xref: /freebsd/sys/dev/re/if_re.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128 
129 #include <net/if.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/if_vlan_var.h>
136 
137 #include <net/bpf.h>
138 
139 #include <machine/bus.h>
140 #include <machine/resource.h>
141 #include <sys/bus.h>
142 #include <sys/rman.h>
143 
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 
150 #include <pci/if_rlreg.h>
151 
152 MODULE_DEPEND(re, pci, 1, 1, 1);
153 MODULE_DEPEND(re, ether, 1, 1, 1);
154 MODULE_DEPEND(re, miibus, 1, 1, 1);
155 
156 /* "device miibus" required.  See GENERIC if you get errors here. */
157 #include "miibus_if.h"
158 
159 /* Tunables. */
160 static int msi_disable = 0;
161 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
162 static int prefer_iomap = 0;
163 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
164 
165 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
166 
167 /*
168  * Various supported device vendors/types and their names.
169  */
170 static struct rl_type re_devs[] = {
171 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
172 	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
173 	{ RT_VENDORID, RT_DEVICEID_8139, 0,
174 	    "RealTek 8139C+ 10/100BaseTX" },
175 	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
176 	    "RealTek 8101E/8102E/8102EL/8103E PCIe 10/100baseTX" },
177 	{ RT_VENDORID, RT_DEVICEID_8168, 0,
178 	    "RealTek 8168/8111 B/C/CP/D/DP/E PCIe Gigabit Ethernet" },
179 	{ RT_VENDORID, RT_DEVICEID_8169, 0,
180 	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
181 	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
182 	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
183 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
184 	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
185 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
186 	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
187 	{ USR_VENDORID, USR_DEVICEID_997902, 0,
188 	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
189 };
190 
191 static struct rl_hwrev re_hwrevs[] = {
192 	{ RL_HWREV_8139, RL_8139,  "" },
193 	{ RL_HWREV_8139A, RL_8139, "A" },
194 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
195 	{ RL_HWREV_8139B, RL_8139, "B" },
196 	{ RL_HWREV_8130, RL_8139, "8130" },
197 	{ RL_HWREV_8139C, RL_8139, "C" },
198 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
199 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
200 	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
201 	{ RL_HWREV_8169, RL_8169, "8169"},
202 	{ RL_HWREV_8169S, RL_8169, "8169S"},
203 	{ RL_HWREV_8110S, RL_8169, "8110S"},
204 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB"},
205 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC"},
206 	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL"},
207 	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC"},
208 	{ RL_HWREV_8100, RL_8139, "8100"},
209 	{ RL_HWREV_8101, RL_8139, "8101"},
210 	{ RL_HWREV_8100E, RL_8169, "8100E"},
211 	{ RL_HWREV_8101E, RL_8169, "8101E"},
212 	{ RL_HWREV_8102E, RL_8169, "8102E"},
213 	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
214 	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL"},
215 	{ RL_HWREV_8103E, RL_8169, "8103E"},
216 	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
217 	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
218 	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
219 	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
220 	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
221 	{ RL_HWREV_8168D, RL_8169, "8168D/8111D"},
222 	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP"},
223 	{ RL_HWREV_8168E, RL_8169, "8168E/8111E"},
224 	{ 0, 0, NULL }
225 };
226 
227 static int re_probe		(device_t);
228 static int re_attach		(device_t);
229 static int re_detach		(device_t);
230 
231 static int re_encap		(struct rl_softc *, struct mbuf **);
232 
233 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
234 static int re_allocmem		(device_t, struct rl_softc *);
235 static __inline void re_discard_rxbuf
236 				(struct rl_softc *, int);
237 static int re_newbuf		(struct rl_softc *, int);
238 static int re_rx_list_init	(struct rl_softc *);
239 static int re_tx_list_init	(struct rl_softc *);
240 #ifdef RE_FIXUP_RX
241 static __inline void re_fixup_rx
242 				(struct mbuf *);
243 #endif
244 static int re_rxeof		(struct rl_softc *, int *);
245 static void re_txeof		(struct rl_softc *);
246 #ifdef DEVICE_POLLING
247 static int re_poll		(struct ifnet *, enum poll_cmd, int);
248 static int re_poll_locked	(struct ifnet *, enum poll_cmd, int);
249 #endif
250 static int re_intr		(void *);
251 static void re_tick		(void *);
252 static void re_tx_task		(void *, int);
253 static void re_int_task		(void *, int);
254 static void re_start		(struct ifnet *);
255 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
256 static void re_init		(void *);
257 static void re_init_locked	(struct rl_softc *);
258 static void re_stop		(struct rl_softc *);
259 static void re_watchdog		(struct rl_softc *);
260 static int re_suspend		(device_t);
261 static int re_resume		(device_t);
262 static int re_shutdown		(device_t);
263 static int re_ifmedia_upd	(struct ifnet *);
264 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
265 
266 static void re_eeprom_putbyte	(struct rl_softc *, int);
267 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
268 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
269 static int re_gmii_readreg	(device_t, int, int);
270 static int re_gmii_writereg	(device_t, int, int, int);
271 
272 static int re_miibus_readreg	(device_t, int, int);
273 static int re_miibus_writereg	(device_t, int, int, int);
274 static void re_miibus_statchg	(device_t);
275 
276 static void re_set_rxmode		(struct rl_softc *);
277 static void re_reset		(struct rl_softc *);
278 static void re_setwol		(struct rl_softc *);
279 static void re_clrwol		(struct rl_softc *);
280 
281 #ifdef RE_DIAG
282 static int re_diag		(struct rl_softc *);
283 #endif
284 
285 static void re_add_sysctls	(struct rl_softc *);
286 static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
287 
288 static device_method_t re_methods[] = {
289 	/* Device interface */
290 	DEVMETHOD(device_probe,		re_probe),
291 	DEVMETHOD(device_attach,	re_attach),
292 	DEVMETHOD(device_detach,	re_detach),
293 	DEVMETHOD(device_suspend,	re_suspend),
294 	DEVMETHOD(device_resume,	re_resume),
295 	DEVMETHOD(device_shutdown,	re_shutdown),
296 
297 	/* bus interface */
298 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
299 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
300 
301 	/* MII interface */
302 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
303 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
304 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
305 
306 	{ 0, 0 }
307 };
308 
309 static driver_t re_driver = {
310 	"re",
311 	re_methods,
312 	sizeof(struct rl_softc)
313 };
314 
315 static devclass_t re_devclass;
316 
317 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
318 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
319 
320 #define EE_SET(x)					\
321 	CSR_WRITE_1(sc, RL_EECMD,			\
322 		CSR_READ_1(sc, RL_EECMD) | x)
323 
324 #define EE_CLR(x)					\
325 	CSR_WRITE_1(sc, RL_EECMD,			\
326 		CSR_READ_1(sc, RL_EECMD) & ~x)
327 
328 /*
329  * Send a read command and address to the EEPROM, check for ACK.
330  */
331 static void
332 re_eeprom_putbyte(struct rl_softc *sc, int addr)
333 {
334 	int			d, i;
335 
336 	d = addr | (RL_9346_READ << sc->rl_eewidth);
337 
338 	/*
339 	 * Feed in each bit and strobe the clock.
340 	 */
341 
342 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
343 		if (d & i) {
344 			EE_SET(RL_EE_DATAIN);
345 		} else {
346 			EE_CLR(RL_EE_DATAIN);
347 		}
348 		DELAY(100);
349 		EE_SET(RL_EE_CLK);
350 		DELAY(150);
351 		EE_CLR(RL_EE_CLK);
352 		DELAY(100);
353 	}
354 }
355 
356 /*
357  * Read a word of data stored in the EEPROM at address 'addr.'
358  */
359 static void
360 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
361 {
362 	int			i;
363 	u_int16_t		word = 0;
364 
365 	/*
366 	 * Send address of word we want to read.
367 	 */
368 	re_eeprom_putbyte(sc, addr);
369 
370 	/*
371 	 * Start reading bits from EEPROM.
372 	 */
373 	for (i = 0x8000; i; i >>= 1) {
374 		EE_SET(RL_EE_CLK);
375 		DELAY(100);
376 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
377 			word |= i;
378 		EE_CLR(RL_EE_CLK);
379 		DELAY(100);
380 	}
381 
382 	*dest = word;
383 }
384 
385 /*
386  * Read a sequence of words from the EEPROM.
387  */
388 static void
389 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
390 {
391 	int			i;
392 	u_int16_t		word = 0, *ptr;
393 
394 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
395 
396         DELAY(100);
397 
398 	for (i = 0; i < cnt; i++) {
399 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
400 		re_eeprom_getword(sc, off + i, &word);
401 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
402 		ptr = (u_int16_t *)(dest + (i * 2));
403                 *ptr = word;
404 	}
405 
406 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
407 }
408 
409 static int
410 re_gmii_readreg(device_t dev, int phy, int reg)
411 {
412 	struct rl_softc		*sc;
413 	u_int32_t		rval;
414 	int			i;
415 
416 	sc = device_get_softc(dev);
417 
418 	/* Let the rgephy driver read the GMEDIASTAT register */
419 
420 	if (reg == RL_GMEDIASTAT) {
421 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
422 		return (rval);
423 	}
424 
425 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
426 
427 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
428 		rval = CSR_READ_4(sc, RL_PHYAR);
429 		if (rval & RL_PHYAR_BUSY)
430 			break;
431 		DELAY(25);
432 	}
433 
434 	if (i == RL_PHY_TIMEOUT) {
435 		device_printf(sc->rl_dev, "PHY read failed\n");
436 		return (0);
437 	}
438 
439 	/*
440 	 * Controller requires a 20us delay to process next MDIO request.
441 	 */
442 	DELAY(20);
443 
444 	return (rval & RL_PHYAR_PHYDATA);
445 }
446 
447 static int
448 re_gmii_writereg(device_t dev, int phy, int reg, int data)
449 {
450 	struct rl_softc		*sc;
451 	u_int32_t		rval;
452 	int			i;
453 
454 	sc = device_get_softc(dev);
455 
456 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
457 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
458 
459 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
460 		rval = CSR_READ_4(sc, RL_PHYAR);
461 		if (!(rval & RL_PHYAR_BUSY))
462 			break;
463 		DELAY(25);
464 	}
465 
466 	if (i == RL_PHY_TIMEOUT) {
467 		device_printf(sc->rl_dev, "PHY write failed\n");
468 		return (0);
469 	}
470 
471 	/*
472 	 * Controller requires a 20us delay to process next MDIO request.
473 	 */
474 	DELAY(20);
475 
476 	return (0);
477 }
478 
479 static int
480 re_miibus_readreg(device_t dev, int phy, int reg)
481 {
482 	struct rl_softc		*sc;
483 	u_int16_t		rval = 0;
484 	u_int16_t		re8139_reg = 0;
485 
486 	sc = device_get_softc(dev);
487 
488 	if (sc->rl_type == RL_8169) {
489 		rval = re_gmii_readreg(dev, phy, reg);
490 		return (rval);
491 	}
492 
493 	switch (reg) {
494 	case MII_BMCR:
495 		re8139_reg = RL_BMCR;
496 		break;
497 	case MII_BMSR:
498 		re8139_reg = RL_BMSR;
499 		break;
500 	case MII_ANAR:
501 		re8139_reg = RL_ANAR;
502 		break;
503 	case MII_ANER:
504 		re8139_reg = RL_ANER;
505 		break;
506 	case MII_ANLPAR:
507 		re8139_reg = RL_LPAR;
508 		break;
509 	case MII_PHYIDR1:
510 	case MII_PHYIDR2:
511 		return (0);
512 	/*
513 	 * Allow the rlphy driver to read the media status
514 	 * register. If we have a link partner which does not
515 	 * support NWAY, this is the register which will tell
516 	 * us the results of parallel detection.
517 	 */
518 	case RL_MEDIASTAT:
519 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
520 		return (rval);
521 	default:
522 		device_printf(sc->rl_dev, "bad phy register\n");
523 		return (0);
524 	}
525 	rval = CSR_READ_2(sc, re8139_reg);
526 	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
527 		/* 8139C+ has different bit layout. */
528 		rval &= ~(BMCR_LOOP | BMCR_ISO);
529 	}
530 	return (rval);
531 }
532 
533 static int
534 re_miibus_writereg(device_t dev, int phy, int reg, int data)
535 {
536 	struct rl_softc		*sc;
537 	u_int16_t		re8139_reg = 0;
538 	int			rval = 0;
539 
540 	sc = device_get_softc(dev);
541 
542 	if (sc->rl_type == RL_8169) {
543 		rval = re_gmii_writereg(dev, phy, reg, data);
544 		return (rval);
545 	}
546 
547 	switch (reg) {
548 	case MII_BMCR:
549 		re8139_reg = RL_BMCR;
550 		if (sc->rl_type == RL_8139CPLUS) {
551 			/* 8139C+ has different bit layout. */
552 			data &= ~(BMCR_LOOP | BMCR_ISO);
553 		}
554 		break;
555 	case MII_BMSR:
556 		re8139_reg = RL_BMSR;
557 		break;
558 	case MII_ANAR:
559 		re8139_reg = RL_ANAR;
560 		break;
561 	case MII_ANER:
562 		re8139_reg = RL_ANER;
563 		break;
564 	case MII_ANLPAR:
565 		re8139_reg = RL_LPAR;
566 		break;
567 	case MII_PHYIDR1:
568 	case MII_PHYIDR2:
569 		return (0);
570 		break;
571 	default:
572 		device_printf(sc->rl_dev, "bad phy register\n");
573 		return (0);
574 	}
575 	CSR_WRITE_2(sc, re8139_reg, data);
576 	return (0);
577 }
578 
579 static void
580 re_miibus_statchg(device_t dev)
581 {
582 	struct rl_softc		*sc;
583 	struct ifnet		*ifp;
584 	struct mii_data		*mii;
585 
586 	sc = device_get_softc(dev);
587 	mii = device_get_softc(sc->rl_miibus);
588 	ifp = sc->rl_ifp;
589 	if (mii == NULL || ifp == NULL ||
590 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
591 		return;
592 
593 	sc->rl_flags &= ~RL_FLAG_LINK;
594 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
595 	    (IFM_ACTIVE | IFM_AVALID)) {
596 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
597 		case IFM_10_T:
598 		case IFM_100_TX:
599 			sc->rl_flags |= RL_FLAG_LINK;
600 			break;
601 		case IFM_1000_T:
602 			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
603 				break;
604 			sc->rl_flags |= RL_FLAG_LINK;
605 			break;
606 		default:
607 			break;
608 		}
609 	}
610 	/*
611 	 * RealTek controllers does not provide any interface to
612 	 * Tx/Rx MACs for resolved speed, duplex and flow-control
613 	 * parameters.
614 	 */
615 }
616 
617 /*
618  * Set the RX configuration and 64-bit multicast hash filter.
619  */
620 static void
621 re_set_rxmode(struct rl_softc *sc)
622 {
623 	struct ifnet		*ifp;
624 	struct ifmultiaddr	*ifma;
625 	uint32_t		hashes[2] = { 0, 0 };
626 	uint32_t		h, rxfilt;
627 
628 	RL_LOCK_ASSERT(sc);
629 
630 	ifp = sc->rl_ifp;
631 
632 	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
633 
634 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
635 		if (ifp->if_flags & IFF_PROMISC)
636 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
637 		/*
638 		 * Unlike other hardwares, we have to explicitly set
639 		 * RL_RXCFG_RX_MULTI to receive multicast frames in
640 		 * promiscuous mode.
641 		 */
642 		rxfilt |= RL_RXCFG_RX_MULTI;
643 		hashes[0] = hashes[1] = 0xffffffff;
644 		goto done;
645 	}
646 
647 	if_maddr_rlock(ifp);
648 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
649 		if (ifma->ifma_addr->sa_family != AF_LINK)
650 			continue;
651 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
652 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
653 		if (h < 32)
654 			hashes[0] |= (1 << h);
655 		else
656 			hashes[1] |= (1 << (h - 32));
657 	}
658 	if_maddr_runlock(ifp);
659 
660 	if (hashes[0] != 0 || hashes[1] != 0) {
661 		/*
662 		 * For some unfathomable reason, RealTek decided to
663 		 * reverse the order of the multicast hash registers
664 		 * in the PCI Express parts.  This means we have to
665 		 * write the hash pattern in reverse order for those
666 		 * devices.
667 		 */
668 		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
669 			h = bswap32(hashes[0]);
670 			hashes[0] = bswap32(hashes[1]);
671 			hashes[1] = h;
672 		}
673 		rxfilt |= RL_RXCFG_RX_MULTI;
674 	}
675 
676 done:
677 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
678 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
679 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
680 }
681 
682 static void
683 re_reset(struct rl_softc *sc)
684 {
685 	int			i;
686 
687 	RL_LOCK_ASSERT(sc);
688 
689 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
690 
691 	for (i = 0; i < RL_TIMEOUT; i++) {
692 		DELAY(10);
693 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
694 			break;
695 	}
696 	if (i == RL_TIMEOUT)
697 		device_printf(sc->rl_dev, "reset never completed!\n");
698 
699 	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
700 		CSR_WRITE_1(sc, 0x82, 1);
701 	if (sc->rl_hwrev == RL_HWREV_8169S)
702 		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
703 }
704 
705 #ifdef RE_DIAG
706 
707 /*
708  * The following routine is designed to test for a defect on some
709  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
710  * lines connected to the bus, however for a 32-bit only card, they
711  * should be pulled high. The result of this defect is that the
712  * NIC will not work right if you plug it into a 64-bit slot: DMA
713  * operations will be done with 64-bit transfers, which will fail
714  * because the 64-bit data lines aren't connected.
715  *
716  * There's no way to work around this (short of talking a soldering
717  * iron to the board), however we can detect it. The method we use
718  * here is to put the NIC into digital loopback mode, set the receiver
719  * to promiscuous mode, and then try to send a frame. We then compare
720  * the frame data we sent to what was received. If the data matches,
721  * then the NIC is working correctly, otherwise we know the user has
722  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
723  * slot. In the latter case, there's no way the NIC can work correctly,
724  * so we print out a message on the console and abort the device attach.
725  */
726 
727 static int
728 re_diag(struct rl_softc *sc)
729 {
730 	struct ifnet		*ifp = sc->rl_ifp;
731 	struct mbuf		*m0;
732 	struct ether_header	*eh;
733 	struct rl_desc		*cur_rx;
734 	u_int16_t		status;
735 	u_int32_t		rxstat;
736 	int			total_len, i, error = 0, phyaddr;
737 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
738 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
739 
740 	/* Allocate a single mbuf */
741 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
742 	if (m0 == NULL)
743 		return (ENOBUFS);
744 
745 	RL_LOCK(sc);
746 
747 	/*
748 	 * Initialize the NIC in test mode. This sets the chip up
749 	 * so that it can send and receive frames, but performs the
750 	 * following special functions:
751 	 * - Puts receiver in promiscuous mode
752 	 * - Enables digital loopback mode
753 	 * - Leaves interrupts turned off
754 	 */
755 
756 	ifp->if_flags |= IFF_PROMISC;
757 	sc->rl_testmode = 1;
758 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
759 	re_init_locked(sc);
760 	sc->rl_flags |= RL_FLAG_LINK;
761 	if (sc->rl_type == RL_8169)
762 		phyaddr = 1;
763 	else
764 		phyaddr = 0;
765 
766 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
767 	for (i = 0; i < RL_TIMEOUT; i++) {
768 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
769 		if (!(status & BMCR_RESET))
770 			break;
771 	}
772 
773 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
774 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
775 
776 	DELAY(100000);
777 
778 	/* Put some data in the mbuf */
779 
780 	eh = mtod(m0, struct ether_header *);
781 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
782 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
783 	eh->ether_type = htons(ETHERTYPE_IP);
784 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
785 
786 	/*
787 	 * Queue the packet, start transmission.
788 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
789 	 */
790 
791 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
792 	RL_UNLOCK(sc);
793 	/* XXX: re_diag must not be called when in ALTQ mode */
794 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
795 	RL_LOCK(sc);
796 	m0 = NULL;
797 
798 	/* Wait for it to propagate through the chip */
799 
800 	DELAY(100000);
801 	for (i = 0; i < RL_TIMEOUT; i++) {
802 		status = CSR_READ_2(sc, RL_ISR);
803 		CSR_WRITE_2(sc, RL_ISR, status);
804 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
805 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
806 			break;
807 		DELAY(10);
808 	}
809 
810 	if (i == RL_TIMEOUT) {
811 		device_printf(sc->rl_dev,
812 		    "diagnostic failed, failed to receive packet in"
813 		    " loopback mode\n");
814 		error = EIO;
815 		goto done;
816 	}
817 
818 	/*
819 	 * The packet should have been dumped into the first
820 	 * entry in the RX DMA ring. Grab it from there.
821 	 */
822 
823 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
824 	    sc->rl_ldata.rl_rx_list_map,
825 	    BUS_DMASYNC_POSTREAD);
826 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
827 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
828 	    BUS_DMASYNC_POSTREAD);
829 	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
830 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
831 
832 	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
833 	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
834 	eh = mtod(m0, struct ether_header *);
835 
836 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
837 	total_len = RL_RXBYTES(cur_rx);
838 	rxstat = le32toh(cur_rx->rl_cmdstat);
839 
840 	if (total_len != ETHER_MIN_LEN) {
841 		device_printf(sc->rl_dev,
842 		    "diagnostic failed, received short packet\n");
843 		error = EIO;
844 		goto done;
845 	}
846 
847 	/* Test that the received packet data matches what we sent. */
848 
849 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
850 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
851 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
852 		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
853 		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
854 		    dst, ":", src, ":", ETHERTYPE_IP);
855 		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
856 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
857 		    ntohs(eh->ether_type));
858 		device_printf(sc->rl_dev, "You may have a defective 32-bit "
859 		    "NIC plugged into a 64-bit PCI slot.\n");
860 		device_printf(sc->rl_dev, "Please re-install the NIC in a "
861 		    "32-bit slot for proper operation.\n");
862 		device_printf(sc->rl_dev, "Read the re(4) man page for more "
863 		    "details.\n");
864 		error = EIO;
865 	}
866 
867 done:
868 	/* Turn interface off, release resources */
869 
870 	sc->rl_testmode = 0;
871 	sc->rl_flags &= ~RL_FLAG_LINK;
872 	ifp->if_flags &= ~IFF_PROMISC;
873 	re_stop(sc);
874 	if (m0 != NULL)
875 		m_freem(m0);
876 
877 	RL_UNLOCK(sc);
878 
879 	return (error);
880 }
881 
882 #endif
883 
884 /*
885  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
886  * IDs against our list and return a device name if we find a match.
887  */
888 static int
889 re_probe(device_t dev)
890 {
891 	struct rl_type		*t;
892 	uint16_t		devid, vendor;
893 	uint16_t		revid, sdevid;
894 	int			i;
895 
896 	vendor = pci_get_vendor(dev);
897 	devid = pci_get_device(dev);
898 	revid = pci_get_revid(dev);
899 	sdevid = pci_get_subdevice(dev);
900 
901 	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
902 		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
903 			/*
904 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
905 			 * Rev. 2 is supported by sk(4).
906 			 */
907 			return (ENXIO);
908 		}
909 	}
910 
911 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
912 		if (revid != 0x20) {
913 			/* 8139, let rl(4) take care of this device. */
914 			return (ENXIO);
915 		}
916 	}
917 
918 	t = re_devs;
919 	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
920 		if (vendor == t->rl_vid && devid == t->rl_did) {
921 			device_set_desc(dev, t->rl_name);
922 			return (BUS_PROBE_DEFAULT);
923 		}
924 	}
925 
926 	return (ENXIO);
927 }
928 
929 /*
930  * Map a single buffer address.
931  */
932 
933 static void
934 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
935 {
936 	bus_addr_t		*addr;
937 
938 	if (error)
939 		return;
940 
941 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
942 	addr = arg;
943 	*addr = segs->ds_addr;
944 }
945 
946 static int
947 re_allocmem(device_t dev, struct rl_softc *sc)
948 {
949 	bus_addr_t		lowaddr;
950 	bus_size_t		rx_list_size, tx_list_size;
951 	int			error;
952 	int			i;
953 
954 	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
955 	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
956 
957 	/*
958 	 * Allocate the parent bus DMA tag appropriate for PCI.
959 	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
960 	 * register should be set. However some RealTek chips are known
961 	 * to be buggy on DAC handling, therefore disable DAC by limiting
962 	 * DMA address space to 32bit. PCIe variants of RealTek chips
963 	 * may not have the limitation.
964 	 */
965 	lowaddr = BUS_SPACE_MAXADDR;
966 	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
967 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
968 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
969 	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
970 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
971 	    NULL, NULL, &sc->rl_parent_tag);
972 	if (error) {
973 		device_printf(dev, "could not allocate parent DMA tag\n");
974 		return (error);
975 	}
976 
977 	/*
978 	 * Allocate map for TX mbufs.
979 	 */
980 	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
981 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
982 	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
983 	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
984 	if (error) {
985 		device_printf(dev, "could not allocate TX DMA tag\n");
986 		return (error);
987 	}
988 
989 	/*
990 	 * Allocate map for RX mbufs.
991 	 */
992 
993 	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
994 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
995 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
996 	if (error) {
997 		device_printf(dev, "could not allocate RX DMA tag\n");
998 		return (error);
999 	}
1000 
1001 	/*
1002 	 * Allocate map for TX descriptor list.
1003 	 */
1004 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1005 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1006 	    NULL, tx_list_size, 1, tx_list_size, 0,
1007 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1008 	if (error) {
1009 		device_printf(dev, "could not allocate TX DMA ring tag\n");
1010 		return (error);
1011 	}
1012 
1013 	/* Allocate DMA'able memory for the TX ring */
1014 
1015 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1016 	    (void **)&sc->rl_ldata.rl_tx_list,
1017 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1018 	    &sc->rl_ldata.rl_tx_list_map);
1019 	if (error) {
1020 		device_printf(dev, "could not allocate TX DMA ring\n");
1021 		return (error);
1022 	}
1023 
1024 	/* Load the map for the TX ring. */
1025 
1026 	sc->rl_ldata.rl_tx_list_addr = 0;
1027 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1028 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1029 	     tx_list_size, re_dma_map_addr,
1030 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1031 	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1032 		device_printf(dev, "could not load TX DMA ring\n");
1033 		return (ENOMEM);
1034 	}
1035 
1036 	/* Create DMA maps for TX buffers */
1037 
1038 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1039 		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1040 		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1041 		if (error) {
1042 			device_printf(dev, "could not create DMA map for TX\n");
1043 			return (error);
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * Allocate map for RX descriptor list.
1049 	 */
1050 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1051 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1052 	    NULL, rx_list_size, 1, rx_list_size, 0,
1053 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1054 	if (error) {
1055 		device_printf(dev, "could not create RX DMA ring tag\n");
1056 		return (error);
1057 	}
1058 
1059 	/* Allocate DMA'able memory for the RX ring */
1060 
1061 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1062 	    (void **)&sc->rl_ldata.rl_rx_list,
1063 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1064 	    &sc->rl_ldata.rl_rx_list_map);
1065 	if (error) {
1066 		device_printf(dev, "could not allocate RX DMA ring\n");
1067 		return (error);
1068 	}
1069 
1070 	/* Load the map for the RX ring. */
1071 
1072 	sc->rl_ldata.rl_rx_list_addr = 0;
1073 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1074 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1075 	     rx_list_size, re_dma_map_addr,
1076 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1077 	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1078 		device_printf(dev, "could not load RX DMA ring\n");
1079 		return (ENOMEM);
1080 	}
1081 
1082 	/* Create DMA maps for RX buffers */
1083 
1084 	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1085 	    &sc->rl_ldata.rl_rx_sparemap);
1086 	if (error) {
1087 		device_printf(dev, "could not create spare DMA map for RX\n");
1088 		return (error);
1089 	}
1090 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1091 		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1092 		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1093 		if (error) {
1094 			device_printf(dev, "could not create DMA map for RX\n");
1095 			return (error);
1096 		}
1097 	}
1098 
1099 	/* Create DMA map for statistics. */
1100 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1101 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1102 	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1103 	    &sc->rl_ldata.rl_stag);
1104 	if (error) {
1105 		device_printf(dev, "could not create statistics DMA tag\n");
1106 		return (error);
1107 	}
1108 	/* Allocate DMA'able memory for statistics. */
1109 	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1110 	    (void **)&sc->rl_ldata.rl_stats,
1111 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1112 	    &sc->rl_ldata.rl_smap);
1113 	if (error) {
1114 		device_printf(dev,
1115 		    "could not allocate statistics DMA memory\n");
1116 		return (error);
1117 	}
1118 	/* Load the map for statistics. */
1119 	sc->rl_ldata.rl_stats_addr = 0;
1120 	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1121 	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1122 	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1123 	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1124 		device_printf(dev, "could not load statistics DMA memory\n");
1125 		return (ENOMEM);
1126 	}
1127 
1128 	return (0);
1129 }
1130 
1131 /*
1132  * Attach the interface. Allocate softc structures, do ifmedia
1133  * setup and ethernet/BPF attach.
1134  */
1135 static int
1136 re_attach(device_t dev)
1137 {
1138 	u_char			eaddr[ETHER_ADDR_LEN];
1139 	u_int16_t		as[ETHER_ADDR_LEN / 2];
1140 	struct rl_softc		*sc;
1141 	struct ifnet		*ifp;
1142 	struct rl_hwrev		*hw_rev;
1143 	int			hwrev;
1144 	u_int16_t		devid, re_did = 0;
1145 	int			error = 0, i, phy, rid;
1146 	int			msic, reg;
1147 	uint8_t			cfg;
1148 
1149 	sc = device_get_softc(dev);
1150 	sc->rl_dev = dev;
1151 
1152 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1153 	    MTX_DEF);
1154 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1155 
1156 	/*
1157 	 * Map control/status registers.
1158 	 */
1159 	pci_enable_busmaster(dev);
1160 
1161 	devid = pci_get_device(dev);
1162 	/*
1163 	 * Prefer memory space register mapping over IO space.
1164 	 * Because RTL8169SC does not seem to work when memory mapping
1165 	 * is used always activate io mapping.
1166 	 */
1167 	if (devid == RT_DEVICEID_8169SC)
1168 		prefer_iomap = 1;
1169 	if (prefer_iomap == 0) {
1170 		sc->rl_res_id = PCIR_BAR(1);
1171 		sc->rl_res_type = SYS_RES_MEMORY;
1172 		/* RTL8168/8101E seems to use different BARs. */
1173 		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1174 			sc->rl_res_id = PCIR_BAR(2);
1175 	} else {
1176 		sc->rl_res_id = PCIR_BAR(0);
1177 		sc->rl_res_type = SYS_RES_IOPORT;
1178 	}
1179 	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1180 	    &sc->rl_res_id, RF_ACTIVE);
1181 	if (sc->rl_res == NULL && prefer_iomap == 0) {
1182 		sc->rl_res_id = PCIR_BAR(0);
1183 		sc->rl_res_type = SYS_RES_IOPORT;
1184 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1185 		    &sc->rl_res_id, RF_ACTIVE);
1186 	}
1187 	if (sc->rl_res == NULL) {
1188 		device_printf(dev, "couldn't map ports/memory\n");
1189 		error = ENXIO;
1190 		goto fail;
1191 	}
1192 
1193 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1194 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1195 
1196 	msic = 0;
1197 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1198 		sc->rl_flags |= RL_FLAG_PCIE;
1199 		if (devid != RT_DEVICEID_8101E) {
1200 			/* Set PCIe maximum read request size to 2048. */
1201 			if (pci_get_max_read_req(dev) < 2048)
1202 				pci_set_max_read_req(dev, 2048);
1203 		}
1204 		msic = pci_msi_count(dev);
1205 		if (bootverbose)
1206 			device_printf(dev, "MSI count : %d\n", msic);
1207 	}
1208 	if (msic > 0 && msi_disable == 0) {
1209 		msic = 1;
1210 		if (pci_alloc_msi(dev, &msic) == 0) {
1211 			if (msic == RL_MSI_MESSAGES) {
1212 				device_printf(dev, "Using %d MSI messages\n",
1213 				    msic);
1214 				sc->rl_flags |= RL_FLAG_MSI;
1215 				/* Explicitly set MSI enable bit. */
1216 				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1217 				cfg = CSR_READ_1(sc, RL_CFG2);
1218 				cfg |= RL_CFG2_MSI;
1219 				CSR_WRITE_1(sc, RL_CFG2, cfg);
1220 				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1221 			} else
1222 				pci_release_msi(dev);
1223 		}
1224 	}
1225 
1226 	/* Allocate interrupt */
1227 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1228 		rid = 0;
1229 		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1230 		    RF_SHAREABLE | RF_ACTIVE);
1231 		if (sc->rl_irq[0] == NULL) {
1232 			device_printf(dev, "couldn't allocate IRQ resources\n");
1233 			error = ENXIO;
1234 			goto fail;
1235 		}
1236 	} else {
1237 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1238 			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1239 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1240 			if (sc->rl_irq[i] == NULL) {
1241 				device_printf(dev,
1242 				    "couldn't llocate IRQ resources for "
1243 				    "message %d\n", rid);
1244 				error = ENXIO;
1245 				goto fail;
1246 			}
1247 		}
1248 	}
1249 
1250 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1251 		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1252 		cfg = CSR_READ_1(sc, RL_CFG2);
1253 		if ((cfg & RL_CFG2_MSI) != 0) {
1254 			device_printf(dev, "turning off MSI enable bit.\n");
1255 			cfg &= ~RL_CFG2_MSI;
1256 			CSR_WRITE_1(sc, RL_CFG2, cfg);
1257 		}
1258 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1259 	}
1260 
1261 	/* Reset the adapter. */
1262 	RL_LOCK(sc);
1263 	re_reset(sc);
1264 	RL_UNLOCK(sc);
1265 
1266 	hw_rev = re_hwrevs;
1267 	hwrev = CSR_READ_4(sc, RL_TXCFG);
1268 	switch (hwrev & 0x70000000) {
1269 	case 0x00000000:
1270 	case 0x10000000:
1271 		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1272 		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1273 		break;
1274 	default:
1275 		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1276 		hwrev &= RL_TXCFG_HWREV;
1277 		break;
1278 	}
1279 	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1280 	while (hw_rev->rl_desc != NULL) {
1281 		if (hw_rev->rl_rev == hwrev) {
1282 			sc->rl_type = hw_rev->rl_type;
1283 			sc->rl_hwrev = hw_rev->rl_rev;
1284 			break;
1285 		}
1286 		hw_rev++;
1287 	}
1288 	if (hw_rev->rl_desc == NULL) {
1289 		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1290 		error = ENXIO;
1291 		goto fail;
1292 	}
1293 
1294 	switch (hw_rev->rl_rev) {
1295 	case RL_HWREV_8139CPLUS:
1296 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER |
1297 		    RL_FLAG_AUTOPAD;
1298 		break;
1299 	case RL_HWREV_8100E:
1300 	case RL_HWREV_8101E:
1301 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1302 		    RL_FLAG_FASTETHER;
1303 		break;
1304 	case RL_HWREV_8102E:
1305 	case RL_HWREV_8102EL:
1306 	case RL_HWREV_8102EL_SPIN1:
1307 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1308 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1309 		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1310 		break;
1311 	case RL_HWREV_8103E:
1312 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE |
1313 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1314 		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1315 		    RL_FLAG_MACSLEEP;
1316 		break;
1317 	case RL_HWREV_8168_SPIN1:
1318 	case RL_HWREV_8168_SPIN2:
1319 		sc->rl_flags |= RL_FLAG_WOLRXENB;
1320 		/* FALLTHROUGH */
1321 	case RL_HWREV_8168_SPIN3:
1322 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1323 		break;
1324 	case RL_HWREV_8168C_SPIN2:
1325 		sc->rl_flags |= RL_FLAG_MACSLEEP;
1326 		/* FALLTHROUGH */
1327 	case RL_HWREV_8168C:
1328 		if ((hwrev & 0x00700000) == 0x00200000)
1329 			sc->rl_flags |= RL_FLAG_MACSLEEP;
1330 		/* FALLTHROUGH */
1331 	case RL_HWREV_8168CP:
1332 	case RL_HWREV_8168D:
1333 	case RL_HWREV_8168DP:
1334 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1335 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1336 		    RL_FLAG_AUTOPAD;
1337 		/*
1338 		 * These controllers support jumbo frame but it seems
1339 		 * that enabling it requires touching additional magic
1340 		 * registers. Depending on MAC revisions some
1341 		 * controllers need to disable checksum offload. So
1342 		 * disable jumbo frame until I have better idea what
1343 		 * it really requires to make it support.
1344 		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1345 		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1346 		 */
1347 		sc->rl_flags |= RL_FLAG_NOJUMBO;
1348 		break;
1349 	case RL_HWREV_8168E:
1350 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1351 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1352 		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO;
1353 		break;
1354 	case RL_HWREV_8169_8110SB:
1355 	case RL_HWREV_8169_8110SBL:
1356 	case RL_HWREV_8169_8110SC:
1357 	case RL_HWREV_8169_8110SCE:
1358 		sc->rl_flags |= RL_FLAG_PHYWAKE;
1359 		/* FALLTHROUGH */
1360 	case RL_HWREV_8169:
1361 	case RL_HWREV_8169S:
1362 	case RL_HWREV_8110S:
1363 		sc->rl_flags |= RL_FLAG_MACRESET;
1364 		break;
1365 	default:
1366 		break;
1367 	}
1368 
1369 	/* Enable PME. */
1370 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1371 	cfg = CSR_READ_1(sc, RL_CFG1);
1372 	cfg |= RL_CFG1_PME;
1373 	CSR_WRITE_1(sc, RL_CFG1, cfg);
1374 	cfg = CSR_READ_1(sc, RL_CFG5);
1375 	cfg &= RL_CFG5_PME_STS;
1376 	CSR_WRITE_1(sc, RL_CFG5, cfg);
1377 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1378 
1379 	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1380 		/*
1381 		 * XXX Should have a better way to extract station
1382 		 * address from EEPROM.
1383 		 */
1384 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1385 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1386 	} else {
1387 		sc->rl_eewidth = RL_9356_ADDR_LEN;
1388 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1389 		if (re_did != 0x8129)
1390 			sc->rl_eewidth = RL_9346_ADDR_LEN;
1391 
1392 		/*
1393 		 * Get station address from the EEPROM.
1394 		 */
1395 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1396 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1397 			as[i] = le16toh(as[i]);
1398 		bcopy(as, eaddr, sizeof(eaddr));
1399 	}
1400 
1401 	if (sc->rl_type == RL_8169) {
1402 		/* Set RX length mask and number of descriptors. */
1403 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1404 		sc->rl_txstart = RL_GTXSTART;
1405 		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1406 		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1407 	} else {
1408 		/* Set RX length mask and number of descriptors. */
1409 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1410 		sc->rl_txstart = RL_TXSTART;
1411 		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1412 		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1413 	}
1414 
1415 	error = re_allocmem(dev, sc);
1416 	if (error)
1417 		goto fail;
1418 	re_add_sysctls(sc);
1419 
1420 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1421 	if (ifp == NULL) {
1422 		device_printf(dev, "can not if_alloc()\n");
1423 		error = ENOSPC;
1424 		goto fail;
1425 	}
1426 
1427 	/* Take controller out of deep sleep mode. */
1428 	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1429 		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1430 			CSR_WRITE_1(sc, RL_GPIO,
1431 			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1432 		else
1433 			CSR_WRITE_1(sc, RL_GPIO,
1434 			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1435 	}
1436 
1437 	/* Take PHY out of power down mode. */
1438 	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
1439 		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1440 	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1441 		re_gmii_writereg(dev, 1, 0x1f, 0);
1442 		re_gmii_writereg(dev, 1, 0x0e, 0);
1443 	}
1444 
1445 #define	RE_PHYAD_INTERNAL	 0
1446 
1447 	/* Do MII setup. */
1448 	phy = RE_PHYAD_INTERNAL;
1449 	if (sc->rl_type == RL_8169)
1450 		phy = 1;
1451 	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1452 	    re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0);
1453 	if (error != 0) {
1454 		device_printf(dev, "attaching PHYs failed\n");
1455 		goto fail;
1456 	}
1457 
1458 	ifp->if_softc = sc;
1459 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1460 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1461 	ifp->if_ioctl = re_ioctl;
1462 	ifp->if_start = re_start;
1463 	ifp->if_hwassist = RE_CSUM_FEATURES;
1464 	ifp->if_capabilities = IFCAP_HWCSUM;
1465 	ifp->if_capenable = ifp->if_capabilities;
1466 	ifp->if_init = re_init;
1467 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1468 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1469 	IFQ_SET_READY(&ifp->if_snd);
1470 
1471 	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1472 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1473 
1474 	/*
1475 	 * XXX
1476 	 * Still have no idea how to make TSO work on 8168C, 8168CP,
1477 	 * 8111C and 8111CP.
1478 	 */
1479 	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1480 		ifp->if_hwassist |= CSUM_TSO;
1481 		ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO;
1482 	}
1483 
1484 	/*
1485 	 * Call MI attach routine.
1486 	 */
1487 	ether_ifattach(ifp, eaddr);
1488 
1489 	/* VLAN capability setup */
1490 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1491 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1492 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1493 	/* Enable WOL if PM is supported. */
1494 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1495 		ifp->if_capabilities |= IFCAP_WOL;
1496 	ifp->if_capenable = ifp->if_capabilities;
1497 	/*
1498 	 * Don't enable TSO by default. Under certain
1499 	 * circumtances the controller generated corrupted
1500 	 * packets in TSO size.
1501 	 */
1502 	ifp->if_hwassist &= ~CSUM_TSO;
1503 	ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1504 #ifdef DEVICE_POLLING
1505 	ifp->if_capabilities |= IFCAP_POLLING;
1506 #endif
1507 	/*
1508 	 * Tell the upper layer(s) we support long frames.
1509 	 * Must appear after the call to ether_ifattach() because
1510 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1511 	 */
1512 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1513 
1514 #ifdef RE_DIAG
1515 	/*
1516 	 * Perform hardware diagnostic on the original RTL8169.
1517 	 * Some 32-bit cards were incorrectly wired and would
1518 	 * malfunction if plugged into a 64-bit slot.
1519 	 */
1520 
1521 	if (hwrev == RL_HWREV_8169) {
1522 		error = re_diag(sc);
1523 		if (error) {
1524 			device_printf(dev,
1525 		    	"attach aborted due to hardware diag failure\n");
1526 			ether_ifdetach(ifp);
1527 			goto fail;
1528 		}
1529 	}
1530 #endif
1531 
1532 	/* Hook interrupt last to avoid having to lock softc */
1533 	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1534 		error = bus_setup_intr(dev, sc->rl_irq[0],
1535 		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1536 		    &sc->rl_intrhand[0]);
1537 	else {
1538 		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1539 			error = bus_setup_intr(dev, sc->rl_irq[i],
1540 			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1541 		    	    &sc->rl_intrhand[i]);
1542 			if (error != 0)
1543 				break;
1544 		}
1545 	}
1546 	if (error) {
1547 		device_printf(dev, "couldn't set up irq\n");
1548 		ether_ifdetach(ifp);
1549 	}
1550 
1551 fail:
1552 
1553 	if (error)
1554 		re_detach(dev);
1555 
1556 	return (error);
1557 }
1558 
1559 /*
1560  * Shutdown hardware and free up resources. This can be called any
1561  * time after the mutex has been initialized. It is called in both
1562  * the error case in attach and the normal detach case so it needs
1563  * to be careful about only freeing resources that have actually been
1564  * allocated.
1565  */
1566 static int
1567 re_detach(device_t dev)
1568 {
1569 	struct rl_softc		*sc;
1570 	struct ifnet		*ifp;
1571 	int			i, rid;
1572 
1573 	sc = device_get_softc(dev);
1574 	ifp = sc->rl_ifp;
1575 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1576 
1577 	/* These should only be active if attach succeeded */
1578 	if (device_is_attached(dev)) {
1579 #ifdef DEVICE_POLLING
1580 		if (ifp->if_capenable & IFCAP_POLLING)
1581 			ether_poll_deregister(ifp);
1582 #endif
1583 		RL_LOCK(sc);
1584 #if 0
1585 		sc->suspended = 1;
1586 #endif
1587 		re_stop(sc);
1588 		RL_UNLOCK(sc);
1589 		callout_drain(&sc->rl_stat_callout);
1590 		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1591 		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1592 		/*
1593 		 * Force off the IFF_UP flag here, in case someone
1594 		 * still had a BPF descriptor attached to this
1595 		 * interface. If they do, ether_ifdetach() will cause
1596 		 * the BPF code to try and clear the promisc mode
1597 		 * flag, which will bubble down to re_ioctl(),
1598 		 * which will try to call re_init() again. This will
1599 		 * turn the NIC back on and restart the MII ticker,
1600 		 * which will panic the system when the kernel tries
1601 		 * to invoke the re_tick() function that isn't there
1602 		 * anymore.
1603 		 */
1604 		ifp->if_flags &= ~IFF_UP;
1605 		ether_ifdetach(ifp);
1606 	}
1607 	if (sc->rl_miibus)
1608 		device_delete_child(dev, sc->rl_miibus);
1609 	bus_generic_detach(dev);
1610 
1611 	/*
1612 	 * The rest is resource deallocation, so we should already be
1613 	 * stopped here.
1614 	 */
1615 
1616 	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1617 		if (sc->rl_intrhand[i] != NULL) {
1618 			bus_teardown_intr(dev, sc->rl_irq[i],
1619 			    sc->rl_intrhand[i]);
1620 			sc->rl_intrhand[i] = NULL;
1621 		}
1622 	}
1623 	if (ifp != NULL)
1624 		if_free(ifp);
1625 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1626 		if (sc->rl_irq[0] != NULL) {
1627 			bus_release_resource(dev, SYS_RES_IRQ, 0,
1628 			    sc->rl_irq[0]);
1629 			sc->rl_irq[0] = NULL;
1630 		}
1631 	} else {
1632 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1633 			if (sc->rl_irq[i] != NULL) {
1634 				bus_release_resource(dev, SYS_RES_IRQ, rid,
1635 				    sc->rl_irq[i]);
1636 				sc->rl_irq[i] = NULL;
1637 			}
1638 		}
1639 		pci_release_msi(dev);
1640 	}
1641 	if (sc->rl_res)
1642 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1643 		    sc->rl_res);
1644 
1645 	/* Unload and free the RX DMA ring memory and map */
1646 
1647 	if (sc->rl_ldata.rl_rx_list_tag) {
1648 		if (sc->rl_ldata.rl_rx_list_map)
1649 			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1650 			    sc->rl_ldata.rl_rx_list_map);
1651 		if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1652 			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1653 			    sc->rl_ldata.rl_rx_list,
1654 			    sc->rl_ldata.rl_rx_list_map);
1655 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1656 	}
1657 
1658 	/* Unload and free the TX DMA ring memory and map */
1659 
1660 	if (sc->rl_ldata.rl_tx_list_tag) {
1661 		if (sc->rl_ldata.rl_tx_list_map)
1662 			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1663 			    sc->rl_ldata.rl_tx_list_map);
1664 		if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1665 			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1666 			    sc->rl_ldata.rl_tx_list,
1667 			    sc->rl_ldata.rl_tx_list_map);
1668 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1669 	}
1670 
1671 	/* Destroy all the RX and TX buffer maps */
1672 
1673 	if (sc->rl_ldata.rl_tx_mtag) {
1674 		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1675 			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1676 			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1677 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1678 	}
1679 	if (sc->rl_ldata.rl_rx_mtag) {
1680 		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1681 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1682 			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1683 		if (sc->rl_ldata.rl_rx_sparemap)
1684 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1685 			    sc->rl_ldata.rl_rx_sparemap);
1686 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1687 	}
1688 
1689 	/* Unload and free the stats buffer and map */
1690 
1691 	if (sc->rl_ldata.rl_stag) {
1692 		if (sc->rl_ldata.rl_smap)
1693 			bus_dmamap_unload(sc->rl_ldata.rl_stag,
1694 			    sc->rl_ldata.rl_smap);
1695 		if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1696 			bus_dmamem_free(sc->rl_ldata.rl_stag,
1697 			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1698 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1699 	}
1700 
1701 	if (sc->rl_parent_tag)
1702 		bus_dma_tag_destroy(sc->rl_parent_tag);
1703 
1704 	mtx_destroy(&sc->rl_mtx);
1705 
1706 	return (0);
1707 }
1708 
1709 static __inline void
1710 re_discard_rxbuf(struct rl_softc *sc, int idx)
1711 {
1712 	struct rl_desc		*desc;
1713 	struct rl_rxdesc	*rxd;
1714 	uint32_t		cmdstat;
1715 
1716 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1717 	desc = &sc->rl_ldata.rl_rx_list[idx];
1718 	desc->rl_vlanctl = 0;
1719 	cmdstat = rxd->rx_size;
1720 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1721 		cmdstat |= RL_RDESC_CMD_EOR;
1722 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1723 }
1724 
1725 static int
1726 re_newbuf(struct rl_softc *sc, int idx)
1727 {
1728 	struct mbuf		*m;
1729 	struct rl_rxdesc	*rxd;
1730 	bus_dma_segment_t	segs[1];
1731 	bus_dmamap_t		map;
1732 	struct rl_desc		*desc;
1733 	uint32_t		cmdstat;
1734 	int			error, nsegs;
1735 
1736 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1737 	if (m == NULL)
1738 		return (ENOBUFS);
1739 
1740 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1741 #ifdef RE_FIXUP_RX
1742 	/*
1743 	 * This is part of an evil trick to deal with non-x86 platforms.
1744 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1745 	 * boundaries, but that will hose non-x86 machines. To get around
1746 	 * this, we leave some empty space at the start of each buffer
1747 	 * and for non-x86 hosts, we copy the buffer back six bytes
1748 	 * to achieve word alignment. This is slightly more efficient
1749 	 * than allocating a new buffer, copying the contents, and
1750 	 * discarding the old buffer.
1751 	 */
1752 	m_adj(m, RE_ETHER_ALIGN);
1753 #endif
1754 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1755 	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1756 	if (error != 0) {
1757 		m_freem(m);
1758 		return (ENOBUFS);
1759 	}
1760 	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1761 
1762 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1763 	if (rxd->rx_m != NULL) {
1764 		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1765 		    BUS_DMASYNC_POSTREAD);
1766 		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1767 	}
1768 
1769 	rxd->rx_m = m;
1770 	map = rxd->rx_dmamap;
1771 	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1772 	rxd->rx_size = segs[0].ds_len;
1773 	sc->rl_ldata.rl_rx_sparemap = map;
1774 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1775 	    BUS_DMASYNC_PREREAD);
1776 
1777 	desc = &sc->rl_ldata.rl_rx_list[idx];
1778 	desc->rl_vlanctl = 0;
1779 	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1780 	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1781 	cmdstat = segs[0].ds_len;
1782 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1783 		cmdstat |= RL_RDESC_CMD_EOR;
1784 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1785 
1786 	return (0);
1787 }
1788 
1789 #ifdef RE_FIXUP_RX
1790 static __inline void
1791 re_fixup_rx(struct mbuf *m)
1792 {
1793 	int                     i;
1794 	uint16_t                *src, *dst;
1795 
1796 	src = mtod(m, uint16_t *);
1797 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1798 
1799 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1800 		*dst++ = *src++;
1801 
1802 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1803 }
1804 #endif
1805 
1806 static int
1807 re_tx_list_init(struct rl_softc *sc)
1808 {
1809 	struct rl_desc		*desc;
1810 	int			i;
1811 
1812 	RL_LOCK_ASSERT(sc);
1813 
1814 	bzero(sc->rl_ldata.rl_tx_list,
1815 	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1816 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1817 		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1818 	/* Set EOR. */
1819 	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1820 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1821 
1822 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1823 	    sc->rl_ldata.rl_tx_list_map,
1824 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1825 
1826 	sc->rl_ldata.rl_tx_prodidx = 0;
1827 	sc->rl_ldata.rl_tx_considx = 0;
1828 	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1829 
1830 	return (0);
1831 }
1832 
1833 static int
1834 re_rx_list_init(struct rl_softc *sc)
1835 {
1836 	int			error, i;
1837 
1838 	bzero(sc->rl_ldata.rl_rx_list,
1839 	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1840 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1841 		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1842 		if ((error = re_newbuf(sc, i)) != 0)
1843 			return (error);
1844 	}
1845 
1846 	/* Flush the RX descriptors */
1847 
1848 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1849 	    sc->rl_ldata.rl_rx_list_map,
1850 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1851 
1852 	sc->rl_ldata.rl_rx_prodidx = 0;
1853 	sc->rl_head = sc->rl_tail = NULL;
1854 
1855 	return (0);
1856 }
1857 
1858 /*
1859  * RX handler for C+ and 8169. For the gigE chips, we support
1860  * the reception of jumbo frames that have been fragmented
1861  * across multiple 2K mbuf cluster buffers.
1862  */
1863 static int
1864 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
1865 {
1866 	struct mbuf		*m;
1867 	struct ifnet		*ifp;
1868 	int			i, total_len;
1869 	struct rl_desc		*cur_rx;
1870 	u_int32_t		rxstat, rxvlan;
1871 	int			maxpkt = 16, rx_npkts = 0;
1872 
1873 	RL_LOCK_ASSERT(sc);
1874 
1875 	ifp = sc->rl_ifp;
1876 
1877 	/* Invalidate the descriptor memory */
1878 
1879 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1880 	    sc->rl_ldata.rl_rx_list_map,
1881 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1882 
1883 	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1884 	    i = RL_RX_DESC_NXT(sc, i)) {
1885 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
1886 			break;
1887 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1888 		rxstat = le32toh(cur_rx->rl_cmdstat);
1889 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1890 			break;
1891 		total_len = rxstat & sc->rl_rxlenmask;
1892 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1893 		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1894 
1895 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1896 			if (re_newbuf(sc, i) != 0) {
1897 				/*
1898 				 * If this is part of a multi-fragment packet,
1899 				 * discard all the pieces.
1900 				 */
1901 				if (sc->rl_head != NULL) {
1902 					m_freem(sc->rl_head);
1903 					sc->rl_head = sc->rl_tail = NULL;
1904 				}
1905 				re_discard_rxbuf(sc, i);
1906 				continue;
1907 			}
1908 			m->m_len = RE_RX_DESC_BUFLEN;
1909 			if (sc->rl_head == NULL)
1910 				sc->rl_head = sc->rl_tail = m;
1911 			else {
1912 				m->m_flags &= ~M_PKTHDR;
1913 				sc->rl_tail->m_next = m;
1914 				sc->rl_tail = m;
1915 			}
1916 			continue;
1917 		}
1918 
1919 		/*
1920 		 * NOTE: for the 8139C+, the frame length field
1921 		 * is always 12 bits in size, but for the gigE chips,
1922 		 * it is 13 bits (since the max RX frame length is 16K).
1923 		 * Unfortunately, all 32 bits in the status word
1924 		 * were already used, so to make room for the extra
1925 		 * length bit, RealTek took out the 'frame alignment
1926 		 * error' bit and shifted the other status bits
1927 		 * over one slot. The OWN, EOR, FS and LS bits are
1928 		 * still in the same places. We have already extracted
1929 		 * the frame length and checked the OWN bit, so rather
1930 		 * than using an alternate bit mapping, we shift the
1931 		 * status bits one space to the right so we can evaluate
1932 		 * them using the 8169 status as though it was in the
1933 		 * same format as that of the 8139C+.
1934 		 */
1935 		if (sc->rl_type == RL_8169)
1936 			rxstat >>= 1;
1937 
1938 		/*
1939 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1940 		 * set, but if CRC is clear, it will still be a valid frame.
1941 		 */
1942 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1943 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1944 			ifp->if_ierrors++;
1945 			/*
1946 			 * If this is part of a multi-fragment packet,
1947 			 * discard all the pieces.
1948 			 */
1949 			if (sc->rl_head != NULL) {
1950 				m_freem(sc->rl_head);
1951 				sc->rl_head = sc->rl_tail = NULL;
1952 			}
1953 			re_discard_rxbuf(sc, i);
1954 			continue;
1955 		}
1956 
1957 		/*
1958 		 * If allocating a replacement mbuf fails,
1959 		 * reload the current one.
1960 		 */
1961 
1962 		if (re_newbuf(sc, i) != 0) {
1963 			ifp->if_iqdrops++;
1964 			if (sc->rl_head != NULL) {
1965 				m_freem(sc->rl_head);
1966 				sc->rl_head = sc->rl_tail = NULL;
1967 			}
1968 			re_discard_rxbuf(sc, i);
1969 			continue;
1970 		}
1971 
1972 		if (sc->rl_head != NULL) {
1973 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1974 			if (m->m_len == 0)
1975 				m->m_len = RE_RX_DESC_BUFLEN;
1976 			/*
1977 			 * Special case: if there's 4 bytes or less
1978 			 * in this buffer, the mbuf can be discarded:
1979 			 * the last 4 bytes is the CRC, which we don't
1980 			 * care about anyway.
1981 			 */
1982 			if (m->m_len <= ETHER_CRC_LEN) {
1983 				sc->rl_tail->m_len -=
1984 				    (ETHER_CRC_LEN - m->m_len);
1985 				m_freem(m);
1986 			} else {
1987 				m->m_len -= ETHER_CRC_LEN;
1988 				m->m_flags &= ~M_PKTHDR;
1989 				sc->rl_tail->m_next = m;
1990 			}
1991 			m = sc->rl_head;
1992 			sc->rl_head = sc->rl_tail = NULL;
1993 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1994 		} else
1995 			m->m_pkthdr.len = m->m_len =
1996 			    (total_len - ETHER_CRC_LEN);
1997 
1998 #ifdef RE_FIXUP_RX
1999 		re_fixup_rx(m);
2000 #endif
2001 		ifp->if_ipackets++;
2002 		m->m_pkthdr.rcvif = ifp;
2003 
2004 		/* Do RX checksumming if enabled */
2005 
2006 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2007 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2008 				/* Check IP header checksum */
2009 				if (rxstat & RL_RDESC_STAT_PROTOID)
2010 					m->m_pkthdr.csum_flags |=
2011 					    CSUM_IP_CHECKED;
2012 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2013 					m->m_pkthdr.csum_flags |=
2014 					    CSUM_IP_VALID;
2015 
2016 				/* Check TCP/UDP checksum */
2017 				if ((RL_TCPPKT(rxstat) &&
2018 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2019 				    (RL_UDPPKT(rxstat) &&
2020 				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2021 					m->m_pkthdr.csum_flags |=
2022 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2023 					m->m_pkthdr.csum_data = 0xffff;
2024 				}
2025 			} else {
2026 				/*
2027 				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2028 				 */
2029 				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2030 				    (rxvlan & RL_RDESC_IPV4))
2031 					m->m_pkthdr.csum_flags |=
2032 					    CSUM_IP_CHECKED;
2033 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2034 				    (rxvlan & RL_RDESC_IPV4))
2035 					m->m_pkthdr.csum_flags |=
2036 					    CSUM_IP_VALID;
2037 				if (((rxstat & RL_RDESC_STAT_TCP) &&
2038 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2039 				    ((rxstat & RL_RDESC_STAT_UDP) &&
2040 				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2041 					m->m_pkthdr.csum_flags |=
2042 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2043 					m->m_pkthdr.csum_data = 0xffff;
2044 				}
2045 			}
2046 		}
2047 		maxpkt--;
2048 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2049 			m->m_pkthdr.ether_vtag =
2050 			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2051 			m->m_flags |= M_VLANTAG;
2052 		}
2053 		RL_UNLOCK(sc);
2054 		(*ifp->if_input)(ifp, m);
2055 		RL_LOCK(sc);
2056 		rx_npkts++;
2057 	}
2058 
2059 	/* Flush the RX DMA ring */
2060 
2061 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2062 	    sc->rl_ldata.rl_rx_list_map,
2063 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2064 
2065 	sc->rl_ldata.rl_rx_prodidx = i;
2066 
2067 	if (rx_npktsp != NULL)
2068 		*rx_npktsp = rx_npkts;
2069 	if (maxpkt)
2070 		return (EAGAIN);
2071 
2072 	return (0);
2073 }
2074 
2075 static void
2076 re_txeof(struct rl_softc *sc)
2077 {
2078 	struct ifnet		*ifp;
2079 	struct rl_txdesc	*txd;
2080 	u_int32_t		txstat;
2081 	int			cons;
2082 
2083 	cons = sc->rl_ldata.rl_tx_considx;
2084 	if (cons == sc->rl_ldata.rl_tx_prodidx)
2085 		return;
2086 
2087 	ifp = sc->rl_ifp;
2088 	/* Invalidate the TX descriptor list */
2089 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2090 	    sc->rl_ldata.rl_tx_list_map,
2091 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2092 
2093 	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2094 	    cons = RL_TX_DESC_NXT(sc, cons)) {
2095 		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2096 		if (txstat & RL_TDESC_STAT_OWN)
2097 			break;
2098 		/*
2099 		 * We only stash mbufs in the last descriptor
2100 		 * in a fragment chain, which also happens to
2101 		 * be the only place where the TX status bits
2102 		 * are valid.
2103 		 */
2104 		if (txstat & RL_TDESC_CMD_EOF) {
2105 			txd = &sc->rl_ldata.rl_tx_desc[cons];
2106 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2107 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2108 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2109 			    txd->tx_dmamap);
2110 			KASSERT(txd->tx_m != NULL,
2111 			    ("%s: freeing NULL mbufs!", __func__));
2112 			m_freem(txd->tx_m);
2113 			txd->tx_m = NULL;
2114 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2115 			    RL_TDESC_STAT_COLCNT))
2116 				ifp->if_collisions++;
2117 			if (txstat & RL_TDESC_STAT_TXERRSUM)
2118 				ifp->if_oerrors++;
2119 			else
2120 				ifp->if_opackets++;
2121 		}
2122 		sc->rl_ldata.rl_tx_free++;
2123 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2124 	}
2125 	sc->rl_ldata.rl_tx_considx = cons;
2126 
2127 	/* No changes made to the TX ring, so no flush needed */
2128 
2129 	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2130 #ifdef RE_TX_MODERATION
2131 		/*
2132 		 * If not all descriptors have been reaped yet, reload
2133 		 * the timer so that we will eventually get another
2134 		 * interrupt that will cause us to re-enter this routine.
2135 		 * This is done in case the transmitter has gone idle.
2136 		 */
2137 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2138 #endif
2139 	} else
2140 		sc->rl_watchdog_timer = 0;
2141 }
2142 
2143 static void
2144 re_tick(void *xsc)
2145 {
2146 	struct rl_softc		*sc;
2147 	struct mii_data		*mii;
2148 
2149 	sc = xsc;
2150 
2151 	RL_LOCK_ASSERT(sc);
2152 
2153 	mii = device_get_softc(sc->rl_miibus);
2154 	mii_tick(mii);
2155 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2156 		re_miibus_statchg(sc->rl_dev);
2157 	/*
2158 	 * Reclaim transmitted frames here. Technically it is not
2159 	 * necessary to do here but it ensures periodic reclamation
2160 	 * regardless of Tx completion interrupt which seems to be
2161 	 * lost on PCIe based controllers under certain situations.
2162 	 */
2163 	re_txeof(sc);
2164 	re_watchdog(sc);
2165 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2166 }
2167 
2168 #ifdef DEVICE_POLLING
2169 static int
2170 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2171 {
2172 	struct rl_softc *sc = ifp->if_softc;
2173 	int rx_npkts = 0;
2174 
2175 	RL_LOCK(sc);
2176 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2177 		rx_npkts = re_poll_locked(ifp, cmd, count);
2178 	RL_UNLOCK(sc);
2179 	return (rx_npkts);
2180 }
2181 
2182 static int
2183 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2184 {
2185 	struct rl_softc *sc = ifp->if_softc;
2186 	int rx_npkts;
2187 
2188 	RL_LOCK_ASSERT(sc);
2189 
2190 	sc->rxcycles = count;
2191 	re_rxeof(sc, &rx_npkts);
2192 	re_txeof(sc);
2193 
2194 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2195 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2196 
2197 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2198 		u_int16_t       status;
2199 
2200 		status = CSR_READ_2(sc, RL_ISR);
2201 		if (status == 0xffff)
2202 			return (rx_npkts);
2203 		if (status)
2204 			CSR_WRITE_2(sc, RL_ISR, status);
2205 		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2206 		    (sc->rl_flags & RL_FLAG_PCIE))
2207 			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2208 
2209 		/*
2210 		 * XXX check behaviour on receiver stalls.
2211 		 */
2212 
2213 		if (status & RL_ISR_SYSTEM_ERR) {
2214 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2215 			re_init_locked(sc);
2216 		}
2217 	}
2218 	return (rx_npkts);
2219 }
2220 #endif /* DEVICE_POLLING */
2221 
2222 static int
2223 re_intr(void *arg)
2224 {
2225 	struct rl_softc		*sc;
2226 	uint16_t		status;
2227 
2228 	sc = arg;
2229 
2230 	status = CSR_READ_2(sc, RL_ISR);
2231 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2232                 return (FILTER_STRAY);
2233 	CSR_WRITE_2(sc, RL_IMR, 0);
2234 
2235 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2236 
2237 	return (FILTER_HANDLED);
2238 }
2239 
2240 static void
2241 re_int_task(void *arg, int npending)
2242 {
2243 	struct rl_softc		*sc;
2244 	struct ifnet		*ifp;
2245 	u_int16_t		status;
2246 	int			rval = 0;
2247 
2248 	sc = arg;
2249 	ifp = sc->rl_ifp;
2250 
2251 	RL_LOCK(sc);
2252 
2253 	status = CSR_READ_2(sc, RL_ISR);
2254         CSR_WRITE_2(sc, RL_ISR, status);
2255 
2256 	if (sc->suspended ||
2257 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2258 		RL_UNLOCK(sc);
2259 		return;
2260 	}
2261 
2262 #ifdef DEVICE_POLLING
2263 	if  (ifp->if_capenable & IFCAP_POLLING) {
2264 		RL_UNLOCK(sc);
2265 		return;
2266 	}
2267 #endif
2268 
2269 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2270 		rval = re_rxeof(sc, NULL);
2271 
2272 	/*
2273 	 * Some chips will ignore a second TX request issued
2274 	 * while an existing transmission is in progress. If
2275 	 * the transmitter goes idle but there are still
2276 	 * packets waiting to be sent, we need to restart the
2277 	 * channel here to flush them out. This only seems to
2278 	 * be required with the PCIe devices.
2279 	 */
2280 	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2281 	    (sc->rl_flags & RL_FLAG_PCIE))
2282 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2283 	if (status & (
2284 #ifdef RE_TX_MODERATION
2285 	    RL_ISR_TIMEOUT_EXPIRED|
2286 #else
2287 	    RL_ISR_TX_OK|
2288 #endif
2289 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2290 		re_txeof(sc);
2291 
2292 	if (status & RL_ISR_SYSTEM_ERR) {
2293 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2294 		re_init_locked(sc);
2295 	}
2296 
2297 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2298 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2299 
2300 	RL_UNLOCK(sc);
2301 
2302         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2303 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2304 		return;
2305 	}
2306 
2307 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2308 }
2309 
2310 static int
2311 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2312 {
2313 	struct rl_txdesc	*txd, *txd_last;
2314 	bus_dma_segment_t	segs[RL_NTXSEGS];
2315 	bus_dmamap_t		map;
2316 	struct mbuf		*m_new;
2317 	struct rl_desc		*desc;
2318 	int			nsegs, prod;
2319 	int			i, error, ei, si;
2320 	int			padlen;
2321 	uint32_t		cmdstat, csum_flags, vlanctl;
2322 
2323 	RL_LOCK_ASSERT(sc);
2324 	M_ASSERTPKTHDR((*m_head));
2325 
2326 	/*
2327 	 * With some of the RealTek chips, using the checksum offload
2328 	 * support in conjunction with the autopadding feature results
2329 	 * in the transmission of corrupt frames. For example, if we
2330 	 * need to send a really small IP fragment that's less than 60
2331 	 * bytes in size, and IP header checksumming is enabled, the
2332 	 * resulting ethernet frame that appears on the wire will
2333 	 * have garbled payload. To work around this, if TX IP checksum
2334 	 * offload is enabled, we always manually pad short frames out
2335 	 * to the minimum ethernet frame size.
2336 	 */
2337 	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2338 	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2339 	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2340 		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2341 		if (M_WRITABLE(*m_head) == 0) {
2342 			/* Get a writable copy. */
2343 			m_new = m_dup(*m_head, M_DONTWAIT);
2344 			m_freem(*m_head);
2345 			if (m_new == NULL) {
2346 				*m_head = NULL;
2347 				return (ENOBUFS);
2348 			}
2349 			*m_head = m_new;
2350 		}
2351 		if ((*m_head)->m_next != NULL ||
2352 		    M_TRAILINGSPACE(*m_head) < padlen) {
2353 			m_new = m_defrag(*m_head, M_DONTWAIT);
2354 			if (m_new == NULL) {
2355 				m_freem(*m_head);
2356 				*m_head = NULL;
2357 				return (ENOBUFS);
2358 			}
2359 		} else
2360 			m_new = *m_head;
2361 
2362 		/*
2363 		 * Manually pad short frames, and zero the pad space
2364 		 * to avoid leaking data.
2365 		 */
2366 		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2367 		m_new->m_pkthdr.len += padlen;
2368 		m_new->m_len = m_new->m_pkthdr.len;
2369 		*m_head = m_new;
2370 	}
2371 
2372 	prod = sc->rl_ldata.rl_tx_prodidx;
2373 	txd = &sc->rl_ldata.rl_tx_desc[prod];
2374 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2375 	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2376 	if (error == EFBIG) {
2377 		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2378 		if (m_new == NULL) {
2379 			m_freem(*m_head);
2380 			*m_head = NULL;
2381 			return (ENOBUFS);
2382 		}
2383 		*m_head = m_new;
2384 		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2385 		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2386 		if (error != 0) {
2387 			m_freem(*m_head);
2388 			*m_head = NULL;
2389 			return (error);
2390 		}
2391 	} else if (error != 0)
2392 		return (error);
2393 	if (nsegs == 0) {
2394 		m_freem(*m_head);
2395 		*m_head = NULL;
2396 		return (EIO);
2397 	}
2398 
2399 	/* Check for number of available descriptors. */
2400 	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2401 		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2402 		return (ENOBUFS);
2403 	}
2404 
2405 	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2406 	    BUS_DMASYNC_PREWRITE);
2407 
2408 	/*
2409 	 * Set up checksum offload. Note: checksum offload bits must
2410 	 * appear in all descriptors of a multi-descriptor transmit
2411 	 * attempt. This is according to testing done with an 8169
2412 	 * chip. This is a requirement.
2413 	 */
2414 	vlanctl = 0;
2415 	csum_flags = 0;
2416 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2417 		csum_flags = RL_TDESC_CMD_LGSEND |
2418 		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2419 		    RL_TDESC_CMD_MSSVAL_SHIFT);
2420 	else {
2421 		/*
2422 		 * Unconditionally enable IP checksum if TCP or UDP
2423 		 * checksum is required. Otherwise, TCP/UDP checksum
2424 		 * does't make effects.
2425 		 */
2426 		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2427 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2428 				csum_flags |= RL_TDESC_CMD_IPCSUM;
2429 				if (((*m_head)->m_pkthdr.csum_flags &
2430 				    CSUM_TCP) != 0)
2431 					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2432 				if (((*m_head)->m_pkthdr.csum_flags &
2433 				    CSUM_UDP) != 0)
2434 					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2435 			} else {
2436 				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2437 				if (((*m_head)->m_pkthdr.csum_flags &
2438 				    CSUM_TCP) != 0)
2439 					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2440 				if (((*m_head)->m_pkthdr.csum_flags &
2441 				    CSUM_UDP) != 0)
2442 					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2443 			}
2444 		}
2445 	}
2446 
2447 	/*
2448 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2449 	 * appear in all descriptors of a multi-descriptor
2450 	 * transmission attempt.
2451 	 */
2452 	if ((*m_head)->m_flags & M_VLANTAG)
2453 		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2454 		    RL_TDESC_VLANCTL_TAG;
2455 
2456 	si = prod;
2457 	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2458 		desc = &sc->rl_ldata.rl_tx_list[prod];
2459 		desc->rl_vlanctl = htole32(vlanctl);
2460 		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2461 		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2462 		cmdstat = segs[i].ds_len;
2463 		if (i != 0)
2464 			cmdstat |= RL_TDESC_CMD_OWN;
2465 		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2466 			cmdstat |= RL_TDESC_CMD_EOR;
2467 		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2468 		sc->rl_ldata.rl_tx_free--;
2469 	}
2470 	/* Update producer index. */
2471 	sc->rl_ldata.rl_tx_prodidx = prod;
2472 
2473 	/* Set EOF on the last descriptor. */
2474 	ei = RL_TX_DESC_PRV(sc, prod);
2475 	desc = &sc->rl_ldata.rl_tx_list[ei];
2476 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2477 
2478 	desc = &sc->rl_ldata.rl_tx_list[si];
2479 	/* Set SOF and transfer ownership of packet to the chip. */
2480 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2481 
2482 	/*
2483 	 * Insure that the map for this transmission
2484 	 * is placed at the array index of the last descriptor
2485 	 * in this chain.  (Swap last and first dmamaps.)
2486 	 */
2487 	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2488 	map = txd->tx_dmamap;
2489 	txd->tx_dmamap = txd_last->tx_dmamap;
2490 	txd_last->tx_dmamap = map;
2491 	txd_last->tx_m = *m_head;
2492 
2493 	return (0);
2494 }
2495 
2496 static void
2497 re_tx_task(void *arg, int npending)
2498 {
2499 	struct ifnet		*ifp;
2500 
2501 	ifp = arg;
2502 	re_start(ifp);
2503 }
2504 
2505 /*
2506  * Main transmit routine for C+ and gigE NICs.
2507  */
2508 static void
2509 re_start(struct ifnet *ifp)
2510 {
2511 	struct rl_softc		*sc;
2512 	struct mbuf		*m_head;
2513 	int			queued;
2514 
2515 	sc = ifp->if_softc;
2516 
2517 	RL_LOCK(sc);
2518 
2519 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2520 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2521 		RL_UNLOCK(sc);
2522 		return;
2523 	}
2524 
2525 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2526 	    sc->rl_ldata.rl_tx_free > 1;) {
2527 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2528 		if (m_head == NULL)
2529 			break;
2530 
2531 		if (re_encap(sc, &m_head) != 0) {
2532 			if (m_head == NULL)
2533 				break;
2534 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2535 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2536 			break;
2537 		}
2538 
2539 		/*
2540 		 * If there's a BPF listener, bounce a copy of this frame
2541 		 * to him.
2542 		 */
2543 		ETHER_BPF_MTAP(ifp, m_head);
2544 
2545 		queued++;
2546 	}
2547 
2548 	if (queued == 0) {
2549 #ifdef RE_TX_MODERATION
2550 		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2551 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2552 #endif
2553 		RL_UNLOCK(sc);
2554 		return;
2555 	}
2556 
2557 	/* Flush the TX descriptors */
2558 
2559 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2560 	    sc->rl_ldata.rl_tx_list_map,
2561 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2562 
2563 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2564 
2565 #ifdef RE_TX_MODERATION
2566 	/*
2567 	 * Use the countdown timer for interrupt moderation.
2568 	 * 'TX done' interrupts are disabled. Instead, we reset the
2569 	 * countdown timer, which will begin counting until it hits
2570 	 * the value in the TIMERINT register, and then trigger an
2571 	 * interrupt. Each time we write to the TIMERCNT register,
2572 	 * the timer count is reset to 0.
2573 	 */
2574 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2575 #endif
2576 
2577 	/*
2578 	 * Set a timeout in case the chip goes out to lunch.
2579 	 */
2580 	sc->rl_watchdog_timer = 5;
2581 
2582 	RL_UNLOCK(sc);
2583 }
2584 
2585 static void
2586 re_init(void *xsc)
2587 {
2588 	struct rl_softc		*sc = xsc;
2589 
2590 	RL_LOCK(sc);
2591 	re_init_locked(sc);
2592 	RL_UNLOCK(sc);
2593 }
2594 
2595 static void
2596 re_init_locked(struct rl_softc *sc)
2597 {
2598 	struct ifnet		*ifp = sc->rl_ifp;
2599 	struct mii_data		*mii;
2600 	uint32_t		reg;
2601 	uint16_t		cfg;
2602 	union {
2603 		uint32_t align_dummy;
2604 		u_char eaddr[ETHER_ADDR_LEN];
2605         } eaddr;
2606 
2607 	RL_LOCK_ASSERT(sc);
2608 
2609 	mii = device_get_softc(sc->rl_miibus);
2610 
2611 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2612 		return;
2613 
2614 	/*
2615 	 * Cancel pending I/O and free all RX/TX buffers.
2616 	 */
2617 	re_stop(sc);
2618 
2619 	/* Put controller into known state. */
2620 	re_reset(sc);
2621 
2622 	/*
2623 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2624 	 * RX checksum offload. We must configure the C+ register
2625 	 * before all others.
2626 	 */
2627 	cfg = RL_CPLUSCMD_PCI_MRW;
2628 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2629 		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2630 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2631 		cfg |= RL_CPLUSCMD_VLANSTRIP;
2632 	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2633 		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2634 		/* XXX magic. */
2635 		cfg |= 0x0001;
2636 	} else
2637 		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2638 	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2639 	if (sc->rl_hwrev == RL_HWREV_8169_8110SC ||
2640 	    sc->rl_hwrev == RL_HWREV_8169_8110SCE) {
2641 		reg = 0x000fff00;
2642 		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
2643 			reg |= 0x000000ff;
2644 		if (sc->rl_hwrev == RL_HWREV_8169_8110SCE)
2645 			reg |= 0x00f00000;
2646 		CSR_WRITE_4(sc, 0x7c, reg);
2647 		/* Disable interrupt mitigation. */
2648 		CSR_WRITE_2(sc, 0xe2, 0);
2649 	}
2650 	/*
2651 	 * Disable TSO if interface MTU size is greater than MSS
2652 	 * allowed in controller.
2653 	 */
2654 	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2655 		ifp->if_capenable &= ~IFCAP_TSO4;
2656 		ifp->if_hwassist &= ~CSUM_TSO;
2657 	}
2658 
2659 	/*
2660 	 * Init our MAC address.  Even though the chipset
2661 	 * documentation doesn't mention it, we need to enter "Config
2662 	 * register write enable" mode to modify the ID registers.
2663 	 */
2664 	/* Copy MAC address on stack to align. */
2665 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2666 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2667 	CSR_WRITE_4(sc, RL_IDR0,
2668 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2669 	CSR_WRITE_4(sc, RL_IDR4,
2670 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2671 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2672 
2673 	/*
2674 	 * For C+ mode, initialize the RX descriptors and mbufs.
2675 	 */
2676 	re_rx_list_init(sc);
2677 	re_tx_list_init(sc);
2678 
2679 	/*
2680 	 * Load the addresses of the RX and TX lists into the chip.
2681 	 */
2682 
2683 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2684 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2685 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2686 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2687 
2688 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2689 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2690 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2691 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2692 
2693 	/*
2694 	 * Enable transmit and receive.
2695 	 */
2696 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2697 
2698 	/*
2699 	 * Set the initial TX configuration.
2700 	 */
2701 	if (sc->rl_testmode) {
2702 		if (sc->rl_type == RL_8169)
2703 			CSR_WRITE_4(sc, RL_TXCFG,
2704 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2705 		else
2706 			CSR_WRITE_4(sc, RL_TXCFG,
2707 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2708 	} else
2709 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2710 
2711 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2712 
2713 	/*
2714 	 * Set the initial RX configuration.
2715 	 */
2716 	re_set_rxmode(sc);
2717 
2718 	/* Configure interrupt moderation. */
2719 	if (sc->rl_type == RL_8169) {
2720 		switch (sc->rl_hwrev) {
2721 		case RL_HWREV_8100E:
2722 		case RL_HWREV_8101E:
2723 		case RL_HWREV_8102E:
2724 		case RL_HWREV_8102EL:
2725 		case RL_HWREV_8102EL_SPIN1:
2726 		case RL_HWREV_8103E:
2727 			CSR_WRITE_2(sc, RL_INTRMOD, 0);
2728 			break;
2729 		default:
2730 			/* Magic from vendor. */
2731 			CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
2732 			break;
2733 		}
2734 	}
2735 
2736 #ifdef DEVICE_POLLING
2737 	/*
2738 	 * Disable interrupts if we are polling.
2739 	 */
2740 	if (ifp->if_capenable & IFCAP_POLLING)
2741 		CSR_WRITE_2(sc, RL_IMR, 0);
2742 	else	/* otherwise ... */
2743 #endif
2744 
2745 	/*
2746 	 * Enable interrupts.
2747 	 */
2748 	if (sc->rl_testmode)
2749 		CSR_WRITE_2(sc, RL_IMR, 0);
2750 	else
2751 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2752 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2753 
2754 	/* Set initial TX threshold */
2755 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2756 
2757 	/* Start RX/TX process. */
2758 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2759 #ifdef notdef
2760 	/* Enable receiver and transmitter. */
2761 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2762 #endif
2763 
2764 #ifdef RE_TX_MODERATION
2765 	/*
2766 	 * Initialize the timer interrupt register so that
2767 	 * a timer interrupt will be generated once the timer
2768 	 * reaches a certain number of ticks. The timer is
2769 	 * reloaded on each transmit. This gives us TX interrupt
2770 	 * moderation, which dramatically improves TX frame rate.
2771 	 */
2772 	if (sc->rl_type == RL_8169)
2773 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2774 	else
2775 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2776 #endif
2777 
2778 	/*
2779 	 * For 8169 gigE NICs, set the max allowed RX packet
2780 	 * size so we can receive jumbo frames.
2781 	 */
2782 	if (sc->rl_type == RL_8169)
2783 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2784 
2785 	if (sc->rl_testmode)
2786 		return;
2787 
2788 	mii_mediachg(mii);
2789 
2790 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2791 
2792 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2793 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2794 
2795 	sc->rl_flags &= ~RL_FLAG_LINK;
2796 	sc->rl_watchdog_timer = 0;
2797 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2798 }
2799 
2800 /*
2801  * Set media options.
2802  */
2803 static int
2804 re_ifmedia_upd(struct ifnet *ifp)
2805 {
2806 	struct rl_softc		*sc;
2807 	struct mii_data		*mii;
2808 	int			error;
2809 
2810 	sc = ifp->if_softc;
2811 	mii = device_get_softc(sc->rl_miibus);
2812 	RL_LOCK(sc);
2813 	error = mii_mediachg(mii);
2814 	RL_UNLOCK(sc);
2815 
2816 	return (error);
2817 }
2818 
2819 /*
2820  * Report current media status.
2821  */
2822 static void
2823 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2824 {
2825 	struct rl_softc		*sc;
2826 	struct mii_data		*mii;
2827 
2828 	sc = ifp->if_softc;
2829 	mii = device_get_softc(sc->rl_miibus);
2830 
2831 	RL_LOCK(sc);
2832 	mii_pollstat(mii);
2833 	RL_UNLOCK(sc);
2834 	ifmr->ifm_active = mii->mii_media_active;
2835 	ifmr->ifm_status = mii->mii_media_status;
2836 }
2837 
2838 static int
2839 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2840 {
2841 	struct rl_softc		*sc = ifp->if_softc;
2842 	struct ifreq		*ifr = (struct ifreq *) data;
2843 	struct mii_data		*mii;
2844 	int			error = 0;
2845 
2846 	switch (command) {
2847 	case SIOCSIFMTU:
2848 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2849 			error = EINVAL;
2850 			break;
2851 		}
2852 		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2853 		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2854 			error = EINVAL;
2855 			break;
2856 		}
2857 		RL_LOCK(sc);
2858 		if (ifp->if_mtu != ifr->ifr_mtu)
2859 			ifp->if_mtu = ifr->ifr_mtu;
2860 		if (ifp->if_mtu > RL_TSO_MTU &&
2861 		    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2862 			ifp->if_capenable &= ~IFCAP_TSO4;
2863 			ifp->if_hwassist &= ~CSUM_TSO;
2864 			VLAN_CAPABILITIES(ifp);
2865 		}
2866 		RL_UNLOCK(sc);
2867 		break;
2868 	case SIOCSIFFLAGS:
2869 		RL_LOCK(sc);
2870 		if ((ifp->if_flags & IFF_UP) != 0) {
2871 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2872 				if (((ifp->if_flags ^ sc->rl_if_flags)
2873 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2874 					re_set_rxmode(sc);
2875 			} else
2876 				re_init_locked(sc);
2877 		} else {
2878 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2879 				re_stop(sc);
2880 		}
2881 		sc->rl_if_flags = ifp->if_flags;
2882 		RL_UNLOCK(sc);
2883 		break;
2884 	case SIOCADDMULTI:
2885 	case SIOCDELMULTI:
2886 		RL_LOCK(sc);
2887 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2888 			re_set_rxmode(sc);
2889 		RL_UNLOCK(sc);
2890 		break;
2891 	case SIOCGIFMEDIA:
2892 	case SIOCSIFMEDIA:
2893 		mii = device_get_softc(sc->rl_miibus);
2894 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2895 		break;
2896 	case SIOCSIFCAP:
2897 	    {
2898 		int mask, reinit;
2899 
2900 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2901 		reinit = 0;
2902 #ifdef DEVICE_POLLING
2903 		if (mask & IFCAP_POLLING) {
2904 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2905 				error = ether_poll_register(re_poll, ifp);
2906 				if (error)
2907 					return (error);
2908 				RL_LOCK(sc);
2909 				/* Disable interrupts */
2910 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2911 				ifp->if_capenable |= IFCAP_POLLING;
2912 				RL_UNLOCK(sc);
2913 			} else {
2914 				error = ether_poll_deregister(ifp);
2915 				/* Enable interrupts. */
2916 				RL_LOCK(sc);
2917 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2918 				ifp->if_capenable &= ~IFCAP_POLLING;
2919 				RL_UNLOCK(sc);
2920 			}
2921 		}
2922 #endif /* DEVICE_POLLING */
2923 		if (mask & IFCAP_HWCSUM) {
2924 			ifp->if_capenable ^= IFCAP_HWCSUM;
2925 			if (ifp->if_capenable & IFCAP_TXCSUM)
2926 				ifp->if_hwassist |= RE_CSUM_FEATURES;
2927 			else
2928 				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2929 			reinit = 1;
2930 		}
2931 		if ((mask & IFCAP_TSO4) != 0 &&
2932 		    (ifp->if_capabilities & IFCAP_TSO) != 0) {
2933 			ifp->if_capenable ^= IFCAP_TSO4;
2934 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
2935 				ifp->if_hwassist |= CSUM_TSO;
2936 			else
2937 				ifp->if_hwassist &= ~CSUM_TSO;
2938 			if (ifp->if_mtu > RL_TSO_MTU &&
2939 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2940 				ifp->if_capenable &= ~IFCAP_TSO4;
2941 				ifp->if_hwassist &= ~CSUM_TSO;
2942 			}
2943 		}
2944 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
2945 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
2946 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
2947 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
2948 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
2949 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2950 			/* TSO over VLAN requires VLAN hardware tagging. */
2951 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
2952 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
2953 			reinit = 1;
2954 		}
2955 		if ((mask & IFCAP_WOL) != 0 &&
2956 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2957 			if ((mask & IFCAP_WOL_UCAST) != 0)
2958 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2959 			if ((mask & IFCAP_WOL_MCAST) != 0)
2960 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2961 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2962 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2963 		}
2964 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
2965 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2966 			re_init(sc);
2967 		}
2968 		VLAN_CAPABILITIES(ifp);
2969 	    }
2970 		break;
2971 	default:
2972 		error = ether_ioctl(ifp, command, data);
2973 		break;
2974 	}
2975 
2976 	return (error);
2977 }
2978 
2979 static void
2980 re_watchdog(struct rl_softc *sc)
2981 {
2982 	struct ifnet		*ifp;
2983 
2984 	RL_LOCK_ASSERT(sc);
2985 
2986 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2987 		return;
2988 
2989 	ifp = sc->rl_ifp;
2990 	re_txeof(sc);
2991 	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
2992 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
2993 		    "-- recovering\n");
2994 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2995 			taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2996 		return;
2997 	}
2998 
2999 	if_printf(ifp, "watchdog timeout\n");
3000 	ifp->if_oerrors++;
3001 
3002 	re_rxeof(sc, NULL);
3003 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3004 	re_init_locked(sc);
3005 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3006 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
3007 }
3008 
3009 /*
3010  * Stop the adapter and free any mbufs allocated to the
3011  * RX and TX lists.
3012  */
3013 static void
3014 re_stop(struct rl_softc *sc)
3015 {
3016 	int			i;
3017 	struct ifnet		*ifp;
3018 	struct rl_txdesc	*txd;
3019 	struct rl_rxdesc	*rxd;
3020 
3021 	RL_LOCK_ASSERT(sc);
3022 
3023 	ifp = sc->rl_ifp;
3024 
3025 	sc->rl_watchdog_timer = 0;
3026 	callout_stop(&sc->rl_stat_callout);
3027 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3028 
3029 	if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0)
3030 		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3031 		    RL_CMD_RX_ENB);
3032 	else
3033 		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3034 	DELAY(1000);
3035 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
3036 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3037 
3038 	if (sc->rl_head != NULL) {
3039 		m_freem(sc->rl_head);
3040 		sc->rl_head = sc->rl_tail = NULL;
3041 	}
3042 
3043 	/* Free the TX list buffers. */
3044 
3045 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3046 		txd = &sc->rl_ldata.rl_tx_desc[i];
3047 		if (txd->tx_m != NULL) {
3048 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3049 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3050 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3051 			    txd->tx_dmamap);
3052 			m_freem(txd->tx_m);
3053 			txd->tx_m = NULL;
3054 		}
3055 	}
3056 
3057 	/* Free the RX list buffers. */
3058 
3059 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3060 		rxd = &sc->rl_ldata.rl_rx_desc[i];
3061 		if (rxd->rx_m != NULL) {
3062 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3063 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3064 			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3065 			    rxd->rx_dmamap);
3066 			m_freem(rxd->rx_m);
3067 			rxd->rx_m = NULL;
3068 		}
3069 	}
3070 }
3071 
3072 /*
3073  * Device suspend routine.  Stop the interface and save some PCI
3074  * settings in case the BIOS doesn't restore them properly on
3075  * resume.
3076  */
3077 static int
3078 re_suspend(device_t dev)
3079 {
3080 	struct rl_softc		*sc;
3081 
3082 	sc = device_get_softc(dev);
3083 
3084 	RL_LOCK(sc);
3085 	re_stop(sc);
3086 	re_setwol(sc);
3087 	sc->suspended = 1;
3088 	RL_UNLOCK(sc);
3089 
3090 	return (0);
3091 }
3092 
3093 /*
3094  * Device resume routine.  Restore some PCI settings in case the BIOS
3095  * doesn't, re-enable busmastering, and restart the interface if
3096  * appropriate.
3097  */
3098 static int
3099 re_resume(device_t dev)
3100 {
3101 	struct rl_softc		*sc;
3102 	struct ifnet		*ifp;
3103 
3104 	sc = device_get_softc(dev);
3105 
3106 	RL_LOCK(sc);
3107 
3108 	ifp = sc->rl_ifp;
3109 	/* Take controller out of sleep mode. */
3110 	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3111 		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3112 			CSR_WRITE_1(sc, RL_GPIO,
3113 			    CSR_READ_1(sc, RL_GPIO) | 0x01);
3114 	}
3115 
3116 	/*
3117 	 * Clear WOL matching such that normal Rx filtering
3118 	 * wouldn't interfere with WOL patterns.
3119 	 */
3120 	re_clrwol(sc);
3121 
3122 	/* reinitialize interface if necessary */
3123 	if (ifp->if_flags & IFF_UP)
3124 		re_init_locked(sc);
3125 
3126 	sc->suspended = 0;
3127 	RL_UNLOCK(sc);
3128 
3129 	return (0);
3130 }
3131 
3132 /*
3133  * Stop all chip I/O so that the kernel's probe routines don't
3134  * get confused by errant DMAs when rebooting.
3135  */
3136 static int
3137 re_shutdown(device_t dev)
3138 {
3139 	struct rl_softc		*sc;
3140 
3141 	sc = device_get_softc(dev);
3142 
3143 	RL_LOCK(sc);
3144 	re_stop(sc);
3145 	/*
3146 	 * Mark interface as down since otherwise we will panic if
3147 	 * interrupt comes in later on, which can happen in some
3148 	 * cases.
3149 	 */
3150 	sc->rl_ifp->if_flags &= ~IFF_UP;
3151 	re_setwol(sc);
3152 	RL_UNLOCK(sc);
3153 
3154 	return (0);
3155 }
3156 
3157 static void
3158 re_setwol(struct rl_softc *sc)
3159 {
3160 	struct ifnet		*ifp;
3161 	int			pmc;
3162 	uint16_t		pmstat;
3163 	uint8_t			v;
3164 
3165 	RL_LOCK_ASSERT(sc);
3166 
3167 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3168 		return;
3169 
3170 	ifp = sc->rl_ifp;
3171 	/* Put controller into sleep mode. */
3172 	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3173 		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3174 			CSR_WRITE_1(sc, RL_GPIO,
3175 			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3176 	}
3177 	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3178 	    (sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3179 		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3180 	/* Enable config register write. */
3181 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3182 
3183 	/* Enable PME. */
3184 	v = CSR_READ_1(sc, RL_CFG1);
3185 	v &= ~RL_CFG1_PME;
3186 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3187 		v |= RL_CFG1_PME;
3188 	CSR_WRITE_1(sc, RL_CFG1, v);
3189 
3190 	v = CSR_READ_1(sc, RL_CFG3);
3191 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3192 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3193 		v |= RL_CFG3_WOL_MAGIC;
3194 	CSR_WRITE_1(sc, RL_CFG3, v);
3195 
3196 	/* Config register write done. */
3197 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3198 
3199 	v = CSR_READ_1(sc, RL_CFG5);
3200 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3201 	v &= ~RL_CFG5_WOL_LANWAKE;
3202 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3203 		v |= RL_CFG5_WOL_UCAST;
3204 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3205 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3206 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3207 		v |= RL_CFG5_WOL_LANWAKE;
3208 	CSR_WRITE_1(sc, RL_CFG5, v);
3209 
3210 	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3211 	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3212 		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3213 	/*
3214 	 * It seems that hardware resets its link speed to 100Mbps in
3215 	 * power down mode so switching to 100Mbps in driver is not
3216 	 * needed.
3217 	 */
3218 
3219 	/* Request PME if WOL is requested. */
3220 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3221 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3222 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3223 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3224 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3225 }
3226 
3227 static void
3228 re_clrwol(struct rl_softc *sc)
3229 {
3230 	int			pmc;
3231 	uint8_t			v;
3232 
3233 	RL_LOCK_ASSERT(sc);
3234 
3235 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3236 		return;
3237 
3238 	/* Enable config register write. */
3239 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3240 
3241 	v = CSR_READ_1(sc, RL_CFG3);
3242 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3243 	CSR_WRITE_1(sc, RL_CFG3, v);
3244 
3245 	/* Config register write done. */
3246 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3247 
3248 	v = CSR_READ_1(sc, RL_CFG5);
3249 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3250 	v &= ~RL_CFG5_WOL_LANWAKE;
3251 	CSR_WRITE_1(sc, RL_CFG5, v);
3252 }
3253 
3254 static void
3255 re_add_sysctls(struct rl_softc *sc)
3256 {
3257 	struct sysctl_ctx_list	*ctx;
3258 	struct sysctl_oid_list	*children;
3259 
3260 	ctx = device_get_sysctl_ctx(sc->rl_dev);
3261 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3262 
3263 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3264 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3265 	    "Statistics Information");
3266 }
3267 
3268 static int
3269 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3270 {
3271 	struct rl_softc		*sc;
3272 	struct rl_stats		*stats;
3273 	int			error, i, result;
3274 
3275 	result = -1;
3276 	error = sysctl_handle_int(oidp, &result, 0, req);
3277 	if (error || req->newptr == NULL)
3278 		return (error);
3279 
3280 	if (result == 1) {
3281 		sc = (struct rl_softc *)arg1;
3282 		RL_LOCK(sc);
3283 		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3284 		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3285 		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3286 		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3287 		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3288 		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3289 		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3290 		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3291 		    RL_DUMPSTATS_START));
3292 		for (i = RL_TIMEOUT; i > 0; i--) {
3293 			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3294 			    RL_DUMPSTATS_START) == 0)
3295 				break;
3296 			DELAY(1000);
3297 		}
3298 		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3299 		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3300 		RL_UNLOCK(sc);
3301 		if (i == 0) {
3302 			device_printf(sc->rl_dev,
3303 			    "DUMP statistics request timedout\n");
3304 			return (ETIMEDOUT);
3305 		}
3306 		stats = sc->rl_ldata.rl_stats;
3307 		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3308 		printf("Tx frames : %ju\n",
3309 		    (uintmax_t)le64toh(stats->rl_tx_pkts));
3310 		printf("Rx frames : %ju\n",
3311 		    (uintmax_t)le64toh(stats->rl_rx_pkts));
3312 		printf("Tx errors : %ju\n",
3313 		    (uintmax_t)le64toh(stats->rl_tx_errs));
3314 		printf("Rx errors : %u\n",
3315 		    le32toh(stats->rl_rx_errs));
3316 		printf("Rx missed frames : %u\n",
3317 		    (uint32_t)le16toh(stats->rl_missed_pkts));
3318 		printf("Rx frame alignment errs : %u\n",
3319 		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3320 		printf("Tx single collisions : %u\n",
3321 		    le32toh(stats->rl_tx_onecoll));
3322 		printf("Tx multiple collisions : %u\n",
3323 		    le32toh(stats->rl_tx_multicolls));
3324 		printf("Rx unicast frames : %ju\n",
3325 		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
3326 		printf("Rx broadcast frames : %ju\n",
3327 		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
3328 		printf("Rx multicast frames : %u\n",
3329 		    le32toh(stats->rl_rx_mcasts));
3330 		printf("Tx aborts : %u\n",
3331 		    (uint32_t)le16toh(stats->rl_tx_aborts));
3332 		printf("Tx underruns : %u\n",
3333 		    (uint32_t)le16toh(stats->rl_rx_underruns));
3334 	}
3335 
3336 	return (error);
3337 }
3338