xref: /freebsd/sys/dev/re/if_re.c (revision d429ea332342fcb98d27a350d0c4944bf9aec3f9)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/module.h>
118 #include <sys/kernel.h>
119 #include <sys/socket.h>
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/ethernet.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_types.h>
127 #include <net/if_vlan_var.h>
128 
129 #include <net/bpf.h>
130 
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 
142 MODULE_DEPEND(re, pci, 1, 1, 1);
143 MODULE_DEPEND(re, ether, 1, 1, 1);
144 MODULE_DEPEND(re, miibus, 1, 1, 1);
145 
146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
147 #include "miibus_if.h"
148 
149 /*
150  * Default to using PIO access for this driver.
151  */
152 #define RE_USEIOSPACE
153 
154 #include <pci/if_rlreg.h>
155 
156 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static struct rl_type re_devs[] = {
162 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163 		"RealTek 8139C+ 10/100BaseTX" },
164 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165 		"RealTek 8169 Gigabit Ethernet" },
166 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167 		"RealTek 8169S Single-chip Gigabit Ethernet" },
168 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB,
169 		"RealTek 8169SB Single-chip Gigabit Ethernet" },
170 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
171 		"RealTek 8110S Single-chip Gigabit Ethernet" },
172 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
173 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
174 	{ 0, 0, 0, NULL }
175 };
176 
177 static struct rl_hwrev re_hwrevs[] = {
178 	{ RL_HWREV_8139, RL_8139,  "" },
179 	{ RL_HWREV_8139A, RL_8139, "A" },
180 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
181 	{ RL_HWREV_8139B, RL_8139, "B" },
182 	{ RL_HWREV_8130, RL_8139, "8130" },
183 	{ RL_HWREV_8139C, RL_8139, "C" },
184 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
185 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
186 	{ RL_HWREV_8169, RL_8169, "8169"},
187 	{ RL_HWREV_8169S, RL_8169, "8169S"},
188 	{ RL_HWREV_8169SB, RL_8169, "8169SB"},
189 	{ RL_HWREV_8110S, RL_8169, "8110S"},
190 	{ RL_HWREV_8100, RL_8139, "8100"},
191 	{ RL_HWREV_8101, RL_8139, "8101"},
192 	{ 0, 0, NULL }
193 };
194 
195 static int re_probe		(device_t);
196 static int re_attach		(device_t);
197 static int re_detach		(device_t);
198 
199 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
200 
201 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
202 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
203 				    bus_size_t, int);
204 static int re_allocmem		(device_t, struct rl_softc *);
205 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
206 static int re_rx_list_init	(struct rl_softc *);
207 static int re_tx_list_init	(struct rl_softc *);
208 #ifdef RE_FIXUP_RX
209 static __inline void re_fixup_rx
210 				(struct mbuf *);
211 #endif
212 static void re_rxeof		(struct rl_softc *);
213 static void re_txeof		(struct rl_softc *);
214 #ifdef DEVICE_POLLING
215 static void re_poll		(struct ifnet *, enum poll_cmd, int);
216 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
217 #endif
218 static void re_intr		(void *);
219 static void re_tick		(void *);
220 static void re_tick_locked	(struct rl_softc *);
221 static void re_start		(struct ifnet *);
222 static void re_start_locked	(struct ifnet *);
223 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
224 static void re_init		(void *);
225 static void re_init_locked	(struct rl_softc *);
226 static void re_stop		(struct rl_softc *);
227 static void re_watchdog		(struct ifnet *);
228 static int re_suspend		(device_t);
229 static int re_resume		(device_t);
230 static void re_shutdown		(device_t);
231 static int re_ifmedia_upd	(struct ifnet *);
232 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
233 
234 static void re_eeprom_putbyte	(struct rl_softc *, int);
235 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
236 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
237 static int re_gmii_readreg	(device_t, int, int);
238 static int re_gmii_writereg	(device_t, int, int, int);
239 
240 static int re_miibus_readreg	(device_t, int, int);
241 static int re_miibus_writereg	(device_t, int, int, int);
242 static void re_miibus_statchg	(device_t);
243 
244 static void re_setmulti		(struct rl_softc *);
245 static void re_reset		(struct rl_softc *);
246 
247 static int re_diag		(struct rl_softc *);
248 
249 #ifdef RE_USEIOSPACE
250 #define RL_RES			SYS_RES_IOPORT
251 #define RL_RID			RL_PCI_LOIO
252 #else
253 #define RL_RES			SYS_RES_MEMORY
254 #define RL_RID			RL_PCI_LOMEM
255 #endif
256 
257 static device_method_t re_methods[] = {
258 	/* Device interface */
259 	DEVMETHOD(device_probe,		re_probe),
260 	DEVMETHOD(device_attach,	re_attach),
261 	DEVMETHOD(device_detach,	re_detach),
262 	DEVMETHOD(device_suspend,	re_suspend),
263 	DEVMETHOD(device_resume,	re_resume),
264 	DEVMETHOD(device_shutdown,	re_shutdown),
265 
266 	/* bus interface */
267 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
268 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
269 
270 	/* MII interface */
271 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
272 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
273 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
274 
275 	{ 0, 0 }
276 };
277 
278 static driver_t re_driver = {
279 	"re",
280 	re_methods,
281 	sizeof(struct rl_softc)
282 };
283 
284 static devclass_t re_devclass;
285 
286 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
287 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
288 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
289 
290 #define EE_SET(x)					\
291 	CSR_WRITE_1(sc, RL_EECMD,			\
292 		CSR_READ_1(sc, RL_EECMD) | x)
293 
294 #define EE_CLR(x)					\
295 	CSR_WRITE_1(sc, RL_EECMD,			\
296 		CSR_READ_1(sc, RL_EECMD) & ~x)
297 
298 /*
299  * Send a read command and address to the EEPROM, check for ACK.
300  */
301 static void
302 re_eeprom_putbyte(sc, addr)
303 	struct rl_softc		*sc;
304 	int			addr;
305 {
306 	register int		d, i;
307 
308 	d = addr | sc->rl_eecmd_read;
309 
310 	/*
311 	 * Feed in each bit and strobe the clock.
312 	 */
313 	for (i = 0x400; i; i >>= 1) {
314 		if (d & i) {
315 			EE_SET(RL_EE_DATAIN);
316 		} else {
317 			EE_CLR(RL_EE_DATAIN);
318 		}
319 		DELAY(100);
320 		EE_SET(RL_EE_CLK);
321 		DELAY(150);
322 		EE_CLR(RL_EE_CLK);
323 		DELAY(100);
324 	}
325 }
326 
327 /*
328  * Read a word of data stored in the EEPROM at address 'addr.'
329  */
330 static void
331 re_eeprom_getword(sc, addr, dest)
332 	struct rl_softc		*sc;
333 	int			addr;
334 	u_int16_t		*dest;
335 {
336 	register int		i;
337 	u_int16_t		word = 0;
338 
339 	/* Enter EEPROM access mode. */
340 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
341 
342 	/*
343 	 * Send address of word we want to read.
344 	 */
345 	re_eeprom_putbyte(sc, addr);
346 
347 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
348 
349 	/*
350 	 * Start reading bits from EEPROM.
351 	 */
352 	for (i = 0x8000; i; i >>= 1) {
353 		EE_SET(RL_EE_CLK);
354 		DELAY(100);
355 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
356 			word |= i;
357 		EE_CLR(RL_EE_CLK);
358 		DELAY(100);
359 	}
360 
361 	/* Turn off EEPROM access mode. */
362 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
363 
364 	*dest = word;
365 }
366 
367 /*
368  * Read a sequence of words from the EEPROM.
369  */
370 static void
371 re_read_eeprom(sc, dest, off, cnt, swap)
372 	struct rl_softc		*sc;
373 	caddr_t			dest;
374 	int			off;
375 	int			cnt;
376 	int			swap;
377 {
378 	int			i;
379 	u_int16_t		word = 0, *ptr;
380 
381 	for (i = 0; i < cnt; i++) {
382 		re_eeprom_getword(sc, off + i, &word);
383 		ptr = (u_int16_t *)(dest + (i * 2));
384 		if (swap)
385 			*ptr = ntohs(word);
386 		else
387 			*ptr = word;
388 	}
389 }
390 
391 static int
392 re_gmii_readreg(dev, phy, reg)
393 	device_t		dev;
394 	int			phy, reg;
395 {
396 	struct rl_softc		*sc;
397 	u_int32_t		rval;
398 	int			i;
399 
400 	if (phy != 1)
401 		return (0);
402 
403 	sc = device_get_softc(dev);
404 
405 	/* Let the rgephy driver read the GMEDIASTAT register */
406 
407 	if (reg == RL_GMEDIASTAT) {
408 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
409 		return (rval);
410 	}
411 
412 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
413 	DELAY(1000);
414 
415 	for (i = 0; i < RL_TIMEOUT; i++) {
416 		rval = CSR_READ_4(sc, RL_PHYAR);
417 		if (rval & RL_PHYAR_BUSY)
418 			break;
419 		DELAY(100);
420 	}
421 
422 	if (i == RL_TIMEOUT) {
423 		printf ("re%d: PHY read failed\n", sc->rl_unit);
424 		return (0);
425 	}
426 
427 	return (rval & RL_PHYAR_PHYDATA);
428 }
429 
430 static int
431 re_gmii_writereg(dev, phy, reg, data)
432 	device_t		dev;
433 	int			phy, reg, data;
434 {
435 	struct rl_softc		*sc;
436 	u_int32_t		rval;
437 	int			i;
438 
439 	sc = device_get_softc(dev);
440 
441 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
442 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
443 	DELAY(1000);
444 
445 	for (i = 0; i < RL_TIMEOUT; i++) {
446 		rval = CSR_READ_4(sc, RL_PHYAR);
447 		if (!(rval & RL_PHYAR_BUSY))
448 			break;
449 		DELAY(100);
450 	}
451 
452 	if (i == RL_TIMEOUT) {
453 		printf ("re%d: PHY write failed\n", sc->rl_unit);
454 		return (0);
455 	}
456 
457 	return (0);
458 }
459 
460 static int
461 re_miibus_readreg(dev, phy, reg)
462 	device_t		dev;
463 	int			phy, reg;
464 {
465 	struct rl_softc		*sc;
466 	u_int16_t		rval = 0;
467 	u_int16_t		re8139_reg = 0;
468 
469 	sc = device_get_softc(dev);
470 
471 	if (sc->rl_type == RL_8169) {
472 		rval = re_gmii_readreg(dev, phy, reg);
473 		return (rval);
474 	}
475 
476 	/* Pretend the internal PHY is only at address 0 */
477 	if (phy) {
478 		return (0);
479 	}
480 	switch (reg) {
481 	case MII_BMCR:
482 		re8139_reg = RL_BMCR;
483 		break;
484 	case MII_BMSR:
485 		re8139_reg = RL_BMSR;
486 		break;
487 	case MII_ANAR:
488 		re8139_reg = RL_ANAR;
489 		break;
490 	case MII_ANER:
491 		re8139_reg = RL_ANER;
492 		break;
493 	case MII_ANLPAR:
494 		re8139_reg = RL_LPAR;
495 		break;
496 	case MII_PHYIDR1:
497 	case MII_PHYIDR2:
498 		return (0);
499 	/*
500 	 * Allow the rlphy driver to read the media status
501 	 * register. If we have a link partner which does not
502 	 * support NWAY, this is the register which will tell
503 	 * us the results of parallel detection.
504 	 */
505 	case RL_MEDIASTAT:
506 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
507 		return (rval);
508 	default:
509 		printf("re%d: bad phy register\n", sc->rl_unit);
510 		return (0);
511 	}
512 	rval = CSR_READ_2(sc, re8139_reg);
513 	return (rval);
514 }
515 
516 static int
517 re_miibus_writereg(dev, phy, reg, data)
518 	device_t		dev;
519 	int			phy, reg, data;
520 {
521 	struct rl_softc		*sc;
522 	u_int16_t		re8139_reg = 0;
523 	int			rval = 0;
524 
525 	sc = device_get_softc(dev);
526 
527 	if (sc->rl_type == RL_8169) {
528 		rval = re_gmii_writereg(dev, phy, reg, data);
529 		return (rval);
530 	}
531 
532 	/* Pretend the internal PHY is only at address 0 */
533 	if (phy)
534 		return (0);
535 
536 	switch (reg) {
537 	case MII_BMCR:
538 		re8139_reg = RL_BMCR;
539 		break;
540 	case MII_BMSR:
541 		re8139_reg = RL_BMSR;
542 		break;
543 	case MII_ANAR:
544 		re8139_reg = RL_ANAR;
545 		break;
546 	case MII_ANER:
547 		re8139_reg = RL_ANER;
548 		break;
549 	case MII_ANLPAR:
550 		re8139_reg = RL_LPAR;
551 		break;
552 	case MII_PHYIDR1:
553 	case MII_PHYIDR2:
554 		return (0);
555 		break;
556 	default:
557 		printf("re%d: bad phy register\n", sc->rl_unit);
558 		return (0);
559 	}
560 	CSR_WRITE_2(sc, re8139_reg, data);
561 	return (0);
562 }
563 
564 static void
565 re_miibus_statchg(dev)
566 	device_t		dev;
567 {
568 
569 }
570 
571 /*
572  * Program the 64-bit multicast hash filter.
573  */
574 static void
575 re_setmulti(sc)
576 	struct rl_softc		*sc;
577 {
578 	struct ifnet		*ifp;
579 	int			h = 0;
580 	u_int32_t		hashes[2] = { 0, 0 };
581 	struct ifmultiaddr	*ifma;
582 	u_int32_t		rxfilt;
583 	int			mcnt = 0;
584 
585 	RL_LOCK_ASSERT(sc);
586 
587 	ifp = sc->rl_ifp;
588 
589 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
590 
591 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
592 		rxfilt |= RL_RXCFG_RX_MULTI;
593 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
594 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
595 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
596 		return;
597 	}
598 
599 	/* first, zot all the existing hash bits */
600 	CSR_WRITE_4(sc, RL_MAR0, 0);
601 	CSR_WRITE_4(sc, RL_MAR4, 0);
602 
603 	/* now program new ones */
604 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
605 		if (ifma->ifma_addr->sa_family != AF_LINK)
606 			continue;
607 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
608 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
609 		if (h < 32)
610 			hashes[0] |= (1 << h);
611 		else
612 			hashes[1] |= (1 << (h - 32));
613 		mcnt++;
614 	}
615 
616 	if (mcnt)
617 		rxfilt |= RL_RXCFG_RX_MULTI;
618 	else
619 		rxfilt &= ~RL_RXCFG_RX_MULTI;
620 
621 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
622 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
623 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
624 }
625 
626 static void
627 re_reset(sc)
628 	struct rl_softc		*sc;
629 {
630 	register int		i;
631 
632 	RL_LOCK_ASSERT(sc);
633 
634 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
635 
636 	for (i = 0; i < RL_TIMEOUT; i++) {
637 		DELAY(10);
638 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
639 			break;
640 	}
641 	if (i == RL_TIMEOUT)
642 		printf("re%d: reset never completed!\n", sc->rl_unit);
643 
644 	CSR_WRITE_1(sc, 0x82, 1);
645 }
646 
647 /*
648  * The following routine is designed to test for a defect on some
649  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
650  * lines connected to the bus, however for a 32-bit only card, they
651  * should be pulled high. The result of this defect is that the
652  * NIC will not work right if you plug it into a 64-bit slot: DMA
653  * operations will be done with 64-bit transfers, which will fail
654  * because the 64-bit data lines aren't connected.
655  *
656  * There's no way to work around this (short of talking a soldering
657  * iron to the board), however we can detect it. The method we use
658  * here is to put the NIC into digital loopback mode, set the receiver
659  * to promiscuous mode, and then try to send a frame. We then compare
660  * the frame data we sent to what was received. If the data matches,
661  * then the NIC is working correctly, otherwise we know the user has
662  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
663  * slot. In the latter case, there's no way the NIC can work correctly,
664  * so we print out a message on the console and abort the device attach.
665  */
666 
667 static int
668 re_diag(sc)
669 	struct rl_softc		*sc;
670 {
671 	struct ifnet		*ifp = sc->rl_ifp;
672 	struct mbuf		*m0;
673 	struct ether_header	*eh;
674 	struct rl_desc		*cur_rx;
675 	u_int16_t		status;
676 	u_int32_t		rxstat;
677 	int			total_len, i, error = 0;
678 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
679 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
680 
681 	/* Allocate a single mbuf */
682 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
683 	if (m0 == NULL)
684 		return (ENOBUFS);
685 
686 	RL_LOCK(sc);
687 
688 	/*
689 	 * Initialize the NIC in test mode. This sets the chip up
690 	 * so that it can send and receive frames, but performs the
691 	 * following special functions:
692 	 * - Puts receiver in promiscuous mode
693 	 * - Enables digital loopback mode
694 	 * - Leaves interrupts turned off
695 	 */
696 
697 	ifp->if_flags |= IFF_PROMISC;
698 	sc->rl_testmode = 1;
699 	re_init_locked(sc);
700 	re_stop(sc);
701 	DELAY(100000);
702 	re_init_locked(sc);
703 
704 	/* Put some data in the mbuf */
705 
706 	eh = mtod(m0, struct ether_header *);
707 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
708 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
709 	eh->ether_type = htons(ETHERTYPE_IP);
710 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
711 
712 	/*
713 	 * Queue the packet, start transmission.
714 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
715 	 */
716 
717 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
718 	RL_UNLOCK(sc);
719 	/* XXX: re_diag must not be called when in ALTQ mode */
720 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
721 	RL_LOCK(sc);
722 	m0 = NULL;
723 
724 	/* Wait for it to propagate through the chip */
725 
726 	DELAY(100000);
727 	for (i = 0; i < RL_TIMEOUT; i++) {
728 		status = CSR_READ_2(sc, RL_ISR);
729 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
730 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
731 			break;
732 		DELAY(10);
733 	}
734 
735 	if (i == RL_TIMEOUT) {
736 		printf("re%d: diagnostic failed, failed to receive packet "
737 		    "in loopback mode\n", sc->rl_unit);
738 		error = EIO;
739 		goto done;
740 	}
741 
742 	/*
743 	 * The packet should have been dumped into the first
744 	 * entry in the RX DMA ring. Grab it from there.
745 	 */
746 
747 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
748 	    sc->rl_ldata.rl_rx_list_map,
749 	    BUS_DMASYNC_POSTREAD);
750 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
751 	    sc->rl_ldata.rl_rx_dmamap[0],
752 	    BUS_DMASYNC_POSTWRITE);
753 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
754 	    sc->rl_ldata.rl_rx_dmamap[0]);
755 
756 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
757 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
758 	eh = mtod(m0, struct ether_header *);
759 
760 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
761 	total_len = RL_RXBYTES(cur_rx);
762 	rxstat = le32toh(cur_rx->rl_cmdstat);
763 
764 	if (total_len != ETHER_MIN_LEN) {
765 		printf("re%d: diagnostic failed, received short packet\n",
766 		    sc->rl_unit);
767 		error = EIO;
768 		goto done;
769 	}
770 
771 	/* Test that the received packet data matches what we sent. */
772 
773 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
774 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
775 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
776 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
777 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
778 		    dst, ":", src, ":", ETHERTYPE_IP);
779 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
780 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
781 		    ntohs(eh->ether_type));
782 		printf("re%d: You may have a defective 32-bit NIC plugged "
783 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
784 		printf("re%d: Please re-install the NIC in a 32-bit slot "
785 		    "for proper operation.\n", sc->rl_unit);
786 		printf("re%d: Read the re(4) man page for more details.\n",
787 		    sc->rl_unit);
788 		error = EIO;
789 	}
790 
791 done:
792 	/* Turn interface off, release resources */
793 
794 	sc->rl_testmode = 0;
795 	ifp->if_flags &= ~IFF_PROMISC;
796 	re_stop(sc);
797 	if (m0 != NULL)
798 		m_freem(m0);
799 
800 	RL_UNLOCK(sc);
801 
802 	return (error);
803 }
804 
805 /*
806  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
807  * IDs against our list and return a device name if we find a match.
808  */
809 static int
810 re_probe(dev)
811 	device_t		dev;
812 {
813 	struct rl_type		*t;
814 	struct rl_softc		*sc;
815 	int			rid;
816 	u_int32_t		hwrev;
817 
818 	t = re_devs;
819 	sc = device_get_softc(dev);
820 
821 	while (t->rl_name != NULL) {
822 		if ((pci_get_vendor(dev) == t->rl_vid) &&
823 		    (pci_get_device(dev) == t->rl_did)) {
824 
825 			/*
826 			 * Temporarily map the I/O space
827 			 * so we can read the chip ID register.
828 			 */
829 			rid = RL_RID;
830 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
831 			    RF_ACTIVE);
832 			if (sc->rl_res == NULL) {
833 				device_printf(dev,
834 				    "couldn't map ports/memory\n");
835 				return (ENXIO);
836 			}
837 			sc->rl_btag = rman_get_bustag(sc->rl_res);
838 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
839 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
840 			bus_release_resource(dev, RL_RES,
841 			    RL_RID, sc->rl_res);
842 			if (t->rl_basetype == hwrev) {
843 				device_set_desc(dev, t->rl_name);
844 				return (BUS_PROBE_DEFAULT);
845 			}
846 		}
847 		t++;
848 	}
849 
850 	return (ENXIO);
851 }
852 
853 /*
854  * This routine takes the segment list provided as the result of
855  * a bus_dma_map_load() operation and assigns the addresses/lengths
856  * to RealTek DMA descriptors. This can be called either by the RX
857  * code or the TX code. In the RX case, we'll probably wind up mapping
858  * at most one segment. For the TX case, there could be any number of
859  * segments since TX packets may span multiple mbufs. In either case,
860  * if the number of segments is larger than the rl_maxsegs limit
861  * specified by the caller, we abort the mapping operation. Sadly,
862  * whoever designed the buffer mapping API did not provide a way to
863  * return an error from here, so we have to fake it a bit.
864  */
865 
866 static void
867 re_dma_map_desc(arg, segs, nseg, mapsize, error)
868 	void			*arg;
869 	bus_dma_segment_t	*segs;
870 	int			nseg;
871 	bus_size_t		mapsize;
872 	int			error;
873 {
874 	struct rl_dmaload_arg	*ctx;
875 	struct rl_desc		*d = NULL;
876 	int			i = 0, idx;
877 
878 	if (error)
879 		return;
880 
881 	ctx = arg;
882 
883 	/* Signal error to caller if there's too many segments */
884 	if (nseg > ctx->rl_maxsegs) {
885 		ctx->rl_maxsegs = 0;
886 		return;
887 	}
888 
889 	/*
890 	 * Map the segment array into descriptors. Note that we set the
891 	 * start-of-frame and end-of-frame markers for either TX or RX, but
892 	 * they really only have meaning in the TX case. (In the RX case,
893 	 * it's the chip that tells us where packets begin and end.)
894 	 * We also keep track of the end of the ring and set the
895 	 * end-of-ring bits as needed, and we set the ownership bits
896 	 * in all except the very first descriptor. (The caller will
897 	 * set this descriptor later when it start transmission or
898 	 * reception.)
899 	 */
900 	idx = ctx->rl_idx;
901 	for (;;) {
902 		u_int32_t		cmdstat;
903 		d = &ctx->rl_ring[idx];
904 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
905 			ctx->rl_maxsegs = 0;
906 			return;
907 		}
908 		cmdstat = segs[i].ds_len;
909 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
910 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
911 		if (i == 0)
912 			cmdstat |= RL_TDESC_CMD_SOF;
913 		else
914 			cmdstat |= RL_TDESC_CMD_OWN;
915 		if (idx == (RL_RX_DESC_CNT - 1))
916 			cmdstat |= RL_TDESC_CMD_EOR;
917 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
918 		i++;
919 		if (i == nseg)
920 			break;
921 		RL_DESC_INC(idx);
922 	}
923 
924 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
925 	ctx->rl_maxsegs = nseg;
926 	ctx->rl_idx = idx;
927 }
928 
929 /*
930  * Map a single buffer address.
931  */
932 
933 static void
934 re_dma_map_addr(arg, segs, nseg, error)
935 	void			*arg;
936 	bus_dma_segment_t	*segs;
937 	int			nseg;
938 	int			error;
939 {
940 	u_int32_t		*addr;
941 
942 	if (error)
943 		return;
944 
945 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
946 	addr = arg;
947 	*addr = segs->ds_addr;
948 }
949 
950 static int
951 re_allocmem(dev, sc)
952 	device_t		dev;
953 	struct rl_softc		*sc;
954 {
955 	int			error;
956 	int			nseg;
957 	int			i;
958 
959 	/*
960 	 * Allocate map for RX mbufs.
961 	 */
962 	nseg = 32;
963 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
964 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
965 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
966 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
967 	if (error) {
968 		device_printf(dev, "could not allocate dma tag\n");
969 		return (ENOMEM);
970 	}
971 
972 	/*
973 	 * Allocate map for TX descriptor list.
974 	 */
975 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
976 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
977 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
978 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
979 	if (error) {
980 		device_printf(dev, "could not allocate dma tag\n");
981 		return (ENOMEM);
982 	}
983 
984 	/* Allocate DMA'able memory for the TX ring */
985 
986 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
987 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
988 	    &sc->rl_ldata.rl_tx_list_map);
989 	if (error)
990 		return (ENOMEM);
991 
992 	/* Load the map for the TX ring. */
993 
994 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
995 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
996 	     RL_TX_LIST_SZ, re_dma_map_addr,
997 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
998 
999 	/* Create DMA maps for TX buffers */
1000 
1001 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1002 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1003 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1004 		if (error) {
1005 			device_printf(dev, "can't create DMA map for TX\n");
1006 			return (ENOMEM);
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * Allocate map for RX descriptor list.
1012 	 */
1013 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1014 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1015 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1016 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1017 	if (error) {
1018 		device_printf(dev, "could not allocate dma tag\n");
1019 		return (ENOMEM);
1020 	}
1021 
1022 	/* Allocate DMA'able memory for the RX ring */
1023 
1024 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1025 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1026 	    &sc->rl_ldata.rl_rx_list_map);
1027 	if (error)
1028 		return (ENOMEM);
1029 
1030 	/* Load the map for the RX ring. */
1031 
1032 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1033 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1034 	     RL_RX_LIST_SZ, re_dma_map_addr,
1035 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1036 
1037 	/* Create DMA maps for RX buffers */
1038 
1039 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1040 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1041 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1042 		if (error) {
1043 			device_printf(dev, "can't create DMA map for RX\n");
1044 			return (ENOMEM);
1045 		}
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Attach the interface. Allocate softc structures, do ifmedia
1053  * setup and ethernet/BPF attach.
1054  */
1055 static int
1056 re_attach(dev)
1057 	device_t		dev;
1058 {
1059 	u_char			eaddr[ETHER_ADDR_LEN];
1060 	u_int16_t		as[3];
1061 	struct rl_softc		*sc;
1062 	struct ifnet		*ifp;
1063 	struct rl_hwrev		*hw_rev;
1064 	int			hwrev;
1065 	u_int16_t		re_did = 0;
1066 	int			unit, error = 0, rid, i;
1067 
1068 	sc = device_get_softc(dev);
1069 	unit = device_get_unit(dev);
1070 
1071 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1072 	    MTX_DEF);
1073 	/*
1074 	 * Map control/status registers.
1075 	 */
1076 	pci_enable_busmaster(dev);
1077 
1078 	rid = RL_RID;
1079 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1080 	    RF_ACTIVE);
1081 
1082 	if (sc->rl_res == NULL) {
1083 		printf ("re%d: couldn't map ports/memory\n", unit);
1084 		error = ENXIO;
1085 		goto fail;
1086 	}
1087 
1088 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1089 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1090 
1091 	/* Allocate interrupt */
1092 	rid = 0;
1093 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1094 	    RF_SHAREABLE | RF_ACTIVE);
1095 
1096 	if (sc->rl_irq == NULL) {
1097 		printf("re%d: couldn't map interrupt\n", unit);
1098 		error = ENXIO;
1099 		goto fail;
1100 	}
1101 
1102 	/* Reset the adapter. */
1103 	RL_LOCK(sc);
1104 	re_reset(sc);
1105 	RL_UNLOCK(sc);
1106 
1107 	hw_rev = re_hwrevs;
1108 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1109 	while (hw_rev->rl_desc != NULL) {
1110 		if (hw_rev->rl_rev == hwrev) {
1111 			sc->rl_type = hw_rev->rl_type;
1112 			break;
1113 		}
1114 		hw_rev++;
1115 	}
1116 
1117 	if (sc->rl_type == RL_8169) {
1118 
1119 		/* Set RX length mask */
1120 
1121 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1122 
1123 		/* Force station address autoload from the EEPROM */
1124 
1125 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1126 		for (i = 0; i < RL_TIMEOUT; i++) {
1127 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1128 				break;
1129 			DELAY(100);
1130 		}
1131 		if (i == RL_TIMEOUT)
1132 			printf ("re%d: eeprom autoload timed out\n", unit);
1133 
1134 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1135 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1136 	} else {
1137 
1138 		/* Set RX length mask */
1139 
1140 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1141 
1142 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1143 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1144 		if (re_did != 0x8129)
1145 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1146 
1147 		/*
1148 		 * Get station address from the EEPROM.
1149 		 */
1150 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1151 		for (i = 0; i < 3; i++) {
1152 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1153 			eaddr[(i * 2) + 1] = as[i] >> 8;
1154 		}
1155 	}
1156 
1157 	sc->rl_unit = unit;
1158 
1159 	/*
1160 	 * Allocate the parent bus DMA tag appropriate for PCI.
1161 	 */
1162 #define RL_NSEG_NEW 32
1163 	error = bus_dma_tag_create(NULL,	/* parent */
1164 			1, 0,			/* alignment, boundary */
1165 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1166 			BUS_SPACE_MAXADDR,	/* highaddr */
1167 			NULL, NULL,		/* filter, filterarg */
1168 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1169 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1170 			BUS_DMA_ALLOCNOW,	/* flags */
1171 			NULL, NULL,		/* lockfunc, lockarg */
1172 			&sc->rl_parent_tag);
1173 	if (error)
1174 		goto fail;
1175 
1176 	error = re_allocmem(dev, sc);
1177 
1178 	if (error)
1179 		goto fail;
1180 
1181 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1182 	if (ifp == NULL) {
1183 		printf("re%d: can not if_alloc()\n", sc->rl_unit);
1184 		error = ENOSPC;
1185 		goto fail;
1186 	}
1187 
1188 	/* Do MII setup */
1189 	if (mii_phy_probe(dev, &sc->rl_miibus,
1190 	    re_ifmedia_upd, re_ifmedia_sts)) {
1191 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1192 		error = ENXIO;
1193 		goto fail;
1194 	}
1195 
1196 	ifp->if_softc = sc;
1197 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1198 	ifp->if_mtu = ETHERMTU;
1199 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1200 	ifp->if_ioctl = re_ioctl;
1201 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1202 	ifp->if_start = re_start;
1203 	ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
1204 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1205 #ifdef DEVICE_POLLING
1206 	ifp->if_capabilities |= IFCAP_POLLING;
1207 #endif
1208 	ifp->if_watchdog = re_watchdog;
1209 	ifp->if_init = re_init;
1210 	if (sc->rl_type == RL_8169)
1211 		ifp->if_baudrate = 1000000000;
1212 	else
1213 		ifp->if_baudrate = 100000000;
1214 	IFQ_SET_MAXLEN(&ifp->if_snd,  RL_IFQ_MAXLEN);
1215 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1216 	IFQ_SET_READY(&ifp->if_snd);
1217 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1218 
1219 	callout_handle_init(&sc->rl_stat_ch);
1220 
1221 	/*
1222 	 * Call MI attach routine.
1223 	 */
1224 	ether_ifattach(ifp, eaddr);
1225 
1226 	/* Perform hardware diagnostic. */
1227 	error = re_diag(sc);
1228 
1229 	if (error) {
1230 		printf("re%d: attach aborted due to hardware diag failure\n",
1231 		    unit);
1232 		ether_ifdetach(ifp);
1233 		if_free(ifp);
1234 		goto fail;
1235 	}
1236 
1237 	/* Hook interrupt last to avoid having to lock softc */
1238 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1239 	    re_intr, sc, &sc->rl_intrhand);
1240 	if (error) {
1241 		printf("re%d: couldn't set up irq\n", unit);
1242 		ether_ifdetach(ifp);
1243 		if_free(ifp);
1244 	}
1245 
1246 fail:
1247 	if (error)
1248 		re_detach(dev);
1249 
1250 	return (error);
1251 }
1252 
1253 /*
1254  * Shutdown hardware and free up resources. This can be called any
1255  * time after the mutex has been initialized. It is called in both
1256  * the error case in attach and the normal detach case so it needs
1257  * to be careful about only freeing resources that have actually been
1258  * allocated.
1259  */
1260 static int
1261 re_detach(dev)
1262 	device_t		dev;
1263 {
1264 	struct rl_softc		*sc;
1265 	struct ifnet		*ifp;
1266 	int			i;
1267 	int			attached;
1268 
1269 	sc = device_get_softc(dev);
1270 	ifp = sc->rl_ifp;
1271 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1272 
1273 	attached = device_is_attached(dev);
1274 	/* These should only be active if attach succeeded */
1275 	if (attached)
1276 		ether_ifdetach(ifp);
1277 	if (ifp == NULL)
1278 		if_free(ifp);
1279 
1280 	RL_LOCK(sc);
1281 #if 0
1282 	sc->suspended = 1;
1283 #endif
1284 
1285 	/* These should only be active if attach succeeded */
1286 	if (attached) {
1287 		re_stop(sc);
1288 		/*
1289 		 * Force off the IFF_UP flag here, in case someone
1290 		 * still had a BPF descriptor attached to this
1291 		 * interface. If they do, ether_ifdetach() will cause
1292 		 * the BPF code to try and clear the promisc mode
1293 		 * flag, which will bubble down to re_ioctl(),
1294 		 * which will try to call re_init() again. This will
1295 		 * turn the NIC back on and restart the MII ticker,
1296 		 * which will panic the system when the kernel tries
1297 		 * to invoke the re_tick() function that isn't there
1298 		 * anymore.
1299 		 */
1300 		ifp->if_flags &= ~IFF_UP;
1301 	}
1302 	if (sc->rl_miibus)
1303 		device_delete_child(dev, sc->rl_miibus);
1304 	bus_generic_detach(dev);
1305 
1306 	/*
1307 	 * The rest is resource deallocation, so we should already be
1308 	 * stopped here.
1309 	 */
1310 	RL_UNLOCK(sc);
1311 
1312 	if (sc->rl_intrhand)
1313 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1314 	if (sc->rl_irq)
1315 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1316 	if (sc->rl_res)
1317 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1318 
1319 
1320 	/* Unload and free the RX DMA ring memory and map */
1321 
1322 	if (sc->rl_ldata.rl_rx_list_tag) {
1323 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1324 		    sc->rl_ldata.rl_rx_list_map);
1325 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1326 		    sc->rl_ldata.rl_rx_list,
1327 		    sc->rl_ldata.rl_rx_list_map);
1328 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1329 	}
1330 
1331 	/* Unload and free the TX DMA ring memory and map */
1332 
1333 	if (sc->rl_ldata.rl_tx_list_tag) {
1334 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1335 		    sc->rl_ldata.rl_tx_list_map);
1336 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1337 		    sc->rl_ldata.rl_tx_list,
1338 		    sc->rl_ldata.rl_tx_list_map);
1339 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1340 	}
1341 
1342 	/* Destroy all the RX and TX buffer maps */
1343 
1344 	if (sc->rl_ldata.rl_mtag) {
1345 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1346 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1347 			    sc->rl_ldata.rl_tx_dmamap[i]);
1348 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1349 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1350 			    sc->rl_ldata.rl_rx_dmamap[i]);
1351 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1352 	}
1353 
1354 	/* Unload and free the stats buffer and map */
1355 
1356 	if (sc->rl_ldata.rl_stag) {
1357 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1358 		    sc->rl_ldata.rl_rx_list_map);
1359 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1360 		    sc->rl_ldata.rl_stats,
1361 		    sc->rl_ldata.rl_smap);
1362 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1363 	}
1364 
1365 	if (sc->rl_parent_tag)
1366 		bus_dma_tag_destroy(sc->rl_parent_tag);
1367 
1368 	mtx_destroy(&sc->rl_mtx);
1369 
1370 	return (0);
1371 }
1372 
1373 static int
1374 re_newbuf(sc, idx, m)
1375 	struct rl_softc		*sc;
1376 	int			idx;
1377 	struct mbuf		*m;
1378 {
1379 	struct rl_dmaload_arg	arg;
1380 	struct mbuf		*n = NULL;
1381 	int			error;
1382 
1383 	if (m == NULL) {
1384 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1385 		if (n == NULL)
1386 			return (ENOBUFS);
1387 		m = n;
1388 	} else
1389 		m->m_data = m->m_ext.ext_buf;
1390 
1391 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1392 #ifdef RE_FIXUP_RX
1393 	/*
1394 	 * This is part of an evil trick to deal with non-x86 platforms.
1395 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1396 	 * boundaries, but that will hose non-x86 machines. To get around
1397 	 * this, we leave some empty space at the start of each buffer
1398 	 * and for non-x86 hosts, we copy the buffer back six bytes
1399 	 * to achieve word alignment. This is slightly more efficient
1400 	 * than allocating a new buffer, copying the contents, and
1401 	 * discarding the old buffer.
1402 	 */
1403 	m_adj(m, RE_ETHER_ALIGN);
1404 #endif
1405 	arg.sc = sc;
1406 	arg.rl_idx = idx;
1407 	arg.rl_maxsegs = 1;
1408 	arg.rl_flags = 0;
1409 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1410 
1411 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1412 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1413 	    &arg, BUS_DMA_NOWAIT);
1414 	if (error || arg.rl_maxsegs != 1) {
1415 		if (n != NULL)
1416 			m_freem(n);
1417 		return (ENOMEM);
1418 	}
1419 
1420 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1421 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1422 
1423 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1424 	    sc->rl_ldata.rl_rx_dmamap[idx],
1425 	    BUS_DMASYNC_PREREAD);
1426 
1427 	return (0);
1428 }
1429 
1430 #ifdef RE_FIXUP_RX
1431 static __inline void
1432 re_fixup_rx(m)
1433 	struct mbuf		*m;
1434 {
1435 	int                     i;
1436 	uint16_t                *src, *dst;
1437 
1438 	src = mtod(m, uint16_t *);
1439 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1440 
1441 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1442 		*dst++ = *src++;
1443 
1444 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1445 
1446 	return;
1447 }
1448 #endif
1449 
1450 static int
1451 re_tx_list_init(sc)
1452 	struct rl_softc		*sc;
1453 {
1454 
1455 	RL_LOCK_ASSERT(sc);
1456 
1457 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1458 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1459 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1460 
1461 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1462 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1463 	sc->rl_ldata.rl_tx_prodidx = 0;
1464 	sc->rl_ldata.rl_tx_considx = 0;
1465 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1466 
1467 	return (0);
1468 }
1469 
1470 static int
1471 re_rx_list_init(sc)
1472 	struct rl_softc		*sc;
1473 {
1474 	int			i;
1475 
1476 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1477 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1478 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1479 
1480 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1481 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1482 			return (ENOBUFS);
1483 	}
1484 
1485 	/* Flush the RX descriptors */
1486 
1487 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1488 	    sc->rl_ldata.rl_rx_list_map,
1489 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1490 
1491 	sc->rl_ldata.rl_rx_prodidx = 0;
1492 	sc->rl_head = sc->rl_tail = NULL;
1493 
1494 	return (0);
1495 }
1496 
1497 /*
1498  * RX handler for C+ and 8169. For the gigE chips, we support
1499  * the reception of jumbo frames that have been fragmented
1500  * across multiple 2K mbuf cluster buffers.
1501  */
1502 static void
1503 re_rxeof(sc)
1504 	struct rl_softc		*sc;
1505 {
1506 	struct mbuf		*m;
1507 	struct ifnet		*ifp;
1508 	int			i, total_len;
1509 	struct rl_desc		*cur_rx;
1510 	u_int32_t		rxstat, rxvlan;
1511 
1512 	RL_LOCK_ASSERT(sc);
1513 
1514 	ifp = sc->rl_ifp;
1515 	i = sc->rl_ldata.rl_rx_prodidx;
1516 
1517 	/* Invalidate the descriptor memory */
1518 
1519 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1520 	    sc->rl_ldata.rl_rx_list_map,
1521 	    BUS_DMASYNC_POSTREAD);
1522 
1523 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1524 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1525 		m = sc->rl_ldata.rl_rx_mbuf[i];
1526 		total_len = RL_RXBYTES(cur_rx);
1527 		rxstat = le32toh(cur_rx->rl_cmdstat);
1528 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1529 
1530 		/* Invalidate the RX mbuf and unload its map */
1531 
1532 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1533 		    sc->rl_ldata.rl_rx_dmamap[i],
1534 		    BUS_DMASYNC_POSTWRITE);
1535 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1536 		    sc->rl_ldata.rl_rx_dmamap[i]);
1537 
1538 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1539 			m->m_len = RE_RX_DESC_BUFLEN;
1540 			if (sc->rl_head == NULL)
1541 				sc->rl_head = sc->rl_tail = m;
1542 			else {
1543 				m->m_flags &= ~M_PKTHDR;
1544 				sc->rl_tail->m_next = m;
1545 				sc->rl_tail = m;
1546 			}
1547 			re_newbuf(sc, i, NULL);
1548 			RL_DESC_INC(i);
1549 			continue;
1550 		}
1551 
1552 		/*
1553 		 * NOTE: for the 8139C+, the frame length field
1554 		 * is always 12 bits in size, but for the gigE chips,
1555 		 * it is 13 bits (since the max RX frame length is 16K).
1556 		 * Unfortunately, all 32 bits in the status word
1557 		 * were already used, so to make room for the extra
1558 		 * length bit, RealTek took out the 'frame alignment
1559 		 * error' bit and shifted the other status bits
1560 		 * over one slot. The OWN, EOR, FS and LS bits are
1561 		 * still in the same places. We have already extracted
1562 		 * the frame length and checked the OWN bit, so rather
1563 		 * than using an alternate bit mapping, we shift the
1564 		 * status bits one space to the right so we can evaluate
1565 		 * them using the 8169 status as though it was in the
1566 		 * same format as that of the 8139C+.
1567 		 */
1568 		if (sc->rl_type == RL_8169)
1569 			rxstat >>= 1;
1570 
1571 		/*
1572 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1573 		 * set, but if CRC is clear, it will still be a valid frame.
1574 		 */
1575 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1576 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1577 			ifp->if_ierrors++;
1578 			/*
1579 			 * If this is part of a multi-fragment packet,
1580 			 * discard all the pieces.
1581 			 */
1582 			if (sc->rl_head != NULL) {
1583 				m_freem(sc->rl_head);
1584 				sc->rl_head = sc->rl_tail = NULL;
1585 			}
1586 			re_newbuf(sc, i, m);
1587 			RL_DESC_INC(i);
1588 			continue;
1589 		}
1590 
1591 		/*
1592 		 * If allocating a replacement mbuf fails,
1593 		 * reload the current one.
1594 		 */
1595 
1596 		if (re_newbuf(sc, i, NULL)) {
1597 			ifp->if_ierrors++;
1598 			if (sc->rl_head != NULL) {
1599 				m_freem(sc->rl_head);
1600 				sc->rl_head = sc->rl_tail = NULL;
1601 			}
1602 			re_newbuf(sc, i, m);
1603 			RL_DESC_INC(i);
1604 			continue;
1605 		}
1606 
1607 		RL_DESC_INC(i);
1608 
1609 		if (sc->rl_head != NULL) {
1610 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1611 			if (m->m_len == 0)
1612 				m->m_len = RE_RX_DESC_BUFLEN;
1613 			/*
1614 			 * Special case: if there's 4 bytes or less
1615 			 * in this buffer, the mbuf can be discarded:
1616 			 * the last 4 bytes is the CRC, which we don't
1617 			 * care about anyway.
1618 			 */
1619 			if (m->m_len <= ETHER_CRC_LEN) {
1620 				sc->rl_tail->m_len -=
1621 				    (ETHER_CRC_LEN - m->m_len);
1622 				m_freem(m);
1623 			} else {
1624 				m->m_len -= ETHER_CRC_LEN;
1625 				m->m_flags &= ~M_PKTHDR;
1626 				sc->rl_tail->m_next = m;
1627 			}
1628 			m = sc->rl_head;
1629 			sc->rl_head = sc->rl_tail = NULL;
1630 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1631 		} else
1632 			m->m_pkthdr.len = m->m_len =
1633 			    (total_len - ETHER_CRC_LEN);
1634 
1635 #ifdef RE_FIXUP_RX
1636 		re_fixup_rx(m);
1637 #endif
1638 		ifp->if_ipackets++;
1639 		m->m_pkthdr.rcvif = ifp;
1640 
1641 		/* Do RX checksumming if enabled */
1642 
1643 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1644 
1645 			/* Check IP header checksum */
1646 			if (rxstat & RL_RDESC_STAT_PROTOID)
1647 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1648 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1649 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1650 
1651 			/* Check TCP/UDP checksum */
1652 			if ((RL_TCPPKT(rxstat) &&
1653 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1654 			    (RL_UDPPKT(rxstat) &&
1655 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1656 				m->m_pkthdr.csum_flags |=
1657 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1658 				m->m_pkthdr.csum_data = 0xffff;
1659 			}
1660 		}
1661 
1662 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1663 			VLAN_INPUT_TAG(ifp, m,
1664 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1665 		RL_UNLOCK(sc);
1666 		(*ifp->if_input)(ifp, m);
1667 		RL_LOCK(sc);
1668 	}
1669 
1670 	/* Flush the RX DMA ring */
1671 
1672 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1673 	    sc->rl_ldata.rl_rx_list_map,
1674 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1675 
1676 	sc->rl_ldata.rl_rx_prodidx = i;
1677 }
1678 
1679 static void
1680 re_txeof(sc)
1681 	struct rl_softc		*sc;
1682 {
1683 	struct ifnet		*ifp;
1684 	u_int32_t		txstat;
1685 	int			idx;
1686 
1687 	ifp = sc->rl_ifp;
1688 	idx = sc->rl_ldata.rl_tx_considx;
1689 
1690 	/* Invalidate the TX descriptor list */
1691 
1692 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1693 	    sc->rl_ldata.rl_tx_list_map,
1694 	    BUS_DMASYNC_POSTREAD);
1695 
1696 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1697 
1698 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1699 		if (txstat & RL_TDESC_CMD_OWN)
1700 			break;
1701 
1702 		/*
1703 		 * We only stash mbufs in the last descriptor
1704 		 * in a fragment chain, which also happens to
1705 		 * be the only place where the TX status bits
1706 		 * are valid.
1707 		 */
1708 
1709 		if (txstat & RL_TDESC_CMD_EOF) {
1710 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1711 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1712 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1713 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1714 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1715 			    RL_TDESC_STAT_COLCNT))
1716 				ifp->if_collisions++;
1717 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1718 				ifp->if_oerrors++;
1719 			else
1720 				ifp->if_opackets++;
1721 		}
1722 		sc->rl_ldata.rl_tx_free++;
1723 		RL_DESC_INC(idx);
1724 	}
1725 
1726 	/* No changes made to the TX ring, so no flush needed */
1727 
1728 	if (idx != sc->rl_ldata.rl_tx_considx) {
1729 		sc->rl_ldata.rl_tx_considx = idx;
1730 		ifp->if_flags &= ~IFF_OACTIVE;
1731 		ifp->if_timer = 0;
1732 	}
1733 
1734 	/*
1735 	 * If not all descriptors have been released reaped yet,
1736 	 * reload the timer so that we will eventually get another
1737 	 * interrupt that will cause us to re-enter this routine.
1738 	 * This is done in case the transmitter has gone idle.
1739 	 */
1740 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1741 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1742 }
1743 
1744 static void
1745 re_tick(xsc)
1746 	void			*xsc;
1747 {
1748 	struct rl_softc		*sc;
1749 
1750 	sc = xsc;
1751 	RL_LOCK(sc);
1752 	re_tick_locked(sc);
1753 	RL_UNLOCK(sc);
1754 }
1755 
1756 static void
1757 re_tick_locked(sc)
1758 	struct rl_softc		*sc;
1759 {
1760 	struct mii_data		*mii;
1761 
1762 	RL_LOCK_ASSERT(sc);
1763 
1764 	mii = device_get_softc(sc->rl_miibus);
1765 
1766 	mii_tick(mii);
1767 
1768 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1769 }
1770 
1771 #ifdef DEVICE_POLLING
1772 static void
1773 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1774 {
1775 	struct rl_softc *sc = ifp->if_softc;
1776 
1777 	RL_LOCK(sc);
1778 	re_poll_locked(ifp, cmd, count);
1779 	RL_UNLOCK(sc);
1780 }
1781 
1782 static void
1783 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1784 {
1785 	struct rl_softc *sc = ifp->if_softc;
1786 
1787 	RL_LOCK_ASSERT(sc);
1788 
1789 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1790 		ether_poll_deregister(ifp);
1791 		cmd = POLL_DEREGISTER;
1792 	}
1793 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1794 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1795 		return;
1796 	}
1797 
1798 	sc->rxcycles = count;
1799 	re_rxeof(sc);
1800 	re_txeof(sc);
1801 
1802 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1803 		re_start_locked(ifp);
1804 
1805 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1806 		u_int16_t       status;
1807 
1808 		status = CSR_READ_2(sc, RL_ISR);
1809 		if (status == 0xffff)
1810 			return;
1811 		if (status)
1812 			CSR_WRITE_2(sc, RL_ISR, status);
1813 
1814 		/*
1815 		 * XXX check behaviour on receiver stalls.
1816 		 */
1817 
1818 		if (status & RL_ISR_SYSTEM_ERR) {
1819 			re_reset(sc);
1820 			re_init_locked(sc);
1821 		}
1822 	}
1823 }
1824 #endif /* DEVICE_POLLING */
1825 
1826 static void
1827 re_intr(arg)
1828 	void			*arg;
1829 {
1830 	struct rl_softc		*sc;
1831 	struct ifnet		*ifp;
1832 	u_int16_t		status;
1833 
1834 	sc = arg;
1835 
1836 	RL_LOCK(sc);
1837 
1838 	ifp = sc->rl_ifp;
1839 
1840 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1841 		goto done_locked;
1842 
1843 #ifdef DEVICE_POLLING
1844 	if  (ifp->if_flags & IFF_POLLING)
1845 		goto done_locked;
1846 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1847 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1848 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1849 		re_poll_locked(ifp, 0, 1);
1850 		goto done_locked;
1851 	}
1852 #endif /* DEVICE_POLLING */
1853 
1854 	for (;;) {
1855 
1856 		status = CSR_READ_2(sc, RL_ISR);
1857 		/* If the card has gone away the read returns 0xffff. */
1858 		if (status == 0xffff)
1859 			break;
1860 		if (status)
1861 			CSR_WRITE_2(sc, RL_ISR, status);
1862 
1863 		if ((status & RL_INTRS_CPLUS) == 0)
1864 			break;
1865 
1866 		if ((status & RL_ISR_RX_OK) ||
1867 		    (status & RL_ISR_RX_ERR))
1868 			re_rxeof(sc);
1869 
1870 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1871 		    (status & RL_ISR_TX_ERR) ||
1872 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1873 			re_txeof(sc);
1874 
1875 		if (status & RL_ISR_SYSTEM_ERR) {
1876 			re_reset(sc);
1877 			re_init_locked(sc);
1878 		}
1879 
1880 		if (status & RL_ISR_LINKCHG) {
1881 			untimeout(re_tick, sc, sc->rl_stat_ch);
1882 			re_tick_locked(sc);
1883 		}
1884 	}
1885 
1886 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1887 		re_start_locked(ifp);
1888 
1889 done_locked:
1890 	RL_UNLOCK(sc);
1891 }
1892 
1893 static int
1894 re_encap(sc, m_head, idx)
1895 	struct rl_softc		*sc;
1896 	struct mbuf		**m_head;
1897 	int			*idx;
1898 {
1899 	struct mbuf		*m_new = NULL;
1900 	struct rl_dmaload_arg	arg;
1901 	bus_dmamap_t		map;
1902 	int			error;
1903 	struct m_tag		*mtag;
1904 
1905 	RL_LOCK_ASSERT(sc);
1906 
1907 	if (sc->rl_ldata.rl_tx_free <= 4)
1908 		return (EFBIG);
1909 
1910 	/*
1911 	 * Set up checksum offload. Note: checksum offload bits must
1912 	 * appear in all descriptors of a multi-descriptor transmit
1913 	 * attempt. This is according to testing done with an 8169
1914 	 * chip. This is a requirement.
1915 	 */
1916 
1917 	arg.rl_flags = 0;
1918 
1919 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1920 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1921 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1922 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1923 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1924 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1925 
1926 	arg.sc = sc;
1927 	arg.rl_idx = *idx;
1928 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1929 	if (arg.rl_maxsegs > 4)
1930 		arg.rl_maxsegs -= 4;
1931 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1932 
1933 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1934 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1935 	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1936 
1937 	if (error && error != EFBIG) {
1938 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1939 		return (ENOBUFS);
1940 	}
1941 
1942 	/* Too many segments to map, coalesce into a single mbuf */
1943 
1944 	if (error || arg.rl_maxsegs == 0) {
1945 		m_new = m_defrag(*m_head, M_DONTWAIT);
1946 		if (m_new == NULL)
1947 			return (ENOBUFS);
1948 		else
1949 			*m_head = m_new;
1950 
1951 		arg.sc = sc;
1952 		arg.rl_idx = *idx;
1953 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1954 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1955 
1956 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1957 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1958 		if (error) {
1959 			printf("re%d: can't map mbuf (error %d)\n",
1960 			    sc->rl_unit, error);
1961 			return (EFBIG);
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * Insure that the map for this transmission
1967 	 * is placed at the array index of the last descriptor
1968 	 * in this chain.  (Swap last and first dmamaps.)
1969 	 */
1970 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1971 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1972 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1973 
1974 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1975 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1976 
1977 	/*
1978 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1979 	 * appear in the first descriptor of a multi-descriptor
1980 	 * transmission attempt.
1981 	 */
1982 
1983 	mtag = VLAN_OUTPUT_TAG(sc->rl_ifp, *m_head);
1984 	if (mtag != NULL)
1985 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1986 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1987 
1988 	/* Transfer ownership of packet to the chip. */
1989 
1990 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1991 	    htole32(RL_TDESC_CMD_OWN);
1992 	if (*idx != arg.rl_idx)
1993 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1994 		    htole32(RL_TDESC_CMD_OWN);
1995 
1996 	RL_DESC_INC(arg.rl_idx);
1997 	*idx = arg.rl_idx;
1998 
1999 	return (0);
2000 }
2001 
2002 static void
2003 re_start(ifp)
2004 	struct ifnet		*ifp;
2005 {
2006 	struct rl_softc		*sc;
2007 
2008 	sc = ifp->if_softc;
2009 	RL_LOCK(sc);
2010 	re_start_locked(ifp);
2011 	RL_UNLOCK(sc);
2012 }
2013 
2014 /*
2015  * Main transmit routine for C+ and gigE NICs.
2016  */
2017 static void
2018 re_start_locked(ifp)
2019 	struct ifnet		*ifp;
2020 {
2021 	struct rl_softc		*sc;
2022 	struct mbuf		*m_head = NULL;
2023 	int			idx, queued = 0;
2024 
2025 	sc = ifp->if_softc;
2026 
2027 	RL_LOCK_ASSERT(sc);
2028 
2029 	idx = sc->rl_ldata.rl_tx_prodidx;
2030 
2031 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2032 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2033 		if (m_head == NULL)
2034 			break;
2035 
2036 		if (re_encap(sc, &m_head, &idx)) {
2037 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2038 			ifp->if_flags |= IFF_OACTIVE;
2039 			break;
2040 		}
2041 
2042 		/*
2043 		 * If there's a BPF listener, bounce a copy of this frame
2044 		 * to him.
2045 		 */
2046 		BPF_MTAP(ifp, m_head);
2047 
2048 		queued++;
2049 	}
2050 
2051 	if (queued == 0)
2052 		return;
2053 
2054 	/* Flush the TX descriptors */
2055 
2056 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2057 	    sc->rl_ldata.rl_tx_list_map,
2058 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2059 
2060 	sc->rl_ldata.rl_tx_prodidx = idx;
2061 
2062 	/*
2063 	 * RealTek put the TX poll request register in a different
2064 	 * location on the 8169 gigE chip. I don't know why.
2065 	 */
2066 
2067 	if (sc->rl_type == RL_8169)
2068 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2069 	else
2070 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2071 
2072 	/*
2073 	 * Use the countdown timer for interrupt moderation.
2074 	 * 'TX done' interrupts are disabled. Instead, we reset the
2075 	 * countdown timer, which will begin counting until it hits
2076 	 * the value in the TIMERINT register, and then trigger an
2077 	 * interrupt. Each time we write to the TIMERCNT register,
2078 	 * the timer count is reset to 0.
2079 	 */
2080 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2081 
2082 	/*
2083 	 * Set a timeout in case the chip goes out to lunch.
2084 	 */
2085 	ifp->if_timer = 5;
2086 }
2087 
2088 static void
2089 re_init(xsc)
2090 	void			*xsc;
2091 {
2092 	struct rl_softc		*sc = xsc;
2093 
2094 	RL_LOCK(sc);
2095 	re_init_locked(sc);
2096 	RL_UNLOCK(sc);
2097 }
2098 
2099 static void
2100 re_init_locked(sc)
2101 	struct rl_softc		*sc;
2102 {
2103 	struct ifnet		*ifp = sc->rl_ifp;
2104 	struct mii_data		*mii;
2105 	u_int32_t		rxcfg = 0;
2106 
2107 	RL_LOCK_ASSERT(sc);
2108 
2109 	mii = device_get_softc(sc->rl_miibus);
2110 
2111 	/*
2112 	 * Cancel pending I/O and free all RX/TX buffers.
2113 	 */
2114 	re_stop(sc);
2115 
2116 	/*
2117 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2118 	 * RX checksum offload. We must configure the C+ register
2119 	 * before all others.
2120 	 */
2121 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2122 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2123 	    RL_CPLUSCMD_VLANSTRIP|
2124 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2125 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2126 
2127 	/*
2128 	 * Init our MAC address.  Even though the chipset
2129 	 * documentation doesn't mention it, we need to enter "Config
2130 	 * register write enable" mode to modify the ID registers.
2131 	 */
2132 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2133 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2134 	    *(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[0]));
2135 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2136 	    *(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[4]));
2137 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2138 
2139 	/*
2140 	 * For C+ mode, initialize the RX descriptors and mbufs.
2141 	 */
2142 	re_rx_list_init(sc);
2143 	re_tx_list_init(sc);
2144 
2145 	/*
2146 	 * Enable transmit and receive.
2147 	 */
2148 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2149 
2150 	/*
2151 	 * Set the initial TX and RX configuration.
2152 	 */
2153 	if (sc->rl_testmode) {
2154 		if (sc->rl_type == RL_8169)
2155 			CSR_WRITE_4(sc, RL_TXCFG,
2156 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2157 		else
2158 			CSR_WRITE_4(sc, RL_TXCFG,
2159 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2160 	} else
2161 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2162 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2163 
2164 	/* Set the individual bit to receive frames for this host only. */
2165 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2166 	rxcfg |= RL_RXCFG_RX_INDIV;
2167 
2168 	/* If we want promiscuous mode, set the allframes bit. */
2169 	if (ifp->if_flags & IFF_PROMISC)
2170 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2171 	else
2172 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2173 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2174 
2175 	/*
2176 	 * Set capture broadcast bit to capture broadcast frames.
2177 	 */
2178 	if (ifp->if_flags & IFF_BROADCAST)
2179 		rxcfg |= RL_RXCFG_RX_BROAD;
2180 	else
2181 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2182 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2183 
2184 	/*
2185 	 * Program the multicast filter, if necessary.
2186 	 */
2187 	re_setmulti(sc);
2188 
2189 #ifdef DEVICE_POLLING
2190 	/*
2191 	 * Disable interrupts if we are polling.
2192 	 */
2193 	if (ifp->if_flags & IFF_POLLING)
2194 		CSR_WRITE_2(sc, RL_IMR, 0);
2195 	else	/* otherwise ... */
2196 #endif /* DEVICE_POLLING */
2197 	/*
2198 	 * Enable interrupts.
2199 	 */
2200 	if (sc->rl_testmode)
2201 		CSR_WRITE_2(sc, RL_IMR, 0);
2202 	else
2203 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2204 
2205 	/* Set initial TX threshold */
2206 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2207 
2208 	/* Start RX/TX process. */
2209 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2210 #ifdef notdef
2211 	/* Enable receiver and transmitter. */
2212 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2213 #endif
2214 	/*
2215 	 * Load the addresses of the RX and TX lists into the chip.
2216 	 */
2217 
2218 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2219 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2220 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2221 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2222 
2223 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2224 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2225 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2226 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2227 
2228 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2229 
2230 	/*
2231 	 * Initialize the timer interrupt register so that
2232 	 * a timer interrupt will be generated once the timer
2233 	 * reaches a certain number of ticks. The timer is
2234 	 * reloaded on each transmit. This gives us TX interrupt
2235 	 * moderation, which dramatically improves TX frame rate.
2236 	 */
2237 	if (sc->rl_type == RL_8169)
2238 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2239 	else
2240 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2241 
2242 	/*
2243 	 * For 8169 gigE NICs, set the max allowed RX packet
2244 	 * size so we can receive jumbo frames.
2245 	 */
2246 	if (sc->rl_type == RL_8169)
2247 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2248 
2249 	if (sc->rl_testmode)
2250 		return;
2251 
2252 	mii_mediachg(mii);
2253 
2254 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2255 
2256 	ifp->if_flags |= IFF_RUNNING;
2257 	ifp->if_flags &= ~IFF_OACTIVE;
2258 
2259 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2260 }
2261 
2262 /*
2263  * Set media options.
2264  */
2265 static int
2266 re_ifmedia_upd(ifp)
2267 	struct ifnet		*ifp;
2268 {
2269 	struct rl_softc		*sc;
2270 	struct mii_data		*mii;
2271 
2272 	sc = ifp->if_softc;
2273 	mii = device_get_softc(sc->rl_miibus);
2274 	mii_mediachg(mii);
2275 
2276 	return (0);
2277 }
2278 
2279 /*
2280  * Report current media status.
2281  */
2282 static void
2283 re_ifmedia_sts(ifp, ifmr)
2284 	struct ifnet		*ifp;
2285 	struct ifmediareq	*ifmr;
2286 {
2287 	struct rl_softc		*sc;
2288 	struct mii_data		*mii;
2289 
2290 	sc = ifp->if_softc;
2291 	mii = device_get_softc(sc->rl_miibus);
2292 
2293 	mii_pollstat(mii);
2294 	ifmr->ifm_active = mii->mii_media_active;
2295 	ifmr->ifm_status = mii->mii_media_status;
2296 }
2297 
2298 static int
2299 re_ioctl(ifp, command, data)
2300 	struct ifnet		*ifp;
2301 	u_long			command;
2302 	caddr_t			data;
2303 {
2304 	struct rl_softc		*sc = ifp->if_softc;
2305 	struct ifreq		*ifr = (struct ifreq *) data;
2306 	struct mii_data		*mii;
2307 	int			error = 0;
2308 
2309 	switch (command) {
2310 	case SIOCSIFMTU:
2311 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2312 			error = EINVAL;
2313 		ifp->if_mtu = ifr->ifr_mtu;
2314 		break;
2315 	case SIOCSIFFLAGS:
2316 		RL_LOCK(sc);
2317 		if (ifp->if_flags & IFF_UP)
2318 			re_init_locked(sc);
2319 		else if (ifp->if_flags & IFF_RUNNING)
2320 			re_stop(sc);
2321 		RL_UNLOCK(sc);
2322 		error = 0;
2323 		break;
2324 	case SIOCADDMULTI:
2325 	case SIOCDELMULTI:
2326 		RL_LOCK(sc);
2327 		re_setmulti(sc);
2328 		RL_UNLOCK(sc);
2329 		error = 0;
2330 		break;
2331 	case SIOCGIFMEDIA:
2332 	case SIOCSIFMEDIA:
2333 		mii = device_get_softc(sc->rl_miibus);
2334 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2335 		break;
2336 	case SIOCSIFCAP:
2337 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2338 		ifp->if_capenable |=
2339 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2340 		if (ifp->if_capenable & IFCAP_TXCSUM)
2341 			ifp->if_hwassist = RE_CSUM_FEATURES;
2342 		else
2343 			ifp->if_hwassist = 0;
2344 		if (ifp->if_flags & IFF_RUNNING)
2345 			re_init(sc);
2346 		break;
2347 	default:
2348 		error = ether_ioctl(ifp, command, data);
2349 		break;
2350 	}
2351 
2352 	return (error);
2353 }
2354 
2355 static void
2356 re_watchdog(ifp)
2357 	struct ifnet		*ifp;
2358 {
2359 	struct rl_softc		*sc;
2360 
2361 	sc = ifp->if_softc;
2362 	RL_LOCK(sc);
2363 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2364 	ifp->if_oerrors++;
2365 
2366 	re_txeof(sc);
2367 	re_rxeof(sc);
2368 	re_init_locked(sc);
2369 
2370 	RL_UNLOCK(sc);
2371 }
2372 
2373 /*
2374  * Stop the adapter and free any mbufs allocated to the
2375  * RX and TX lists.
2376  */
2377 static void
2378 re_stop(sc)
2379 	struct rl_softc		*sc;
2380 {
2381 	register int		i;
2382 	struct ifnet		*ifp;
2383 
2384 	RL_LOCK_ASSERT(sc);
2385 
2386 	ifp = sc->rl_ifp;
2387 	ifp->if_timer = 0;
2388 
2389 	untimeout(re_tick, sc, sc->rl_stat_ch);
2390 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2391 #ifdef DEVICE_POLLING
2392 	ether_poll_deregister(ifp);
2393 #endif /* DEVICE_POLLING */
2394 
2395 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2396 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2397 
2398 	if (sc->rl_head != NULL) {
2399 		m_freem(sc->rl_head);
2400 		sc->rl_head = sc->rl_tail = NULL;
2401 	}
2402 
2403 	/* Free the TX list buffers. */
2404 
2405 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2406 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2407 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2408 			    sc->rl_ldata.rl_tx_dmamap[i]);
2409 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2410 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2411 		}
2412 	}
2413 
2414 	/* Free the RX list buffers. */
2415 
2416 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2417 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2418 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2419 			    sc->rl_ldata.rl_rx_dmamap[i]);
2420 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2421 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2422 		}
2423 	}
2424 }
2425 
2426 /*
2427  * Device suspend routine.  Stop the interface and save some PCI
2428  * settings in case the BIOS doesn't restore them properly on
2429  * resume.
2430  */
2431 static int
2432 re_suspend(dev)
2433 	device_t		dev;
2434 {
2435 	struct rl_softc		*sc;
2436 
2437 	sc = device_get_softc(dev);
2438 
2439 	RL_LOCK(sc);
2440 	re_stop(sc);
2441 	sc->suspended = 1;
2442 	RL_UNLOCK(sc);
2443 
2444 	return (0);
2445 }
2446 
2447 /*
2448  * Device resume routine.  Restore some PCI settings in case the BIOS
2449  * doesn't, re-enable busmastering, and restart the interface if
2450  * appropriate.
2451  */
2452 static int
2453 re_resume(dev)
2454 	device_t		dev;
2455 {
2456 	struct rl_softc		*sc;
2457 	struct ifnet		*ifp;
2458 
2459 	sc = device_get_softc(dev);
2460 
2461 	RL_LOCK(sc);
2462 
2463 	ifp = sc->rl_ifp;
2464 
2465 	/* reinitialize interface if necessary */
2466 	if (ifp->if_flags & IFF_UP)
2467 		re_init_locked(sc);
2468 
2469 	sc->suspended = 0;
2470 	RL_UNLOCK(sc);
2471 
2472 	return (0);
2473 }
2474 
2475 /*
2476  * Stop all chip I/O so that the kernel's probe routines don't
2477  * get confused by errant DMAs when rebooting.
2478  */
2479 static void
2480 re_shutdown(dev)
2481 	device_t		dev;
2482 {
2483 	struct rl_softc		*sc;
2484 
2485 	sc = device_get_softc(dev);
2486 
2487 	RL_LOCK(sc);
2488 	re_stop(sc);
2489 	RL_UNLOCK(sc);
2490 }
2491