata.rl_rx_list_map, 795 BUS_DMASYNC_POSTREAD); 796 bus_dmamap_sync(sc->rl_ldata.rl_mtag, 797 sc->rl_ldata.rl_rx_dmamap[0], 798 BUS_DMASYNC_POSTWRITE); 799 bus_dmamap_unload(sc->rl_ldata.rl_mtag, 800 sc->rl_ldata.rl_rx_dmamap[0]); 801 802 m0 = sc->rl_ldata.rl_rx_mbuf[0]; 803 sc->rl_ldata.rl_rx_mbuf[0] = NULL; 804 eh = mtod(m0, struct ether_header *); 805 806 cur_rx = &sc->rl_ldata.rl_rx_list[0]; 807 total_len = RL_RXBYTES(cur_rx); 808 rxstat = le32toh(cur_rx->rl_cmdstat); 809 810 if (total_len != ETHER_MIN_LEN) { 811 if_printf(ifp, "diagnostic failed, received short packet\n"); 812 error = EIO; 813 goto done; 814 } 815 816 /* Test that the received packet data matches what we sent. */ 817 818 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 819 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 820 ntohs(eh->ether_type) != ETHERTYPE_IP) { 821 if_printf(ifp, "WARNING, DMA FAILURE!\n"); 822 if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n", 823 dst, ":", src, ":", ETHERTYPE_IP); 824 if_printf(ifp, "received RX data: %6D/%6D/0x%x\n", 825 eh->ether_dhost, ":", eh->ether_shost, ":", 826 ntohs(eh->ether_type)); 827 if_printf(ifp, "You may have a defective 32-bit NIC plugged " 828 "into a 64-bit PCI slot.\n"); 829 if_printf(ifp, "Please re-install the NIC in a 32-bit slot " 830 "for proper operation.\n"); 831 if_printf(ifp, "Read the re(4) man page for more details.\n"); 832 error = EIO; 833 } 834 835 done: 836 /* Turn interface off, release resources */ 837 838 sc->rl_testmode = 0; 839 sc->rl_link = 0; 840 ifp->if_flags &= ~IFF_PROMISC; 841 re_stop(sc); 842 if (m0 != NULL) 843 m_freem(m0); 844 845 RL_UNLOCK(sc); 846 847 return (error); 848 } 849 850 #endif 851 852 /* 853 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device 854 * IDs against our list and return a device name if we find a match. 855 */ 856 static int 857 re_probe(dev) 858 device_t dev; 859 { 860 struct rl_type *t; 861 struct rl_softc *sc; 862 int rid; 863 u_int32_t hwrev; 864 865 t = re_devs; 866 sc = device_get_softc(dev); 867 868 while (t->rl_name != NULL) { 869 if ((pci_get_vendor(dev) == t->rl_vid) && 870 (pci_get_device(dev) == t->rl_did)) { 871 /* 872 * Only attach to rev. 3 of the Linksys EG1032 adapter. 873 * Rev. 2 i supported by sk(4). 874 */ 875 if ((t->rl_vid == LINKSYS_VENDORID) && 876 (t->rl_did == LINKSYS_DEVICEID_EG1032) && 877 (pci_get_subdevice(dev) != 878 LINKSYS_SUBDEVICE_EG1032_REV3)) { 879 t++; 880 continue; 881 } 882 883 /* 884 * Temporarily map the I/O space 885 * so we can read the chip ID register. 886 */ 887 rid = RL_RID; 888 sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, 889 RF_ACTIVE); 890 if (sc->rl_res == NULL) { 891 device_printf(dev, 892 "couldn't map ports/memory\n"); 893 return (ENXIO); 894 } 895 sc->rl_btag = rman_get_bustag(sc->rl_res); 896 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 897 hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; 898 bus_release_resource(dev, RL_RES, 899 RL_RID, sc->rl_res); 900 if (t->rl_basetype == hwrev) { 901 device_set_desc(dev, t->rl_name); 902 return (BUS_PROBE_DEFAULT); 903 } 904 } 905 t++; 906 } 907 908 return (ENXIO); 909 } 910 911 /* 912 * This routine takes the segment list provided as the result of 913 * a bus_dma_map_load() operation and assigns the addresses/lengths 914 * to RealTek DMA descriptors. This can be called either by the RX 915 * code or the TX code. In the RX case, we'll probably wind up mapping 916 * at most one segment. For the TX case, there could be any number of 917 * segments since TX packets may span multiple mbufs. In either case, 918 * if the number of segments is larger than the rl_maxsegs limit 919 * specified by the caller, we abort the mapping operation. Sadly, 920 * whoever designed the buffer mapping API did not provide a way to 921 * return an error from here, so we have to fake it a bit. 922 */ 923 924 static void 925 re_dma_map_desc(arg, segs, nseg, mapsize, error) 926 void *arg; 927 bus_dma_segment_t *segs; 928 int nseg; 929 bus_size_t mapsize; 930 int error; 931 { 932 struct rl_dmaload_arg *ctx; 933 struct rl_desc *d = NULL; 934 int i = 0, idx; 935 936 if (error) 937 return; 938 939 ctx = arg; 940 941 /* Signal error to caller if there's too many segments */ 942 if (nseg > ctx->rl_maxsegs) { 943 ctx->rl_maxsegs = 0; 944 return; 945 } 946 947 /* 948 * Map the segment array into descriptors. Note that we set the 949 * start-of-frame and end-of-frame markers for either TX or RX, but 950 * they really only have meaning in the TX case. (In the RX case, 951 * it's the chip that tells us where packets begin and end.) 952 * We also keep track of the end of the ring and set the 953 * end-of-ring bits as needed, and we set the ownership bits 954 * in all except the very first descriptor. (The caller will 955 * set this descriptor later when it start transmission or 956 * reception.) 957 */ 958 idx = ctx->rl_idx; 959 for (;;) { 960 u_int32_t cmdstat; 961 d = &ctx->rl_ring[idx]; 962 if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) { 963 ctx->rl_maxsegs = 0; 964 return; 965 } 966 cmdstat = segs[i].ds_len; 967 d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); 968 d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); 969 if (i == 0) 970 cmdstat |= RL_TDESC_CMD_SOF; 971 else 972 cmdstat |= RL_TDESC_CMD_OWN; 973 if (idx == (RL_RX_DESC_CNT - 1)) 974 cmdstat |= RL_TDESC_CMD_EOR; 975 d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags); 976 i++; 977 if (i == nseg) 978 break; 979 RL_DESC_INC(idx); 980 } 981 982 d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); 983 ctx->rl_maxsegs = nseg; 984 ctx->rl_idx = idx; 985 } 986 987 /* 988 * Map a single buffer address. 989 */ 990 991 static void 992 re_dma_map_addr(arg, segs, nseg, error) 993 void *arg; 994 bus_dma_segment_t *segs; 995 int nseg; 996 int error; 997 { 998 bus_addr_t *addr; 999 1000 if (error) 1001 return; 1002 1003 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 1004 addr = arg; 1005 *addr = segs->ds_addr; 1006 } 1007 1008 static int 1009 re_allocmem(dev, sc) 1010 device_t dev; 1011 struct rl_softc *sc; 1012 { 1013 int error; 1014 int nseg; 1015 int i; 1016 1017 /* 1018 * Allocate map for RX mbufs. 1019 */ 1020 nseg = 32; 1021 error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0, 1022 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1023 NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW, 1024 NULL, NULL, &sc->rl_ldata.rl_mtag); 1025 if (error) { 1026 device_printf(dev, "could not allocate dma tag\n"); 1027 return (ENOMEM); 1028 } 1029 1030 /* 1031 * Allocate map for TX descriptor list. 1032 */ 1033 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1034 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1035 NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW, 1036 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); 1037 if (error) { 1038 device_printf(dev, "could not allocate dma tag\n"); 1039 return (ENOMEM); 1040 } 1041 1042 /* Allocate DMA'able memory for the TX ring */ 1043 1044 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, 1045 (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1046 &sc->rl_ldata.rl_tx_list_map); 1047 if (error) 1048 return (ENOMEM); 1049 1050 /* Load the map for the TX ring. */ 1051 1052 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, 1053 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, 1054 RL_TX_LIST_SZ, re_dma_map_addr, 1055 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); 1056 1057 /* Create DMA maps for TX buffers */ 1058 1059 for (i = 0; i < RL_TX_DESC_CNT; i++) { 1060 error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0, 1061 &sc->rl_ldata.rl_tx_dmamap[i]); 1062 if (error) { 1063 device_printf(dev, "can't create DMA map for TX\n"); 1064 return (ENOMEM); 1065 } 1066 } 1067 1068 /* 1069 * Allocate map for RX descriptor list. 1070 */ 1071 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1072 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1073 NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW, 1074 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); 1075 if (error) { 1076 device_printf(dev, "could not allocate dma tag\n"); 1077 return (ENOMEM); 1078 } 1079 1080 /* Allocate DMA'able memory for the RX ring */ 1081 1082 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, 1083 (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, 1084 &sc->rl_ldata.rl_rx_list_map); 1085 if (error) 1086 return (ENOMEM); 1087 1088 /* Load the map for the RX ring. */ 1089 1090 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, 1091 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, 1092 RL_RX_LIST_SZ, re_dma_map_addr, 1093 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); 1094 1095 /* Create DMA maps for RX buffers */ 1096 1097 for (i = 0; i < RL_RX_DESC_CNT; i++) { 1098 error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0, 1099 &sc->rl_ldata.rl_rx_dmamap[i]); 1100 if (error) { 1101 device_printf(dev, "can't create DMA map for RX\n"); 1102 return (ENOMEM); 1103 } 1104 } 1105 1106 return (0); 1107 } 1108 1109 /* 1110 * Attach the interface. Allocate softc structures, do ifmedia 1111 * setup and ethernet/BPF attach. 1112 */ 1113 static int 1114 re_attach(dev) 1115 device_t dev; 1116 { 1117 u_char eaddr[ETHER_ADDR_LEN]; 1118 u_int16_t as[3]; 1119 struct rl_softc *sc; 1120 struct ifnet *ifp; 1121 struct rl_hwrev *hw_rev; 1122 int hwrev; 1123 u_int16_t re_did = 0; 1124 int error = 0, rid, i; 1125 1126 sc = device_get_softc(dev); 1127 sc->rl_dev = dev; 1128 1129 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1130 MTX_DEF); 1131 mtx_init(&sc->rl_intlock, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1132 MTX_SPIN); 1133 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); 1134 1135 /* 1136 * Map control/status registers. 1137 */ 1138 pci_enable_busmaster(dev); 1139 1140 rid = RL_RID; 1141 sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, 1142 RF_ACTIVE); 1143 1144 if (sc->rl_res == NULL) { 1145 device_printf(dev, "couldn't map ports/memory\n"); 1146 error = ENXIO; 1147 goto fail; 1148 } 1149 1150 sc->rl_btag = rman_get_bustag(sc->rl_res); 1151 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 1152 1153 /* Allocate interrupt */ 1154 rid = 0; 1155 sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1156 RF_SHAREABLE | RF_ACTIVE); 1157 1158 if (sc->rl_irq == NULL) { 1159 device_printf(dev, "couldn't map interrupt\n"); 1160 error = ENXIO; 1161 goto fail; 1162 } 1163 1164 /* Reset the adapter. */ 1165 RL_LOCK(sc); 1166 re_reset(sc); 1167 RL_UNLOCK(sc); 1168 1169 hw_rev = re_hwrevs; 1170 hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; 1171 while (hw_rev->rl_desc != NULL) { 1172 if (hw_rev->rl_rev == hwrev) { 1173 sc->rl_type = hw_rev->rl_type; 1174 break; 1175 } 1176 hw_rev++; 1177 } 1178 1179 sc->rl_eewidth = 6; 1180 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); 1181 if (re_did != 0x8129) 1182 sc->rl_eewidth = 8; 1183 1184 /* 1185 * Get station address from the EEPROM. 1186 */ 1187 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); 1188 for (i = 0; i < 3; i++) { 1189 eaddr[(i * 2) + 0] = as[i] & 0xff; 1190 eaddr[(i * 2) + 1] = as[i] >> 8; 1191 } 1192 1193 if (sc->rl_type == RL_8169) { 1194 /* Set RX length mask */ 1195 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; 1196 sc->rl_txstart = RL_GTXSTART; 1197 } else { 1198 /* Set RX length mask */ 1199 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; 1200 sc->rl_txstart = RL_TXSTART; 1201 } 1202 1203 /* 1204 * Allocate the parent bus DMA tag appropriate for PCI. 1205 */ 1206 #define RL_NSEG_NEW 32 1207 error = bus_dma_tag_create(NULL, /* parent */ 1208 1, 0, /* alignment, boundary */ 1209 BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ 1210 BUS_SPACE_MAXADDR, /* highaddr */ 1211 NULL, NULL, /* filter, filterarg */ 1212 MAXBSIZE, RL_NSEG_NEW, /* maxsize, nsegments */ 1213 BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ 1214 BUS_DMA_ALLOCNOW, /* flags */ 1215 NULL, NULL, /* lockfunc, lockarg */ 1216 &sc->rl_parent_tag); 1217 if (error) 1218 goto fail; 1219 1220 error = re_allocmem(dev, sc); 1221 1222 if (error) 1223 goto fail; 1224 1225 ifp = sc->rl_ifp = if_alloc(IFT_ETHER); 1226 if (ifp == NULL) { 1227 device_printf(dev, "can not if_alloc()\n"); 1228 error = ENOSPC; 1229 goto fail; 1230 } 1231 1232 /* Do MII setup */ 1233 if (mii_phy_probe(dev, &sc->rl_miibus, 1234 re_ifmedia_upd, re_ifmedia_sts)) { 1235 device_printf(dev, "MII without any phy!\n"); 1236 error = ENXIO; 1237 goto fail; 1238 } 1239 1240 ifp->if_softc = sc; 1241 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1242 ifp->if_mtu = ETHERMTU; 1243 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1244 ifp->if_ioctl = re_ioctl; 1245 ifp->if_capabilities = IFCAP_VLAN_MTU; 1246 ifp->if_start = re_start; 1247 ifp->if_hwassist = RE_CSUM_FEATURES; 1248 ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING; 1249 ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM; 1250 #ifdef DEVICE_POLLING 1251 ifp->if_capabilities |= IFCAP_POLLING; 1252 #endif 1253 ifp->if_watchdog = re_watchdog; 1254 ifp->if_init = re_init; 1255 IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN); 1256 ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN; 1257 IFQ_SET_READY(&ifp->if_snd); 1258 1259 TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp); 1260 TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc); 1261 1262 /* 1263 * Call MI attach routine. 1264 */ 1265 ether_ifattach(ifp, eaddr); 1266 1267 #ifdef RE_DIAG 1268 /* 1269 * Perform hardware diagnostic on the original RTL8169. 1270 * Some 32-bit cards were incorrectly wired and would 1271 * malfunction if plugged into a 64-bit slot. 1272 */ 1273 1274 if (hwrev == RL_HWREV_8169) { 1275 error = re_diag(sc); 1276 if (error) { 1277 device_printf(dev, 1278 "attach aborted due to hardware diag failure\n"); 1279 ether_ifdetach(ifp); 1280 goto fail; 1281 } 1282 } 1283 #endif 1284 1285 /* Hook interrupt last to avoid having to lock softc */ 1286 error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE | 1287 INTR_FAST, re_intr, sc, &sc->rl_intrhand); 1288 if (error) { 1289 device_printf(dev, "couldn't set up irq\n"); 1290 ether_ifdetach(ifp); 1291 } 1292 1293 fail: 1294 1295 if (error) 1296 re_detach(dev); 1297 1298 return (error); 1299 } 1300 1301 /* 1302 * Shutdown hardware and free up resources. This can be called any 1303 * time after the mutex has been initialized. It is called in both 1304 * the error case in attach and the normal detach case so it needs 1305 * to be careful about only freeing resources that have actually been 1306 * allocated. 1307 */ 1308 static int 1309 re_detach(dev) 1310 device_t dev; 1311 { 1312 struct rl_softc *sc; 1313 struct ifnet *ifp; 1314 int i; 1315 1316 sc = device_get_softc(dev); 1317 ifp = sc->rl_ifp; 1318 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); 1319 1320 #ifdef DEVICE_POLLING 1321 if (ifp->if_capenable & IFCAP_POLLING) 1322 ether_poll_deregister(ifp); 1323 #endif 1324 /* These should only be active if attach succeeded */ 1325 if (device_is_attached(dev)) { 1326 RL_LOCK(sc); 1327 #if 0 1328 sc->suspended = 1; 1329 #endif 1330 re_stop(sc); 1331 RL_UNLOCK(sc); 1332 callout_drain(&sc->rl_stat_callout); 1333 /* 1334 * Force off the IFF_UP flag here, in case someone 1335 * still had a BPF descriptor attached to this 1336 * interface. If they do, ether_ifdetach() will cause 1337 * the BPF code to try and clear the promisc mode 1338 * flag, which will bubble down to re_ioctl(), 1339 * which will try to call re_init() again. This will 1340 * turn the NIC back on and restart the MII ticker, 1341 * which will panic the system when the kernel tries 1342 * to invoke the re_tick() function that isn't there 1343 * anymore. 1344 */ 1345 ifp->if_flags &= ~IFF_UP; 1346 ether_ifdetach(ifp); 1347 } 1348 if (sc->rl_miibus) 1349 device_delete_child(dev, sc->rl_miibus); 1350 bus_generic_detach(dev); 1351 1352 /* 1353 * The rest is resource deallocation, so we should already be 1354 * stopped here. 1355 */ 1356 1357 if (sc->rl_intrhand) 1358 bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand); 1359 if (ifp != NULL) 1360 if_free(ifp); 1361 if (sc->rl_irq) 1362 bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq); 1363 if (sc->rl_res) 1364 bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res); 1365 1366 1367 /* Unload and free the RX DMA ring memory and map */ 1368 1369 if (sc->rl_ldata.rl_rx_list_tag) { 1370 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, 1371 sc->rl_ldata.rl_rx_list_map); 1372 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, 1373 sc->rl_ldata.rl_rx_list, 1374 sc->rl_ldata.rl_rx_list_map); 1375 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); 1376 } 1377 1378 /* Unload and free the TX DMA ring memory and map */ 1379 1380 if (sc->rl_ldata.rl_tx_list_tag) { 1381 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, 1382 sc->rl_ldata.rl_tx_list_map); 1383 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, 1384 sc->rl_ldata.rl_tx_list, 1385 sc->rl_ldata.rl_tx_list_map); 1386 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); 1387 } 1388 1389 /* Destroy all the RX and TX buffer maps */ 1390 1391 if (sc->rl_ldata.rl_mtag) { 1392 for (i = 0; i < RL_TX_DESC_CNT; i++) 1393 bus_dmamap_destroy(sc->rl_ldata.rl_mtag, 1394 sc->rl_ldata.rl_tx_dmamap[i]); 1395 for (i = 0; i < RL_RX_DESC_CNT; i++) 1396 bus_dmamap_destroy(sc->rl_ldata.rl_mtag, 1397 sc->rl_ldata.rl_rx_dmamap[i]); 1398 bus_dma_tag_destroy(sc->rl_ldata.rl_mtag); 1399 } 1400 1401 /* Unload and free the stats buffer and map */ 1402 1403 if (sc->rl_ldata.rl_stag) { 1404 bus_dmamap_unload(sc->rl_ldata.rl_stag, 1405 sc->rl_ldata.rl_rx_list_map); 1406 bus_dmamem_free(sc->rl_ldata.rl_stag, 1407 sc->rl_ldata.rl_stats, 1408 sc->rl_ldata.rl_smap); 1409 bus_dma_tag_destroy(sc->rl_ldata.rl_stag); 1410 } 1411 1412 if (sc->rl_parent_tag) 1413 bus_dma_tag_destroy(sc->rl_parent_tag); 1414 1415 mtx_destroy(&sc->rl_mtx); 1416 mtx_destroy(&sc->rl_intlock); 1417 1418 return (0); 1419 } 1420 1421 static int 1422 re_newbuf(sc, idx, m) 1423 struct rl_softc *sc; 1424 int idx; 1425 struct mbuf *m; 1426 { 1427 struct rl_dmaload_arg arg; 1428 struct mbuf *n = NULL; 1429 int error; 1430 1431 if (m == NULL) { 1432 n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1433 if (n == NULL) 1434 return (ENOBUFS); 1435 m = n; 1436 } else 1437 m->m_data = m->m_ext.ext_buf; 1438 1439 m->m_len = m->m_pkthdr.len = MCLBYTES; 1440 #ifdef RE_FIXUP_RX 1441 /* 1442 * This is part of an evil trick to deal with non-x86 platforms. 1443 * The RealTek chip requires RX buffers to be aligned on 64-bit 1444 * boundaries, but that will hose non-x86 machines. To get around 1445 * this, we leave some empty space at the start of each buffer 1446 * and for non-x86 hosts, we copy the buffer back six bytes 1447 * to achieve word alignment. This is slightly more efficient 1448 * than allocating a new buffer, copying the contents, and 1449 * discarding the old buffer. 1450 */ 1451 m_adj(m, RE_ETHER_ALIGN); 1452 #endif 1453 arg.sc = sc; 1454 arg.rl_idx = idx; 1455 arg.rl_maxsegs = 1; 1456 arg.rl_flags = 0; 1457 arg.rl_ring = sc->rl_ldata.rl_rx_list; 1458 1459 error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, 1460 sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc, 1461 &arg, BUS_DMA_NOWAIT); 1462 if (error || arg.rl_maxsegs != 1) { 1463 if (n != NULL) 1464 m_freem(n); 1465 return (ENOMEM); 1466 } 1467 1468 sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN); 1469 sc->rl_ldata.rl_rx_mbuf[idx] = m; 1470 1471 bus_dmamap_sync(sc->rl_ldata.rl_mtag, 1472 sc->rl_ldata.rl_rx_dmamap[idx], 1473 BUS_DMASYNC_PREREAD); 1474 1475 return (0); 1476 } 1477 1478 #ifdef RE_FIXUP_RX 1479 static __inline void 1480 re_fixup_rx(m) 1481 struct mbuf *m; 1482 { 1483 int i; 1484 uint16_t *src, *dst; 1485 1486 src = mtod(m, uint16_t *); 1487 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; 1488 1489 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1490 *dst++ = *src++; 1491 1492 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; 1493 1494 return; 1495 } 1496 #endif 1497 1498 static int 1499 re_tx_list_init(sc) 1500 struct rl_softc *sc; 1501 { 1502 1503 RL_LOCK_ASSERT(sc); 1504 1505 bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ); 1506 bzero ((char *)&sc->rl_ldata.rl_tx_mbuf, 1507 (RL_TX_DESC_CNT * sizeof(struct mbuf *))); 1508 1509 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 1510 sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE); 1511 sc->rl_ldata.rl_tx_prodidx = 0; 1512 sc->rl_ldata.rl_tx_considx = 0; 1513 sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT; 1514 1515 return (0); 1516 } 1517 1518 static int 1519 re_rx_list_init(sc) 1520 struct rl_softc *sc; 1521 { 1522 int i; 1523 1524 bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ); 1525 bzero ((char *)&sc->rl_ldata.rl_rx_mbuf, 1526 (RL_RX_DESC_CNT * sizeof(struct mbuf *))); 1527 1528 for (i = 0; i < RL_RX_DESC_CNT; i++) { 1529 if (re_newbuf(sc, i, NULL) == ENOBUFS) 1530 return (ENOBUFS); 1531 } 1532 1533 /* Flush the RX descriptors */ 1534 1535 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1536 sc->rl_ldata.rl_rx_list_map, 1537 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1538 1539 sc->rl_ldata.rl_rx_prodidx = 0; 1540 sc->rl_head = sc->rl_tail = NULL; 1541 1542 return (0); 1543 } 1544 1545 /* 1546 * RX handler for C+ and 8169. For the gigE chips, we support 1547 * the reception of jumbo frames that have been fragmented 1548 * across multiple 2K mbuf cluster buffers. 1549 */ 1550 static int 1551 re_rxeof(sc) 1552 struct rl_softc *sc; 1553 { 1554 struct mbuf *m; 1555 struct ifnet *ifp; 1556 int i, total_len; 1557 struct rl_desc *cur_rx; 1558 u_int32_t rxstat, rxvlan; 1559 int maxpkt = 16; 1560 1561 RL_LOCK_ASSERT(sc); 1562 1563 ifp = sc->rl_ifp; 1564 i = sc->rl_ldata.rl_rx_prodidx; 1565 1566 /* Invalidate the descriptor memory */ 1567 1568 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1569 sc->rl_ldata.rl_rx_list_map, 1570 BUS_DMASYNC_POSTREAD); 1571 1572 while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i]) && maxpkt) { 1573 cur_rx = &sc->rl_ldata.rl_rx_list[i]; 1574 m = sc->rl_ldata.rl_rx_mbuf[i]; 1575 total_len = RL_RXBYTES(cur_rx); 1576 rxstat = le32toh(cur_rx->rl_cmdstat); 1577 rxvlan = le32toh(cur_rx->rl_vlanctl); 1578 1579 /* Invalidate the RX mbuf and unload its map */ 1580 1581 bus_dmamap_sync(sc->rl_ldata.rl_mtag, 1582 sc->rl_ldata.rl_rx_dmamap[i], 1583 BUS_DMASYNC_POSTWRITE); 1584 bus_dmamap_unload(sc->rl_ldata.rl_mtag, 1585 sc->rl_ldata.rl_rx_dmamap[i]); 1586 1587 if (!(rxstat & RL_RDESC_STAT_EOF)) { 1588 m->m_len = RE_RX_DESC_BUFLEN; 1589 if (sc->rl_head == NULL) 1590 sc->rl_head = sc->rl_tail = m; 1591 else { 1592 m->m_flags &= ~M_PKTHDR; 1593 sc->rl_tail->m_next = m; 1594 sc->rl_tail = m; 1595 } 1596 re_newbuf(sc, i, NULL); 1597 RL_DESC_INC(i); 1598 continue; 1599 } 1600 1601 /* 1602 * NOTE: for the 8139C+, the frame length field 1603 * is always 12 bits in size, but for the gigE chips, 1604 * it is 13 bits (since the max RX frame length is 16K). 1605 * Unfortunately, all 32 bits in the status word 1606 * were already used, so to make room for the extra 1607 * length bit, RealTek took out the 'frame alignment 1608 * error' bit and shifted the other status bits 1609 * over one slot. The OWN, EOR, FS and LS bits are 1610 * still in the same places. We have already extracted 1611 * the frame length and checked the OWN bit, so rather 1612 * than using an alternate bit mapping, we shift the 1613 * status bits one space to the right so we can evaluate 1614 * them using the 8169 status as though it was in the 1615 * same format as that of the 8139C+. 1616 */ 1617 if (sc->rl_type == RL_8169) 1618 rxstat >>= 1; 1619 1620 /* 1621 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be 1622 * set, but if CRC is clear, it will still be a valid frame. 1623 */ 1624 if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 && 1625 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) { 1626 ifp->if_ierrors++; 1627 /* 1628 * If this is part of a multi-fragment packet, 1629 * discard all the pieces. 1630 */ 1631 if (sc->rl_head != NULL) { 1632 m_freem(sc->rl_head); 1633 sc->rl_head = sc->rl_tail = NULL; 1634 } 1635 re_newbuf(sc, i, m); 1636 RL_DESC_INC(i); 1637 continue; 1638 } 1639 1640 /* 1641 * If allocating a replacement mbuf fails, 1642 * reload the current one. 1643 */ 1644 1645 if (re_newbuf(sc, i, NULL)) { 1646 ifp->if_ierrors++; 1647 if (sc->rl_head != NULL) { 1648 m_freem(sc->rl_head); 1649 sc->rl_head = sc->rl_tail = NULL; 1650 } 1651 re_newbuf(sc, i, m); 1652 RL_DESC_INC(i); 1653 continue; 1654 } 1655 1656 RL_DESC_INC(i); 1657 1658 if (sc->rl_head != NULL) { 1659 m->m_len = total_len % RE_RX_DESC_BUFLEN; 1660 if (m->m_len == 0) 1661 m->m_len = RE_RX_DESC_BUFLEN; 1662 /* 1663 * Special case: if there's 4 bytes or less 1664 * in this buffer, the mbuf can be discarded: 1665 * the last 4 bytes is the CRC, which we don't 1666 * care about anyway. 1667 */ 1668 if (m->m_len <= ETHER_CRC_LEN) { 1669 sc->rl_tail->m_len -= 1670 (ETHER_CRC_LEN - m->m_len); 1671 m_freem(m); 1672 } else { 1673 m->m_len -= ETHER_CRC_LEN; 1674 m->m_flags &= ~M_PKTHDR; 1675 sc->rl_tail->m_next = m; 1676 } 1677 m = sc->rl_head; 1678 sc->rl_head = sc->rl_tail = NULL; 1679 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1680 } else 1681 m->m_pkthdr.len = m->m_len = 1682 (total_len - ETHER_CRC_LEN); 1683 1684 #ifdef RE_FIXUP_RX 1685 re_fixup_rx(m); 1686 #endif 1687 ifp->if_ipackets++; 1688 m->m_pkthdr.rcvif = ifp; 1689 1690 /* Do RX checksumming if enabled */ 1691 1692 if (ifp->if_capenable & IFCAP_RXCSUM) { 1693 1694 /* Check IP header checksum */ 1695 if (rxstat & RL_RDESC_STAT_PROTOID) 1696 m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; 1697 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) 1698 m->m_pkthdr.csum_flags |= CSUM_IP_VALID; 1699 1700 /* Check TCP/UDP checksum */ 1701 if ((RL_TCPPKT(rxstat) && 1702 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 1703 (RL_UDPPKT(rxstat) && 1704 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 1705 m->m_pkthdr.csum_flags |= 1706 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1707 m->m_pkthdr.csum_data = 0xffff; 1708 } 1709 } 1710 maxpkt--; 1711 if (rxvlan & RL_RDESC_VLANCTL_TAG) { 1712 VLAN_INPUT_TAG(ifp, m, 1713 ntohs((rxvlan & RL_RDESC_VLANCTL_DATA))); 1714 if (m == NULL) 1715 continue; 1716 } 1717 RL_UNLOCK(sc); 1718 (*ifp->if_input)(ifp, m); 1719 RL_LOCK(sc); 1720 } 1721 1722 /* Flush the RX DMA ring */ 1723 1724 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1725 sc->rl_ldata.rl_rx_list_map, 1726 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1727 1728 sc->rl_ldata.rl_rx_prodidx = i; 1729 1730 if (maxpkt) 1731 return(EAGAIN); 1732 1733 return(0); 1734 } 1735 1736 static void 1737 re_txeof(sc) 1738 struct rl_softc *sc; 1739 { 1740 struct ifnet *ifp; 1741 u_int32_t txstat; 1742 int idx; 1743 1744 ifp = sc->rl_ifp; 1745 idx = sc->rl_ldata.rl_tx_considx; 1746 1747 /* Invalidate the TX descriptor list */ 1748 1749 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 1750 sc->rl_ldata.rl_tx_list_map, 1751 BUS_DMASYNC_POSTREAD); 1752 1753 while (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) { 1754 1755 txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat); 1756 if (txstat & RL_TDESC_CMD_OWN) 1757 break; 1758 1759 sc->rl_ldata.rl_tx_list[idx].rl_bufaddr_lo = 0; 1760 1761 /* 1762 * We only stash mbufs in the last descriptor 1763 * in a fragment chain, which also happens to 1764 * be the only place where the TX status bits 1765 * are valid. 1766 */ 1767 1768 if (txstat & RL_TDESC_CMD_EOF) { 1769 m_freem(sc->rl_ldata.rl_tx_mbuf[idx]); 1770 sc->rl_ldata.rl_tx_mbuf[idx] = NULL; 1771 bus_dmamap_unload(sc->rl_ldata.rl_mtag, 1772 sc->rl_ldata.rl_tx_dmamap[idx]); 1773 if (txstat & (RL_TDESC_STAT_EXCESSCOL| 1774 RL_TDESC_STAT_COLCNT)) 1775 ifp->if_collisions++; 1776 if (txstat & RL_TDESC_STAT_TXERRSUM) 1777 ifp->if_oerrors++; 1778 else 1779 ifp->if_opackets++; 1780 } 1781 sc->rl_ldata.rl_tx_free++; 1782 RL_DESC_INC(idx); 1783 } 1784 1785 /* No changes made to the TX ring, so no flush needed */ 1786 1787 if (sc->rl_ldata.rl_tx_free) { 1788 sc->rl_ldata.rl_tx_considx = idx; 1789 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1790 ifp->if_timer = 0; 1791 } 1792 1793 #ifdef RE_TX_MODERATION 1794 /* 1795 * If not all descriptors have been released reaped yet, 1796 * reload the timer so that we will eventually get another 1797 * interrupt that will cause us to re-enter this routine. 1798 * This is done in case the transmitter has gone idle. 1799 */ 1800 if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT) 1801 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 1802 #endif 1803 } 1804 1805 static void 1806 re_tick(xsc) 1807 void *xsc; 1808 { 1809 struct rl_softc *sc; 1810 struct mii_data *mii; 1811 struct ifnet *ifp; 1812 1813 sc = xsc; 1814 ifp = sc->rl_ifp; 1815 1816 RL_LOCK_ASSERT(sc); 1817 1818 mii = device_get_softc(sc->rl_miibus); 1819 1820 mii_tick(mii); 1821 if (sc->rl_link) { 1822 if (!(mii->mii_media_status & IFM_ACTIVE)) 1823 sc->rl_link = 0; 1824 } else { 1825 if (mii->mii_media_status & IFM_ACTIVE && 1826 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) { 1827 sc->rl_link = 1; 1828 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1829 taskqueue_enqueue_fast(taskqueue_fast, 1830 &sc->rl_txtask); 1831 } 1832 } 1833 1834 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 1835 } 1836 1837 #ifdef DEVICE_POLLING 1838 static void 1839 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 1840 { 1841 struct rl_softc *sc = ifp->if_softc; 1842 1843 RL_LOCK(sc); 1844 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1845 re_poll_locked(ifp, cmd, count); 1846 RL_UNLOCK(sc); 1847 } 1848 1849 static void 1850 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 1851 { 1852 struct rl_softc *sc = ifp->if_softc; 1853 1854 RL_LOCK_ASSERT(sc); 1855 1856 sc->rxcycles = count; 1857 re_rxeof(sc); 1858 re_txeof(sc); 1859 1860 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1861 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 1862 1863 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 1864 u_int16_t status; 1865 1866 status = CSR_READ_2(sc, RL_ISR); 1867 if (status == 0xffff) 1868 return; 1869 if (status) 1870 CSR_WRITE_2(sc, RL_ISR, status); 1871 1872 /* 1873 * XXX check behaviour on receiver stalls. 1874 */ 1875 1876 if (status & RL_ISR_SYSTEM_ERR) { 1877 re_reset(sc); 1878 re_init_locked(sc); 1879 } 1880 } 1881 } 1882 #endif /* DEVICE_POLLING */ 1883 1884 static void 1885 re_intr(arg) 1886 void *arg; 1887 { 1888 struct rl_softc *sc; 1889 struct ifnet *ifp; 1890 uint16_t status; 1891 1892 sc = arg; 1893 ifp = sc->rl_ifp; 1894 1895 mtx_lock_spin(&sc->rl_intlock); 1896 status = CSR_READ_2(sc, RL_ISR); 1897 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) { 1898 mtx_unlock_spin(&sc->rl_intlock); 1899 return; 1900 } 1901 CSR_WRITE_2(sc, RL_IMR, 0); 1902 mtx_unlock_spin(&sc->rl_intlock); 1903 1904 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); 1905 1906 return; 1907 } 1908 1909 static void 1910 re_int_task(arg, npending) 1911 void *arg; 1912 int npending; 1913 { 1914 struct rl_softc *sc; 1915 struct ifnet *ifp; 1916 u_int16_t status; 1917 int rval = 0; 1918 1919 sc = arg; 1920 ifp = sc->rl_ifp; 1921 1922 RL_LOCK(sc); 1923 1924 status = CSR_READ_2(sc, RL_ISR); 1925 CSR_WRITE_2(sc, RL_ISR, status); 1926 1927 if (sc->suspended || !(ifp->if_flags & IFF_UP)) { 1928 RL_UNLOCK(sc); 1929 return; 1930 } 1931 1932 #ifdef DEVICE_POLLING 1933 if (ifp->if_capenable & IFCAP_POLLING) { 1934 RL_UNLOCK(sc); 1935 return; 1936 } 1937 #endif 1938 1939 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW)) 1940 rval = re_rxeof(sc); 1941 1942 #ifdef RE_TX_MODERATION 1943 if (status & (RL_ISR_TIMEOUT_EXPIRED| 1944 #else 1945 if (status & (RL_ISR_TX_OK| 1946 #endif 1947 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL)) 1948 re_txeof(sc); 1949 1950 if (status & RL_ISR_SYSTEM_ERR) { 1951 re_reset(sc); 1952 re_init_locked(sc); 1953 } 1954 1955 if (status & RL_ISR_LINKCHG) { 1956 callout_stop(&sc->rl_stat_callout); 1957 re_tick(sc); 1958 } 1959 1960 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 1961 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 1962 1963 RL_UNLOCK(sc); 1964 1965 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) { 1966 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); 1967 return; 1968 } 1969 1970 mtx_lock_spin(&sc->rl_intlock); 1971 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 1972 mtx_unlock_spin(&sc->rl_intlock); 1973 1974 return; 1975 } 1976 1977 static int 1978 re_encap(sc, m_head, idx) 1979 struct rl_softc *sc; 1980 struct mbuf **m_head; 1981 int *idx; 1982 { 1983 struct mbuf *m_new = NULL; 1984 struct rl_dmaload_arg arg; 1985 bus_dmamap_t map; 1986 int error; 1987 struct m_tag *mtag; 1988 1989 RL_LOCK_ASSERT(sc); 1990 1991 if (sc->rl_ldata.rl_tx_free <= 4) 1992 return (EFBIG); 1993 1994 /* 1995 * Set up checksum offload. Note: checksum offload bits must 1996 * appear in all descriptors of a multi-descriptor transmit 1997 * attempt. This is according to testing done with an 8169 1998 * chip. This is a requirement. 1999 */ 2000 2001 arg.rl_flags = 0; 2002 2003 if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) 2004 arg.rl_flags |= RL_TDESC_CMD_IPCSUM; 2005 if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) 2006 arg.rl_flags |= RL_TDESC_CMD_TCPCSUM; 2007 if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) 2008 arg.rl_flags |= RL_TDESC_CMD_UDPCSUM; 2009 2010 arg.sc = sc; 2011 arg.rl_idx = *idx; 2012 arg.rl_maxsegs = sc->rl_ldata.rl_tx_free; 2013 if (arg.rl_maxsegs > 4) 2014 arg.rl_maxsegs -= 4; 2015 arg.rl_ring = sc->rl_ldata.rl_tx_list; 2016 2017 map = sc->rl_ldata.rl_tx_dmamap[*idx]; 2018 error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map, 2019 *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT); 2020 2021 if (error && error != EFBIG) { 2022 if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n", error); 2023 return (ENOBUFS); 2024 } 2025 2026 /* Too many segments to map, coalesce into a single mbuf */ 2027 2028 if (error || arg.rl_maxsegs == 0) { 2029 m_new = m_defrag(*m_head, M_DONTWAIT); 2030 if (m_new == NULL) 2031 return (ENOBUFS); 2032 else 2033 *m_head = m_new; 2034 2035 arg.sc = sc; 2036 arg.rl_idx = *idx; 2037 arg.rl_maxsegs = sc->rl_ldata.rl_tx_free; 2038 arg.rl_ring = sc->rl_ldata.rl_tx_list; 2039 2040 error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map, 2041 *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT); 2042 if (error) { 2043 if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n", 2044 error); 2045 return (EFBIG); 2046 } 2047 } 2048 2049 /* 2050 * Insure that the map for this transmission 2051 * is placed at the array index of the last descriptor 2052 * in this chain. (Swap last and first dmamaps.) 2053 */ 2054 sc->rl_ldata.rl_tx_dmamap[*idx] = 2055 sc->rl_ldata.rl_tx_dmamap[arg.rl_idx]; 2056 sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map; 2057 2058 sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head; 2059 sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs; 2060 2061 /* 2062 * Set up hardware VLAN tagging. Note: vlan tag info must 2063 * appear in the first descriptor of a multi-descriptor 2064 * transmission attempt. 2065 */ 2066 2067 mtag = VLAN_OUTPUT_TAG(sc->rl_ifp, *m_head); 2068 if (mtag != NULL) 2069 sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl = 2070 htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG); 2071 2072 /* Transfer ownership of packet to the chip. */ 2073 2074 sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |= 2075 htole32(RL_TDESC_CMD_OWN); 2076 if (*idx != arg.rl_idx) 2077 sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |= 2078 htole32(RL_TDESC_CMD_OWN); 2079 2080 RL_DESC_INC(arg.rl_idx); 2081 *idx = arg.rl_idx; 2082 2083 return (0); 2084 } 2085 2086 static void 2087 re_tx_task(arg, npending) 2088 void *arg; 2089 int npending; 2090 { 2091 struct ifnet *ifp; 2092 2093 ifp = arg; 2094 re_start(ifp); 2095 2096 return; 2097 } 2098 2099 /* 2100 * Main transmit routine for C+ and gigE NICs. 2101 */ 2102 static void 2103 re_start(ifp) 2104 struct ifnet *ifp; 2105 { 2106 struct rl_softc *sc; 2107 struct mbuf *m_head = NULL; 2108 int idx, queued = 0; 2109 2110 sc = ifp->if_softc; 2111 2112 RL_LOCK(sc); 2113 2114 if (!sc->rl_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) { 2115 RL_UNLOCK(sc); 2116 return; 2117 } 2118 2119 idx = sc->rl_ldata.rl_tx_prodidx; 2120 2121 while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) { 2122 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2123 if (m_head == NULL) 2124 break; 2125 2126 if (re_encap(sc, &m_head, &idx)) { 2127 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2128 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2129 break; 2130 } 2131 2132 /* 2133 * If there's a BPF listener, bounce a copy of this frame 2134 * to him. 2135 */ 2136 BPF_MTAP(ifp, m_head); 2137 2138 queued++; 2139 } 2140 2141 if (queued == 0) { 2142 #ifdef RE_TX_MODERATION 2143 if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT) 2144 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2145 #endif 2146 RL_UNLOCK(sc); 2147 return; 2148 } 2149 2150 /* Flush the TX descriptors */ 2151 2152 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2153 sc->rl_ldata.rl_tx_list_map, 2154 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2155 2156 sc->rl_ldata.rl_tx_prodidx = idx; 2157 2158 /* 2159 * RealTek put the TX poll request register in a different 2160 * location on the 8169 gigE chip. I don't know why. 2161 */ 2162 2163 CSR_WRITE_2(sc, sc->rl_txstart, RL_TXSTART_START); 2164 2165 #ifdef RE_TX_MODERATION 2166 /* 2167 * Use the countdown timer for interrupt moderation. 2168 * 'TX done' interrupts are disabled. Instead, we reset the 2169 * countdown timer, which will begin counting until it hits 2170 * the value in the TIMERINT register, and then trigger an 2171 * interrupt. Each time we write to the TIMERCNT register, 2172 * the timer count is reset to 0. 2173 */ 2174 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2175 #endif 2176 2177 /* 2178 * Set a timeout in case the chip goes out to lunch. 2179 */ 2180 2181 ifp->if_timer = 5; 2182 2183 RL_UNLOCK(sc); 2184 2185 return; 2186 } 2187 2188 static void 2189 re_init(xsc) 2190 void *xsc; 2191 { 2192 struct rl_softc *sc = xsc; 2193 2194 RL_LOCK(sc); 2195 re_init_locked(sc); 2196 RL_UNLOCK(sc); 2197 } 2198 2199 static void 2200 re_init_locked(sc) 2201 struct rl_softc *sc; 2202 { 2203 struct ifnet *ifp = sc->rl_ifp; 2204 struct mii_data *mii; 2205 u_int32_t rxcfg = 0; 2206 union { 2207 uint32_t align_dummy; 2208 u_char eaddr[ETHER_ADDR_LEN]; 2209 } eaddr; 2210 2211 RL_LOCK_ASSERT(sc); 2212 2213 mii = device_get_softc(sc->rl_miibus); 2214 2215 /* 2216 * Cancel pending I/O and free all RX/TX buffers. 2217 */ 2218 re_stop(sc); 2219 2220 /* 2221 * Enable C+ RX and TX mode, as well as VLAN stripping and 2222 * RX checksum offload. We must configure the C+ register 2223 * before all others. 2224 */ 2225 CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB| 2226 RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW| 2227 RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB); 2228 2229 /* 2230 * Init our MAC address. Even though the chipset 2231 * documentation doesn't mention it, we need to enter "Config 2232 * register write enable" mode to modify the ID registers. 2233 */ 2234 /* Copy MAC address on stack to align. */ 2235 bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN); 2236 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 2237 CSR_WRITE_4(sc, RL_IDR0, 2238 htole32(*(u_int32_t *)(&eaddr.eaddr[0]))); 2239 CSR_WRITE_4(sc, RL_IDR4, 2240 htole32(*(u_int32_t *)(&eaddr.eaddr[4]))); 2241 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 2242 2243 /* 2244 * For C+ mode, initialize the RX descriptors and mbufs. 2245 */ 2246 re_rx_list_init(sc); 2247 re_tx_list_init(sc); 2248 2249 /* 2250 * Enable transmit and receive. 2251 */ 2252 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 2253 2254 /* 2255 * Set the initial TX and RX configuration. 2256 */ 2257 if (sc->rl_testmode) { 2258 if (sc->rl_type == RL_8169) 2259 CSR_WRITE_4(sc, RL_TXCFG, 2260 RL_TXCFG_CONFIG|RL_LOOPTEST_ON); 2261 else 2262 CSR_WRITE_4(sc, RL_TXCFG, 2263 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); 2264 } else 2265 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 2266 CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); 2267 2268 /* Set the individual bit to receive frames for this host only. */ 2269 rxcfg = CSR_READ_4(sc, RL_RXCFG); 2270 rxcfg |= RL_RXCFG_RX_INDIV; 2271 2272 /* If we want promiscuous mode, set the allframes bit. */ 2273 if (ifp->if_flags & IFF_PROMISC) 2274 rxcfg |= RL_RXCFG_RX_ALLPHYS; 2275 else 2276 rxcfg &= ~RL_RXCFG_RX_ALLPHYS; 2277 CSR_WRITE_4(sc, RL_RXCFG, rxcfg); 2278 2279 /* 2280 * Set capture broadcast bit to capture broadcast frames. 2281 */ 2282 if (ifp->if_flags & IFF_BROADCAST) 2283 rxcfg |= RL_RXCFG_RX_BROAD; 2284 else 2285 rxcfg &= ~RL_RXCFG_RX_BROAD; 2286 CSR_WRITE_4(sc, RL_RXCFG, rxcfg); 2287 2288 /* 2289 * Program the multicast filter, if necessary. 2290 */ 2291 re_setmulti(sc); 2292 2293 #ifdef DEVICE_POLLING 2294 /* 2295 * Disable interrupts if we are polling. 2296 */ 2297 if (ifp->if_capenable & IFCAP_POLLING) 2298 CSR_WRITE_2(sc, RL_IMR, 0); 2299 else /* otherwise ... */ 2300 #endif 2301 2302 /* 2303 * Enable interrupts. 2304 */ 2305 mtx_lock_spin(&sc->rl_intlock); 2306 if (sc->rl_testmode) 2307 CSR_WRITE_2(sc, RL_IMR, 0); 2308 else 2309 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2310 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS); 2311 mtx_unlock_spin(&sc->rl_intlock); 2312 2313 /* Set initial TX threshold */ 2314 sc->rl_txthresh = RL_TX_THRESH_INIT; 2315 2316 /* Start RX/TX process. */ 2317 CSR_WRITE_4(sc, RL_MISSEDPKT, 0); 2318 #ifdef notdef 2319 /* Enable receiver and transmitter. */ 2320 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 2321 #endif 2322 /* 2323 * Load the addresses of the RX and TX lists into the chip. 2324 */ 2325 2326 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, 2327 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); 2328 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, 2329 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); 2330 2331 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, 2332 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); 2333 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, 2334 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); 2335 2336 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); 2337 2338 #ifdef RE_TX_MODERATION 2339 /* 2340 * Initialize the timer interrupt register so that 2341 * a timer interrupt will be generated once the timer 2342 * reaches a certain number of ticks. The timer is 2343 * reloaded on each transmit. This gives us TX interrupt 2344 * moderation, which dramatically improves TX frame rate. 2345 */ 2346 if (sc->rl_type == RL_8169) 2347 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); 2348 else 2349 CSR_WRITE_4(sc, RL_TIMERINT, 0x400); 2350 #endif 2351 2352 /* 2353 * For 8169 gigE NICs, set the max allowed RX packet 2354 * size so we can receive jumbo frames. 2355 */ 2356 if (sc->rl_type == RL_8169) 2357 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); 2358 2359 if (sc->rl_testmode) 2360 return; 2361 2362 mii_mediachg(mii); 2363 2364 CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX); 2365 2366 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2367 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2368 2369 2370 sc->rl_link = 0; 2371 2372 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2373 } 2374 2375 /* 2376 * Set media options. 2377 */ 2378 static int 2379 re_ifmedia_upd(ifp) 2380 struct ifnet *ifp; 2381 { 2382 struct rl_softc *sc; 2383 struct mii_data *mii; 2384 2385 sc = ifp->if_softc; 2386 mii = device_get_softc(sc->rl_miibus); 2387 RL_LOCK(sc); 2388 mii_mediachg(mii); 2389 RL_UNLOCK(sc); 2390 2391 return (0); 2392 } 2393 2394 /* 2395 * Report current media status. 2396 */ 2397 static void 2398 re_ifmedia_sts(ifp, ifmr) 2399 struct ifnet *ifp; 2400 struct ifmediareq *ifmr; 2401 { 2402 struct rl_softc *sc; 2403 struct mii_data *mii; 2404 2405 sc = ifp->if_softc; 2406 mii = device_get_softc(sc->rl_miibus); 2407 2408 RL_LOCK(sc); 2409 mii_pollstat(mii); 2410 RL_UNLOCK(sc); 2411 ifmr->ifm_active = mii->mii_media_active; 2412 ifmr->ifm_status = mii->mii_media_status; 2413 } 2414 2415 static int 2416 re_ioctl(ifp, command, data) 2417 struct ifnet *ifp; 2418 u_long command; 2419 caddr_t data; 2420 { 2421 struct rl_softc *sc = ifp->if_softc; 2422 struct ifreq *ifr = (struct ifreq *) data; 2423 struct mii_data *mii; 2424 int error = 0; 2425 2426 switch (command) { 2427 case SIOCSIFMTU: 2428 RL_LOCK(sc); 2429 if (ifr->ifr_mtu > RL_JUMBO_MTU) 2430 error = EINVAL; 2431 ifp->if_mtu = ifr->ifr_mtu; 2432 RL_UNLOCK(sc); 2433 break; 2434 case SIOCSIFFLAGS: 2435 RL_LOCK(sc); 2436 if (ifp->if_flags & IFF_UP) 2437 re_init_locked(sc); 2438 else if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2439 re_stop(sc); 2440 RL_UNLOCK(sc); 2441 break; 2442 case SIOCADDMULTI: 2443 case SIOCDELMULTI: 2444 RL_LOCK(sc); 2445 re_setmulti(sc); 2446 RL_UNLOCK(sc); 2447 break; 2448 case SIOCGIFMEDIA: 2449 case SIOCSIFMEDIA: 2450 mii = device_get_softc(sc->rl_miibus); 2451 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2452 break; 2453 case SIOCSIFCAP: 2454 { 2455 int mask, reinit; 2456 2457 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2458 reinit = 0; 2459 #ifdef DEVICE_POLLING 2460 if (mask & IFCAP_POLLING) { 2461 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2462 error = ether_poll_register(re_poll, ifp); 2463 if (error) 2464 return(error); 2465 RL_LOCK(sc); 2466 /* Disable interrupts */ 2467 CSR_WRITE_2(sc, RL_IMR, 0x0000); 2468 ifp->if_capenable |= IFCAP_POLLING; 2469 RL_UNLOCK(sc); 2470 2471 } else { 2472 error = ether_poll_deregister(ifp); 2473 /* Enable interrupts. */ 2474 RL_LOCK(sc); 2475 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2476 ifp->if_capenable &= ~IFCAP_POLLING; 2477 RL_UNLOCK(sc); 2478 } 2479 } 2480 #endif /* DEVICE_POLLING */ 2481 if (mask & IFCAP_HWCSUM) { 2482 ifp->if_capenable ^= IFCAP_HWCSUM; 2483 if (ifp->if_capenable & IFCAP_TXCSUM) 2484 ifp->if_hwassist = RE_CSUM_FEATURES; 2485 else 2486 ifp->if_hwassist = 0; 2487 reinit = 1; 2488 } 2489 if (mask & IFCAP_VLAN_HWTAGGING) { 2490 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2491 reinit = 1; 2492 } 2493 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) 2494 re_init(sc); 2495 } 2496 break; 2497 default: 2498 error = ether_ioctl(ifp, command, data); 2499 break; 2500 } 2501 2502 return (error); 2503 } 2504 2505 static void 2506 re_watchdog(ifp) 2507 struct ifnet *ifp; 2508 { 2509 struct rl_softc *sc; 2510 2511 sc = ifp->if_softc; 2512 RL_LOCK(sc); 2513 if_printf(ifp, "watchdog timeout\n"); 2514 ifp->if_oerrors++; 2515 2516 re_txeof(sc); 2517 re_rxeof(sc); 2518 re_init_locked(sc); 2519 2520 RL_UNLOCK(sc); 2521 } 2522 2523 /* 2524 * Stop the adapter and free any mbufs allocated to the 2525 * RX and TX lists. 2526 */ 2527 static void 2528 re_stop(sc) 2529 struct rl_softc *sc; 2530 { 2531 register int i; 2532 struct ifnet *ifp; 2533 2534 RL_LOCK_ASSERT(sc); 2535 2536 ifp = sc->rl_ifp; 2537 ifp->if_timer = 0; 2538 2539 callout_stop(&sc->rl_stat_callout); 2540 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2541 2542 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 2543 CSR_WRITE_2(sc, RL_IMR, 0x0000); 2544 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 2545 2546 if (sc->rl_head != NULL) { 2547 m_freem(sc->rl_head); 2548 sc->rl_head = sc->rl_tail = NULL; 2549 } 2550 2551 /* Free the TX list buffers. */ 2552 2553 for (i = 0; i < RL_TX_DESC_CNT; i++) { 2554 if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) { 2555 bus_dmamap_unload(sc->rl_ldata.rl_mtag, 2556 sc->rl_ldata.rl_tx_dmamap[i]); 2557 m_freem(sc->rl_ldata.rl_tx_mbuf[i]); 2558 sc->rl_ldata.rl_tx_mbuf[i] = NULL; 2559 } 2560 } 2561 2562 /* Free the RX list buffers. */ 2563 2564 for (i = 0; i < RL_RX_DESC_CNT; i++) { 2565 if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) { 2566 bus_dmamap_unload(sc->rl_ldata.rl_mtag, 2567 sc->rl_ldata.rl_rx_dmamap[i]); 2568 m_freem(sc->rl_ldata.rl_rx_mbuf[i]); 2569 sc->rl_ldata.rl_rx_mbuf[i] = NULL; 2570 } 2571 } 2572 } 2573 2574 /* 2575 * Device suspend routine. Stop the interface and save some PCI 2576 * settings in case the BIOS doesn't restore them properly on 2577 * resume. 2578 */ 2579 static int 2580 re_suspend(dev) 2581 device_t dev; 2582 { 2583 struct rl_softc *sc; 2584 2585 sc = device_get_softc(dev); 2586 2587 RL_LOCK(sc); 2588 re_stop(sc); 2589 sc->suspended = 1; 2590 RL_UNLOCK(sc); 2591 2592 return (0); 2593 } 2594 2595 /* 2596 * Device resume routine. Restore some PCI settings in case the BIOS 2597 * doesn't, re-enable busmastering, and restart the interface if 2598 * appropriate. 2599 */ 2600 static int 2601 re_resume(dev) 2602 device_t dev; 2603 { 2604 struct rl_softc *sc; 2605 struct ifnet *ifp; 2606 2607 sc = device_get_softc(dev); 2608 2609 RL_LOCK(sc); 2610 2611 ifp = sc->rl_ifp; 2612 2613 /* reinitialize interface if necessary */ 2614 if (ifp->if_flags & IFF_UP) 2615 re_init_locked(sc); 2616 2617 sc->suspended = 0; 2618 RL_UNLOCK(sc); 2619 2620 return (0); 2621 } 2622 2623 /* 2624 * Stop all chip I/O so that the kernel's probe routines don't 2625 * get confused by errant DMAs when rebooting. 2626 */ 2627 static void 2628 re_shutdown(dev) 2629 device_t dev; 2630 { 2631 struct rl_softc *sc; 2632 2633 sc = device_get_softc(dev); 2634 2635 RL_LOCK(sc); 2636 re_stop(sc); 2637 /* 2638 * Mark interface as down since otherwise we will panic if 2639 * interrupt comes in later on, which can happen in some 2640 * cases. 2641 */ 2642 sc->rl_ifp->if_flags &= ~IFF_UP; 2643 RL_UNLOCK(sc); 2644 } 2645