xref: /freebsd/sys/dev/re/if_re.c (revision ca9ac06c99bfd0150b85d4d83c396ce6237c0e05)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/module.h>
118 #include <sys/kernel.h>
119 #include <sys/socket.h>
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/ethernet.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_vlan_var.h>
127 
128 #include <net/bpf.h>
129 
130 #include <machine/bus_pio.h>
131 #include <machine/bus_memio.h>
132 #include <machine/bus.h>
133 #include <machine/resource.h>
134 #include <sys/bus.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 MODULE_DEPEND(re, pci, 1, 1, 1);
144 MODULE_DEPEND(re, ether, 1, 1, 1);
145 MODULE_DEPEND(re, miibus, 1, 1, 1);
146 
147 /* "controller miibus0" required.  See GENERIC if you get errors here. */
148 #include "miibus_if.h"
149 
150 /*
151  * Default to using PIO access for this driver.
152  */
153 #define RE_USEIOSPACE
154 
155 #include <pci/if_rlreg.h>
156 
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158 
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static struct rl_type re_devs[] = {
163 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
164 		"RealTek 8139C+ 10/100BaseTX" },
165 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
166 		"RealTek 8169 Gigabit Ethernet" },
167 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
168 		"RealTek 8169S Single-chip Gigabit Ethernet" },
169 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB,
170 		"RealTek 8169SB Single-chip Gigabit Ethernet" },
171 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
172 		"RealTek 8110S Single-chip Gigabit Ethernet" },
173 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
174 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
175 	{ 0, 0, 0, NULL }
176 };
177 
178 static struct rl_hwrev re_hwrevs[] = {
179 	{ RL_HWREV_8139, RL_8139,  "" },
180 	{ RL_HWREV_8139A, RL_8139, "A" },
181 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
182 	{ RL_HWREV_8139B, RL_8139, "B" },
183 	{ RL_HWREV_8130, RL_8139, "8130" },
184 	{ RL_HWREV_8139C, RL_8139, "C" },
185 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
186 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
187 	{ RL_HWREV_8169, RL_8169, "8169"},
188 	{ RL_HWREV_8169S, RL_8169, "8169S"},
189 	{ RL_HWREV_8169SB, RL_8169, "8169SB"},
190 	{ RL_HWREV_8110S, RL_8169, "8110S"},
191 	{ RL_HWREV_8100, RL_8139, "8100"},
192 	{ RL_HWREV_8101, RL_8139, "8101"},
193 	{ 0, 0, NULL }
194 };
195 
196 static int re_probe		(device_t);
197 static int re_attach		(device_t);
198 static int re_detach		(device_t);
199 
200 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
201 
202 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
203 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
204 				    bus_size_t, int);
205 static int re_allocmem		(device_t, struct rl_softc *);
206 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
207 static int re_rx_list_init	(struct rl_softc *);
208 static int re_tx_list_init	(struct rl_softc *);
209 #ifdef RE_FIXUP_RX
210 static __inline void re_fixup_rx
211 				(struct mbuf *);
212 #endif
213 static void re_rxeof		(struct rl_softc *);
214 static void re_txeof		(struct rl_softc *);
215 #ifdef DEVICE_POLLING
216 static void re_poll		(struct ifnet *, enum poll_cmd, int);
217 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
218 #endif
219 static void re_intr		(void *);
220 static void re_tick		(void *);
221 static void re_tick_locked	(struct rl_softc *);
222 static void re_start		(struct ifnet *);
223 static void re_start_locked	(struct ifnet *);
224 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
225 static void re_init		(void *);
226 static void re_init_locked	(struct rl_softc *);
227 static void re_stop		(struct rl_softc *);
228 static void re_watchdog		(struct ifnet *);
229 static int re_suspend		(device_t);
230 static int re_resume		(device_t);
231 static void re_shutdown		(device_t);
232 static int re_ifmedia_upd	(struct ifnet *);
233 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
234 
235 static void re_eeprom_putbyte	(struct rl_softc *, int);
236 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
237 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
238 static int re_gmii_readreg	(device_t, int, int);
239 static int re_gmii_writereg	(device_t, int, int, int);
240 
241 static int re_miibus_readreg	(device_t, int, int);
242 static int re_miibus_writereg	(device_t, int, int, int);
243 static void re_miibus_statchg	(device_t);
244 
245 static void re_setmulti		(struct rl_softc *);
246 static void re_reset		(struct rl_softc *);
247 
248 static int re_diag		(struct rl_softc *);
249 
250 #ifdef RE_USEIOSPACE
251 #define RL_RES			SYS_RES_IOPORT
252 #define RL_RID			RL_PCI_LOIO
253 #else
254 #define RL_RES			SYS_RES_MEMORY
255 #define RL_RID			RL_PCI_LOMEM
256 #endif
257 
258 static device_method_t re_methods[] = {
259 	/* Device interface */
260 	DEVMETHOD(device_probe,		re_probe),
261 	DEVMETHOD(device_attach,	re_attach),
262 	DEVMETHOD(device_detach,	re_detach),
263 	DEVMETHOD(device_suspend,	re_suspend),
264 	DEVMETHOD(device_resume,	re_resume),
265 	DEVMETHOD(device_shutdown,	re_shutdown),
266 
267 	/* bus interface */
268 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270 
271 	/* MII interface */
272 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
273 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
274 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
275 
276 	{ 0, 0 }
277 };
278 
279 static driver_t re_driver = {
280 	"re",
281 	re_methods,
282 	sizeof(struct rl_softc)
283 };
284 
285 static devclass_t re_devclass;
286 
287 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
288 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
289 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
290 
291 #define EE_SET(x)					\
292 	CSR_WRITE_1(sc, RL_EECMD,			\
293 		CSR_READ_1(sc, RL_EECMD) | x)
294 
295 #define EE_CLR(x)					\
296 	CSR_WRITE_1(sc, RL_EECMD,			\
297 		CSR_READ_1(sc, RL_EECMD) & ~x)
298 
299 /*
300  * Send a read command and address to the EEPROM, check for ACK.
301  */
302 static void
303 re_eeprom_putbyte(sc, addr)
304 	struct rl_softc		*sc;
305 	int			addr;
306 {
307 	register int		d, i;
308 
309 	d = addr | sc->rl_eecmd_read;
310 
311 	/*
312 	 * Feed in each bit and strobe the clock.
313 	 */
314 	for (i = 0x400; i; i >>= 1) {
315 		if (d & i) {
316 			EE_SET(RL_EE_DATAIN);
317 		} else {
318 			EE_CLR(RL_EE_DATAIN);
319 		}
320 		DELAY(100);
321 		EE_SET(RL_EE_CLK);
322 		DELAY(150);
323 		EE_CLR(RL_EE_CLK);
324 		DELAY(100);
325 	}
326 }
327 
328 /*
329  * Read a word of data stored in the EEPROM at address 'addr.'
330  */
331 static void
332 re_eeprom_getword(sc, addr, dest)
333 	struct rl_softc		*sc;
334 	int			addr;
335 	u_int16_t		*dest;
336 {
337 	register int		i;
338 	u_int16_t		word = 0;
339 
340 	/* Enter EEPROM access mode. */
341 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
342 
343 	/*
344 	 * Send address of word we want to read.
345 	 */
346 	re_eeprom_putbyte(sc, addr);
347 
348 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
349 
350 	/*
351 	 * Start reading bits from EEPROM.
352 	 */
353 	for (i = 0x8000; i; i >>= 1) {
354 		EE_SET(RL_EE_CLK);
355 		DELAY(100);
356 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
357 			word |= i;
358 		EE_CLR(RL_EE_CLK);
359 		DELAY(100);
360 	}
361 
362 	/* Turn off EEPROM access mode. */
363 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
364 
365 	*dest = word;
366 }
367 
368 /*
369  * Read a sequence of words from the EEPROM.
370  */
371 static void
372 re_read_eeprom(sc, dest, off, cnt, swap)
373 	struct rl_softc		*sc;
374 	caddr_t			dest;
375 	int			off;
376 	int			cnt;
377 	int			swap;
378 {
379 	int			i;
380 	u_int16_t		word = 0, *ptr;
381 
382 	for (i = 0; i < cnt; i++) {
383 		re_eeprom_getword(sc, off + i, &word);
384 		ptr = (u_int16_t *)(dest + (i * 2));
385 		if (swap)
386 			*ptr = ntohs(word);
387 		else
388 			*ptr = word;
389 	}
390 }
391 
392 static int
393 re_gmii_readreg(dev, phy, reg)
394 	device_t		dev;
395 	int			phy, reg;
396 {
397 	struct rl_softc		*sc;
398 	u_int32_t		rval;
399 	int			i;
400 
401 	if (phy != 1)
402 		return (0);
403 
404 	sc = device_get_softc(dev);
405 
406 	/* Let the rgephy driver read the GMEDIASTAT register */
407 
408 	if (reg == RL_GMEDIASTAT) {
409 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
410 		return (rval);
411 	}
412 
413 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
414 	DELAY(1000);
415 
416 	for (i = 0; i < RL_TIMEOUT; i++) {
417 		rval = CSR_READ_4(sc, RL_PHYAR);
418 		if (rval & RL_PHYAR_BUSY)
419 			break;
420 		DELAY(100);
421 	}
422 
423 	if (i == RL_TIMEOUT) {
424 		printf ("re%d: PHY read failed\n", sc->rl_unit);
425 		return (0);
426 	}
427 
428 	return (rval & RL_PHYAR_PHYDATA);
429 }
430 
431 static int
432 re_gmii_writereg(dev, phy, reg, data)
433 	device_t		dev;
434 	int			phy, reg, data;
435 {
436 	struct rl_softc		*sc;
437 	u_int32_t		rval;
438 	int			i;
439 
440 	sc = device_get_softc(dev);
441 
442 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
443 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
444 	DELAY(1000);
445 
446 	for (i = 0; i < RL_TIMEOUT; i++) {
447 		rval = CSR_READ_4(sc, RL_PHYAR);
448 		if (!(rval & RL_PHYAR_BUSY))
449 			break;
450 		DELAY(100);
451 	}
452 
453 	if (i == RL_TIMEOUT) {
454 		printf ("re%d: PHY write failed\n", sc->rl_unit);
455 		return (0);
456 	}
457 
458 	return (0);
459 }
460 
461 static int
462 re_miibus_readreg(dev, phy, reg)
463 	device_t		dev;
464 	int			phy, reg;
465 {
466 	struct rl_softc		*sc;
467 	u_int16_t		rval = 0;
468 	u_int16_t		re8139_reg = 0;
469 
470 	sc = device_get_softc(dev);
471 
472 	if (sc->rl_type == RL_8169) {
473 		rval = re_gmii_readreg(dev, phy, reg);
474 		return (rval);
475 	}
476 
477 	/* Pretend the internal PHY is only at address 0 */
478 	if (phy) {
479 		return (0);
480 	}
481 	switch (reg) {
482 	case MII_BMCR:
483 		re8139_reg = RL_BMCR;
484 		break;
485 	case MII_BMSR:
486 		re8139_reg = RL_BMSR;
487 		break;
488 	case MII_ANAR:
489 		re8139_reg = RL_ANAR;
490 		break;
491 	case MII_ANER:
492 		re8139_reg = RL_ANER;
493 		break;
494 	case MII_ANLPAR:
495 		re8139_reg = RL_LPAR;
496 		break;
497 	case MII_PHYIDR1:
498 	case MII_PHYIDR2:
499 		return (0);
500 	/*
501 	 * Allow the rlphy driver to read the media status
502 	 * register. If we have a link partner which does not
503 	 * support NWAY, this is the register which will tell
504 	 * us the results of parallel detection.
505 	 */
506 	case RL_MEDIASTAT:
507 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
508 		return (rval);
509 	default:
510 		printf("re%d: bad phy register\n", sc->rl_unit);
511 		return (0);
512 	}
513 	rval = CSR_READ_2(sc, re8139_reg);
514 	return (rval);
515 }
516 
517 static int
518 re_miibus_writereg(dev, phy, reg, data)
519 	device_t		dev;
520 	int			phy, reg, data;
521 {
522 	struct rl_softc		*sc;
523 	u_int16_t		re8139_reg = 0;
524 	int			rval = 0;
525 
526 	sc = device_get_softc(dev);
527 
528 	if (sc->rl_type == RL_8169) {
529 		rval = re_gmii_writereg(dev, phy, reg, data);
530 		return (rval);
531 	}
532 
533 	/* Pretend the internal PHY is only at address 0 */
534 	if (phy)
535 		return (0);
536 
537 	switch (reg) {
538 	case MII_BMCR:
539 		re8139_reg = RL_BMCR;
540 		break;
541 	case MII_BMSR:
542 		re8139_reg = RL_BMSR;
543 		break;
544 	case MII_ANAR:
545 		re8139_reg = RL_ANAR;
546 		break;
547 	case MII_ANER:
548 		re8139_reg = RL_ANER;
549 		break;
550 	case MII_ANLPAR:
551 		re8139_reg = RL_LPAR;
552 		break;
553 	case MII_PHYIDR1:
554 	case MII_PHYIDR2:
555 		return (0);
556 		break;
557 	default:
558 		printf("re%d: bad phy register\n", sc->rl_unit);
559 		return (0);
560 	}
561 	CSR_WRITE_2(sc, re8139_reg, data);
562 	return (0);
563 }
564 
565 static void
566 re_miibus_statchg(dev)
567 	device_t		dev;
568 {
569 
570 }
571 
572 /*
573  * Program the 64-bit multicast hash filter.
574  */
575 static void
576 re_setmulti(sc)
577 	struct rl_softc		*sc;
578 {
579 	struct ifnet		*ifp;
580 	int			h = 0;
581 	u_int32_t		hashes[2] = { 0, 0 };
582 	struct ifmultiaddr	*ifma;
583 	u_int32_t		rxfilt;
584 	int			mcnt = 0;
585 
586 	RL_LOCK_ASSERT(sc);
587 
588 	ifp = &sc->arpcom.ac_if;
589 
590 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
591 
592 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
593 		rxfilt |= RL_RXCFG_RX_MULTI;
594 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
595 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
596 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
597 		return;
598 	}
599 
600 	/* first, zot all the existing hash bits */
601 	CSR_WRITE_4(sc, RL_MAR0, 0);
602 	CSR_WRITE_4(sc, RL_MAR4, 0);
603 
604 	/* now program new ones */
605 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
606 		if (ifma->ifma_addr->sa_family != AF_LINK)
607 			continue;
608 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
609 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
610 		if (h < 32)
611 			hashes[0] |= (1 << h);
612 		else
613 			hashes[1] |= (1 << (h - 32));
614 		mcnt++;
615 	}
616 
617 	if (mcnt)
618 		rxfilt |= RL_RXCFG_RX_MULTI;
619 	else
620 		rxfilt &= ~RL_RXCFG_RX_MULTI;
621 
622 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
623 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
624 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
625 }
626 
627 static void
628 re_reset(sc)
629 	struct rl_softc		*sc;
630 {
631 	register int		i;
632 
633 	RL_LOCK_ASSERT(sc);
634 
635 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
636 
637 	for (i = 0; i < RL_TIMEOUT; i++) {
638 		DELAY(10);
639 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
640 			break;
641 	}
642 	if (i == RL_TIMEOUT)
643 		printf("re%d: reset never completed!\n", sc->rl_unit);
644 
645 	CSR_WRITE_1(sc, 0x82, 1);
646 }
647 
648 /*
649  * The following routine is designed to test for a defect on some
650  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
651  * lines connected to the bus, however for a 32-bit only card, they
652  * should be pulled high. The result of this defect is that the
653  * NIC will not work right if you plug it into a 64-bit slot: DMA
654  * operations will be done with 64-bit transfers, which will fail
655  * because the 64-bit data lines aren't connected.
656  *
657  * There's no way to work around this (short of talking a soldering
658  * iron to the board), however we can detect it. The method we use
659  * here is to put the NIC into digital loopback mode, set the receiver
660  * to promiscuous mode, and then try to send a frame. We then compare
661  * the frame data we sent to what was received. If the data matches,
662  * then the NIC is working correctly, otherwise we know the user has
663  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
664  * slot. In the latter case, there's no way the NIC can work correctly,
665  * so we print out a message on the console and abort the device attach.
666  */
667 
668 static int
669 re_diag(sc)
670 	struct rl_softc		*sc;
671 {
672 	struct ifnet		*ifp = &sc->arpcom.ac_if;
673 	struct mbuf		*m0;
674 	struct ether_header	*eh;
675 	struct rl_desc		*cur_rx;
676 	u_int16_t		status;
677 	u_int32_t		rxstat;
678 	int			total_len, i, error = 0;
679 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
680 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
681 
682 	/* Allocate a single mbuf */
683 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
684 	if (m0 == NULL)
685 		return (ENOBUFS);
686 
687 	RL_LOCK(sc);
688 
689 	/*
690 	 * Initialize the NIC in test mode. This sets the chip up
691 	 * so that it can send and receive frames, but performs the
692 	 * following special functions:
693 	 * - Puts receiver in promiscuous mode
694 	 * - Enables digital loopback mode
695 	 * - Leaves interrupts turned off
696 	 */
697 
698 	ifp->if_flags |= IFF_PROMISC;
699 	sc->rl_testmode = 1;
700 	re_init_locked(sc);
701 	re_stop(sc);
702 	DELAY(100000);
703 	re_init_locked(sc);
704 
705 	/* Put some data in the mbuf */
706 
707 	eh = mtod(m0, struct ether_header *);
708 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
709 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
710 	eh->ether_type = htons(ETHERTYPE_IP);
711 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
712 
713 	/*
714 	 * Queue the packet, start transmission.
715 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
716 	 */
717 
718 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
719 	RL_UNLOCK(sc);
720 	/* XXX: re_diag must not be called when in ALTQ mode */
721 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
722 	RL_LOCK(sc);
723 	m0 = NULL;
724 
725 	/* Wait for it to propagate through the chip */
726 
727 	DELAY(100000);
728 	for (i = 0; i < RL_TIMEOUT; i++) {
729 		status = CSR_READ_2(sc, RL_ISR);
730 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
731 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
732 			break;
733 		DELAY(10);
734 	}
735 
736 	if (i == RL_TIMEOUT) {
737 		printf("re%d: diagnostic failed, failed to receive packet "
738 		    "in loopback mode\n", sc->rl_unit);
739 		error = EIO;
740 		goto done;
741 	}
742 
743 	/*
744 	 * The packet should have been dumped into the first
745 	 * entry in the RX DMA ring. Grab it from there.
746 	 */
747 
748 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
749 	    sc->rl_ldata.rl_rx_list_map,
750 	    BUS_DMASYNC_POSTREAD);
751 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
752 	    sc->rl_ldata.rl_rx_dmamap[0],
753 	    BUS_DMASYNC_POSTWRITE);
754 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
755 	    sc->rl_ldata.rl_rx_dmamap[0]);
756 
757 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
758 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
759 	eh = mtod(m0, struct ether_header *);
760 
761 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
762 	total_len = RL_RXBYTES(cur_rx);
763 	rxstat = le32toh(cur_rx->rl_cmdstat);
764 
765 	if (total_len != ETHER_MIN_LEN) {
766 		printf("re%d: diagnostic failed, received short packet\n",
767 		    sc->rl_unit);
768 		error = EIO;
769 		goto done;
770 	}
771 
772 	/* Test that the received packet data matches what we sent. */
773 
774 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
775 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
776 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
777 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
778 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
779 		    dst, ":", src, ":", ETHERTYPE_IP);
780 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
781 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
782 		    ntohs(eh->ether_type));
783 		printf("re%d: You may have a defective 32-bit NIC plugged "
784 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
785 		printf("re%d: Please re-install the NIC in a 32-bit slot "
786 		    "for proper operation.\n", sc->rl_unit);
787 		printf("re%d: Read the re(4) man page for more details.\n",
788 		    sc->rl_unit);
789 		error = EIO;
790 	}
791 
792 done:
793 	/* Turn interface off, release resources */
794 
795 	sc->rl_testmode = 0;
796 	ifp->if_flags &= ~IFF_PROMISC;
797 	re_stop(sc);
798 	if (m0 != NULL)
799 		m_freem(m0);
800 
801 	RL_UNLOCK(sc);
802 
803 	return (error);
804 }
805 
806 /*
807  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
808  * IDs against our list and return a device name if we find a match.
809  */
810 static int
811 re_probe(dev)
812 	device_t		dev;
813 {
814 	struct rl_type		*t;
815 	struct rl_softc		*sc;
816 	int			rid;
817 	u_int32_t		hwrev;
818 
819 	t = re_devs;
820 	sc = device_get_softc(dev);
821 
822 	while (t->rl_name != NULL) {
823 		if ((pci_get_vendor(dev) == t->rl_vid) &&
824 		    (pci_get_device(dev) == t->rl_did)) {
825 
826 			/*
827 			 * Temporarily map the I/O space
828 			 * so we can read the chip ID register.
829 			 */
830 			rid = RL_RID;
831 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
832 			    RF_ACTIVE);
833 			if (sc->rl_res == NULL) {
834 				device_printf(dev,
835 				    "couldn't map ports/memory\n");
836 				return (ENXIO);
837 			}
838 			sc->rl_btag = rman_get_bustag(sc->rl_res);
839 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
840 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
841 			bus_release_resource(dev, RL_RES,
842 			    RL_RID, sc->rl_res);
843 			if (t->rl_basetype == hwrev) {
844 				device_set_desc(dev, t->rl_name);
845 				return (BUS_PROBE_DEFAULT);
846 			}
847 		}
848 		t++;
849 	}
850 
851 	return (ENXIO);
852 }
853 
854 /*
855  * This routine takes the segment list provided as the result of
856  * a bus_dma_map_load() operation and assigns the addresses/lengths
857  * to RealTek DMA descriptors. This can be called either by the RX
858  * code or the TX code. In the RX case, we'll probably wind up mapping
859  * at most one segment. For the TX case, there could be any number of
860  * segments since TX packets may span multiple mbufs. In either case,
861  * if the number of segments is larger than the rl_maxsegs limit
862  * specified by the caller, we abort the mapping operation. Sadly,
863  * whoever designed the buffer mapping API did not provide a way to
864  * return an error from here, so we have to fake it a bit.
865  */
866 
867 static void
868 re_dma_map_desc(arg, segs, nseg, mapsize, error)
869 	void			*arg;
870 	bus_dma_segment_t	*segs;
871 	int			nseg;
872 	bus_size_t		mapsize;
873 	int			error;
874 {
875 	struct rl_dmaload_arg	*ctx;
876 	struct rl_desc		*d = NULL;
877 	int			i = 0, idx;
878 
879 	if (error)
880 		return;
881 
882 	ctx = arg;
883 
884 	/* Signal error to caller if there's too many segments */
885 	if (nseg > ctx->rl_maxsegs) {
886 		ctx->rl_maxsegs = 0;
887 		return;
888 	}
889 
890 	/*
891 	 * Map the segment array into descriptors. Note that we set the
892 	 * start-of-frame and end-of-frame markers for either TX or RX, but
893 	 * they really only have meaning in the TX case. (In the RX case,
894 	 * it's the chip that tells us where packets begin and end.)
895 	 * We also keep track of the end of the ring and set the
896 	 * end-of-ring bits as needed, and we set the ownership bits
897 	 * in all except the very first descriptor. (The caller will
898 	 * set this descriptor later when it start transmission or
899 	 * reception.)
900 	 */
901 	idx = ctx->rl_idx;
902 	for (;;) {
903 		u_int32_t		cmdstat;
904 		d = &ctx->rl_ring[idx];
905 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
906 			ctx->rl_maxsegs = 0;
907 			return;
908 		}
909 		cmdstat = segs[i].ds_len;
910 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
911 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
912 		if (i == 0)
913 			cmdstat |= RL_TDESC_CMD_SOF;
914 		else
915 			cmdstat |= RL_TDESC_CMD_OWN;
916 		if (idx == (RL_RX_DESC_CNT - 1))
917 			cmdstat |= RL_TDESC_CMD_EOR;
918 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
919 		i++;
920 		if (i == nseg)
921 			break;
922 		RL_DESC_INC(idx);
923 	}
924 
925 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
926 	ctx->rl_maxsegs = nseg;
927 	ctx->rl_idx = idx;
928 }
929 
930 /*
931  * Map a single buffer address.
932  */
933 
934 static void
935 re_dma_map_addr(arg, segs, nseg, error)
936 	void			*arg;
937 	bus_dma_segment_t	*segs;
938 	int			nseg;
939 	int			error;
940 {
941 	u_int32_t		*addr;
942 
943 	if (error)
944 		return;
945 
946 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
947 	addr = arg;
948 	*addr = segs->ds_addr;
949 }
950 
951 static int
952 re_allocmem(dev, sc)
953 	device_t		dev;
954 	struct rl_softc		*sc;
955 {
956 	int			error;
957 	int			nseg;
958 	int			i;
959 
960 	/*
961 	 * Allocate map for RX mbufs.
962 	 */
963 	nseg = 32;
964 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
965 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
966 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
967 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
968 	if (error) {
969 		device_printf(dev, "could not allocate dma tag\n");
970 		return (ENOMEM);
971 	}
972 
973 	/*
974 	 * Allocate map for TX descriptor list.
975 	 */
976 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
977 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
978 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
979 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
980 	if (error) {
981 		device_printf(dev, "could not allocate dma tag\n");
982 		return (ENOMEM);
983 	}
984 
985 	/* Allocate DMA'able memory for the TX ring */
986 
987 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
988 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
989 	    &sc->rl_ldata.rl_tx_list_map);
990 	if (error)
991 		return (ENOMEM);
992 
993 	/* Load the map for the TX ring. */
994 
995 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
996 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
997 	     RL_TX_LIST_SZ, re_dma_map_addr,
998 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
999 
1000 	/* Create DMA maps for TX buffers */
1001 
1002 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1003 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1004 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1005 		if (error) {
1006 			device_printf(dev, "can't create DMA map for TX\n");
1007 			return (ENOMEM);
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * Allocate map for RX descriptor list.
1013 	 */
1014 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1015 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1016 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1017 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1018 	if (error) {
1019 		device_printf(dev, "could not allocate dma tag\n");
1020 		return (ENOMEM);
1021 	}
1022 
1023 	/* Allocate DMA'able memory for the RX ring */
1024 
1025 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1026 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1027 	    &sc->rl_ldata.rl_rx_list_map);
1028 	if (error)
1029 		return (ENOMEM);
1030 
1031 	/* Load the map for the RX ring. */
1032 
1033 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1034 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1035 	     RL_RX_LIST_SZ, re_dma_map_addr,
1036 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1037 
1038 	/* Create DMA maps for RX buffers */
1039 
1040 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1041 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1042 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1043 		if (error) {
1044 			device_printf(dev, "can't create DMA map for RX\n");
1045 			return (ENOMEM);
1046 		}
1047 	}
1048 
1049 	return (0);
1050 }
1051 
1052 /*
1053  * Attach the interface. Allocate softc structures, do ifmedia
1054  * setup and ethernet/BPF attach.
1055  */
1056 static int
1057 re_attach(dev)
1058 	device_t		dev;
1059 {
1060 	u_char			eaddr[ETHER_ADDR_LEN];
1061 	u_int16_t		as[3];
1062 	struct rl_softc		*sc;
1063 	struct ifnet		*ifp;
1064 	struct rl_hwrev		*hw_rev;
1065 	int			hwrev;
1066 	u_int16_t		re_did = 0;
1067 	int			unit, error = 0, rid, i;
1068 
1069 	sc = device_get_softc(dev);
1070 	unit = device_get_unit(dev);
1071 
1072 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1073 	    MTX_DEF);
1074 	/*
1075 	 * Map control/status registers.
1076 	 */
1077 	pci_enable_busmaster(dev);
1078 
1079 	rid = RL_RID;
1080 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1081 	    RF_ACTIVE);
1082 
1083 	if (sc->rl_res == NULL) {
1084 		printf ("re%d: couldn't map ports/memory\n", unit);
1085 		error = ENXIO;
1086 		goto fail;
1087 	}
1088 
1089 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1090 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1091 
1092 	/* Allocate interrupt */
1093 	rid = 0;
1094 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1095 	    RF_SHAREABLE | RF_ACTIVE);
1096 
1097 	if (sc->rl_irq == NULL) {
1098 		printf("re%d: couldn't map interrupt\n", unit);
1099 		error = ENXIO;
1100 		goto fail;
1101 	}
1102 
1103 	/* Reset the adapter. */
1104 	RL_LOCK(sc);
1105 	re_reset(sc);
1106 	RL_UNLOCK(sc);
1107 
1108 	hw_rev = re_hwrevs;
1109 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1110 	while (hw_rev->rl_desc != NULL) {
1111 		if (hw_rev->rl_rev == hwrev) {
1112 			sc->rl_type = hw_rev->rl_type;
1113 			break;
1114 		}
1115 		hw_rev++;
1116 	}
1117 
1118 	if (sc->rl_type == RL_8169) {
1119 
1120 		/* Set RX length mask */
1121 
1122 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1123 
1124 		/* Force station address autoload from the EEPROM */
1125 
1126 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1127 		for (i = 0; i < RL_TIMEOUT; i++) {
1128 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1129 				break;
1130 			DELAY(100);
1131 		}
1132 		if (i == RL_TIMEOUT)
1133 			printf ("re%d: eeprom autoload timed out\n", unit);
1134 
1135 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1136 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1137 	} else {
1138 
1139 		/* Set RX length mask */
1140 
1141 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1142 
1143 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1144 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1145 		if (re_did != 0x8129)
1146 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1147 
1148 		/*
1149 		 * Get station address from the EEPROM.
1150 		 */
1151 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1152 		for (i = 0; i < 3; i++) {
1153 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1154 			eaddr[(i * 2) + 1] = as[i] >> 8;
1155 		}
1156 	}
1157 
1158 	sc->rl_unit = unit;
1159 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1160 
1161 	/*
1162 	 * Allocate the parent bus DMA tag appropriate for PCI.
1163 	 */
1164 #define RL_NSEG_NEW 32
1165 	error = bus_dma_tag_create(NULL,	/* parent */
1166 			1, 0,			/* alignment, boundary */
1167 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1168 			BUS_SPACE_MAXADDR,	/* highaddr */
1169 			NULL, NULL,		/* filter, filterarg */
1170 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1171 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1172 			BUS_DMA_ALLOCNOW,	/* flags */
1173 			NULL, NULL,		/* lockfunc, lockarg */
1174 			&sc->rl_parent_tag);
1175 	if (error)
1176 		goto fail;
1177 
1178 	error = re_allocmem(dev, sc);
1179 
1180 	if (error)
1181 		goto fail;
1182 
1183 	/* Do MII setup */
1184 	if (mii_phy_probe(dev, &sc->rl_miibus,
1185 	    re_ifmedia_upd, re_ifmedia_sts)) {
1186 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1187 		error = ENXIO;
1188 		goto fail;
1189 	}
1190 
1191 	ifp = &sc->arpcom.ac_if;
1192 	ifp->if_softc = sc;
1193 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1194 	ifp->if_mtu = ETHERMTU;
1195 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1196 	ifp->if_ioctl = re_ioctl;
1197 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1198 	ifp->if_start = re_start;
1199 	ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
1200 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1201 #ifdef DEVICE_POLLING
1202 	ifp->if_capabilities |= IFCAP_POLLING;
1203 #endif
1204 	ifp->if_watchdog = re_watchdog;
1205 	ifp->if_init = re_init;
1206 	if (sc->rl_type == RL_8169)
1207 		ifp->if_baudrate = 1000000000;
1208 	else
1209 		ifp->if_baudrate = 100000000;
1210 	IFQ_SET_MAXLEN(&ifp->if_snd,  RL_IFQ_MAXLEN);
1211 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1212 	IFQ_SET_READY(&ifp->if_snd);
1213 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1214 
1215 	callout_handle_init(&sc->rl_stat_ch);
1216 
1217 	/*
1218 	 * Call MI attach routine.
1219 	 */
1220 	ether_ifattach(ifp, eaddr);
1221 
1222 	/* Perform hardware diagnostic. */
1223 	error = re_diag(sc);
1224 
1225 	if (error) {
1226 		printf("re%d: attach aborted due to hardware diag failure\n",
1227 		    unit);
1228 		ether_ifdetach(ifp);
1229 		goto fail;
1230 	}
1231 
1232 	/* Hook interrupt last to avoid having to lock softc */
1233 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1234 	    re_intr, sc, &sc->rl_intrhand);
1235 	if (error) {
1236 		printf("re%d: couldn't set up irq\n", unit);
1237 		ether_ifdetach(ifp);
1238 	}
1239 
1240 fail:
1241 	if (error)
1242 		re_detach(dev);
1243 
1244 	return (error);
1245 }
1246 
1247 /*
1248  * Shutdown hardware and free up resources. This can be called any
1249  * time after the mutex has been initialized. It is called in both
1250  * the error case in attach and the normal detach case so it needs
1251  * to be careful about only freeing resources that have actually been
1252  * allocated.
1253  */
1254 static int
1255 re_detach(dev)
1256 	device_t		dev;
1257 {
1258 	struct rl_softc		*sc;
1259 	struct ifnet		*ifp;
1260 	int			i;
1261 	int			attached;
1262 
1263 	sc = device_get_softc(dev);
1264 	ifp = &sc->arpcom.ac_if;
1265 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1266 
1267 	attached = device_is_attached(dev);
1268 	/* These should only be active if attach succeeded */
1269 	if (attached)
1270 		ether_ifdetach(ifp);
1271 
1272 	RL_LOCK(sc);
1273 #if 0
1274 	sc->suspended = 1;
1275 #endif
1276 
1277 	/* These should only be active if attach succeeded */
1278 	if (attached) {
1279 		re_stop(sc);
1280 		/*
1281 		 * Force off the IFF_UP flag here, in case someone
1282 		 * still had a BPF descriptor attached to this
1283 		 * interface. If they do, ether_ifdetach() will cause
1284 		 * the BPF code to try and clear the promisc mode
1285 		 * flag, which will bubble down to re_ioctl(),
1286 		 * which will try to call re_init() again. This will
1287 		 * turn the NIC back on and restart the MII ticker,
1288 		 * which will panic the system when the kernel tries
1289 		 * to invoke the re_tick() function that isn't there
1290 		 * anymore.
1291 		 */
1292 		ifp->if_flags &= ~IFF_UP;
1293 	}
1294 	if (sc->rl_miibus)
1295 		device_delete_child(dev, sc->rl_miibus);
1296 	bus_generic_detach(dev);
1297 
1298 	/*
1299 	 * The rest is resource deallocation, so we should already be
1300 	 * stopped here.
1301 	 */
1302 	RL_UNLOCK(sc);
1303 
1304 	if (sc->rl_intrhand)
1305 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1306 	if (sc->rl_irq)
1307 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1308 	if (sc->rl_res)
1309 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1310 
1311 
1312 	/* Unload and free the RX DMA ring memory and map */
1313 
1314 	if (sc->rl_ldata.rl_rx_list_tag) {
1315 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1316 		    sc->rl_ldata.rl_rx_list_map);
1317 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1318 		    sc->rl_ldata.rl_rx_list,
1319 		    sc->rl_ldata.rl_rx_list_map);
1320 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1321 	}
1322 
1323 	/* Unload and free the TX DMA ring memory and map */
1324 
1325 	if (sc->rl_ldata.rl_tx_list_tag) {
1326 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1327 		    sc->rl_ldata.rl_tx_list_map);
1328 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1329 		    sc->rl_ldata.rl_tx_list,
1330 		    sc->rl_ldata.rl_tx_list_map);
1331 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1332 	}
1333 
1334 	/* Destroy all the RX and TX buffer maps */
1335 
1336 	if (sc->rl_ldata.rl_mtag) {
1337 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1338 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1339 			    sc->rl_ldata.rl_tx_dmamap[i]);
1340 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1341 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1342 			    sc->rl_ldata.rl_rx_dmamap[i]);
1343 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1344 	}
1345 
1346 	/* Unload and free the stats buffer and map */
1347 
1348 	if (sc->rl_ldata.rl_stag) {
1349 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1350 		    sc->rl_ldata.rl_rx_list_map);
1351 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1352 		    sc->rl_ldata.rl_stats,
1353 		    sc->rl_ldata.rl_smap);
1354 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1355 	}
1356 
1357 	if (sc->rl_parent_tag)
1358 		bus_dma_tag_destroy(sc->rl_parent_tag);
1359 
1360 	mtx_destroy(&sc->rl_mtx);
1361 
1362 	return (0);
1363 }
1364 
1365 static int
1366 re_newbuf(sc, idx, m)
1367 	struct rl_softc		*sc;
1368 	int			idx;
1369 	struct mbuf		*m;
1370 {
1371 	struct rl_dmaload_arg	arg;
1372 	struct mbuf		*n = NULL;
1373 	int			error;
1374 
1375 	if (m == NULL) {
1376 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1377 		if (n == NULL)
1378 			return (ENOBUFS);
1379 		m = n;
1380 	} else
1381 		m->m_data = m->m_ext.ext_buf;
1382 
1383 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1384 #ifdef RE_FIXUP_RX
1385 	/*
1386 	 * This is part of an evil trick to deal with non-x86 platforms.
1387 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1388 	 * boundaries, but that will hose non-x86 machines. To get around
1389 	 * this, we leave some empty space at the start of each buffer
1390 	 * and for non-x86 hosts, we copy the buffer back six bytes
1391 	 * to achieve word alignment. This is slightly more efficient
1392 	 * than allocating a new buffer, copying the contents, and
1393 	 * discarding the old buffer.
1394 	 */
1395 	m_adj(m, RE_ETHER_ALIGN);
1396 #endif
1397 	arg.sc = sc;
1398 	arg.rl_idx = idx;
1399 	arg.rl_maxsegs = 1;
1400 	arg.rl_flags = 0;
1401 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1402 
1403 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1404 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1405 	    &arg, BUS_DMA_NOWAIT);
1406 	if (error || arg.rl_maxsegs != 1) {
1407 		if (n != NULL)
1408 			m_freem(n);
1409 		return (ENOMEM);
1410 	}
1411 
1412 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1413 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1414 
1415 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1416 	    sc->rl_ldata.rl_rx_dmamap[idx],
1417 	    BUS_DMASYNC_PREREAD);
1418 
1419 	return (0);
1420 }
1421 
1422 #ifdef RE_FIXUP_RX
1423 static __inline void
1424 re_fixup_rx(m)
1425 	struct mbuf		*m;
1426 {
1427 	int                     i;
1428 	uint16_t                *src, *dst;
1429 
1430 	src = mtod(m, uint16_t *);
1431 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1432 
1433 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1434 		*dst++ = *src++;
1435 
1436 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1437 
1438 	return;
1439 }
1440 #endif
1441 
1442 static int
1443 re_tx_list_init(sc)
1444 	struct rl_softc		*sc;
1445 {
1446 
1447 	RL_LOCK_ASSERT(sc);
1448 
1449 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1450 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1451 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1452 
1453 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1454 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1455 	sc->rl_ldata.rl_tx_prodidx = 0;
1456 	sc->rl_ldata.rl_tx_considx = 0;
1457 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1458 
1459 	return (0);
1460 }
1461 
1462 static int
1463 re_rx_list_init(sc)
1464 	struct rl_softc		*sc;
1465 {
1466 	int			i;
1467 
1468 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1469 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1470 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1471 
1472 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1473 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1474 			return (ENOBUFS);
1475 	}
1476 
1477 	/* Flush the RX descriptors */
1478 
1479 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1480 	    sc->rl_ldata.rl_rx_list_map,
1481 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1482 
1483 	sc->rl_ldata.rl_rx_prodidx = 0;
1484 	sc->rl_head = sc->rl_tail = NULL;
1485 
1486 	return (0);
1487 }
1488 
1489 /*
1490  * RX handler for C+ and 8169. For the gigE chips, we support
1491  * the reception of jumbo frames that have been fragmented
1492  * across multiple 2K mbuf cluster buffers.
1493  */
1494 static void
1495 re_rxeof(sc)
1496 	struct rl_softc		*sc;
1497 {
1498 	struct mbuf		*m;
1499 	struct ifnet		*ifp;
1500 	int			i, total_len;
1501 	struct rl_desc		*cur_rx;
1502 	u_int32_t		rxstat, rxvlan;
1503 
1504 	RL_LOCK_ASSERT(sc);
1505 
1506 	ifp = &sc->arpcom.ac_if;
1507 	i = sc->rl_ldata.rl_rx_prodidx;
1508 
1509 	/* Invalidate the descriptor memory */
1510 
1511 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1512 	    sc->rl_ldata.rl_rx_list_map,
1513 	    BUS_DMASYNC_POSTREAD);
1514 
1515 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1516 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1517 		m = sc->rl_ldata.rl_rx_mbuf[i];
1518 		total_len = RL_RXBYTES(cur_rx);
1519 		rxstat = le32toh(cur_rx->rl_cmdstat);
1520 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1521 
1522 		/* Invalidate the RX mbuf and unload its map */
1523 
1524 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1525 		    sc->rl_ldata.rl_rx_dmamap[i],
1526 		    BUS_DMASYNC_POSTWRITE);
1527 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1528 		    sc->rl_ldata.rl_rx_dmamap[i]);
1529 
1530 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1531 			m->m_len = RE_RX_DESC_BUFLEN;
1532 			if (sc->rl_head == NULL)
1533 				sc->rl_head = sc->rl_tail = m;
1534 			else {
1535 				m->m_flags &= ~M_PKTHDR;
1536 				sc->rl_tail->m_next = m;
1537 				sc->rl_tail = m;
1538 			}
1539 			re_newbuf(sc, i, NULL);
1540 			RL_DESC_INC(i);
1541 			continue;
1542 		}
1543 
1544 		/*
1545 		 * NOTE: for the 8139C+, the frame length field
1546 		 * is always 12 bits in size, but for the gigE chips,
1547 		 * it is 13 bits (since the max RX frame length is 16K).
1548 		 * Unfortunately, all 32 bits in the status word
1549 		 * were already used, so to make room for the extra
1550 		 * length bit, RealTek took out the 'frame alignment
1551 		 * error' bit and shifted the other status bits
1552 		 * over one slot. The OWN, EOR, FS and LS bits are
1553 		 * still in the same places. We have already extracted
1554 		 * the frame length and checked the OWN bit, so rather
1555 		 * than using an alternate bit mapping, we shift the
1556 		 * status bits one space to the right so we can evaluate
1557 		 * them using the 8169 status as though it was in the
1558 		 * same format as that of the 8139C+.
1559 		 */
1560 		if (sc->rl_type == RL_8169)
1561 			rxstat >>= 1;
1562 
1563 		/*
1564 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1565 		 * set, but if CRC is clear, it will still be a valid frame.
1566 		 */
1567 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1568 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1569 			ifp->if_ierrors++;
1570 			/*
1571 			 * If this is part of a multi-fragment packet,
1572 			 * discard all the pieces.
1573 			 */
1574 			if (sc->rl_head != NULL) {
1575 				m_freem(sc->rl_head);
1576 				sc->rl_head = sc->rl_tail = NULL;
1577 			}
1578 			re_newbuf(sc, i, m);
1579 			RL_DESC_INC(i);
1580 			continue;
1581 		}
1582 
1583 		/*
1584 		 * If allocating a replacement mbuf fails,
1585 		 * reload the current one.
1586 		 */
1587 
1588 		if (re_newbuf(sc, i, NULL)) {
1589 			ifp->if_ierrors++;
1590 			if (sc->rl_head != NULL) {
1591 				m_freem(sc->rl_head);
1592 				sc->rl_head = sc->rl_tail = NULL;
1593 			}
1594 			re_newbuf(sc, i, m);
1595 			RL_DESC_INC(i);
1596 			continue;
1597 		}
1598 
1599 		RL_DESC_INC(i);
1600 
1601 		if (sc->rl_head != NULL) {
1602 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1603 			if (m->m_len == 0)
1604 				m->m_len = RE_RX_DESC_BUFLEN;
1605 			/*
1606 			 * Special case: if there's 4 bytes or less
1607 			 * in this buffer, the mbuf can be discarded:
1608 			 * the last 4 bytes is the CRC, which we don't
1609 			 * care about anyway.
1610 			 */
1611 			if (m->m_len <= ETHER_CRC_LEN) {
1612 				sc->rl_tail->m_len -=
1613 				    (ETHER_CRC_LEN - m->m_len);
1614 				m_freem(m);
1615 			} else {
1616 				m->m_len -= ETHER_CRC_LEN;
1617 				m->m_flags &= ~M_PKTHDR;
1618 				sc->rl_tail->m_next = m;
1619 			}
1620 			m = sc->rl_head;
1621 			sc->rl_head = sc->rl_tail = NULL;
1622 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1623 		} else
1624 			m->m_pkthdr.len = m->m_len =
1625 			    (total_len - ETHER_CRC_LEN);
1626 
1627 #ifdef RE_FIXUP_RX
1628 		re_fixup_rx(m);
1629 #endif
1630 		ifp->if_ipackets++;
1631 		m->m_pkthdr.rcvif = ifp;
1632 
1633 		/* Do RX checksumming if enabled */
1634 
1635 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1636 
1637 			/* Check IP header checksum */
1638 			if (rxstat & RL_RDESC_STAT_PROTOID)
1639 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1640 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1641 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1642 
1643 			/* Check TCP/UDP checksum */
1644 			if ((RL_TCPPKT(rxstat) &&
1645 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1646 			    (RL_UDPPKT(rxstat) &&
1647 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1648 				m->m_pkthdr.csum_flags |=
1649 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1650 				m->m_pkthdr.csum_data = 0xffff;
1651 			}
1652 		}
1653 
1654 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1655 			VLAN_INPUT_TAG(ifp, m,
1656 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1657 		RL_UNLOCK(sc);
1658 		(*ifp->if_input)(ifp, m);
1659 		RL_LOCK(sc);
1660 	}
1661 
1662 	/* Flush the RX DMA ring */
1663 
1664 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1665 	    sc->rl_ldata.rl_rx_list_map,
1666 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1667 
1668 	sc->rl_ldata.rl_rx_prodidx = i;
1669 }
1670 
1671 static void
1672 re_txeof(sc)
1673 	struct rl_softc		*sc;
1674 {
1675 	struct ifnet		*ifp;
1676 	u_int32_t		txstat;
1677 	int			idx;
1678 
1679 	ifp = &sc->arpcom.ac_if;
1680 	idx = sc->rl_ldata.rl_tx_considx;
1681 
1682 	/* Invalidate the TX descriptor list */
1683 
1684 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1685 	    sc->rl_ldata.rl_tx_list_map,
1686 	    BUS_DMASYNC_POSTREAD);
1687 
1688 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1689 
1690 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1691 		if (txstat & RL_TDESC_CMD_OWN)
1692 			break;
1693 
1694 		/*
1695 		 * We only stash mbufs in the last descriptor
1696 		 * in a fragment chain, which also happens to
1697 		 * be the only place where the TX status bits
1698 		 * are valid.
1699 		 */
1700 
1701 		if (txstat & RL_TDESC_CMD_EOF) {
1702 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1703 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1704 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1705 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1706 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1707 			    RL_TDESC_STAT_COLCNT))
1708 				ifp->if_collisions++;
1709 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1710 				ifp->if_oerrors++;
1711 			else
1712 				ifp->if_opackets++;
1713 		}
1714 		sc->rl_ldata.rl_tx_free++;
1715 		RL_DESC_INC(idx);
1716 	}
1717 
1718 	/* No changes made to the TX ring, so no flush needed */
1719 
1720 	if (idx != sc->rl_ldata.rl_tx_considx) {
1721 		sc->rl_ldata.rl_tx_considx = idx;
1722 		ifp->if_flags &= ~IFF_OACTIVE;
1723 		ifp->if_timer = 0;
1724 	}
1725 
1726 	/*
1727 	 * If not all descriptors have been released reaped yet,
1728 	 * reload the timer so that we will eventually get another
1729 	 * interrupt that will cause us to re-enter this routine.
1730 	 * This is done in case the transmitter has gone idle.
1731 	 */
1732 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1733 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1734 }
1735 
1736 static void
1737 re_tick(xsc)
1738 	void			*xsc;
1739 {
1740 	struct rl_softc		*sc;
1741 
1742 	sc = xsc;
1743 	RL_LOCK(sc);
1744 	re_tick_locked(sc);
1745 	RL_UNLOCK(sc);
1746 }
1747 
1748 static void
1749 re_tick_locked(sc)
1750 	struct rl_softc		*sc;
1751 {
1752 	struct mii_data		*mii;
1753 
1754 	RL_LOCK_ASSERT(sc);
1755 
1756 	mii = device_get_softc(sc->rl_miibus);
1757 
1758 	mii_tick(mii);
1759 
1760 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1761 }
1762 
1763 #ifdef DEVICE_POLLING
1764 static void
1765 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1766 {
1767 	struct rl_softc *sc = ifp->if_softc;
1768 
1769 	RL_LOCK(sc);
1770 	re_poll_locked(ifp, cmd, count);
1771 	RL_UNLOCK(sc);
1772 }
1773 
1774 static void
1775 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1776 {
1777 	struct rl_softc *sc = ifp->if_softc;
1778 
1779 	RL_LOCK_ASSERT(sc);
1780 
1781 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1782 		ether_poll_deregister(ifp);
1783 		cmd = POLL_DEREGISTER;
1784 	}
1785 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1786 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1787 		return;
1788 	}
1789 
1790 	sc->rxcycles = count;
1791 	re_rxeof(sc);
1792 	re_txeof(sc);
1793 
1794 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1795 		re_start_locked(ifp);
1796 
1797 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1798 		u_int16_t       status;
1799 
1800 		status = CSR_READ_2(sc, RL_ISR);
1801 		if (status == 0xffff)
1802 			return;
1803 		if (status)
1804 			CSR_WRITE_2(sc, RL_ISR, status);
1805 
1806 		/*
1807 		 * XXX check behaviour on receiver stalls.
1808 		 */
1809 
1810 		if (status & RL_ISR_SYSTEM_ERR) {
1811 			re_reset(sc);
1812 			re_init_locked(sc);
1813 		}
1814 	}
1815 }
1816 #endif /* DEVICE_POLLING */
1817 
1818 static void
1819 re_intr(arg)
1820 	void			*arg;
1821 {
1822 	struct rl_softc		*sc;
1823 	struct ifnet		*ifp;
1824 	u_int16_t		status;
1825 
1826 	sc = arg;
1827 
1828 	RL_LOCK(sc);
1829 
1830 	ifp = &sc->arpcom.ac_if;
1831 
1832 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1833 		goto done_locked;
1834 
1835 #ifdef DEVICE_POLLING
1836 	if  (ifp->if_flags & IFF_POLLING)
1837 		goto done_locked;
1838 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1839 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1840 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1841 		re_poll_locked(ifp, 0, 1);
1842 		goto done_locked;
1843 	}
1844 #endif /* DEVICE_POLLING */
1845 
1846 	for (;;) {
1847 
1848 		status = CSR_READ_2(sc, RL_ISR);
1849 		/* If the card has gone away the read returns 0xffff. */
1850 		if (status == 0xffff)
1851 			break;
1852 		if (status)
1853 			CSR_WRITE_2(sc, RL_ISR, status);
1854 
1855 		if ((status & RL_INTRS_CPLUS) == 0)
1856 			break;
1857 
1858 		if ((status & RL_ISR_RX_OK) ||
1859 		    (status & RL_ISR_RX_ERR))
1860 			re_rxeof(sc);
1861 
1862 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1863 		    (status & RL_ISR_TX_ERR) ||
1864 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1865 			re_txeof(sc);
1866 
1867 		if (status & RL_ISR_SYSTEM_ERR) {
1868 			re_reset(sc);
1869 			re_init_locked(sc);
1870 		}
1871 
1872 		if (status & RL_ISR_LINKCHG) {
1873 			untimeout(re_tick, sc, sc->rl_stat_ch);
1874 			re_tick_locked(sc);
1875 		}
1876 	}
1877 
1878 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1879 		re_start_locked(ifp);
1880 
1881 done_locked:
1882 	RL_UNLOCK(sc);
1883 }
1884 
1885 static int
1886 re_encap(sc, m_head, idx)
1887 	struct rl_softc		*sc;
1888 	struct mbuf		**m_head;
1889 	int			*idx;
1890 {
1891 	struct mbuf		*m_new = NULL;
1892 	struct rl_dmaload_arg	arg;
1893 	bus_dmamap_t		map;
1894 	int			error;
1895 	struct m_tag		*mtag;
1896 
1897 	RL_LOCK_ASSERT(sc);
1898 
1899 	if (sc->rl_ldata.rl_tx_free <= 4)
1900 		return (EFBIG);
1901 
1902 	/*
1903 	 * Set up checksum offload. Note: checksum offload bits must
1904 	 * appear in all descriptors of a multi-descriptor transmit
1905 	 * attempt. This is according to testing done with an 8169
1906 	 * chip. This is a requirement.
1907 	 */
1908 
1909 	arg.rl_flags = 0;
1910 
1911 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1912 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1913 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1914 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1915 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1916 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1917 
1918 	arg.sc = sc;
1919 	arg.rl_idx = *idx;
1920 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1921 	if (arg.rl_maxsegs > 4)
1922 		arg.rl_maxsegs -= 4;
1923 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1924 
1925 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1926 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1927 	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1928 
1929 	if (error && error != EFBIG) {
1930 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1931 		return (ENOBUFS);
1932 	}
1933 
1934 	/* Too many segments to map, coalesce into a single mbuf */
1935 
1936 	if (error || arg.rl_maxsegs == 0) {
1937 		m_new = m_defrag(*m_head, M_DONTWAIT);
1938 		if (m_new == NULL)
1939 			return (ENOBUFS);
1940 		else
1941 			*m_head = m_new;
1942 
1943 		arg.sc = sc;
1944 		arg.rl_idx = *idx;
1945 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1946 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1947 
1948 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1949 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1950 		if (error) {
1951 			printf("re%d: can't map mbuf (error %d)\n",
1952 			    sc->rl_unit, error);
1953 			return (EFBIG);
1954 		}
1955 	}
1956 
1957 	/*
1958 	 * Insure that the map for this transmission
1959 	 * is placed at the array index of the last descriptor
1960 	 * in this chain.  (Swap last and first dmamaps.)
1961 	 */
1962 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1963 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1964 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1965 
1966 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1967 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1968 
1969 	/*
1970 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1971 	 * appear in the first descriptor of a multi-descriptor
1972 	 * transmission attempt.
1973 	 */
1974 
1975 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, *m_head);
1976 	if (mtag != NULL)
1977 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1978 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1979 
1980 	/* Transfer ownership of packet to the chip. */
1981 
1982 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1983 	    htole32(RL_TDESC_CMD_OWN);
1984 	if (*idx != arg.rl_idx)
1985 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1986 		    htole32(RL_TDESC_CMD_OWN);
1987 
1988 	RL_DESC_INC(arg.rl_idx);
1989 	*idx = arg.rl_idx;
1990 
1991 	return (0);
1992 }
1993 
1994 static void
1995 re_start(ifp)
1996 	struct ifnet		*ifp;
1997 {
1998 	struct rl_softc		*sc;
1999 
2000 	sc = ifp->if_softc;
2001 	RL_LOCK(sc);
2002 	re_start_locked(ifp);
2003 	RL_UNLOCK(sc);
2004 }
2005 
2006 /*
2007  * Main transmit routine for C+ and gigE NICs.
2008  */
2009 static void
2010 re_start_locked(ifp)
2011 	struct ifnet		*ifp;
2012 {
2013 	struct rl_softc		*sc;
2014 	struct mbuf		*m_head = NULL;
2015 	int			idx, queued = 0;
2016 
2017 	sc = ifp->if_softc;
2018 
2019 	RL_LOCK_ASSERT(sc);
2020 
2021 	idx = sc->rl_ldata.rl_tx_prodidx;
2022 
2023 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2024 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2025 		if (m_head == NULL)
2026 			break;
2027 
2028 		if (re_encap(sc, &m_head, &idx)) {
2029 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2030 			ifp->if_flags |= IFF_OACTIVE;
2031 			break;
2032 		}
2033 
2034 		/*
2035 		 * If there's a BPF listener, bounce a copy of this frame
2036 		 * to him.
2037 		 */
2038 		BPF_MTAP(ifp, m_head);
2039 
2040 		queued++;
2041 	}
2042 
2043 	if (queued == 0)
2044 		return;
2045 
2046 	/* Flush the TX descriptors */
2047 
2048 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2049 	    sc->rl_ldata.rl_tx_list_map,
2050 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2051 
2052 	sc->rl_ldata.rl_tx_prodidx = idx;
2053 
2054 	/*
2055 	 * RealTek put the TX poll request register in a different
2056 	 * location on the 8169 gigE chip. I don't know why.
2057 	 */
2058 
2059 	if (sc->rl_type == RL_8169)
2060 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2061 	else
2062 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2063 
2064 	/*
2065 	 * Use the countdown timer for interrupt moderation.
2066 	 * 'TX done' interrupts are disabled. Instead, we reset the
2067 	 * countdown timer, which will begin counting until it hits
2068 	 * the value in the TIMERINT register, and then trigger an
2069 	 * interrupt. Each time we write to the TIMERCNT register,
2070 	 * the timer count is reset to 0.
2071 	 */
2072 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2073 
2074 	/*
2075 	 * Set a timeout in case the chip goes out to lunch.
2076 	 */
2077 	ifp->if_timer = 5;
2078 }
2079 
2080 static void
2081 re_init(xsc)
2082 	void			*xsc;
2083 {
2084 	struct rl_softc		*sc = xsc;
2085 
2086 	RL_LOCK(sc);
2087 	re_init_locked(sc);
2088 	RL_UNLOCK(sc);
2089 }
2090 
2091 static void
2092 re_init_locked(sc)
2093 	struct rl_softc		*sc;
2094 {
2095 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2096 	struct mii_data		*mii;
2097 	u_int32_t		rxcfg = 0;
2098 
2099 	RL_LOCK_ASSERT(sc);
2100 
2101 	mii = device_get_softc(sc->rl_miibus);
2102 
2103 	/*
2104 	 * Cancel pending I/O and free all RX/TX buffers.
2105 	 */
2106 	re_stop(sc);
2107 
2108 	/*
2109 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2110 	 * RX checksum offload. We must configure the C+ register
2111 	 * before all others.
2112 	 */
2113 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2114 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2115 	    RL_CPLUSCMD_VLANSTRIP|
2116 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2117 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2118 
2119 	/*
2120 	 * Init our MAC address.  Even though the chipset
2121 	 * documentation doesn't mention it, we need to enter "Config
2122 	 * register write enable" mode to modify the ID registers.
2123 	 */
2124 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2125 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2126 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2127 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2128 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2129 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2130 
2131 	/*
2132 	 * For C+ mode, initialize the RX descriptors and mbufs.
2133 	 */
2134 	re_rx_list_init(sc);
2135 	re_tx_list_init(sc);
2136 
2137 	/*
2138 	 * Enable transmit and receive.
2139 	 */
2140 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2141 
2142 	/*
2143 	 * Set the initial TX and RX configuration.
2144 	 */
2145 	if (sc->rl_testmode) {
2146 		if (sc->rl_type == RL_8169)
2147 			CSR_WRITE_4(sc, RL_TXCFG,
2148 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2149 		else
2150 			CSR_WRITE_4(sc, RL_TXCFG,
2151 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2152 	} else
2153 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2154 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2155 
2156 	/* Set the individual bit to receive frames for this host only. */
2157 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2158 	rxcfg |= RL_RXCFG_RX_INDIV;
2159 
2160 	/* If we want promiscuous mode, set the allframes bit. */
2161 	if (ifp->if_flags & IFF_PROMISC)
2162 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2163 	else
2164 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2165 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2166 
2167 	/*
2168 	 * Set capture broadcast bit to capture broadcast frames.
2169 	 */
2170 	if (ifp->if_flags & IFF_BROADCAST)
2171 		rxcfg |= RL_RXCFG_RX_BROAD;
2172 	else
2173 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2174 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2175 
2176 	/*
2177 	 * Program the multicast filter, if necessary.
2178 	 */
2179 	re_setmulti(sc);
2180 
2181 #ifdef DEVICE_POLLING
2182 	/*
2183 	 * Disable interrupts if we are polling.
2184 	 */
2185 	if (ifp->if_flags & IFF_POLLING)
2186 		CSR_WRITE_2(sc, RL_IMR, 0);
2187 	else	/* otherwise ... */
2188 #endif /* DEVICE_POLLING */
2189 	/*
2190 	 * Enable interrupts.
2191 	 */
2192 	if (sc->rl_testmode)
2193 		CSR_WRITE_2(sc, RL_IMR, 0);
2194 	else
2195 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2196 
2197 	/* Set initial TX threshold */
2198 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2199 
2200 	/* Start RX/TX process. */
2201 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2202 #ifdef notdef
2203 	/* Enable receiver and transmitter. */
2204 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2205 #endif
2206 	/*
2207 	 * Load the addresses of the RX and TX lists into the chip.
2208 	 */
2209 
2210 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2211 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2212 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2213 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2214 
2215 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2216 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2217 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2218 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2219 
2220 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2221 
2222 	/*
2223 	 * Initialize the timer interrupt register so that
2224 	 * a timer interrupt will be generated once the timer
2225 	 * reaches a certain number of ticks. The timer is
2226 	 * reloaded on each transmit. This gives us TX interrupt
2227 	 * moderation, which dramatically improves TX frame rate.
2228 	 */
2229 	if (sc->rl_type == RL_8169)
2230 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2231 	else
2232 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2233 
2234 	/*
2235 	 * For 8169 gigE NICs, set the max allowed RX packet
2236 	 * size so we can receive jumbo frames.
2237 	 */
2238 	if (sc->rl_type == RL_8169)
2239 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2240 
2241 	if (sc->rl_testmode)
2242 		return;
2243 
2244 	mii_mediachg(mii);
2245 
2246 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2247 
2248 	ifp->if_flags |= IFF_RUNNING;
2249 	ifp->if_flags &= ~IFF_OACTIVE;
2250 
2251 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2252 }
2253 
2254 /*
2255  * Set media options.
2256  */
2257 static int
2258 re_ifmedia_upd(ifp)
2259 	struct ifnet		*ifp;
2260 {
2261 	struct rl_softc		*sc;
2262 	struct mii_data		*mii;
2263 
2264 	sc = ifp->if_softc;
2265 	mii = device_get_softc(sc->rl_miibus);
2266 	mii_mediachg(mii);
2267 
2268 	return (0);
2269 }
2270 
2271 /*
2272  * Report current media status.
2273  */
2274 static void
2275 re_ifmedia_sts(ifp, ifmr)
2276 	struct ifnet		*ifp;
2277 	struct ifmediareq	*ifmr;
2278 {
2279 	struct rl_softc		*sc;
2280 	struct mii_data		*mii;
2281 
2282 	sc = ifp->if_softc;
2283 	mii = device_get_softc(sc->rl_miibus);
2284 
2285 	mii_pollstat(mii);
2286 	ifmr->ifm_active = mii->mii_media_active;
2287 	ifmr->ifm_status = mii->mii_media_status;
2288 }
2289 
2290 static int
2291 re_ioctl(ifp, command, data)
2292 	struct ifnet		*ifp;
2293 	u_long			command;
2294 	caddr_t			data;
2295 {
2296 	struct rl_softc		*sc = ifp->if_softc;
2297 	struct ifreq		*ifr = (struct ifreq *) data;
2298 	struct mii_data		*mii;
2299 	int			error = 0;
2300 
2301 	switch (command) {
2302 	case SIOCSIFMTU:
2303 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2304 			error = EINVAL;
2305 		ifp->if_mtu = ifr->ifr_mtu;
2306 		break;
2307 	case SIOCSIFFLAGS:
2308 		RL_LOCK(sc);
2309 		if (ifp->if_flags & IFF_UP)
2310 			re_init_locked(sc);
2311 		else if (ifp->if_flags & IFF_RUNNING)
2312 			re_stop(sc);
2313 		RL_UNLOCK(sc);
2314 		error = 0;
2315 		break;
2316 	case SIOCADDMULTI:
2317 	case SIOCDELMULTI:
2318 		RL_LOCK(sc);
2319 		re_setmulti(sc);
2320 		RL_UNLOCK(sc);
2321 		error = 0;
2322 		break;
2323 	case SIOCGIFMEDIA:
2324 	case SIOCSIFMEDIA:
2325 		mii = device_get_softc(sc->rl_miibus);
2326 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2327 		break;
2328 	case SIOCSIFCAP:
2329 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2330 		ifp->if_capenable |=
2331 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2332 		if (ifp->if_capenable & IFCAP_TXCSUM)
2333 			ifp->if_hwassist = RE_CSUM_FEATURES;
2334 		else
2335 			ifp->if_hwassist = 0;
2336 		if (ifp->if_flags & IFF_RUNNING)
2337 			re_init(sc);
2338 		break;
2339 	default:
2340 		error = ether_ioctl(ifp, command, data);
2341 		break;
2342 	}
2343 
2344 	return (error);
2345 }
2346 
2347 static void
2348 re_watchdog(ifp)
2349 	struct ifnet		*ifp;
2350 {
2351 	struct rl_softc		*sc;
2352 
2353 	sc = ifp->if_softc;
2354 	RL_LOCK(sc);
2355 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2356 	ifp->if_oerrors++;
2357 
2358 	re_txeof(sc);
2359 	re_rxeof(sc);
2360 	re_init_locked(sc);
2361 
2362 	RL_UNLOCK(sc);
2363 }
2364 
2365 /*
2366  * Stop the adapter and free any mbufs allocated to the
2367  * RX and TX lists.
2368  */
2369 static void
2370 re_stop(sc)
2371 	struct rl_softc		*sc;
2372 {
2373 	register int		i;
2374 	struct ifnet		*ifp;
2375 
2376 	RL_LOCK_ASSERT(sc);
2377 
2378 	ifp = &sc->arpcom.ac_if;
2379 	ifp->if_timer = 0;
2380 
2381 	untimeout(re_tick, sc, sc->rl_stat_ch);
2382 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2383 #ifdef DEVICE_POLLING
2384 	ether_poll_deregister(ifp);
2385 #endif /* DEVICE_POLLING */
2386 
2387 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2388 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2389 
2390 	if (sc->rl_head != NULL) {
2391 		m_freem(sc->rl_head);
2392 		sc->rl_head = sc->rl_tail = NULL;
2393 	}
2394 
2395 	/* Free the TX list buffers. */
2396 
2397 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2398 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2399 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2400 			    sc->rl_ldata.rl_tx_dmamap[i]);
2401 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2402 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2403 		}
2404 	}
2405 
2406 	/* Free the RX list buffers. */
2407 
2408 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2409 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2410 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2411 			    sc->rl_ldata.rl_rx_dmamap[i]);
2412 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2413 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2414 		}
2415 	}
2416 }
2417 
2418 /*
2419  * Device suspend routine.  Stop the interface and save some PCI
2420  * settings in case the BIOS doesn't restore them properly on
2421  * resume.
2422  */
2423 static int
2424 re_suspend(dev)
2425 	device_t		dev;
2426 {
2427 	struct rl_softc		*sc;
2428 
2429 	sc = device_get_softc(dev);
2430 
2431 	RL_LOCK(sc);
2432 	re_stop(sc);
2433 	sc->suspended = 1;
2434 	RL_UNLOCK(sc);
2435 
2436 	return (0);
2437 }
2438 
2439 /*
2440  * Device resume routine.  Restore some PCI settings in case the BIOS
2441  * doesn't, re-enable busmastering, and restart the interface if
2442  * appropriate.
2443  */
2444 static int
2445 re_resume(dev)
2446 	device_t		dev;
2447 {
2448 	struct rl_softc		*sc;
2449 	struct ifnet		*ifp;
2450 
2451 	sc = device_get_softc(dev);
2452 
2453 	RL_LOCK(sc);
2454 
2455 	ifp = &sc->arpcom.ac_if;
2456 
2457 	/* reinitialize interface if necessary */
2458 	if (ifp->if_flags & IFF_UP)
2459 		re_init_locked(sc);
2460 
2461 	sc->suspended = 0;
2462 	RL_UNLOCK(sc);
2463 
2464 	return (0);
2465 }
2466 
2467 /*
2468  * Stop all chip I/O so that the kernel's probe routines don't
2469  * get confused by errant DMAs when rebooting.
2470  */
2471 static void
2472 re_shutdown(dev)
2473 	device_t		dev;
2474 {
2475 	struct rl_softc		*sc;
2476 
2477 	sc = device_get_softc(dev);
2478 
2479 	RL_LOCK(sc);
2480 	re_stop(sc);
2481 	RL_UNLOCK(sc);
2482 }
2483