1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1997, 1998-2003 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver 40 * 41 * Written by Bill Paul <wpaul@windriver.com> 42 * Senior Networking Software Engineer 43 * Wind River Systems 44 */ 45 46 /* 47 * This driver is designed to support RealTek's next generation of 48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 49 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, 50 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. 51 * 52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 53 * with the older 8139 family, however it also supports a special 54 * C+ mode of operation that provides several new performance enhancing 55 * features. These include: 56 * 57 * o Descriptor based DMA mechanism. Each descriptor represents 58 * a single packet fragment. Data buffers may be aligned on 59 * any byte boundary. 60 * 61 * o 64-bit DMA 62 * 63 * o TCP/IP checksum offload for both RX and TX 64 * 65 * o High and normal priority transmit DMA rings 66 * 67 * o VLAN tag insertion and extraction 68 * 69 * o TCP large send (segmentation offload) 70 * 71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 72 * programming API is fairly straightforward. The RX filtering, EEPROM 73 * access and PHY access is the same as it is on the older 8139 series 74 * chips. 75 * 76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 77 * same programming API and feature set as the 8139C+ with the following 78 * differences and additions: 79 * 80 * o 1000Mbps mode 81 * 82 * o Jumbo frames 83 * 84 * o GMII and TBI ports/registers for interfacing with copper 85 * or fiber PHYs 86 * 87 * o RX and TX DMA rings can have up to 1024 descriptors 88 * (the 8139C+ allows a maximum of 64) 89 * 90 * o Slight differences in register layout from the 8139C+ 91 * 92 * The TX start and timer interrupt registers are at different locations 93 * on the 8169 than they are on the 8139C+. Also, the status word in the 94 * RX descriptor has a slightly different bit layout. The 8169 does not 95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 96 * copper gigE PHY. 97 * 98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 99 * (the 'S' stands for 'single-chip'). These devices have the same 100 * programming API as the older 8169, but also have some vendor-specific 101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 103 * 104 * This driver takes advantage of the RX and TX checksum offload and 105 * VLAN tag insertion/extraction features. It also implements TX 106 * interrupt moderation using the timer interrupt registers, which 107 * significantly reduces TX interrupt load. There is also support 108 * for jumbo frames, however the 8169/8169S/8110S can not transmit 109 * jumbo frames larger than 7440, so the max MTU possible with this 110 * driver is 7422 bytes. 111 */ 112 113 #ifdef HAVE_KERNEL_OPTION_HEADERS 114 #include "opt_device_polling.h" 115 #endif 116 117 #include <sys/param.h> 118 #include <sys/endian.h> 119 #include <sys/systm.h> 120 #include <sys/sockio.h> 121 #include <sys/mbuf.h> 122 #include <sys/malloc.h> 123 #include <sys/module.h> 124 #include <sys/kernel.h> 125 #include <sys/socket.h> 126 #include <sys/lock.h> 127 #include <sys/mutex.h> 128 #include <sys/sysctl.h> 129 #include <sys/taskqueue.h> 130 131 #include <net/debugnet.h> 132 #include <net/if.h> 133 #include <net/if_var.h> 134 #include <net/if_arp.h> 135 #include <net/ethernet.h> 136 #include <net/if_dl.h> 137 #include <net/if_media.h> 138 #include <net/if_types.h> 139 #include <net/if_vlan_var.h> 140 141 #include <net/bpf.h> 142 143 #include <machine/bus.h> 144 #include <machine/resource.h> 145 #include <sys/bus.h> 146 #include <sys/rman.h> 147 148 #include <dev/mii/mii.h> 149 #include <dev/mii/miivar.h> 150 151 #include <dev/pci/pcireg.h> 152 #include <dev/pci/pcivar.h> 153 154 #include <dev/rl/if_rlreg.h> 155 156 MODULE_DEPEND(re, pci, 1, 1, 1); 157 MODULE_DEPEND(re, ether, 1, 1, 1); 158 MODULE_DEPEND(re, miibus, 1, 1, 1); 159 160 /* "device miibus" required. See GENERIC if you get errors here. */ 161 #include "miibus_if.h" 162 163 /* Tunables. */ 164 static int intr_filter = 0; 165 TUNABLE_INT("hw.re.intr_filter", &intr_filter); 166 static int msi_disable = 0; 167 TUNABLE_INT("hw.re.msi_disable", &msi_disable); 168 static int msix_disable = 0; 169 TUNABLE_INT("hw.re.msix_disable", &msix_disable); 170 static int prefer_iomap = 0; 171 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap); 172 173 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 174 175 /* 176 * Various supported device vendors/types and their names. 177 */ 178 static const struct rl_type re_devs[] = { 179 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0, 180 "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, 181 { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0, 182 "D-Link DGE-530(T) Gigabit Ethernet Adapter" }, 183 { RT_VENDORID, RT_DEVICEID_8139, 0, 184 "RealTek 8139C+ 10/100BaseTX" }, 185 { RT_VENDORID, RT_DEVICEID_8101E, 0, 186 "RealTek 810xE PCIe 10/100baseTX" }, 187 { RT_VENDORID, RT_DEVICEID_8168, 0, 188 "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" }, 189 { RT_VENDORID, RT_DEVICEID_8161, 0, 190 "RealTek 8168 Gigabit Ethernet" }, 191 { NCUBE_VENDORID, RT_DEVICEID_8168, 0, 192 "TP-Link TG-3468 v2 (RTL8168) Gigabit Ethernet" }, 193 { RT_VENDORID, RT_DEVICEID_8169, 0, 194 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" }, 195 { RT_VENDORID, RT_DEVICEID_8169SC, 0, 196 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" }, 197 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0, 198 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, 199 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0, 200 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, 201 { USR_VENDORID, USR_DEVICEID_997902, 0, 202 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" } 203 }; 204 205 static const struct rl_hwrev re_hwrevs[] = { 206 { RL_HWREV_8139, RL_8139, "", RL_MTU }, 207 { RL_HWREV_8139A, RL_8139, "A", RL_MTU }, 208 { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU }, 209 { RL_HWREV_8139B, RL_8139, "B", RL_MTU }, 210 { RL_HWREV_8130, RL_8139, "8130", RL_MTU }, 211 { RL_HWREV_8139C, RL_8139, "C", RL_MTU }, 212 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU }, 213 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU }, 214 { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU }, 215 { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU }, 216 { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU }, 217 { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU }, 218 { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU }, 219 { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU }, 220 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU }, 221 { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU }, 222 { RL_HWREV_8100, RL_8139, "8100", RL_MTU }, 223 { RL_HWREV_8101, RL_8139, "8101", RL_MTU }, 224 { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU }, 225 { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU }, 226 { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU }, 227 { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU }, 228 { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU }, 229 { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU }, 230 { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU }, 231 { RL_HWREV_8402, RL_8169, "8402", RL_MTU }, 232 { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU }, 233 { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU }, 234 { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU }, 235 { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU }, 236 { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU }, 237 { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K }, 238 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K }, 239 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K }, 240 { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K }, 241 { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K }, 242 { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K}, 243 { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K}, 244 { RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K}, 245 { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K}, 246 { RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K}, 247 { RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K}, 248 { RL_HWREV_8168H, RL_8169, "8168H/8111H", RL_JUMBO_MTU_9K}, 249 { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K}, 250 { RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K}, 251 { 0, 0, NULL, 0 } 252 }; 253 254 static int re_probe (device_t); 255 static int re_attach (device_t); 256 static int re_detach (device_t); 257 258 static int re_encap (struct rl_softc *, struct mbuf **); 259 260 static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); 261 static int re_allocmem (device_t, struct rl_softc *); 262 static __inline void re_discard_rxbuf 263 (struct rl_softc *, int); 264 static int re_newbuf (struct rl_softc *, int); 265 static int re_jumbo_newbuf (struct rl_softc *, int); 266 static int re_rx_list_init (struct rl_softc *); 267 static int re_jrx_list_init (struct rl_softc *); 268 static int re_tx_list_init (struct rl_softc *); 269 #ifdef RE_FIXUP_RX 270 static __inline void re_fixup_rx 271 (struct mbuf *); 272 #endif 273 static int re_rxeof (struct rl_softc *, int *); 274 static void re_txeof (struct rl_softc *); 275 #ifdef DEVICE_POLLING 276 static int re_poll (struct ifnet *, enum poll_cmd, int); 277 static int re_poll_locked (struct ifnet *, enum poll_cmd, int); 278 #endif 279 static int re_intr (void *); 280 static void re_intr_msi (void *); 281 static void re_tick (void *); 282 static void re_int_task (void *, int); 283 static void re_start (struct ifnet *); 284 static void re_start_locked (struct ifnet *); 285 static void re_start_tx (struct rl_softc *); 286 static int re_ioctl (struct ifnet *, u_long, caddr_t); 287 static void re_init (void *); 288 static void re_init_locked (struct rl_softc *); 289 static void re_stop (struct rl_softc *); 290 static void re_watchdog (struct rl_softc *); 291 static int re_suspend (device_t); 292 static int re_resume (device_t); 293 static int re_shutdown (device_t); 294 static int re_ifmedia_upd (struct ifnet *); 295 static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); 296 297 static void re_eeprom_putbyte (struct rl_softc *, int); 298 static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); 299 static void re_read_eeprom (struct rl_softc *, caddr_t, int, int); 300 static int re_gmii_readreg (device_t, int, int); 301 static int re_gmii_writereg (device_t, int, int, int); 302 303 static int re_miibus_readreg (device_t, int, int); 304 static int re_miibus_writereg (device_t, int, int, int); 305 static void re_miibus_statchg (device_t); 306 307 static void re_set_jumbo (struct rl_softc *, int); 308 static void re_set_rxmode (struct rl_softc *); 309 static void re_reset (struct rl_softc *); 310 static void re_setwol (struct rl_softc *); 311 static void re_clrwol (struct rl_softc *); 312 static void re_set_linkspeed (struct rl_softc *); 313 314 DEBUGNET_DEFINE(re); 315 316 #ifdef DEV_NETMAP /* see ixgbe.c for details */ 317 #include <dev/netmap/if_re_netmap.h> 318 MODULE_DEPEND(re, netmap, 1, 1, 1); 319 #endif /* !DEV_NETMAP */ 320 321 #ifdef RE_DIAG 322 static int re_diag (struct rl_softc *); 323 #endif 324 325 static void re_add_sysctls (struct rl_softc *); 326 static int re_sysctl_stats (SYSCTL_HANDLER_ARGS); 327 static int sysctl_int_range (SYSCTL_HANDLER_ARGS, int, int); 328 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS); 329 330 static device_method_t re_methods[] = { 331 /* Device interface */ 332 DEVMETHOD(device_probe, re_probe), 333 DEVMETHOD(device_attach, re_attach), 334 DEVMETHOD(device_detach, re_detach), 335 DEVMETHOD(device_suspend, re_suspend), 336 DEVMETHOD(device_resume, re_resume), 337 DEVMETHOD(device_shutdown, re_shutdown), 338 339 /* MII interface */ 340 DEVMETHOD(miibus_readreg, re_miibus_readreg), 341 DEVMETHOD(miibus_writereg, re_miibus_writereg), 342 DEVMETHOD(miibus_statchg, re_miibus_statchg), 343 344 DEVMETHOD_END 345 }; 346 347 static driver_t re_driver = { 348 "re", 349 re_methods, 350 sizeof(struct rl_softc) 351 }; 352 353 static devclass_t re_devclass; 354 355 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0); 356 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0); 357 358 #define EE_SET(x) \ 359 CSR_WRITE_1(sc, RL_EECMD, \ 360 CSR_READ_1(sc, RL_EECMD) | x) 361 362 #define EE_CLR(x) \ 363 CSR_WRITE_1(sc, RL_EECMD, \ 364 CSR_READ_1(sc, RL_EECMD) & ~x) 365 366 /* 367 * Send a read command and address to the EEPROM, check for ACK. 368 */ 369 static void 370 re_eeprom_putbyte(struct rl_softc *sc, int addr) 371 { 372 int d, i; 373 374 d = addr | (RL_9346_READ << sc->rl_eewidth); 375 376 /* 377 * Feed in each bit and strobe the clock. 378 */ 379 380 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { 381 if (d & i) { 382 EE_SET(RL_EE_DATAIN); 383 } else { 384 EE_CLR(RL_EE_DATAIN); 385 } 386 DELAY(100); 387 EE_SET(RL_EE_CLK); 388 DELAY(150); 389 EE_CLR(RL_EE_CLK); 390 DELAY(100); 391 } 392 } 393 394 /* 395 * Read a word of data stored in the EEPROM at address 'addr.' 396 */ 397 static void 398 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest) 399 { 400 int i; 401 u_int16_t word = 0; 402 403 /* 404 * Send address of word we want to read. 405 */ 406 re_eeprom_putbyte(sc, addr); 407 408 /* 409 * Start reading bits from EEPROM. 410 */ 411 for (i = 0x8000; i; i >>= 1) { 412 EE_SET(RL_EE_CLK); 413 DELAY(100); 414 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) 415 word |= i; 416 EE_CLR(RL_EE_CLK); 417 DELAY(100); 418 } 419 420 *dest = word; 421 } 422 423 /* 424 * Read a sequence of words from the EEPROM. 425 */ 426 static void 427 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt) 428 { 429 int i; 430 u_int16_t word = 0, *ptr; 431 432 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 433 434 DELAY(100); 435 436 for (i = 0; i < cnt; i++) { 437 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); 438 re_eeprom_getword(sc, off + i, &word); 439 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); 440 ptr = (u_int16_t *)(dest + (i * 2)); 441 *ptr = word; 442 } 443 444 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 445 } 446 447 static int 448 re_gmii_readreg(device_t dev, int phy, int reg) 449 { 450 struct rl_softc *sc; 451 u_int32_t rval; 452 int i; 453 454 sc = device_get_softc(dev); 455 456 /* Let the rgephy driver read the GMEDIASTAT register */ 457 458 if (reg == RL_GMEDIASTAT) { 459 rval = CSR_READ_1(sc, RL_GMEDIASTAT); 460 return (rval); 461 } 462 463 CSR_WRITE_4(sc, RL_PHYAR, reg << 16); 464 465 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 466 rval = CSR_READ_4(sc, RL_PHYAR); 467 if (rval & RL_PHYAR_BUSY) 468 break; 469 DELAY(25); 470 } 471 472 if (i == RL_PHY_TIMEOUT) { 473 device_printf(sc->rl_dev, "PHY read failed\n"); 474 return (0); 475 } 476 477 /* 478 * Controller requires a 20us delay to process next MDIO request. 479 */ 480 DELAY(20); 481 482 return (rval & RL_PHYAR_PHYDATA); 483 } 484 485 static int 486 re_gmii_writereg(device_t dev, int phy, int reg, int data) 487 { 488 struct rl_softc *sc; 489 u_int32_t rval; 490 int i; 491 492 sc = device_get_softc(dev); 493 494 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | 495 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); 496 497 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 498 rval = CSR_READ_4(sc, RL_PHYAR); 499 if (!(rval & RL_PHYAR_BUSY)) 500 break; 501 DELAY(25); 502 } 503 504 if (i == RL_PHY_TIMEOUT) { 505 device_printf(sc->rl_dev, "PHY write failed\n"); 506 return (0); 507 } 508 509 /* 510 * Controller requires a 20us delay to process next MDIO request. 511 */ 512 DELAY(20); 513 514 return (0); 515 } 516 517 static int 518 re_miibus_readreg(device_t dev, int phy, int reg) 519 { 520 struct rl_softc *sc; 521 u_int16_t rval = 0; 522 u_int16_t re8139_reg = 0; 523 524 sc = device_get_softc(dev); 525 526 if (sc->rl_type == RL_8169) { 527 rval = re_gmii_readreg(dev, phy, reg); 528 return (rval); 529 } 530 531 switch (reg) { 532 case MII_BMCR: 533 re8139_reg = RL_BMCR; 534 break; 535 case MII_BMSR: 536 re8139_reg = RL_BMSR; 537 break; 538 case MII_ANAR: 539 re8139_reg = RL_ANAR; 540 break; 541 case MII_ANER: 542 re8139_reg = RL_ANER; 543 break; 544 case MII_ANLPAR: 545 re8139_reg = RL_LPAR; 546 break; 547 case MII_PHYIDR1: 548 case MII_PHYIDR2: 549 return (0); 550 /* 551 * Allow the rlphy driver to read the media status 552 * register. If we have a link partner which does not 553 * support NWAY, this is the register which will tell 554 * us the results of parallel detection. 555 */ 556 case RL_MEDIASTAT: 557 rval = CSR_READ_1(sc, RL_MEDIASTAT); 558 return (rval); 559 default: 560 device_printf(sc->rl_dev, "bad phy register\n"); 561 return (0); 562 } 563 rval = CSR_READ_2(sc, re8139_reg); 564 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) { 565 /* 8139C+ has different bit layout. */ 566 rval &= ~(BMCR_LOOP | BMCR_ISO); 567 } 568 return (rval); 569 } 570 571 static int 572 re_miibus_writereg(device_t dev, int phy, int reg, int data) 573 { 574 struct rl_softc *sc; 575 u_int16_t re8139_reg = 0; 576 int rval = 0; 577 578 sc = device_get_softc(dev); 579 580 if (sc->rl_type == RL_8169) { 581 rval = re_gmii_writereg(dev, phy, reg, data); 582 return (rval); 583 } 584 585 switch (reg) { 586 case MII_BMCR: 587 re8139_reg = RL_BMCR; 588 if (sc->rl_type == RL_8139CPLUS) { 589 /* 8139C+ has different bit layout. */ 590 data &= ~(BMCR_LOOP | BMCR_ISO); 591 } 592 break; 593 case MII_BMSR: 594 re8139_reg = RL_BMSR; 595 break; 596 case MII_ANAR: 597 re8139_reg = RL_ANAR; 598 break; 599 case MII_ANER: 600 re8139_reg = RL_ANER; 601 break; 602 case MII_ANLPAR: 603 re8139_reg = RL_LPAR; 604 break; 605 case MII_PHYIDR1: 606 case MII_PHYIDR2: 607 return (0); 608 break; 609 default: 610 device_printf(sc->rl_dev, "bad phy register\n"); 611 return (0); 612 } 613 CSR_WRITE_2(sc, re8139_reg, data); 614 return (0); 615 } 616 617 static void 618 re_miibus_statchg(device_t dev) 619 { 620 struct rl_softc *sc; 621 struct ifnet *ifp; 622 struct mii_data *mii; 623 624 sc = device_get_softc(dev); 625 mii = device_get_softc(sc->rl_miibus); 626 ifp = sc->rl_ifp; 627 if (mii == NULL || ifp == NULL || 628 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 629 return; 630 631 sc->rl_flags &= ~RL_FLAG_LINK; 632 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 633 (IFM_ACTIVE | IFM_AVALID)) { 634 switch (IFM_SUBTYPE(mii->mii_media_active)) { 635 case IFM_10_T: 636 case IFM_100_TX: 637 sc->rl_flags |= RL_FLAG_LINK; 638 break; 639 case IFM_1000_T: 640 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 641 break; 642 sc->rl_flags |= RL_FLAG_LINK; 643 break; 644 default: 645 break; 646 } 647 } 648 /* 649 * RealTek controllers do not provide any interface to the RX/TX 650 * MACs for resolved speed, duplex and flow-control parameters. 651 */ 652 } 653 654 static u_int 655 re_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 656 { 657 uint32_t h, *hashes = arg; 658 659 h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26; 660 if (h < 32) 661 hashes[0] |= (1 << h); 662 else 663 hashes[1] |= (1 << (h - 32)); 664 665 return (1); 666 } 667 668 /* 669 * Set the RX configuration and 64-bit multicast hash filter. 670 */ 671 static void 672 re_set_rxmode(struct rl_softc *sc) 673 { 674 struct ifnet *ifp; 675 uint32_t h, hashes[2] = { 0, 0 }; 676 uint32_t rxfilt; 677 678 RL_LOCK_ASSERT(sc); 679 680 ifp = sc->rl_ifp; 681 682 rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD; 683 if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0) 684 rxfilt |= RL_RXCFG_EARLYOFF; 685 else if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) 686 rxfilt |= RL_RXCFG_EARLYOFFV2; 687 688 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 689 if (ifp->if_flags & IFF_PROMISC) 690 rxfilt |= RL_RXCFG_RX_ALLPHYS; 691 /* 692 * Unlike other hardwares, we have to explicitly set 693 * RL_RXCFG_RX_MULTI to receive multicast frames in 694 * promiscuous mode. 695 */ 696 rxfilt |= RL_RXCFG_RX_MULTI; 697 hashes[0] = hashes[1] = 0xffffffff; 698 goto done; 699 } 700 701 if_foreach_llmaddr(ifp, re_hash_maddr, hashes); 702 703 if (hashes[0] != 0 || hashes[1] != 0) { 704 /* 705 * For some unfathomable reason, RealTek decided to 706 * reverse the order of the multicast hash registers 707 * in the PCI Express parts. This means we have to 708 * write the hash pattern in reverse order for those 709 * devices. 710 */ 711 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) { 712 h = bswap32(hashes[0]); 713 hashes[0] = bswap32(hashes[1]); 714 hashes[1] = h; 715 } 716 rxfilt |= RL_RXCFG_RX_MULTI; 717 } 718 719 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168F) { 720 /* Disable multicast filtering due to silicon bug. */ 721 hashes[0] = 0xffffffff; 722 hashes[1] = 0xffffffff; 723 } 724 725 done: 726 CSR_WRITE_4(sc, RL_MAR0, hashes[0]); 727 CSR_WRITE_4(sc, RL_MAR4, hashes[1]); 728 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 729 } 730 731 static void 732 re_reset(struct rl_softc *sc) 733 { 734 int i; 735 736 RL_LOCK_ASSERT(sc); 737 738 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); 739 740 for (i = 0; i < RL_TIMEOUT; i++) { 741 DELAY(10); 742 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) 743 break; 744 } 745 if (i == RL_TIMEOUT) 746 device_printf(sc->rl_dev, "reset never completed!\n"); 747 748 if ((sc->rl_flags & RL_FLAG_MACRESET) != 0) 749 CSR_WRITE_1(sc, 0x82, 1); 750 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S) 751 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0); 752 } 753 754 #ifdef RE_DIAG 755 756 /* 757 * The following routine is designed to test for a defect on some 758 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 759 * lines connected to the bus, however for a 32-bit only card, they 760 * should be pulled high. The result of this defect is that the 761 * NIC will not work right if you plug it into a 64-bit slot: DMA 762 * operations will be done with 64-bit transfers, which will fail 763 * because the 64-bit data lines aren't connected. 764 * 765 * There's no way to work around this (short of talking a soldering 766 * iron to the board), however we can detect it. The method we use 767 * here is to put the NIC into digital loopback mode, set the receiver 768 * to promiscuous mode, and then try to send a frame. We then compare 769 * the frame data we sent to what was received. If the data matches, 770 * then the NIC is working correctly, otherwise we know the user has 771 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 772 * slot. In the latter case, there's no way the NIC can work correctly, 773 * so we print out a message on the console and abort the device attach. 774 */ 775 776 static int 777 re_diag(struct rl_softc *sc) 778 { 779 struct ifnet *ifp = sc->rl_ifp; 780 struct mbuf *m0; 781 struct ether_header *eh; 782 struct rl_desc *cur_rx; 783 u_int16_t status; 784 u_int32_t rxstat; 785 int total_len, i, error = 0, phyaddr; 786 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 787 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 788 789 /* Allocate a single mbuf */ 790 MGETHDR(m0, M_NOWAIT, MT_DATA); 791 if (m0 == NULL) 792 return (ENOBUFS); 793 794 RL_LOCK(sc); 795 796 /* 797 * Initialize the NIC in test mode. This sets the chip up 798 * so that it can send and receive frames, but performs the 799 * following special functions: 800 * - Puts receiver in promiscuous mode 801 * - Enables digital loopback mode 802 * - Leaves interrupts turned off 803 */ 804 805 ifp->if_flags |= IFF_PROMISC; 806 sc->rl_testmode = 1; 807 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 808 re_init_locked(sc); 809 sc->rl_flags |= RL_FLAG_LINK; 810 if (sc->rl_type == RL_8169) 811 phyaddr = 1; 812 else 813 phyaddr = 0; 814 815 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET); 816 for (i = 0; i < RL_TIMEOUT; i++) { 817 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR); 818 if (!(status & BMCR_RESET)) 819 break; 820 } 821 822 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP); 823 CSR_WRITE_2(sc, RL_ISR, RL_INTRS); 824 825 DELAY(100000); 826 827 /* Put some data in the mbuf */ 828 829 eh = mtod(m0, struct ether_header *); 830 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); 831 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); 832 eh->ether_type = htons(ETHERTYPE_IP); 833 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 834 835 /* 836 * Queue the packet, start transmission. 837 * Note: IF_HANDOFF() ultimately calls re_start() for us. 838 */ 839 840 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 841 RL_UNLOCK(sc); 842 /* XXX: re_diag must not be called when in ALTQ mode */ 843 IF_HANDOFF(&ifp->if_snd, m0, ifp); 844 RL_LOCK(sc); 845 m0 = NULL; 846 847 /* Wait for it to propagate through the chip */ 848 849 DELAY(100000); 850 for (i = 0; i < RL_TIMEOUT; i++) { 851 status = CSR_READ_2(sc, RL_ISR); 852 CSR_WRITE_2(sc, RL_ISR, status); 853 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == 854 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) 855 break; 856 DELAY(10); 857 } 858 859 if (i == RL_TIMEOUT) { 860 device_printf(sc->rl_dev, 861 "diagnostic failed, failed to receive packet in" 862 " loopback mode\n"); 863 error = EIO; 864 goto done; 865 } 866 867 /* 868 * The packet should have been dumped into the first 869 * entry in the RX DMA ring. Grab it from there. 870 */ 871 872 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 873 sc->rl_ldata.rl_rx_list_map, 874 BUS_DMASYNC_POSTREAD); 875 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 876 sc->rl_ldata.rl_rx_desc[0].rx_dmamap, 877 BUS_DMASYNC_POSTREAD); 878 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 879 sc->rl_ldata.rl_rx_desc[0].rx_dmamap); 880 881 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m; 882 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL; 883 eh = mtod(m0, struct ether_header *); 884 885 cur_rx = &sc->rl_ldata.rl_rx_list[0]; 886 total_len = RL_RXBYTES(cur_rx); 887 rxstat = le32toh(cur_rx->rl_cmdstat); 888 889 if (total_len != ETHER_MIN_LEN) { 890 device_printf(sc->rl_dev, 891 "diagnostic failed, received short packet\n"); 892 error = EIO; 893 goto done; 894 } 895 896 /* Test that the received packet data matches what we sent. */ 897 898 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 899 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 900 ntohs(eh->ether_type) != ETHERTYPE_IP) { 901 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n"); 902 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n", 903 dst, ":", src, ":", ETHERTYPE_IP); 904 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n", 905 eh->ether_dhost, ":", eh->ether_shost, ":", 906 ntohs(eh->ether_type)); 907 device_printf(sc->rl_dev, "You may have a defective 32-bit " 908 "NIC plugged into a 64-bit PCI slot.\n"); 909 device_printf(sc->rl_dev, "Please re-install the NIC in a " 910 "32-bit slot for proper operation.\n"); 911 device_printf(sc->rl_dev, "Read the re(4) man page for more " 912 "details.\n"); 913 error = EIO; 914 } 915 916 done: 917 /* Turn interface off, release resources */ 918 919 sc->rl_testmode = 0; 920 sc->rl_flags &= ~RL_FLAG_LINK; 921 ifp->if_flags &= ~IFF_PROMISC; 922 re_stop(sc); 923 if (m0 != NULL) 924 m_freem(m0); 925 926 RL_UNLOCK(sc); 927 928 return (error); 929 } 930 931 #endif 932 933 /* 934 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device 935 * IDs against our list and return a device name if we find a match. 936 */ 937 static int 938 re_probe(device_t dev) 939 { 940 const struct rl_type *t; 941 uint16_t devid, vendor; 942 uint16_t revid, sdevid; 943 int i; 944 945 vendor = pci_get_vendor(dev); 946 devid = pci_get_device(dev); 947 revid = pci_get_revid(dev); 948 sdevid = pci_get_subdevice(dev); 949 950 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) { 951 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) { 952 /* 953 * Only attach to rev. 3 of the Linksys EG1032 adapter. 954 * Rev. 2 is supported by sk(4). 955 */ 956 return (ENXIO); 957 } 958 } 959 960 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { 961 if (revid != 0x20) { 962 /* 8139, let rl(4) take care of this device. */ 963 return (ENXIO); 964 } 965 } 966 967 t = re_devs; 968 for (i = 0; i < nitems(re_devs); i++, t++) { 969 if (vendor == t->rl_vid && devid == t->rl_did) { 970 device_set_desc(dev, t->rl_name); 971 return (BUS_PROBE_DEFAULT); 972 } 973 } 974 975 return (ENXIO); 976 } 977 978 /* 979 * Map a single buffer address. 980 */ 981 982 static void 983 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 984 { 985 bus_addr_t *addr; 986 987 if (error) 988 return; 989 990 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 991 addr = arg; 992 *addr = segs->ds_addr; 993 } 994 995 static int 996 re_allocmem(device_t dev, struct rl_softc *sc) 997 { 998 bus_addr_t lowaddr; 999 bus_size_t rx_list_size, tx_list_size; 1000 int error; 1001 int i; 1002 1003 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc); 1004 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc); 1005 1006 /* 1007 * Allocate the parent bus DMA tag appropriate for PCI. 1008 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD 1009 * register should be set. However some RealTek chips are known 1010 * to be buggy on DAC handling, therefore disable DAC by limiting 1011 * DMA address space to 32bit. PCIe variants of RealTek chips 1012 * may not have the limitation. 1013 */ 1014 lowaddr = BUS_SPACE_MAXADDR; 1015 if ((sc->rl_flags & RL_FLAG_PCIE) == 0) 1016 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1017 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, 1018 lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, 1019 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, 1020 NULL, NULL, &sc->rl_parent_tag); 1021 if (error) { 1022 device_printf(dev, "could not allocate parent DMA tag\n"); 1023 return (error); 1024 } 1025 1026 /* 1027 * Allocate map for TX mbufs. 1028 */ 1029 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0, 1030 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1031 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0, 1032 NULL, NULL, &sc->rl_ldata.rl_tx_mtag); 1033 if (error) { 1034 device_printf(dev, "could not allocate TX DMA tag\n"); 1035 return (error); 1036 } 1037 1038 /* 1039 * Allocate map for RX mbufs. 1040 */ 1041 1042 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 1043 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 1044 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1045 MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL, 1046 &sc->rl_ldata.rl_jrx_mtag); 1047 if (error) { 1048 device_printf(dev, 1049 "could not allocate jumbo RX DMA tag\n"); 1050 return (error); 1051 } 1052 } 1053 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0, 1054 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1055 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag); 1056 if (error) { 1057 device_printf(dev, "could not allocate RX DMA tag\n"); 1058 return (error); 1059 } 1060 1061 /* 1062 * Allocate map for TX descriptor list. 1063 */ 1064 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1065 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1066 NULL, tx_list_size, 1, tx_list_size, 0, 1067 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); 1068 if (error) { 1069 device_printf(dev, "could not allocate TX DMA ring tag\n"); 1070 return (error); 1071 } 1072 1073 /* Allocate DMA'able memory for the TX ring */ 1074 1075 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, 1076 (void **)&sc->rl_ldata.rl_tx_list, 1077 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1078 &sc->rl_ldata.rl_tx_list_map); 1079 if (error) { 1080 device_printf(dev, "could not allocate TX DMA ring\n"); 1081 return (error); 1082 } 1083 1084 /* Load the map for the TX ring. */ 1085 1086 sc->rl_ldata.rl_tx_list_addr = 0; 1087 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, 1088 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, 1089 tx_list_size, re_dma_map_addr, 1090 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); 1091 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) { 1092 device_printf(dev, "could not load TX DMA ring\n"); 1093 return (ENOMEM); 1094 } 1095 1096 /* Create DMA maps for TX buffers */ 1097 1098 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1099 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0, 1100 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1101 if (error) { 1102 device_printf(dev, "could not create DMA map for TX\n"); 1103 return (error); 1104 } 1105 } 1106 1107 /* 1108 * Allocate map for RX descriptor list. 1109 */ 1110 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1111 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1112 NULL, rx_list_size, 1, rx_list_size, 0, 1113 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); 1114 if (error) { 1115 device_printf(dev, "could not create RX DMA ring tag\n"); 1116 return (error); 1117 } 1118 1119 /* Allocate DMA'able memory for the RX ring */ 1120 1121 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, 1122 (void **)&sc->rl_ldata.rl_rx_list, 1123 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1124 &sc->rl_ldata.rl_rx_list_map); 1125 if (error) { 1126 device_printf(dev, "could not allocate RX DMA ring\n"); 1127 return (error); 1128 } 1129 1130 /* Load the map for the RX ring. */ 1131 1132 sc->rl_ldata.rl_rx_list_addr = 0; 1133 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, 1134 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, 1135 rx_list_size, re_dma_map_addr, 1136 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); 1137 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) { 1138 device_printf(dev, "could not load RX DMA ring\n"); 1139 return (ENOMEM); 1140 } 1141 1142 /* Create DMA maps for RX buffers */ 1143 1144 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 1145 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0, 1146 &sc->rl_ldata.rl_jrx_sparemap); 1147 if (error) { 1148 device_printf(dev, 1149 "could not create spare DMA map for jumbo RX\n"); 1150 return (error); 1151 } 1152 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1153 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0, 1154 &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap); 1155 if (error) { 1156 device_printf(dev, 1157 "could not create DMA map for jumbo RX\n"); 1158 return (error); 1159 } 1160 } 1161 } 1162 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1163 &sc->rl_ldata.rl_rx_sparemap); 1164 if (error) { 1165 device_printf(dev, "could not create spare DMA map for RX\n"); 1166 return (error); 1167 } 1168 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1169 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1170 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1171 if (error) { 1172 device_printf(dev, "could not create DMA map for RX\n"); 1173 return (error); 1174 } 1175 } 1176 1177 /* Create DMA map for statistics. */ 1178 error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0, 1179 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1180 sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL, 1181 &sc->rl_ldata.rl_stag); 1182 if (error) { 1183 device_printf(dev, "could not create statistics DMA tag\n"); 1184 return (error); 1185 } 1186 /* Allocate DMA'able memory for statistics. */ 1187 error = bus_dmamem_alloc(sc->rl_ldata.rl_stag, 1188 (void **)&sc->rl_ldata.rl_stats, 1189 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1190 &sc->rl_ldata.rl_smap); 1191 if (error) { 1192 device_printf(dev, 1193 "could not allocate statistics DMA memory\n"); 1194 return (error); 1195 } 1196 /* Load the map for statistics. */ 1197 sc->rl_ldata.rl_stats_addr = 0; 1198 error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap, 1199 sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr, 1200 &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT); 1201 if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) { 1202 device_printf(dev, "could not load statistics DMA memory\n"); 1203 return (ENOMEM); 1204 } 1205 1206 return (0); 1207 } 1208 1209 /* 1210 * Attach the interface. Allocate softc structures, do ifmedia 1211 * setup and ethernet/BPF attach. 1212 */ 1213 static int 1214 re_attach(device_t dev) 1215 { 1216 u_char eaddr[ETHER_ADDR_LEN]; 1217 u_int16_t as[ETHER_ADDR_LEN / 2]; 1218 struct rl_softc *sc; 1219 struct ifnet *ifp; 1220 const struct rl_hwrev *hw_rev; 1221 int capmask, error = 0, hwrev, i, msic, msixc, 1222 phy, reg, rid; 1223 u_int32_t cap, ctl; 1224 u_int16_t devid, re_did = 0; 1225 uint8_t cfg; 1226 1227 sc = device_get_softc(dev); 1228 sc->rl_dev = dev; 1229 1230 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1231 MTX_DEF); 1232 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); 1233 1234 /* 1235 * Map control/status registers. 1236 */ 1237 pci_enable_busmaster(dev); 1238 1239 devid = pci_get_device(dev); 1240 /* 1241 * Prefer memory space register mapping over IO space. 1242 * Because RTL8169SC does not seem to work when memory mapping 1243 * is used always activate io mapping. 1244 */ 1245 if (devid == RT_DEVICEID_8169SC) 1246 prefer_iomap = 1; 1247 if (prefer_iomap == 0) { 1248 sc->rl_res_id = PCIR_BAR(1); 1249 sc->rl_res_type = SYS_RES_MEMORY; 1250 /* RTL8168/8101E seems to use different BARs. */ 1251 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E) 1252 sc->rl_res_id = PCIR_BAR(2); 1253 } else { 1254 sc->rl_res_id = PCIR_BAR(0); 1255 sc->rl_res_type = SYS_RES_IOPORT; 1256 } 1257 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1258 &sc->rl_res_id, RF_ACTIVE); 1259 if (sc->rl_res == NULL && prefer_iomap == 0) { 1260 sc->rl_res_id = PCIR_BAR(0); 1261 sc->rl_res_type = SYS_RES_IOPORT; 1262 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1263 &sc->rl_res_id, RF_ACTIVE); 1264 } 1265 if (sc->rl_res == NULL) { 1266 device_printf(dev, "couldn't map ports/memory\n"); 1267 error = ENXIO; 1268 goto fail; 1269 } 1270 1271 sc->rl_btag = rman_get_bustag(sc->rl_res); 1272 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 1273 1274 msic = pci_msi_count(dev); 1275 msixc = pci_msix_count(dev); 1276 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 1277 sc->rl_flags |= RL_FLAG_PCIE; 1278 sc->rl_expcap = reg; 1279 } 1280 if (bootverbose) { 1281 device_printf(dev, "MSI count : %d\n", msic); 1282 device_printf(dev, "MSI-X count : %d\n", msixc); 1283 } 1284 if (msix_disable > 0) 1285 msixc = 0; 1286 if (msi_disable > 0) 1287 msic = 0; 1288 /* Prefer MSI-X to MSI. */ 1289 if (msixc > 0) { 1290 msixc = RL_MSI_MESSAGES; 1291 rid = PCIR_BAR(4); 1292 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1293 &rid, RF_ACTIVE); 1294 if (sc->rl_res_pba == NULL) { 1295 device_printf(sc->rl_dev, 1296 "could not allocate MSI-X PBA resource\n"); 1297 } 1298 if (sc->rl_res_pba != NULL && 1299 pci_alloc_msix(dev, &msixc) == 0) { 1300 if (msixc == RL_MSI_MESSAGES) { 1301 device_printf(dev, "Using %d MSI-X message\n", 1302 msixc); 1303 sc->rl_flags |= RL_FLAG_MSIX; 1304 } else 1305 pci_release_msi(dev); 1306 } 1307 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) { 1308 if (sc->rl_res_pba != NULL) 1309 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1310 sc->rl_res_pba); 1311 sc->rl_res_pba = NULL; 1312 msixc = 0; 1313 } 1314 } 1315 /* Prefer MSI to INTx. */ 1316 if (msixc == 0 && msic > 0) { 1317 msic = RL_MSI_MESSAGES; 1318 if (pci_alloc_msi(dev, &msic) == 0) { 1319 if (msic == RL_MSI_MESSAGES) { 1320 device_printf(dev, "Using %d MSI message\n", 1321 msic); 1322 sc->rl_flags |= RL_FLAG_MSI; 1323 /* Explicitly set MSI enable bit. */ 1324 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1325 cfg = CSR_READ_1(sc, RL_CFG2); 1326 cfg |= RL_CFG2_MSI; 1327 CSR_WRITE_1(sc, RL_CFG2, cfg); 1328 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1329 } else 1330 pci_release_msi(dev); 1331 } 1332 if ((sc->rl_flags & RL_FLAG_MSI) == 0) 1333 msic = 0; 1334 } 1335 1336 /* Allocate interrupt */ 1337 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) { 1338 rid = 0; 1339 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1340 RF_SHAREABLE | RF_ACTIVE); 1341 if (sc->rl_irq[0] == NULL) { 1342 device_printf(dev, "couldn't allocate IRQ resources\n"); 1343 error = ENXIO; 1344 goto fail; 1345 } 1346 } else { 1347 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { 1348 sc->rl_irq[i] = bus_alloc_resource_any(dev, 1349 SYS_RES_IRQ, &rid, RF_ACTIVE); 1350 if (sc->rl_irq[i] == NULL) { 1351 device_printf(dev, 1352 "couldn't allocate IRQ resources for " 1353 "message %d\n", rid); 1354 error = ENXIO; 1355 goto fail; 1356 } 1357 } 1358 } 1359 1360 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1361 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1362 cfg = CSR_READ_1(sc, RL_CFG2); 1363 if ((cfg & RL_CFG2_MSI) != 0) { 1364 device_printf(dev, "turning off MSI enable bit.\n"); 1365 cfg &= ~RL_CFG2_MSI; 1366 CSR_WRITE_1(sc, RL_CFG2, cfg); 1367 } 1368 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1369 } 1370 1371 /* Disable ASPM L0S/L1 and CLKREQ. */ 1372 if (sc->rl_expcap != 0) { 1373 cap = pci_read_config(dev, sc->rl_expcap + 1374 PCIER_LINK_CAP, 2); 1375 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) { 1376 ctl = pci_read_config(dev, sc->rl_expcap + 1377 PCIER_LINK_CTL, 2); 1378 if ((ctl & (PCIEM_LINK_CTL_ECPM | 1379 PCIEM_LINK_CTL_ASPMC))!= 0) { 1380 ctl &= ~(PCIEM_LINK_CTL_ECPM | 1381 PCIEM_LINK_CTL_ASPMC); 1382 pci_write_config(dev, sc->rl_expcap + 1383 PCIER_LINK_CTL, ctl, 2); 1384 device_printf(dev, "ASPM disabled\n"); 1385 } 1386 } else 1387 device_printf(dev, "no ASPM capability\n"); 1388 } 1389 1390 hw_rev = re_hwrevs; 1391 hwrev = CSR_READ_4(sc, RL_TXCFG); 1392 switch (hwrev & 0x70000000) { 1393 case 0x00000000: 1394 case 0x10000000: 1395 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000); 1396 hwrev &= (RL_TXCFG_HWREV | 0x80000000); 1397 break; 1398 default: 1399 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000); 1400 sc->rl_macrev = hwrev & 0x00700000; 1401 hwrev &= RL_TXCFG_HWREV; 1402 break; 1403 } 1404 device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev); 1405 while (hw_rev->rl_desc != NULL) { 1406 if (hw_rev->rl_rev == hwrev) { 1407 sc->rl_type = hw_rev->rl_type; 1408 sc->rl_hwrev = hw_rev; 1409 break; 1410 } 1411 hw_rev++; 1412 } 1413 if (hw_rev->rl_desc == NULL) { 1414 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev); 1415 error = ENXIO; 1416 goto fail; 1417 } 1418 1419 switch (hw_rev->rl_rev) { 1420 case RL_HWREV_8139CPLUS: 1421 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD; 1422 break; 1423 case RL_HWREV_8100E: 1424 case RL_HWREV_8101E: 1425 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER; 1426 break; 1427 case RL_HWREV_8102E: 1428 case RL_HWREV_8102EL: 1429 case RL_HWREV_8102EL_SPIN1: 1430 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | 1431 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | 1432 RL_FLAG_AUTOPAD; 1433 break; 1434 case RL_HWREV_8103E: 1435 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | 1436 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | 1437 RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP; 1438 break; 1439 case RL_HWREV_8401E: 1440 case RL_HWREV_8105E: 1441 case RL_HWREV_8105E_SPIN1: 1442 case RL_HWREV_8106E: 1443 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1444 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1445 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; 1446 break; 1447 case RL_HWREV_8402: 1448 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1449 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1450 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | 1451 RL_FLAG_CMDSTOP_WAIT_TXQ; 1452 break; 1453 case RL_HWREV_8168B_SPIN1: 1454 case RL_HWREV_8168B_SPIN2: 1455 sc->rl_flags |= RL_FLAG_WOLRXENB; 1456 /* FALLTHROUGH */ 1457 case RL_HWREV_8168B_SPIN3: 1458 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT; 1459 break; 1460 case RL_HWREV_8168C_SPIN2: 1461 sc->rl_flags |= RL_FLAG_MACSLEEP; 1462 /* FALLTHROUGH */ 1463 case RL_HWREV_8168C: 1464 if (sc->rl_macrev == 0x00200000) 1465 sc->rl_flags |= RL_FLAG_MACSLEEP; 1466 /* FALLTHROUGH */ 1467 case RL_HWREV_8168CP: 1468 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1469 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1470 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK; 1471 break; 1472 case RL_HWREV_8168D: 1473 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1474 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1475 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1476 RL_FLAG_WOL_MANLINK; 1477 break; 1478 case RL_HWREV_8168DP: 1479 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1480 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD | 1481 RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK; 1482 break; 1483 case RL_HWREV_8168E: 1484 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1485 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1486 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1487 RL_FLAG_WOL_MANLINK; 1488 break; 1489 case RL_HWREV_8168E_VL: 1490 case RL_HWREV_8168F: 1491 sc->rl_flags |= RL_FLAG_EARLYOFF; 1492 /* FALLTHROUGH */ 1493 case RL_HWREV_8411: 1494 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1495 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1496 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1497 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK; 1498 break; 1499 case RL_HWREV_8168EP: 1500 case RL_HWREV_8168G: 1501 case RL_HWREV_8411B: 1502 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1503 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1504 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1505 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK | 1506 RL_FLAG_8168G_PLUS; 1507 break; 1508 case RL_HWREV_8168GU: 1509 case RL_HWREV_8168H: 1510 if (pci_get_device(dev) == RT_DEVICEID_8101E) { 1511 /* RTL8106E(US), RTL8107E */ 1512 sc->rl_flags |= RL_FLAG_FASTETHER; 1513 } else 1514 sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK; 1515 1516 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1517 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1518 RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ | 1519 RL_FLAG_8168G_PLUS; 1520 break; 1521 case RL_HWREV_8169_8110SB: 1522 case RL_HWREV_8169_8110SBL: 1523 case RL_HWREV_8169_8110SC: 1524 case RL_HWREV_8169_8110SCE: 1525 sc->rl_flags |= RL_FLAG_PHYWAKE; 1526 /* FALLTHROUGH */ 1527 case RL_HWREV_8169: 1528 case RL_HWREV_8169S: 1529 case RL_HWREV_8110S: 1530 sc->rl_flags |= RL_FLAG_MACRESET; 1531 break; 1532 default: 1533 break; 1534 } 1535 1536 if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) { 1537 sc->rl_cfg0 = RL_8139_CFG0; 1538 sc->rl_cfg1 = RL_8139_CFG1; 1539 sc->rl_cfg2 = 0; 1540 sc->rl_cfg3 = RL_8139_CFG3; 1541 sc->rl_cfg4 = RL_8139_CFG4; 1542 sc->rl_cfg5 = RL_8139_CFG5; 1543 } else { 1544 sc->rl_cfg0 = RL_CFG0; 1545 sc->rl_cfg1 = RL_CFG1; 1546 sc->rl_cfg2 = RL_CFG2; 1547 sc->rl_cfg3 = RL_CFG3; 1548 sc->rl_cfg4 = RL_CFG4; 1549 sc->rl_cfg5 = RL_CFG5; 1550 } 1551 1552 /* Reset the adapter. */ 1553 RL_LOCK(sc); 1554 re_reset(sc); 1555 RL_UNLOCK(sc); 1556 1557 /* Enable PME. */ 1558 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1559 cfg = CSR_READ_1(sc, sc->rl_cfg1); 1560 cfg |= RL_CFG1_PME; 1561 CSR_WRITE_1(sc, sc->rl_cfg1, cfg); 1562 cfg = CSR_READ_1(sc, sc->rl_cfg5); 1563 cfg &= RL_CFG5_PME_STS; 1564 CSR_WRITE_1(sc, sc->rl_cfg5, cfg); 1565 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1566 1567 if ((sc->rl_flags & RL_FLAG_PAR) != 0) { 1568 /* 1569 * XXX Should have a better way to extract station 1570 * address from EEPROM. 1571 */ 1572 for (i = 0; i < ETHER_ADDR_LEN; i++) 1573 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); 1574 } else { 1575 sc->rl_eewidth = RL_9356_ADDR_LEN; 1576 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); 1577 if (re_did != 0x8129) 1578 sc->rl_eewidth = RL_9346_ADDR_LEN; 1579 1580 /* 1581 * Get station address from the EEPROM. 1582 */ 1583 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); 1584 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) 1585 as[i] = le16toh(as[i]); 1586 bcopy(as, eaddr, ETHER_ADDR_LEN); 1587 } 1588 1589 if (sc->rl_type == RL_8169) { 1590 /* Set RX length mask and number of descriptors. */ 1591 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; 1592 sc->rl_txstart = RL_GTXSTART; 1593 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT; 1594 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT; 1595 } else { 1596 /* Set RX length mask and number of descriptors. */ 1597 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; 1598 sc->rl_txstart = RL_TXSTART; 1599 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT; 1600 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT; 1601 } 1602 1603 error = re_allocmem(dev, sc); 1604 if (error) 1605 goto fail; 1606 re_add_sysctls(sc); 1607 1608 ifp = sc->rl_ifp = if_alloc(IFT_ETHER); 1609 if (ifp == NULL) { 1610 device_printf(dev, "can not if_alloc()\n"); 1611 error = ENOSPC; 1612 goto fail; 1613 } 1614 1615 /* Take controller out of deep sleep mode. */ 1616 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 1617 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 1618 CSR_WRITE_1(sc, RL_GPIO, 1619 CSR_READ_1(sc, RL_GPIO) | 0x01); 1620 else 1621 CSR_WRITE_1(sc, RL_GPIO, 1622 CSR_READ_1(sc, RL_GPIO) & ~0x01); 1623 } 1624 1625 /* Take PHY out of power down mode. */ 1626 if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) { 1627 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80); 1628 if (hw_rev->rl_rev == RL_HWREV_8401E) 1629 CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08); 1630 } 1631 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) { 1632 re_gmii_writereg(dev, 1, 0x1f, 0); 1633 re_gmii_writereg(dev, 1, 0x0e, 0); 1634 } 1635 1636 ifp->if_softc = sc; 1637 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1638 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1639 ifp->if_ioctl = re_ioctl; 1640 ifp->if_start = re_start; 1641 /* 1642 * RTL8168/8111C generates wrong IP checksummed frame if the 1643 * packet has IP options so disable TX checksum offloading. 1644 */ 1645 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C || 1646 sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 || 1647 sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) { 1648 ifp->if_hwassist = 0; 1649 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TSO4; 1650 } else { 1651 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP; 1652 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 1653 } 1654 ifp->if_hwassist |= CSUM_TSO; 1655 ifp->if_capenable = ifp->if_capabilities; 1656 ifp->if_init = re_init; 1657 IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN); 1658 ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN; 1659 IFQ_SET_READY(&ifp->if_snd); 1660 1661 NET_TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc); 1662 1663 #define RE_PHYAD_INTERNAL 0 1664 1665 /* Do MII setup. */ 1666 phy = RE_PHYAD_INTERNAL; 1667 if (sc->rl_type == RL_8169) 1668 phy = 1; 1669 capmask = BMSR_DEFCAPMASK; 1670 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 1671 capmask &= ~BMSR_EXTSTAT; 1672 error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd, 1673 re_ifmedia_sts, capmask, phy, MII_OFFSET_ANY, MIIF_DOPAUSE); 1674 if (error != 0) { 1675 device_printf(dev, "attaching PHYs failed\n"); 1676 goto fail; 1677 } 1678 1679 /* 1680 * Call MI attach routine. 1681 */ 1682 ether_ifattach(ifp, eaddr); 1683 1684 /* VLAN capability setup */ 1685 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 1686 if (ifp->if_capabilities & IFCAP_HWCSUM) 1687 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1688 /* Enable WOL if PM is supported. */ 1689 if (pci_find_cap(sc->rl_dev, PCIY_PMG, ®) == 0) 1690 ifp->if_capabilities |= IFCAP_WOL; 1691 ifp->if_capenable = ifp->if_capabilities; 1692 ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST); 1693 /* 1694 * Don't enable TSO by default. It is known to generate 1695 * corrupted TCP segments(bad TCP options) under certain 1696 * circumstances. 1697 */ 1698 ifp->if_hwassist &= ~CSUM_TSO; 1699 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 1700 #ifdef DEVICE_POLLING 1701 ifp->if_capabilities |= IFCAP_POLLING; 1702 #endif 1703 /* 1704 * Tell the upper layer(s) we support long frames. 1705 * Must appear after the call to ether_ifattach() because 1706 * ether_ifattach() sets ifi_hdrlen to the default value. 1707 */ 1708 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1709 1710 #ifdef DEV_NETMAP 1711 re_netmap_attach(sc); 1712 #endif /* DEV_NETMAP */ 1713 1714 #ifdef RE_DIAG 1715 /* 1716 * Perform hardware diagnostic on the original RTL8169. 1717 * Some 32-bit cards were incorrectly wired and would 1718 * malfunction if plugged into a 64-bit slot. 1719 */ 1720 if (hwrev == RL_HWREV_8169) { 1721 error = re_diag(sc); 1722 if (error) { 1723 device_printf(dev, 1724 "attach aborted due to hardware diag failure\n"); 1725 ether_ifdetach(ifp); 1726 goto fail; 1727 } 1728 } 1729 #endif 1730 1731 #ifdef RE_TX_MODERATION 1732 intr_filter = 1; 1733 #endif 1734 /* Hook interrupt last to avoid having to lock softc */ 1735 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 && 1736 intr_filter == 0) { 1737 error = bus_setup_intr(dev, sc->rl_irq[0], 1738 INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc, 1739 &sc->rl_intrhand[0]); 1740 } else { 1741 error = bus_setup_intr(dev, sc->rl_irq[0], 1742 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, 1743 &sc->rl_intrhand[0]); 1744 } 1745 if (error) { 1746 device_printf(dev, "couldn't set up irq\n"); 1747 ether_ifdetach(ifp); 1748 goto fail; 1749 } 1750 1751 DEBUGNET_SET(ifp, re); 1752 1753 fail: 1754 if (error) 1755 re_detach(dev); 1756 1757 return (error); 1758 } 1759 1760 /* 1761 * Shutdown hardware and free up resources. This can be called any 1762 * time after the mutex has been initialized. It is called in both 1763 * the error case in attach and the normal detach case so it needs 1764 * to be careful about only freeing resources that have actually been 1765 * allocated. 1766 */ 1767 static int 1768 re_detach(device_t dev) 1769 { 1770 struct rl_softc *sc; 1771 struct ifnet *ifp; 1772 int i, rid; 1773 1774 sc = device_get_softc(dev); 1775 ifp = sc->rl_ifp; 1776 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); 1777 1778 /* These should only be active if attach succeeded */ 1779 if (device_is_attached(dev)) { 1780 #ifdef DEVICE_POLLING 1781 if (ifp->if_capenable & IFCAP_POLLING) 1782 ether_poll_deregister(ifp); 1783 #endif 1784 RL_LOCK(sc); 1785 #if 0 1786 sc->suspended = 1; 1787 #endif 1788 re_stop(sc); 1789 RL_UNLOCK(sc); 1790 callout_drain(&sc->rl_stat_callout); 1791 taskqueue_drain(taskqueue_fast, &sc->rl_inttask); 1792 /* 1793 * Force off the IFF_UP flag here, in case someone 1794 * still had a BPF descriptor attached to this 1795 * interface. If they do, ether_ifdetach() will cause 1796 * the BPF code to try and clear the promisc mode 1797 * flag, which will bubble down to re_ioctl(), 1798 * which will try to call re_init() again. This will 1799 * turn the NIC back on and restart the MII ticker, 1800 * which will panic the system when the kernel tries 1801 * to invoke the re_tick() function that isn't there 1802 * anymore. 1803 */ 1804 ifp->if_flags &= ~IFF_UP; 1805 ether_ifdetach(ifp); 1806 } 1807 if (sc->rl_miibus) 1808 device_delete_child(dev, sc->rl_miibus); 1809 bus_generic_detach(dev); 1810 1811 /* 1812 * The rest is resource deallocation, so we should already be 1813 * stopped here. 1814 */ 1815 1816 if (sc->rl_intrhand[0] != NULL) { 1817 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]); 1818 sc->rl_intrhand[0] = NULL; 1819 } 1820 if (ifp != NULL) { 1821 #ifdef DEV_NETMAP 1822 netmap_detach(ifp); 1823 #endif /* DEV_NETMAP */ 1824 if_free(ifp); 1825 } 1826 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) 1827 rid = 0; 1828 else 1829 rid = 1; 1830 if (sc->rl_irq[0] != NULL) { 1831 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]); 1832 sc->rl_irq[0] = NULL; 1833 } 1834 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0) 1835 pci_release_msi(dev); 1836 if (sc->rl_res_pba) { 1837 rid = PCIR_BAR(4); 1838 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba); 1839 } 1840 if (sc->rl_res) 1841 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, 1842 sc->rl_res); 1843 1844 /* Unload and free the RX DMA ring memory and map */ 1845 1846 if (sc->rl_ldata.rl_rx_list_tag) { 1847 if (sc->rl_ldata.rl_rx_list_addr) 1848 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, 1849 sc->rl_ldata.rl_rx_list_map); 1850 if (sc->rl_ldata.rl_rx_list) 1851 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, 1852 sc->rl_ldata.rl_rx_list, 1853 sc->rl_ldata.rl_rx_list_map); 1854 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); 1855 } 1856 1857 /* Unload and free the TX DMA ring memory and map */ 1858 1859 if (sc->rl_ldata.rl_tx_list_tag) { 1860 if (sc->rl_ldata.rl_tx_list_addr) 1861 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, 1862 sc->rl_ldata.rl_tx_list_map); 1863 if (sc->rl_ldata.rl_tx_list) 1864 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, 1865 sc->rl_ldata.rl_tx_list, 1866 sc->rl_ldata.rl_tx_list_map); 1867 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); 1868 } 1869 1870 /* Destroy all the RX and TX buffer maps */ 1871 1872 if (sc->rl_ldata.rl_tx_mtag) { 1873 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1874 if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap) 1875 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag, 1876 sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1877 } 1878 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag); 1879 } 1880 if (sc->rl_ldata.rl_rx_mtag) { 1881 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1882 if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap) 1883 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1884 sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1885 } 1886 if (sc->rl_ldata.rl_rx_sparemap) 1887 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1888 sc->rl_ldata.rl_rx_sparemap); 1889 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag); 1890 } 1891 if (sc->rl_ldata.rl_jrx_mtag) { 1892 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1893 if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap) 1894 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag, 1895 sc->rl_ldata.rl_jrx_desc[i].rx_dmamap); 1896 } 1897 if (sc->rl_ldata.rl_jrx_sparemap) 1898 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag, 1899 sc->rl_ldata.rl_jrx_sparemap); 1900 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag); 1901 } 1902 /* Unload and free the stats buffer and map */ 1903 1904 if (sc->rl_ldata.rl_stag) { 1905 if (sc->rl_ldata.rl_stats_addr) 1906 bus_dmamap_unload(sc->rl_ldata.rl_stag, 1907 sc->rl_ldata.rl_smap); 1908 if (sc->rl_ldata.rl_stats) 1909 bus_dmamem_free(sc->rl_ldata.rl_stag, 1910 sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap); 1911 bus_dma_tag_destroy(sc->rl_ldata.rl_stag); 1912 } 1913 1914 if (sc->rl_parent_tag) 1915 bus_dma_tag_destroy(sc->rl_parent_tag); 1916 1917 mtx_destroy(&sc->rl_mtx); 1918 1919 return (0); 1920 } 1921 1922 static __inline void 1923 re_discard_rxbuf(struct rl_softc *sc, int idx) 1924 { 1925 struct rl_desc *desc; 1926 struct rl_rxdesc *rxd; 1927 uint32_t cmdstat; 1928 1929 if (sc->rl_ifp->if_mtu > RL_MTU && 1930 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) 1931 rxd = &sc->rl_ldata.rl_jrx_desc[idx]; 1932 else 1933 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1934 desc = &sc->rl_ldata.rl_rx_list[idx]; 1935 desc->rl_vlanctl = 0; 1936 cmdstat = rxd->rx_size; 1937 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1938 cmdstat |= RL_RDESC_CMD_EOR; 1939 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 1940 } 1941 1942 static int 1943 re_newbuf(struct rl_softc *sc, int idx) 1944 { 1945 struct mbuf *m; 1946 struct rl_rxdesc *rxd; 1947 bus_dma_segment_t segs[1]; 1948 bus_dmamap_t map; 1949 struct rl_desc *desc; 1950 uint32_t cmdstat; 1951 int error, nsegs; 1952 1953 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1954 if (m == NULL) 1955 return (ENOBUFS); 1956 1957 m->m_len = m->m_pkthdr.len = MCLBYTES; 1958 #ifdef RE_FIXUP_RX 1959 /* 1960 * This is part of an evil trick to deal with non-x86 platforms. 1961 * The RealTek chip requires RX buffers to be aligned on 64-bit 1962 * boundaries, but that will hose non-x86 machines. To get around 1963 * this, we leave some empty space at the start of each buffer 1964 * and for non-x86 hosts, we copy the buffer back six bytes 1965 * to achieve word alignment. This is slightly more efficient 1966 * than allocating a new buffer, copying the contents, and 1967 * discarding the old buffer. 1968 */ 1969 m_adj(m, RE_ETHER_ALIGN); 1970 #endif 1971 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag, 1972 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 1973 if (error != 0) { 1974 m_freem(m); 1975 return (ENOBUFS); 1976 } 1977 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 1978 1979 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1980 if (rxd->rx_m != NULL) { 1981 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1982 BUS_DMASYNC_POSTREAD); 1983 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap); 1984 } 1985 1986 rxd->rx_m = m; 1987 map = rxd->rx_dmamap; 1988 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap; 1989 rxd->rx_size = segs[0].ds_len; 1990 sc->rl_ldata.rl_rx_sparemap = map; 1991 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1992 BUS_DMASYNC_PREREAD); 1993 1994 desc = &sc->rl_ldata.rl_rx_list[idx]; 1995 desc->rl_vlanctl = 0; 1996 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 1997 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 1998 cmdstat = segs[0].ds_len; 1999 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 2000 cmdstat |= RL_RDESC_CMD_EOR; 2001 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 2002 2003 return (0); 2004 } 2005 2006 static int 2007 re_jumbo_newbuf(struct rl_softc *sc, int idx) 2008 { 2009 struct mbuf *m; 2010 struct rl_rxdesc *rxd; 2011 bus_dma_segment_t segs[1]; 2012 bus_dmamap_t map; 2013 struct rl_desc *desc; 2014 uint32_t cmdstat; 2015 int error, nsegs; 2016 2017 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 2018 if (m == NULL) 2019 return (ENOBUFS); 2020 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 2021 #ifdef RE_FIXUP_RX 2022 m_adj(m, RE_ETHER_ALIGN); 2023 #endif 2024 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag, 2025 sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 2026 if (error != 0) { 2027 m_freem(m); 2028 return (ENOBUFS); 2029 } 2030 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 2031 2032 rxd = &sc->rl_ldata.rl_jrx_desc[idx]; 2033 if (rxd->rx_m != NULL) { 2034 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap, 2035 BUS_DMASYNC_POSTREAD); 2036 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap); 2037 } 2038 2039 rxd->rx_m = m; 2040 map = rxd->rx_dmamap; 2041 rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap; 2042 rxd->rx_size = segs[0].ds_len; 2043 sc->rl_ldata.rl_jrx_sparemap = map; 2044 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap, 2045 BUS_DMASYNC_PREREAD); 2046 2047 desc = &sc->rl_ldata.rl_rx_list[idx]; 2048 desc->rl_vlanctl = 0; 2049 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 2050 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 2051 cmdstat = segs[0].ds_len; 2052 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 2053 cmdstat |= RL_RDESC_CMD_EOR; 2054 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 2055 2056 return (0); 2057 } 2058 2059 #ifdef RE_FIXUP_RX 2060 static __inline void 2061 re_fixup_rx(struct mbuf *m) 2062 { 2063 int i; 2064 uint16_t *src, *dst; 2065 2066 src = mtod(m, uint16_t *); 2067 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; 2068 2069 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 2070 *dst++ = *src++; 2071 2072 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; 2073 } 2074 #endif 2075 2076 static int 2077 re_tx_list_init(struct rl_softc *sc) 2078 { 2079 struct rl_desc *desc; 2080 int i; 2081 2082 RL_LOCK_ASSERT(sc); 2083 2084 bzero(sc->rl_ldata.rl_tx_list, 2085 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc)); 2086 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) 2087 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL; 2088 #ifdef DEV_NETMAP 2089 re_netmap_tx_init(sc); 2090 #endif /* DEV_NETMAP */ 2091 /* Set EOR. */ 2092 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1]; 2093 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR); 2094 2095 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2096 sc->rl_ldata.rl_tx_list_map, 2097 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2098 2099 sc->rl_ldata.rl_tx_prodidx = 0; 2100 sc->rl_ldata.rl_tx_considx = 0; 2101 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt; 2102 2103 return (0); 2104 } 2105 2106 static int 2107 re_rx_list_init(struct rl_softc *sc) 2108 { 2109 int error, i; 2110 2111 bzero(sc->rl_ldata.rl_rx_list, 2112 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 2113 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 2114 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL; 2115 if ((error = re_newbuf(sc, i)) != 0) 2116 return (error); 2117 } 2118 #ifdef DEV_NETMAP 2119 re_netmap_rx_init(sc); 2120 #endif /* DEV_NETMAP */ 2121 2122 /* Flush the RX descriptors */ 2123 2124 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2125 sc->rl_ldata.rl_rx_list_map, 2126 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2127 2128 sc->rl_ldata.rl_rx_prodidx = 0; 2129 sc->rl_head = sc->rl_tail = NULL; 2130 sc->rl_int_rx_act = 0; 2131 2132 return (0); 2133 } 2134 2135 static int 2136 re_jrx_list_init(struct rl_softc *sc) 2137 { 2138 int error, i; 2139 2140 bzero(sc->rl_ldata.rl_rx_list, 2141 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 2142 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 2143 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL; 2144 if ((error = re_jumbo_newbuf(sc, i)) != 0) 2145 return (error); 2146 } 2147 2148 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2149 sc->rl_ldata.rl_rx_list_map, 2150 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2151 2152 sc->rl_ldata.rl_rx_prodidx = 0; 2153 sc->rl_head = sc->rl_tail = NULL; 2154 sc->rl_int_rx_act = 0; 2155 2156 return (0); 2157 } 2158 2159 /* 2160 * RX handler for C+ and 8169. For the gigE chips, we support 2161 * the reception of jumbo frames that have been fragmented 2162 * across multiple 2K mbuf cluster buffers. 2163 */ 2164 static int 2165 re_rxeof(struct rl_softc *sc, int *rx_npktsp) 2166 { 2167 struct mbuf *m; 2168 struct ifnet *ifp; 2169 int i, rxerr, total_len; 2170 struct rl_desc *cur_rx; 2171 u_int32_t rxstat, rxvlan; 2172 int jumbo, maxpkt = 16, rx_npkts = 0; 2173 2174 RL_LOCK_ASSERT(sc); 2175 2176 ifp = sc->rl_ifp; 2177 #ifdef DEV_NETMAP 2178 if (netmap_rx_irq(ifp, 0, &rx_npkts)) 2179 return 0; 2180 #endif /* DEV_NETMAP */ 2181 if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) 2182 jumbo = 1; 2183 else 2184 jumbo = 0; 2185 2186 /* Invalidate the descriptor memory */ 2187 2188 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2189 sc->rl_ldata.rl_rx_list_map, 2190 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2191 2192 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0; 2193 i = RL_RX_DESC_NXT(sc, i)) { 2194 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2195 break; 2196 cur_rx = &sc->rl_ldata.rl_rx_list[i]; 2197 rxstat = le32toh(cur_rx->rl_cmdstat); 2198 if ((rxstat & RL_RDESC_STAT_OWN) != 0) 2199 break; 2200 total_len = rxstat & sc->rl_rxlenmask; 2201 rxvlan = le32toh(cur_rx->rl_vlanctl); 2202 if (jumbo != 0) 2203 m = sc->rl_ldata.rl_jrx_desc[i].rx_m; 2204 else 2205 m = sc->rl_ldata.rl_rx_desc[i].rx_m; 2206 2207 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 2208 (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) != 2209 (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) { 2210 /* 2211 * RTL8168C or later controllers do not 2212 * support multi-fragment packet. 2213 */ 2214 re_discard_rxbuf(sc, i); 2215 continue; 2216 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) { 2217 if (re_newbuf(sc, i) != 0) { 2218 /* 2219 * If this is part of a multi-fragment packet, 2220 * discard all the pieces. 2221 */ 2222 if (sc->rl_head != NULL) { 2223 m_freem(sc->rl_head); 2224 sc->rl_head = sc->rl_tail = NULL; 2225 } 2226 re_discard_rxbuf(sc, i); 2227 continue; 2228 } 2229 m->m_len = RE_RX_DESC_BUFLEN; 2230 if (sc->rl_head == NULL) 2231 sc->rl_head = sc->rl_tail = m; 2232 else { 2233 m->m_flags &= ~M_PKTHDR; 2234 sc->rl_tail->m_next = m; 2235 sc->rl_tail = m; 2236 } 2237 continue; 2238 } 2239 2240 /* 2241 * NOTE: for the 8139C+, the frame length field 2242 * is always 12 bits in size, but for the gigE chips, 2243 * it is 13 bits (since the max RX frame length is 16K). 2244 * Unfortunately, all 32 bits in the status word 2245 * were already used, so to make room for the extra 2246 * length bit, RealTek took out the 'frame alignment 2247 * error' bit and shifted the other status bits 2248 * over one slot. The OWN, EOR, FS and LS bits are 2249 * still in the same places. We have already extracted 2250 * the frame length and checked the OWN bit, so rather 2251 * than using an alternate bit mapping, we shift the 2252 * status bits one space to the right so we can evaluate 2253 * them using the 8169 status as though it was in the 2254 * same format as that of the 8139C+. 2255 */ 2256 if (sc->rl_type == RL_8169) 2257 rxstat >>= 1; 2258 2259 /* 2260 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be 2261 * set, but if CRC is clear, it will still be a valid frame. 2262 */ 2263 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) { 2264 rxerr = 1; 2265 if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 && 2266 total_len > 8191 && 2267 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT) 2268 rxerr = 0; 2269 if (rxerr != 0) { 2270 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2271 /* 2272 * If this is part of a multi-fragment packet, 2273 * discard all the pieces. 2274 */ 2275 if (sc->rl_head != NULL) { 2276 m_freem(sc->rl_head); 2277 sc->rl_head = sc->rl_tail = NULL; 2278 } 2279 re_discard_rxbuf(sc, i); 2280 continue; 2281 } 2282 } 2283 2284 /* 2285 * If allocating a replacement mbuf fails, 2286 * reload the current one. 2287 */ 2288 if (jumbo != 0) 2289 rxerr = re_jumbo_newbuf(sc, i); 2290 else 2291 rxerr = re_newbuf(sc, i); 2292 if (rxerr != 0) { 2293 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2294 if (sc->rl_head != NULL) { 2295 m_freem(sc->rl_head); 2296 sc->rl_head = sc->rl_tail = NULL; 2297 } 2298 re_discard_rxbuf(sc, i); 2299 continue; 2300 } 2301 2302 if (sc->rl_head != NULL) { 2303 if (jumbo != 0) 2304 m->m_len = total_len; 2305 else { 2306 m->m_len = total_len % RE_RX_DESC_BUFLEN; 2307 if (m->m_len == 0) 2308 m->m_len = RE_RX_DESC_BUFLEN; 2309 } 2310 /* 2311 * Special case: if there's 4 bytes or less 2312 * in this buffer, the mbuf can be discarded: 2313 * the last 4 bytes is the CRC, which we don't 2314 * care about anyway. 2315 */ 2316 if (m->m_len <= ETHER_CRC_LEN) { 2317 sc->rl_tail->m_len -= 2318 (ETHER_CRC_LEN - m->m_len); 2319 m_freem(m); 2320 } else { 2321 m->m_len -= ETHER_CRC_LEN; 2322 m->m_flags &= ~M_PKTHDR; 2323 sc->rl_tail->m_next = m; 2324 } 2325 m = sc->rl_head; 2326 sc->rl_head = sc->rl_tail = NULL; 2327 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 2328 } else 2329 m->m_pkthdr.len = m->m_len = 2330 (total_len - ETHER_CRC_LEN); 2331 2332 #ifdef RE_FIXUP_RX 2333 re_fixup_rx(m); 2334 #endif 2335 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2336 m->m_pkthdr.rcvif = ifp; 2337 2338 /* Do RX checksumming if enabled */ 2339 2340 if (ifp->if_capenable & IFCAP_RXCSUM) { 2341 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2342 /* Check IP header checksum */ 2343 if (rxstat & RL_RDESC_STAT_PROTOID) 2344 m->m_pkthdr.csum_flags |= 2345 CSUM_IP_CHECKED; 2346 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) 2347 m->m_pkthdr.csum_flags |= 2348 CSUM_IP_VALID; 2349 2350 /* Check TCP/UDP checksum */ 2351 if ((RL_TCPPKT(rxstat) && 2352 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2353 (RL_UDPPKT(rxstat) && 2354 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2355 m->m_pkthdr.csum_flags |= 2356 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2357 m->m_pkthdr.csum_data = 0xffff; 2358 } 2359 } else { 2360 /* 2361 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP 2362 */ 2363 if ((rxstat & RL_RDESC_STAT_PROTOID) && 2364 (rxvlan & RL_RDESC_IPV4)) 2365 m->m_pkthdr.csum_flags |= 2366 CSUM_IP_CHECKED; 2367 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) && 2368 (rxvlan & RL_RDESC_IPV4)) 2369 m->m_pkthdr.csum_flags |= 2370 CSUM_IP_VALID; 2371 if (((rxstat & RL_RDESC_STAT_TCP) && 2372 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2373 ((rxstat & RL_RDESC_STAT_UDP) && 2374 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2375 m->m_pkthdr.csum_flags |= 2376 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2377 m->m_pkthdr.csum_data = 0xffff; 2378 } 2379 } 2380 } 2381 maxpkt--; 2382 if (rxvlan & RL_RDESC_VLANCTL_TAG) { 2383 m->m_pkthdr.ether_vtag = 2384 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA)); 2385 m->m_flags |= M_VLANTAG; 2386 } 2387 RL_UNLOCK(sc); 2388 (*ifp->if_input)(ifp, m); 2389 RL_LOCK(sc); 2390 rx_npkts++; 2391 } 2392 2393 /* Flush the RX DMA ring */ 2394 2395 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2396 sc->rl_ldata.rl_rx_list_map, 2397 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2398 2399 sc->rl_ldata.rl_rx_prodidx = i; 2400 2401 if (rx_npktsp != NULL) 2402 *rx_npktsp = rx_npkts; 2403 if (maxpkt) 2404 return (EAGAIN); 2405 2406 return (0); 2407 } 2408 2409 static void 2410 re_txeof(struct rl_softc *sc) 2411 { 2412 struct ifnet *ifp; 2413 struct rl_txdesc *txd; 2414 u_int32_t txstat; 2415 int cons; 2416 2417 cons = sc->rl_ldata.rl_tx_considx; 2418 if (cons == sc->rl_ldata.rl_tx_prodidx) 2419 return; 2420 2421 ifp = sc->rl_ifp; 2422 #ifdef DEV_NETMAP 2423 if (netmap_tx_irq(ifp, 0)) 2424 return; 2425 #endif /* DEV_NETMAP */ 2426 /* Invalidate the TX descriptor list */ 2427 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2428 sc->rl_ldata.rl_tx_list_map, 2429 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2430 2431 for (; cons != sc->rl_ldata.rl_tx_prodidx; 2432 cons = RL_TX_DESC_NXT(sc, cons)) { 2433 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat); 2434 if (txstat & RL_TDESC_STAT_OWN) 2435 break; 2436 /* 2437 * We only stash mbufs in the last descriptor 2438 * in a fragment chain, which also happens to 2439 * be the only place where the TX status bits 2440 * are valid. 2441 */ 2442 if (txstat & RL_TDESC_CMD_EOF) { 2443 txd = &sc->rl_ldata.rl_tx_desc[cons]; 2444 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 2445 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2446 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 2447 txd->tx_dmamap); 2448 KASSERT(txd->tx_m != NULL, 2449 ("%s: freeing NULL mbufs!", __func__)); 2450 m_freem(txd->tx_m); 2451 txd->tx_m = NULL; 2452 if (txstat & (RL_TDESC_STAT_EXCESSCOL| 2453 RL_TDESC_STAT_COLCNT)) 2454 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 2455 if (txstat & RL_TDESC_STAT_TXERRSUM) 2456 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2457 else 2458 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2459 } 2460 sc->rl_ldata.rl_tx_free++; 2461 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2462 } 2463 sc->rl_ldata.rl_tx_considx = cons; 2464 2465 /* No changes made to the TX ring, so no flush needed */ 2466 2467 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) { 2468 #ifdef RE_TX_MODERATION 2469 /* 2470 * If not all descriptors have been reaped yet, reload 2471 * the timer so that we will eventually get another 2472 * interrupt that will cause us to re-enter this routine. 2473 * This is done in case the transmitter has gone idle. 2474 */ 2475 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2476 #endif 2477 } else 2478 sc->rl_watchdog_timer = 0; 2479 } 2480 2481 static void 2482 re_tick(void *xsc) 2483 { 2484 struct rl_softc *sc; 2485 struct mii_data *mii; 2486 2487 sc = xsc; 2488 2489 RL_LOCK_ASSERT(sc); 2490 2491 mii = device_get_softc(sc->rl_miibus); 2492 mii_tick(mii); 2493 if ((sc->rl_flags & RL_FLAG_LINK) == 0) 2494 re_miibus_statchg(sc->rl_dev); 2495 /* 2496 * Reclaim transmitted frames here. Technically it is not 2497 * necessary to do here but it ensures periodic reclamation 2498 * regardless of Tx completion interrupt which seems to be 2499 * lost on PCIe based controllers under certain situations. 2500 */ 2501 re_txeof(sc); 2502 re_watchdog(sc); 2503 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2504 } 2505 2506 #ifdef DEVICE_POLLING 2507 static int 2508 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2509 { 2510 struct rl_softc *sc = ifp->if_softc; 2511 int rx_npkts = 0; 2512 2513 RL_LOCK(sc); 2514 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2515 rx_npkts = re_poll_locked(ifp, cmd, count); 2516 RL_UNLOCK(sc); 2517 return (rx_npkts); 2518 } 2519 2520 static int 2521 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 2522 { 2523 struct rl_softc *sc = ifp->if_softc; 2524 int rx_npkts; 2525 2526 RL_LOCK_ASSERT(sc); 2527 2528 sc->rxcycles = count; 2529 re_rxeof(sc, &rx_npkts); 2530 re_txeof(sc); 2531 2532 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2533 re_start_locked(ifp); 2534 2535 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2536 u_int16_t status; 2537 2538 status = CSR_READ_2(sc, RL_ISR); 2539 if (status == 0xffff) 2540 return (rx_npkts); 2541 if (status) 2542 CSR_WRITE_2(sc, RL_ISR, status); 2543 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2544 (sc->rl_flags & RL_FLAG_PCIE)) 2545 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2546 2547 /* 2548 * XXX check behaviour on receiver stalls. 2549 */ 2550 2551 if (status & RL_ISR_SYSTEM_ERR) { 2552 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2553 re_init_locked(sc); 2554 } 2555 } 2556 return (rx_npkts); 2557 } 2558 #endif /* DEVICE_POLLING */ 2559 2560 static int 2561 re_intr(void *arg) 2562 { 2563 struct rl_softc *sc; 2564 uint16_t status; 2565 2566 sc = arg; 2567 2568 status = CSR_READ_2(sc, RL_ISR); 2569 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) 2570 return (FILTER_STRAY); 2571 CSR_WRITE_2(sc, RL_IMR, 0); 2572 2573 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask); 2574 2575 return (FILTER_HANDLED); 2576 } 2577 2578 static void 2579 re_int_task(void *arg, int npending) 2580 { 2581 struct rl_softc *sc; 2582 struct ifnet *ifp; 2583 u_int16_t status; 2584 int rval = 0; 2585 2586 sc = arg; 2587 ifp = sc->rl_ifp; 2588 2589 RL_LOCK(sc); 2590 2591 status = CSR_READ_2(sc, RL_ISR); 2592 CSR_WRITE_2(sc, RL_ISR, status); 2593 2594 if (sc->suspended || 2595 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2596 RL_UNLOCK(sc); 2597 return; 2598 } 2599 2600 #ifdef DEVICE_POLLING 2601 if (ifp->if_capenable & IFCAP_POLLING) { 2602 RL_UNLOCK(sc); 2603 return; 2604 } 2605 #endif 2606 2607 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW)) 2608 rval = re_rxeof(sc, NULL); 2609 2610 /* 2611 * Some chips will ignore a second TX request issued 2612 * while an existing transmission is in progress. If 2613 * the transmitter goes idle but there are still 2614 * packets waiting to be sent, we need to restart the 2615 * channel here to flush them out. This only seems to 2616 * be required with the PCIe devices. 2617 */ 2618 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2619 (sc->rl_flags & RL_FLAG_PCIE)) 2620 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2621 if (status & ( 2622 #ifdef RE_TX_MODERATION 2623 RL_ISR_TIMEOUT_EXPIRED| 2624 #else 2625 RL_ISR_TX_OK| 2626 #endif 2627 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL)) 2628 re_txeof(sc); 2629 2630 if (status & RL_ISR_SYSTEM_ERR) { 2631 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2632 re_init_locked(sc); 2633 } 2634 2635 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2636 re_start_locked(ifp); 2637 2638 RL_UNLOCK(sc); 2639 2640 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) { 2641 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask); 2642 return; 2643 } 2644 2645 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2646 } 2647 2648 static void 2649 re_intr_msi(void *xsc) 2650 { 2651 struct rl_softc *sc; 2652 struct ifnet *ifp; 2653 uint16_t intrs, status; 2654 2655 sc = xsc; 2656 RL_LOCK(sc); 2657 2658 ifp = sc->rl_ifp; 2659 #ifdef DEVICE_POLLING 2660 if (ifp->if_capenable & IFCAP_POLLING) { 2661 RL_UNLOCK(sc); 2662 return; 2663 } 2664 #endif 2665 /* Disable interrupts. */ 2666 CSR_WRITE_2(sc, RL_IMR, 0); 2667 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2668 RL_UNLOCK(sc); 2669 return; 2670 } 2671 2672 intrs = RL_INTRS_CPLUS; 2673 status = CSR_READ_2(sc, RL_ISR); 2674 CSR_WRITE_2(sc, RL_ISR, status); 2675 if (sc->rl_int_rx_act > 0) { 2676 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW | 2677 RL_ISR_RX_OVERRUN); 2678 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW | 2679 RL_ISR_RX_OVERRUN); 2680 } 2681 2682 if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR | 2683 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) { 2684 re_rxeof(sc, NULL); 2685 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2686 if (sc->rl_int_rx_mod != 0 && 2687 (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR | 2688 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) { 2689 /* Rearm one-shot timer. */ 2690 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2691 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | 2692 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN); 2693 sc->rl_int_rx_act = 1; 2694 } else { 2695 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR | 2696 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN; 2697 sc->rl_int_rx_act = 0; 2698 } 2699 } 2700 } 2701 2702 /* 2703 * Some chips will ignore a second TX request issued 2704 * while an existing transmission is in progress. If 2705 * the transmitter goes idle but there are still 2706 * packets waiting to be sent, we need to restart the 2707 * channel here to flush them out. This only seems to 2708 * be required with the PCIe devices. 2709 */ 2710 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2711 (sc->rl_flags & RL_FLAG_PCIE)) 2712 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2713 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL)) 2714 re_txeof(sc); 2715 2716 if (status & RL_ISR_SYSTEM_ERR) { 2717 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2718 re_init_locked(sc); 2719 } 2720 2721 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2722 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2723 re_start_locked(ifp); 2724 CSR_WRITE_2(sc, RL_IMR, intrs); 2725 } 2726 RL_UNLOCK(sc); 2727 } 2728 2729 static int 2730 re_encap(struct rl_softc *sc, struct mbuf **m_head) 2731 { 2732 struct rl_txdesc *txd, *txd_last; 2733 bus_dma_segment_t segs[RL_NTXSEGS]; 2734 bus_dmamap_t map; 2735 struct mbuf *m_new; 2736 struct rl_desc *desc; 2737 int nsegs, prod; 2738 int i, error, ei, si; 2739 int padlen; 2740 uint32_t cmdstat, csum_flags, vlanctl; 2741 2742 RL_LOCK_ASSERT(sc); 2743 M_ASSERTPKTHDR((*m_head)); 2744 2745 /* 2746 * With some of the RealTek chips, using the checksum offload 2747 * support in conjunction with the autopadding feature results 2748 * in the transmission of corrupt frames. For example, if we 2749 * need to send a really small IP fragment that's less than 60 2750 * bytes in size, and IP header checksumming is enabled, the 2751 * resulting ethernet frame that appears on the wire will 2752 * have garbled payload. To work around this, if TX IP checksum 2753 * offload is enabled, we always manually pad short frames out 2754 * to the minimum ethernet frame size. 2755 */ 2756 if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 && 2757 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN && 2758 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) { 2759 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len; 2760 if (M_WRITABLE(*m_head) == 0) { 2761 /* Get a writable copy. */ 2762 m_new = m_dup(*m_head, M_NOWAIT); 2763 m_freem(*m_head); 2764 if (m_new == NULL) { 2765 *m_head = NULL; 2766 return (ENOBUFS); 2767 } 2768 *m_head = m_new; 2769 } 2770 if ((*m_head)->m_next != NULL || 2771 M_TRAILINGSPACE(*m_head) < padlen) { 2772 m_new = m_defrag(*m_head, M_NOWAIT); 2773 if (m_new == NULL) { 2774 m_freem(*m_head); 2775 *m_head = NULL; 2776 return (ENOBUFS); 2777 } 2778 } else 2779 m_new = *m_head; 2780 2781 /* 2782 * Manually pad short frames, and zero the pad space 2783 * to avoid leaking data. 2784 */ 2785 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen); 2786 m_new->m_pkthdr.len += padlen; 2787 m_new->m_len = m_new->m_pkthdr.len; 2788 *m_head = m_new; 2789 } 2790 2791 prod = sc->rl_ldata.rl_tx_prodidx; 2792 txd = &sc->rl_ldata.rl_tx_desc[prod]; 2793 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2794 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2795 if (error == EFBIG) { 2796 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS); 2797 if (m_new == NULL) { 2798 m_freem(*m_head); 2799 *m_head = NULL; 2800 return (ENOBUFS); 2801 } 2802 *m_head = m_new; 2803 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, 2804 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2805 if (error != 0) { 2806 m_freem(*m_head); 2807 *m_head = NULL; 2808 return (error); 2809 } 2810 } else if (error != 0) 2811 return (error); 2812 if (nsegs == 0) { 2813 m_freem(*m_head); 2814 *m_head = NULL; 2815 return (EIO); 2816 } 2817 2818 /* Check for number of available descriptors. */ 2819 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) { 2820 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); 2821 return (ENOBUFS); 2822 } 2823 2824 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2825 BUS_DMASYNC_PREWRITE); 2826 2827 /* 2828 * Set up checksum offload. Note: checksum offload bits must 2829 * appear in all descriptors of a multi-descriptor transmit 2830 * attempt. This is according to testing done with an 8169 2831 * chip. This is a requirement. 2832 */ 2833 vlanctl = 0; 2834 csum_flags = 0; 2835 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2836 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) { 2837 csum_flags |= RL_TDESC_CMD_LGSEND; 2838 vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2839 RL_TDESC_CMD_MSSVALV2_SHIFT); 2840 } else { 2841 csum_flags |= RL_TDESC_CMD_LGSEND | 2842 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2843 RL_TDESC_CMD_MSSVAL_SHIFT); 2844 } 2845 } else { 2846 /* 2847 * Unconditionally enable IP checksum if TCP or UDP 2848 * checksum is required. Otherwise, TCP/UDP checksum 2849 * doesn't make effects. 2850 */ 2851 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) { 2852 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2853 csum_flags |= RL_TDESC_CMD_IPCSUM; 2854 if (((*m_head)->m_pkthdr.csum_flags & 2855 CSUM_TCP) != 0) 2856 csum_flags |= RL_TDESC_CMD_TCPCSUM; 2857 if (((*m_head)->m_pkthdr.csum_flags & 2858 CSUM_UDP) != 0) 2859 csum_flags |= RL_TDESC_CMD_UDPCSUM; 2860 } else { 2861 vlanctl |= RL_TDESC_CMD_IPCSUMV2; 2862 if (((*m_head)->m_pkthdr.csum_flags & 2863 CSUM_TCP) != 0) 2864 vlanctl |= RL_TDESC_CMD_TCPCSUMV2; 2865 if (((*m_head)->m_pkthdr.csum_flags & 2866 CSUM_UDP) != 0) 2867 vlanctl |= RL_TDESC_CMD_UDPCSUMV2; 2868 } 2869 } 2870 } 2871 2872 /* 2873 * Set up hardware VLAN tagging. Note: vlan tag info must 2874 * appear in all descriptors of a multi-descriptor 2875 * transmission attempt. 2876 */ 2877 if ((*m_head)->m_flags & M_VLANTAG) 2878 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) | 2879 RL_TDESC_VLANCTL_TAG; 2880 2881 si = prod; 2882 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) { 2883 desc = &sc->rl_ldata.rl_tx_list[prod]; 2884 desc->rl_vlanctl = htole32(vlanctl); 2885 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); 2886 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); 2887 cmdstat = segs[i].ds_len; 2888 if (i != 0) 2889 cmdstat |= RL_TDESC_CMD_OWN; 2890 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1) 2891 cmdstat |= RL_TDESC_CMD_EOR; 2892 desc->rl_cmdstat = htole32(cmdstat | csum_flags); 2893 sc->rl_ldata.rl_tx_free--; 2894 } 2895 /* Update producer index. */ 2896 sc->rl_ldata.rl_tx_prodidx = prod; 2897 2898 /* Set EOF on the last descriptor. */ 2899 ei = RL_TX_DESC_PRV(sc, prod); 2900 desc = &sc->rl_ldata.rl_tx_list[ei]; 2901 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); 2902 2903 desc = &sc->rl_ldata.rl_tx_list[si]; 2904 /* Set SOF and transfer ownership of packet to the chip. */ 2905 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF); 2906 2907 /* 2908 * Insure that the map for this transmission 2909 * is placed at the array index of the last descriptor 2910 * in this chain. (Swap last and first dmamaps.) 2911 */ 2912 txd_last = &sc->rl_ldata.rl_tx_desc[ei]; 2913 map = txd->tx_dmamap; 2914 txd->tx_dmamap = txd_last->tx_dmamap; 2915 txd_last->tx_dmamap = map; 2916 txd_last->tx_m = *m_head; 2917 2918 return (0); 2919 } 2920 2921 static void 2922 re_start(struct ifnet *ifp) 2923 { 2924 struct rl_softc *sc; 2925 2926 sc = ifp->if_softc; 2927 RL_LOCK(sc); 2928 re_start_locked(ifp); 2929 RL_UNLOCK(sc); 2930 } 2931 2932 /* 2933 * Main transmit routine for C+ and gigE NICs. 2934 */ 2935 static void 2936 re_start_locked(struct ifnet *ifp) 2937 { 2938 struct rl_softc *sc; 2939 struct mbuf *m_head; 2940 int queued; 2941 2942 sc = ifp->if_softc; 2943 2944 #ifdef DEV_NETMAP 2945 /* XXX is this necessary ? */ 2946 if (ifp->if_capenable & IFCAP_NETMAP) { 2947 struct netmap_kring *kring = NA(ifp)->tx_rings[0]; 2948 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) { 2949 /* kick the tx unit */ 2950 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2951 #ifdef RE_TX_MODERATION 2952 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2953 #endif 2954 sc->rl_watchdog_timer = 5; 2955 } 2956 return; 2957 } 2958 #endif /* DEV_NETMAP */ 2959 2960 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2961 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) 2962 return; 2963 2964 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2965 sc->rl_ldata.rl_tx_free > 1;) { 2966 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2967 if (m_head == NULL) 2968 break; 2969 2970 if (re_encap(sc, &m_head) != 0) { 2971 if (m_head == NULL) 2972 break; 2973 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2974 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2975 break; 2976 } 2977 2978 /* 2979 * If there's a BPF listener, bounce a copy of this frame 2980 * to him. 2981 */ 2982 ETHER_BPF_MTAP(ifp, m_head); 2983 2984 queued++; 2985 } 2986 2987 if (queued == 0) { 2988 #ifdef RE_TX_MODERATION 2989 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) 2990 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2991 #endif 2992 return; 2993 } 2994 2995 re_start_tx(sc); 2996 } 2997 2998 static void 2999 re_start_tx(struct rl_softc *sc) 3000 { 3001 3002 /* Flush the TX descriptors */ 3003 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 3004 sc->rl_ldata.rl_tx_list_map, 3005 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 3006 3007 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 3008 3009 #ifdef RE_TX_MODERATION 3010 /* 3011 * Use the countdown timer for interrupt moderation. 3012 * 'TX done' interrupts are disabled. Instead, we reset the 3013 * countdown timer, which will begin counting until it hits 3014 * the value in the TIMERINT register, and then trigger an 3015 * interrupt. Each time we write to the TIMERCNT register, 3016 * the timer count is reset to 0. 3017 */ 3018 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 3019 #endif 3020 3021 /* 3022 * Set a timeout in case the chip goes out to lunch. 3023 */ 3024 sc->rl_watchdog_timer = 5; 3025 } 3026 3027 static void 3028 re_set_jumbo(struct rl_softc *sc, int jumbo) 3029 { 3030 3031 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) { 3032 pci_set_max_read_req(sc->rl_dev, 4096); 3033 return; 3034 } 3035 3036 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 3037 if (jumbo != 0) { 3038 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) | 3039 RL_CFG3_JUMBO_EN0); 3040 switch (sc->rl_hwrev->rl_rev) { 3041 case RL_HWREV_8168DP: 3042 break; 3043 case RL_HWREV_8168E: 3044 CSR_WRITE_1(sc, sc->rl_cfg4, 3045 CSR_READ_1(sc, sc->rl_cfg4) | 0x01); 3046 break; 3047 default: 3048 CSR_WRITE_1(sc, sc->rl_cfg4, 3049 CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1); 3050 } 3051 } else { 3052 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) & 3053 ~RL_CFG3_JUMBO_EN0); 3054 switch (sc->rl_hwrev->rl_rev) { 3055 case RL_HWREV_8168DP: 3056 break; 3057 case RL_HWREV_8168E: 3058 CSR_WRITE_1(sc, sc->rl_cfg4, 3059 CSR_READ_1(sc, sc->rl_cfg4) & ~0x01); 3060 break; 3061 default: 3062 CSR_WRITE_1(sc, sc->rl_cfg4, 3063 CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1); 3064 } 3065 } 3066 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3067 3068 switch (sc->rl_hwrev->rl_rev) { 3069 case RL_HWREV_8168DP: 3070 pci_set_max_read_req(sc->rl_dev, 4096); 3071 break; 3072 default: 3073 if (jumbo != 0) 3074 pci_set_max_read_req(sc->rl_dev, 512); 3075 else 3076 pci_set_max_read_req(sc->rl_dev, 4096); 3077 } 3078 } 3079 3080 static void 3081 re_init(void *xsc) 3082 { 3083 struct rl_softc *sc = xsc; 3084 3085 RL_LOCK(sc); 3086 re_init_locked(sc); 3087 RL_UNLOCK(sc); 3088 } 3089 3090 static void 3091 re_init_locked(struct rl_softc *sc) 3092 { 3093 struct ifnet *ifp = sc->rl_ifp; 3094 struct mii_data *mii; 3095 uint32_t reg; 3096 uint16_t cfg; 3097 uint32_t idr[2]; 3098 3099 RL_LOCK_ASSERT(sc); 3100 3101 mii = device_get_softc(sc->rl_miibus); 3102 3103 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3104 return; 3105 3106 /* 3107 * Cancel pending I/O and free all RX/TX buffers. 3108 */ 3109 re_stop(sc); 3110 3111 /* Put controller into known state. */ 3112 re_reset(sc); 3113 3114 /* 3115 * For C+ mode, initialize the RX descriptors and mbufs. 3116 */ 3117 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3118 if (ifp->if_mtu > RL_MTU) { 3119 if (re_jrx_list_init(sc) != 0) { 3120 device_printf(sc->rl_dev, 3121 "no memory for jumbo RX buffers\n"); 3122 re_stop(sc); 3123 return; 3124 } 3125 /* Disable checksum offloading for jumbo frames. */ 3126 ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4); 3127 ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO); 3128 } else { 3129 if (re_rx_list_init(sc) != 0) { 3130 device_printf(sc->rl_dev, 3131 "no memory for RX buffers\n"); 3132 re_stop(sc); 3133 return; 3134 } 3135 } 3136 re_set_jumbo(sc, ifp->if_mtu > RL_MTU); 3137 } else { 3138 if (re_rx_list_init(sc) != 0) { 3139 device_printf(sc->rl_dev, "no memory for RX buffers\n"); 3140 re_stop(sc); 3141 return; 3142 } 3143 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 && 3144 pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) { 3145 if (ifp->if_mtu > RL_MTU) 3146 pci_set_max_read_req(sc->rl_dev, 512); 3147 else 3148 pci_set_max_read_req(sc->rl_dev, 4096); 3149 } 3150 } 3151 re_tx_list_init(sc); 3152 3153 /* 3154 * Enable C+ RX and TX mode, as well as VLAN stripping and 3155 * RX checksum offload. We must configure the C+ register 3156 * before all others. 3157 */ 3158 cfg = RL_CPLUSCMD_PCI_MRW; 3159 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 3160 cfg |= RL_CPLUSCMD_RXCSUM_ENB; 3161 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3162 cfg |= RL_CPLUSCMD_VLANSTRIP; 3163 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) { 3164 cfg |= RL_CPLUSCMD_MACSTAT_DIS; 3165 /* XXX magic. */ 3166 cfg |= 0x0001; 3167 } else 3168 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB; 3169 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg); 3170 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC || 3171 sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) { 3172 reg = 0x000fff00; 3173 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0) 3174 reg |= 0x000000ff; 3175 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) 3176 reg |= 0x00f00000; 3177 CSR_WRITE_4(sc, 0x7c, reg); 3178 /* Disable interrupt mitigation. */ 3179 CSR_WRITE_2(sc, 0xe2, 0); 3180 } 3181 /* 3182 * Disable TSO if interface MTU size is greater than MSS 3183 * allowed in controller. 3184 */ 3185 if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { 3186 ifp->if_capenable &= ~IFCAP_TSO4; 3187 ifp->if_hwassist &= ~CSUM_TSO; 3188 } 3189 3190 /* 3191 * Init our MAC address. Even though the chipset 3192 * documentation doesn't mention it, we need to enter "Config 3193 * register write enable" mode to modify the ID registers. 3194 */ 3195 /* Copy MAC address on stack to align. */ 3196 bzero(idr, sizeof(idr)); 3197 bcopy(IF_LLADDR(ifp), idr, ETHER_ADDR_LEN); 3198 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 3199 CSR_WRITE_4(sc, RL_IDR0, htole32(idr[0])); 3200 CSR_WRITE_4(sc, RL_IDR4, htole32(idr[1])); 3201 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3202 3203 /* 3204 * Load the addresses of the RX and TX lists into the chip. 3205 */ 3206 3207 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, 3208 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); 3209 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, 3210 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); 3211 3212 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, 3213 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); 3214 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, 3215 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); 3216 3217 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3218 /* Disable RXDV gate. */ 3219 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) & 3220 ~0x00080000); 3221 } 3222 3223 /* 3224 * Enable transmit and receive for pre-RTL8168G controllers. 3225 * RX/TX MACs should be enabled before RX/TX configuration. 3226 */ 3227 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) == 0) 3228 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB); 3229 3230 /* 3231 * Set the initial TX configuration. 3232 */ 3233 if (sc->rl_testmode) { 3234 if (sc->rl_type == RL_8169) 3235 CSR_WRITE_4(sc, RL_TXCFG, 3236 RL_TXCFG_CONFIG|RL_LOOPTEST_ON); 3237 else 3238 CSR_WRITE_4(sc, RL_TXCFG, 3239 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); 3240 } else 3241 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 3242 3243 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); 3244 3245 /* 3246 * Set the initial RX configuration. 3247 */ 3248 re_set_rxmode(sc); 3249 3250 /* Configure interrupt moderation. */ 3251 if (sc->rl_type == RL_8169) { 3252 /* Magic from vendor. */ 3253 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100); 3254 } 3255 3256 /* 3257 * Enable transmit and receive for RTL8168G and later controllers. 3258 * RX/TX MACs should be enabled after RX/TX configuration. 3259 */ 3260 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) 3261 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB); 3262 3263 #ifdef DEVICE_POLLING 3264 /* 3265 * Disable interrupts if we are polling. 3266 */ 3267 if (ifp->if_capenable & IFCAP_POLLING) 3268 CSR_WRITE_2(sc, RL_IMR, 0); 3269 else /* otherwise ... */ 3270 #endif 3271 3272 /* 3273 * Enable interrupts. 3274 */ 3275 if (sc->rl_testmode) 3276 CSR_WRITE_2(sc, RL_IMR, 0); 3277 else 3278 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 3279 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS); 3280 3281 /* Set initial TX threshold */ 3282 sc->rl_txthresh = RL_TX_THRESH_INIT; 3283 3284 /* Start RX/TX process. */ 3285 CSR_WRITE_4(sc, RL_MISSEDPKT, 0); 3286 3287 /* 3288 * Initialize the timer interrupt register so that 3289 * a timer interrupt will be generated once the timer 3290 * reaches a certain number of ticks. The timer is 3291 * reloaded on each transmit. 3292 */ 3293 #ifdef RE_TX_MODERATION 3294 /* 3295 * Use timer interrupt register to moderate TX interrupt 3296 * moderation, which dramatically improves TX frame rate. 3297 */ 3298 if (sc->rl_type == RL_8169) 3299 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); 3300 else 3301 CSR_WRITE_4(sc, RL_TIMERINT, 0x400); 3302 #else 3303 /* 3304 * Use timer interrupt register to moderate RX interrupt 3305 * moderation. 3306 */ 3307 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 && 3308 intr_filter == 0) { 3309 if (sc->rl_type == RL_8169) 3310 CSR_WRITE_4(sc, RL_TIMERINT_8169, 3311 RL_USECS(sc->rl_int_rx_mod)); 3312 } else { 3313 if (sc->rl_type == RL_8169) 3314 CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0)); 3315 } 3316 #endif 3317 3318 /* 3319 * For 8169 gigE NICs, set the max allowed RX packet 3320 * size so we can receive jumbo frames. 3321 */ 3322 if (sc->rl_type == RL_8169) { 3323 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3324 /* 3325 * For controllers that use new jumbo frame scheme, 3326 * set maximum size of jumbo frame depending on 3327 * controller revisions. 3328 */ 3329 if (ifp->if_mtu > RL_MTU) 3330 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 3331 sc->rl_hwrev->rl_max_mtu + 3332 ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN + 3333 ETHER_CRC_LEN); 3334 else 3335 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 3336 RE_RX_DESC_BUFLEN); 3337 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 && 3338 sc->rl_hwrev->rl_max_mtu == RL_MTU) { 3339 /* RTL810x has no jumbo frame support. */ 3340 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN); 3341 } else 3342 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); 3343 } 3344 3345 if (sc->rl_testmode) 3346 return; 3347 3348 CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) | 3349 RL_CFG1_DRVLOAD); 3350 3351 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3352 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3353 3354 sc->rl_flags &= ~RL_FLAG_LINK; 3355 mii_mediachg(mii); 3356 3357 sc->rl_watchdog_timer = 0; 3358 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 3359 3360 #ifdef DEV_NETMAP 3361 netmap_enable_all_rings(ifp); 3362 #endif /* DEV_NETMAP */ 3363 } 3364 3365 /* 3366 * Set media options. 3367 */ 3368 static int 3369 re_ifmedia_upd(struct ifnet *ifp) 3370 { 3371 struct rl_softc *sc; 3372 struct mii_data *mii; 3373 int error; 3374 3375 sc = ifp->if_softc; 3376 mii = device_get_softc(sc->rl_miibus); 3377 RL_LOCK(sc); 3378 error = mii_mediachg(mii); 3379 RL_UNLOCK(sc); 3380 3381 return (error); 3382 } 3383 3384 /* 3385 * Report current media status. 3386 */ 3387 static void 3388 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 3389 { 3390 struct rl_softc *sc; 3391 struct mii_data *mii; 3392 3393 sc = ifp->if_softc; 3394 mii = device_get_softc(sc->rl_miibus); 3395 3396 RL_LOCK(sc); 3397 mii_pollstat(mii); 3398 ifmr->ifm_active = mii->mii_media_active; 3399 ifmr->ifm_status = mii->mii_media_status; 3400 RL_UNLOCK(sc); 3401 } 3402 3403 static int 3404 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 3405 { 3406 struct rl_softc *sc = ifp->if_softc; 3407 struct ifreq *ifr = (struct ifreq *) data; 3408 struct mii_data *mii; 3409 int error = 0; 3410 3411 switch (command) { 3412 case SIOCSIFMTU: 3413 if (ifr->ifr_mtu < ETHERMIN || 3414 ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu || 3415 ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 && 3416 ifr->ifr_mtu > RL_MTU)) { 3417 error = EINVAL; 3418 break; 3419 } 3420 RL_LOCK(sc); 3421 if (ifp->if_mtu != ifr->ifr_mtu) { 3422 ifp->if_mtu = ifr->ifr_mtu; 3423 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 3424 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 3425 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3426 re_init_locked(sc); 3427 } 3428 if (ifp->if_mtu > RL_TSO_MTU && 3429 (ifp->if_capenable & IFCAP_TSO4) != 0) { 3430 ifp->if_capenable &= ~(IFCAP_TSO4 | 3431 IFCAP_VLAN_HWTSO); 3432 ifp->if_hwassist &= ~CSUM_TSO; 3433 } 3434 VLAN_CAPABILITIES(ifp); 3435 } 3436 RL_UNLOCK(sc); 3437 break; 3438 case SIOCSIFFLAGS: 3439 RL_LOCK(sc); 3440 if ((ifp->if_flags & IFF_UP) != 0) { 3441 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 3442 if (((ifp->if_flags ^ sc->rl_if_flags) 3443 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 3444 re_set_rxmode(sc); 3445 } else 3446 re_init_locked(sc); 3447 } else { 3448 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3449 re_stop(sc); 3450 } 3451 sc->rl_if_flags = ifp->if_flags; 3452 RL_UNLOCK(sc); 3453 break; 3454 case SIOCADDMULTI: 3455 case SIOCDELMULTI: 3456 RL_LOCK(sc); 3457 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3458 re_set_rxmode(sc); 3459 RL_UNLOCK(sc); 3460 break; 3461 case SIOCGIFMEDIA: 3462 case SIOCSIFMEDIA: 3463 mii = device_get_softc(sc->rl_miibus); 3464 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 3465 break; 3466 case SIOCSIFCAP: 3467 { 3468 int mask, reinit; 3469 3470 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3471 reinit = 0; 3472 #ifdef DEVICE_POLLING 3473 if (mask & IFCAP_POLLING) { 3474 if (ifr->ifr_reqcap & IFCAP_POLLING) { 3475 error = ether_poll_register(re_poll, ifp); 3476 if (error) 3477 return (error); 3478 RL_LOCK(sc); 3479 /* Disable interrupts */ 3480 CSR_WRITE_2(sc, RL_IMR, 0x0000); 3481 ifp->if_capenable |= IFCAP_POLLING; 3482 RL_UNLOCK(sc); 3483 } else { 3484 error = ether_poll_deregister(ifp); 3485 /* Enable interrupts. */ 3486 RL_LOCK(sc); 3487 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 3488 ifp->if_capenable &= ~IFCAP_POLLING; 3489 RL_UNLOCK(sc); 3490 } 3491 } 3492 #endif /* DEVICE_POLLING */ 3493 RL_LOCK(sc); 3494 if ((mask & IFCAP_TXCSUM) != 0 && 3495 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 3496 ifp->if_capenable ^= IFCAP_TXCSUM; 3497 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 3498 ifp->if_hwassist |= RE_CSUM_FEATURES; 3499 else 3500 ifp->if_hwassist &= ~RE_CSUM_FEATURES; 3501 reinit = 1; 3502 } 3503 if ((mask & IFCAP_RXCSUM) != 0 && 3504 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 3505 ifp->if_capenable ^= IFCAP_RXCSUM; 3506 reinit = 1; 3507 } 3508 if ((mask & IFCAP_TSO4) != 0 && 3509 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 3510 ifp->if_capenable ^= IFCAP_TSO4; 3511 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 3512 ifp->if_hwassist |= CSUM_TSO; 3513 else 3514 ifp->if_hwassist &= ~CSUM_TSO; 3515 if (ifp->if_mtu > RL_TSO_MTU && 3516 (ifp->if_capenable & IFCAP_TSO4) != 0) { 3517 ifp->if_capenable &= ~IFCAP_TSO4; 3518 ifp->if_hwassist &= ~CSUM_TSO; 3519 } 3520 } 3521 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 3522 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 3523 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 3524 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 3525 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 3526 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 3527 /* TSO over VLAN requires VLAN hardware tagging. */ 3528 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 3529 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 3530 reinit = 1; 3531 } 3532 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 3533 (mask & (IFCAP_HWCSUM | IFCAP_TSO4 | 3534 IFCAP_VLAN_HWTSO)) != 0) 3535 reinit = 1; 3536 if ((mask & IFCAP_WOL) != 0 && 3537 (ifp->if_capabilities & IFCAP_WOL) != 0) { 3538 if ((mask & IFCAP_WOL_UCAST) != 0) 3539 ifp->if_capenable ^= IFCAP_WOL_UCAST; 3540 if ((mask & IFCAP_WOL_MCAST) != 0) 3541 ifp->if_capenable ^= IFCAP_WOL_MCAST; 3542 if ((mask & IFCAP_WOL_MAGIC) != 0) 3543 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 3544 } 3545 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) { 3546 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3547 re_init_locked(sc); 3548 } 3549 RL_UNLOCK(sc); 3550 VLAN_CAPABILITIES(ifp); 3551 } 3552 break; 3553 default: 3554 error = ether_ioctl(ifp, command, data); 3555 break; 3556 } 3557 3558 return (error); 3559 } 3560 3561 static void 3562 re_watchdog(struct rl_softc *sc) 3563 { 3564 struct ifnet *ifp; 3565 3566 RL_LOCK_ASSERT(sc); 3567 3568 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0) 3569 return; 3570 3571 ifp = sc->rl_ifp; 3572 re_txeof(sc); 3573 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) { 3574 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 3575 "-- recovering\n"); 3576 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3577 re_start_locked(ifp); 3578 return; 3579 } 3580 3581 if_printf(ifp, "watchdog timeout\n"); 3582 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3583 3584 re_rxeof(sc, NULL); 3585 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3586 re_init_locked(sc); 3587 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3588 re_start_locked(ifp); 3589 } 3590 3591 /* 3592 * Stop the adapter and free any mbufs allocated to the 3593 * RX and TX lists. 3594 */ 3595 static void 3596 re_stop(struct rl_softc *sc) 3597 { 3598 int i; 3599 struct ifnet *ifp; 3600 struct rl_txdesc *txd; 3601 struct rl_rxdesc *rxd; 3602 3603 RL_LOCK_ASSERT(sc); 3604 3605 ifp = sc->rl_ifp; 3606 3607 sc->rl_watchdog_timer = 0; 3608 callout_stop(&sc->rl_stat_callout); 3609 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3610 3611 #ifdef DEV_NETMAP 3612 netmap_disable_all_rings(ifp); 3613 #endif /* DEV_NETMAP */ 3614 3615 /* 3616 * Disable accepting frames to put RX MAC into idle state. 3617 * Otherwise it's possible to get frames while stop command 3618 * execution is in progress and controller can DMA the frame 3619 * to already freed RX buffer during that period. 3620 */ 3621 CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) & 3622 ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI | 3623 RL_RXCFG_RX_BROAD)); 3624 3625 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3626 /* Enable RXDV gate. */ 3627 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) | 3628 0x00080000); 3629 } 3630 3631 if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) { 3632 for (i = RL_TIMEOUT; i > 0; i--) { 3633 if ((CSR_READ_1(sc, sc->rl_txstart) & 3634 RL_TXSTART_START) == 0) 3635 break; 3636 DELAY(20); 3637 } 3638 if (i == 0) 3639 device_printf(sc->rl_dev, 3640 "stopping TX poll timed out!\n"); 3641 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 3642 } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) { 3643 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB | 3644 RL_CMD_RX_ENB); 3645 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) { 3646 for (i = RL_TIMEOUT; i > 0; i--) { 3647 if ((CSR_READ_4(sc, RL_TXCFG) & 3648 RL_TXCFG_QUEUE_EMPTY) != 0) 3649 break; 3650 DELAY(100); 3651 } 3652 if (i == 0) 3653 device_printf(sc->rl_dev, 3654 "stopping TXQ timed out!\n"); 3655 } 3656 } else 3657 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 3658 DELAY(1000); 3659 CSR_WRITE_2(sc, RL_IMR, 0x0000); 3660 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 3661 3662 if (sc->rl_head != NULL) { 3663 m_freem(sc->rl_head); 3664 sc->rl_head = sc->rl_tail = NULL; 3665 } 3666 3667 /* Free the TX list buffers. */ 3668 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 3669 txd = &sc->rl_ldata.rl_tx_desc[i]; 3670 if (txd->tx_m != NULL) { 3671 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 3672 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3673 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 3674 txd->tx_dmamap); 3675 m_freem(txd->tx_m); 3676 txd->tx_m = NULL; 3677 } 3678 } 3679 3680 /* Free the RX list buffers. */ 3681 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 3682 rxd = &sc->rl_ldata.rl_rx_desc[i]; 3683 if (rxd->rx_m != NULL) { 3684 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 3685 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3686 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 3687 rxd->rx_dmamap); 3688 m_freem(rxd->rx_m); 3689 rxd->rx_m = NULL; 3690 } 3691 } 3692 3693 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3694 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 3695 rxd = &sc->rl_ldata.rl_jrx_desc[i]; 3696 if (rxd->rx_m != NULL) { 3697 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, 3698 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3699 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, 3700 rxd->rx_dmamap); 3701 m_freem(rxd->rx_m); 3702 rxd->rx_m = NULL; 3703 } 3704 } 3705 } 3706 } 3707 3708 /* 3709 * Device suspend routine. Stop the interface and save some PCI 3710 * settings in case the BIOS doesn't restore them properly on 3711 * resume. 3712 */ 3713 static int 3714 re_suspend(device_t dev) 3715 { 3716 struct rl_softc *sc; 3717 3718 sc = device_get_softc(dev); 3719 3720 RL_LOCK(sc); 3721 re_stop(sc); 3722 re_setwol(sc); 3723 sc->suspended = 1; 3724 RL_UNLOCK(sc); 3725 3726 return (0); 3727 } 3728 3729 /* 3730 * Device resume routine. Restore some PCI settings in case the BIOS 3731 * doesn't, re-enable busmastering, and restart the interface if 3732 * appropriate. 3733 */ 3734 static int 3735 re_resume(device_t dev) 3736 { 3737 struct rl_softc *sc; 3738 struct ifnet *ifp; 3739 3740 sc = device_get_softc(dev); 3741 3742 RL_LOCK(sc); 3743 3744 ifp = sc->rl_ifp; 3745 /* Take controller out of sleep mode. */ 3746 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3747 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3748 CSR_WRITE_1(sc, RL_GPIO, 3749 CSR_READ_1(sc, RL_GPIO) | 0x01); 3750 } 3751 3752 /* 3753 * Clear WOL matching such that normal Rx filtering 3754 * wouldn't interfere with WOL patterns. 3755 */ 3756 re_clrwol(sc); 3757 3758 /* reinitialize interface if necessary */ 3759 if (ifp->if_flags & IFF_UP) 3760 re_init_locked(sc); 3761 3762 sc->suspended = 0; 3763 RL_UNLOCK(sc); 3764 3765 return (0); 3766 } 3767 3768 /* 3769 * Stop all chip I/O so that the kernel's probe routines don't 3770 * get confused by errant DMAs when rebooting. 3771 */ 3772 static int 3773 re_shutdown(device_t dev) 3774 { 3775 struct rl_softc *sc; 3776 3777 sc = device_get_softc(dev); 3778 3779 RL_LOCK(sc); 3780 re_stop(sc); 3781 /* 3782 * Mark interface as down since otherwise we will panic if 3783 * interrupt comes in later on, which can happen in some 3784 * cases. 3785 */ 3786 sc->rl_ifp->if_flags &= ~IFF_UP; 3787 re_setwol(sc); 3788 RL_UNLOCK(sc); 3789 3790 return (0); 3791 } 3792 3793 static void 3794 re_set_linkspeed(struct rl_softc *sc) 3795 { 3796 struct mii_softc *miisc; 3797 struct mii_data *mii; 3798 int aneg, i, phyno; 3799 3800 RL_LOCK_ASSERT(sc); 3801 3802 mii = device_get_softc(sc->rl_miibus); 3803 mii_pollstat(mii); 3804 aneg = 0; 3805 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 3806 (IFM_ACTIVE | IFM_AVALID)) { 3807 switch IFM_SUBTYPE(mii->mii_media_active) { 3808 case IFM_10_T: 3809 case IFM_100_TX: 3810 return; 3811 case IFM_1000_T: 3812 aneg++; 3813 break; 3814 default: 3815 break; 3816 } 3817 } 3818 miisc = LIST_FIRST(&mii->mii_phys); 3819 phyno = miisc->mii_phy; 3820 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 3821 PHY_RESET(miisc); 3822 re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0); 3823 re_miibus_writereg(sc->rl_dev, phyno, 3824 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 3825 re_miibus_writereg(sc->rl_dev, phyno, 3826 MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); 3827 DELAY(1000); 3828 if (aneg != 0) { 3829 /* 3830 * Poll link state until re(4) get a 10/100Mbps link. 3831 */ 3832 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 3833 mii_pollstat(mii); 3834 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 3835 == (IFM_ACTIVE | IFM_AVALID)) { 3836 switch (IFM_SUBTYPE(mii->mii_media_active)) { 3837 case IFM_10_T: 3838 case IFM_100_TX: 3839 return; 3840 default: 3841 break; 3842 } 3843 } 3844 RL_UNLOCK(sc); 3845 pause("relnk", hz); 3846 RL_LOCK(sc); 3847 } 3848 if (i == MII_ANEGTICKS_GIGE) 3849 device_printf(sc->rl_dev, 3850 "establishing a link failed, WOL may not work!"); 3851 } 3852 /* 3853 * No link, force MAC to have 100Mbps, full-duplex link. 3854 * MAC does not require reprogramming on resolved speed/duplex, 3855 * so this is just for completeness. 3856 */ 3857 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 3858 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 3859 } 3860 3861 static void 3862 re_setwol(struct rl_softc *sc) 3863 { 3864 struct ifnet *ifp; 3865 int pmc; 3866 uint16_t pmstat; 3867 uint8_t v; 3868 3869 RL_LOCK_ASSERT(sc); 3870 3871 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3872 return; 3873 3874 ifp = sc->rl_ifp; 3875 /* Put controller into sleep mode. */ 3876 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3877 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3878 CSR_WRITE_1(sc, RL_GPIO, 3879 CSR_READ_1(sc, RL_GPIO) & ~0x01); 3880 } 3881 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 3882 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3883 /* Disable RXDV gate. */ 3884 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) & 3885 ~0x00080000); 3886 } 3887 re_set_rxmode(sc); 3888 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0) 3889 re_set_linkspeed(sc); 3890 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0) 3891 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB); 3892 } 3893 /* Enable config register write. */ 3894 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3895 3896 /* Enable PME. */ 3897 v = CSR_READ_1(sc, sc->rl_cfg1); 3898 v &= ~RL_CFG1_PME; 3899 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3900 v |= RL_CFG1_PME; 3901 CSR_WRITE_1(sc, sc->rl_cfg1, v); 3902 3903 v = CSR_READ_1(sc, sc->rl_cfg3); 3904 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3905 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 3906 v |= RL_CFG3_WOL_MAGIC; 3907 CSR_WRITE_1(sc, sc->rl_cfg3, v); 3908 3909 v = CSR_READ_1(sc, sc->rl_cfg5); 3910 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST | 3911 RL_CFG5_WOL_LANWAKE); 3912 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 3913 v |= RL_CFG5_WOL_UCAST; 3914 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 3915 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; 3916 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3917 v |= RL_CFG5_WOL_LANWAKE; 3918 CSR_WRITE_1(sc, sc->rl_cfg5, v); 3919 3920 /* Config register write done. */ 3921 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3922 3923 if ((ifp->if_capenable & IFCAP_WOL) == 0 && 3924 (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) 3925 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80); 3926 /* 3927 * It seems that hardware resets its link speed to 100Mbps in 3928 * power down mode so switching to 100Mbps in driver is not 3929 * needed. 3930 */ 3931 3932 /* Request PME if WOL is requested. */ 3933 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); 3934 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3935 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3936 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3937 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 3938 } 3939 3940 static void 3941 re_clrwol(struct rl_softc *sc) 3942 { 3943 int pmc; 3944 uint8_t v; 3945 3946 RL_LOCK_ASSERT(sc); 3947 3948 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3949 return; 3950 3951 /* Enable config register write. */ 3952 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3953 3954 v = CSR_READ_1(sc, sc->rl_cfg3); 3955 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3956 CSR_WRITE_1(sc, sc->rl_cfg3, v); 3957 3958 /* Config register write done. */ 3959 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3960 3961 v = CSR_READ_1(sc, sc->rl_cfg5); 3962 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 3963 v &= ~RL_CFG5_WOL_LANWAKE; 3964 CSR_WRITE_1(sc, sc->rl_cfg5, v); 3965 } 3966 3967 static void 3968 re_add_sysctls(struct rl_softc *sc) 3969 { 3970 struct sysctl_ctx_list *ctx; 3971 struct sysctl_oid_list *children; 3972 int error; 3973 3974 ctx = device_get_sysctl_ctx(sc->rl_dev); 3975 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev)); 3976 3977 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats", 3978 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 3979 re_sysctl_stats, "I", "Statistics Information"); 3980 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) 3981 return; 3982 3983 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod", 3984 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 3985 &sc->rl_int_rx_mod, 0, sysctl_hw_re_int_mod, "I", 3986 "re RX interrupt moderation"); 3987 /* Pull in device tunables. */ 3988 sc->rl_int_rx_mod = RL_TIMER_DEFAULT; 3989 error = resource_int_value(device_get_name(sc->rl_dev), 3990 device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod); 3991 if (error == 0) { 3992 if (sc->rl_int_rx_mod < RL_TIMER_MIN || 3993 sc->rl_int_rx_mod > RL_TIMER_MAX) { 3994 device_printf(sc->rl_dev, "int_rx_mod value out of " 3995 "range; using default: %d\n", 3996 RL_TIMER_DEFAULT); 3997 sc->rl_int_rx_mod = RL_TIMER_DEFAULT; 3998 } 3999 } 4000 } 4001 4002 static int 4003 re_sysctl_stats(SYSCTL_HANDLER_ARGS) 4004 { 4005 struct rl_softc *sc; 4006 struct rl_stats *stats; 4007 int error, i, result; 4008 4009 result = -1; 4010 error = sysctl_handle_int(oidp, &result, 0, req); 4011 if (error || req->newptr == NULL) 4012 return (error); 4013 4014 if (result == 1) { 4015 sc = (struct rl_softc *)arg1; 4016 RL_LOCK(sc); 4017 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4018 RL_UNLOCK(sc); 4019 goto done; 4020 } 4021 bus_dmamap_sync(sc->rl_ldata.rl_stag, 4022 sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD); 4023 CSR_WRITE_4(sc, RL_DUMPSTATS_HI, 4024 RL_ADDR_HI(sc->rl_ldata.rl_stats_addr)); 4025 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 4026 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr)); 4027 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 4028 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr | 4029 RL_DUMPSTATS_START)); 4030 for (i = RL_TIMEOUT; i > 0; i--) { 4031 if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) & 4032 RL_DUMPSTATS_START) == 0) 4033 break; 4034 DELAY(1000); 4035 } 4036 bus_dmamap_sync(sc->rl_ldata.rl_stag, 4037 sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD); 4038 RL_UNLOCK(sc); 4039 if (i == 0) { 4040 device_printf(sc->rl_dev, 4041 "DUMP statistics request timed out\n"); 4042 return (ETIMEDOUT); 4043 } 4044 done: 4045 stats = sc->rl_ldata.rl_stats; 4046 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev)); 4047 printf("Tx frames : %ju\n", 4048 (uintmax_t)le64toh(stats->rl_tx_pkts)); 4049 printf("Rx frames : %ju\n", 4050 (uintmax_t)le64toh(stats->rl_rx_pkts)); 4051 printf("Tx errors : %ju\n", 4052 (uintmax_t)le64toh(stats->rl_tx_errs)); 4053 printf("Rx errors : %u\n", 4054 le32toh(stats->rl_rx_errs)); 4055 printf("Rx missed frames : %u\n", 4056 (uint32_t)le16toh(stats->rl_missed_pkts)); 4057 printf("Rx frame alignment errs : %u\n", 4058 (uint32_t)le16toh(stats->rl_rx_framealign_errs)); 4059 printf("Tx single collisions : %u\n", 4060 le32toh(stats->rl_tx_onecoll)); 4061 printf("Tx multiple collisions : %u\n", 4062 le32toh(stats->rl_tx_multicolls)); 4063 printf("Rx unicast frames : %ju\n", 4064 (uintmax_t)le64toh(stats->rl_rx_ucasts)); 4065 printf("Rx broadcast frames : %ju\n", 4066 (uintmax_t)le64toh(stats->rl_rx_bcasts)); 4067 printf("Rx multicast frames : %u\n", 4068 le32toh(stats->rl_rx_mcasts)); 4069 printf("Tx aborts : %u\n", 4070 (uint32_t)le16toh(stats->rl_tx_aborts)); 4071 printf("Tx underruns : %u\n", 4072 (uint32_t)le16toh(stats->rl_rx_underruns)); 4073 } 4074 4075 return (error); 4076 } 4077 4078 static int 4079 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4080 { 4081 int error, value; 4082 4083 if (arg1 == NULL) 4084 return (EINVAL); 4085 value = *(int *)arg1; 4086 error = sysctl_handle_int(oidp, &value, 0, req); 4087 if (error || req->newptr == NULL) 4088 return (error); 4089 if (value < low || value > high) 4090 return (EINVAL); 4091 *(int *)arg1 = value; 4092 4093 return (0); 4094 } 4095 4096 static int 4097 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS) 4098 { 4099 4100 return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN, 4101 RL_TIMER_MAX)); 4102 } 4103 4104 #ifdef DEBUGNET 4105 static void 4106 re_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) 4107 { 4108 struct rl_softc *sc; 4109 4110 sc = if_getsoftc(ifp); 4111 RL_LOCK(sc); 4112 *nrxr = sc->rl_ldata.rl_rx_desc_cnt; 4113 *ncl = DEBUGNET_MAX_IN_FLIGHT; 4114 *clsize = (ifp->if_mtu > RL_MTU && 4115 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) ? MJUM9BYTES : MCLBYTES; 4116 RL_UNLOCK(sc); 4117 } 4118 4119 static void 4120 re_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused) 4121 { 4122 } 4123 4124 static int 4125 re_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) 4126 { 4127 struct rl_softc *sc; 4128 int error; 4129 4130 sc = if_getsoftc(ifp); 4131 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4132 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) 4133 return (EBUSY); 4134 4135 error = re_encap(sc, &m); 4136 if (error == 0) 4137 re_start_tx(sc); 4138 return (error); 4139 } 4140 4141 static int 4142 re_debugnet_poll(struct ifnet *ifp, int count) 4143 { 4144 struct rl_softc *sc; 4145 int error; 4146 4147 sc = if_getsoftc(ifp); 4148 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 4149 (sc->rl_flags & RL_FLAG_LINK) == 0) 4150 return (EBUSY); 4151 4152 re_txeof(sc); 4153 error = re_rxeof(sc, NULL); 4154 if (error != 0 && error != EAGAIN) 4155 return (error); 4156 return (0); 4157 } 4158 #endif /* DEBUGNET */ 4159