1 /*- 2 * Copyright (c) 1997, 1998-2003 3 * Bill Paul <wpaul@windriver.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Networking Software Engineer 41 * Wind River Systems 42 */ 43 44 /* 45 * This driver is designed to support RealTek's next generation of 46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, 48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. 49 * 50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 51 * with the older 8139 family, however it also supports a special 52 * C+ mode of operation that provides several new performance enhancing 53 * features. These include: 54 * 55 * o Descriptor based DMA mechanism. Each descriptor represents 56 * a single packet fragment. Data buffers may be aligned on 57 * any byte boundary. 58 * 59 * o 64-bit DMA 60 * 61 * o TCP/IP checksum offload for both RX and TX 62 * 63 * o High and normal priority transmit DMA rings 64 * 65 * o VLAN tag insertion and extraction 66 * 67 * o TCP large send (segmentation offload) 68 * 69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 70 * programming API is fairly straightforward. The RX filtering, EEPROM 71 * access and PHY access is the same as it is on the older 8139 series 72 * chips. 73 * 74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 75 * same programming API and feature set as the 8139C+ with the following 76 * differences and additions: 77 * 78 * o 1000Mbps mode 79 * 80 * o Jumbo frames 81 * 82 * o GMII and TBI ports/registers for interfacing with copper 83 * or fiber PHYs 84 * 85 * o RX and TX DMA rings can have up to 1024 descriptors 86 * (the 8139C+ allows a maximum of 64) 87 * 88 * o Slight differences in register layout from the 8139C+ 89 * 90 * The TX start and timer interrupt registers are at different locations 91 * on the 8169 than they are on the 8139C+. Also, the status word in the 92 * RX descriptor has a slightly different bit layout. The 8169 does not 93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 94 * copper gigE PHY. 95 * 96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 97 * (the 'S' stands for 'single-chip'). These devices have the same 98 * programming API as the older 8169, but also have some vendor-specific 99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 101 * 102 * This driver takes advantage of the RX and TX checksum offload and 103 * VLAN tag insertion/extraction features. It also implements TX 104 * interrupt moderation using the timer interrupt registers, which 105 * significantly reduces TX interrupt load. There is also support 106 * for jumbo frames, however the 8169/8169S/8110S can not transmit 107 * jumbo frames larger than 7440, so the max MTU possible with this 108 * driver is 7422 bytes. 109 */ 110 111 #ifdef HAVE_KERNEL_OPTION_HEADERS 112 #include "opt_device_polling.h" 113 #endif 114 115 #include <sys/param.h> 116 #include <sys/endian.h> 117 #include <sys/systm.h> 118 #include <sys/sockio.h> 119 #include <sys/mbuf.h> 120 #include <sys/malloc.h> 121 #include <sys/module.h> 122 #include <sys/kernel.h> 123 #include <sys/socket.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/sysctl.h> 127 #include <sys/taskqueue.h> 128 129 #include <net/if.h> 130 #include <net/if_arp.h> 131 #include <net/ethernet.h> 132 #include <net/if_dl.h> 133 #include <net/if_media.h> 134 #include <net/if_types.h> 135 #include <net/if_vlan_var.h> 136 137 #include <net/bpf.h> 138 139 #include <machine/bus.h> 140 #include <machine/resource.h> 141 #include <sys/bus.h> 142 #include <sys/rman.h> 143 144 #include <dev/mii/mii.h> 145 #include <dev/mii/miivar.h> 146 147 #include <dev/pci/pcireg.h> 148 #include <dev/pci/pcivar.h> 149 150 #include <pci/if_rlreg.h> 151 152 MODULE_DEPEND(re, pci, 1, 1, 1); 153 MODULE_DEPEND(re, ether, 1, 1, 1); 154 MODULE_DEPEND(re, miibus, 1, 1, 1); 155 156 /* "device miibus" required. See GENERIC if you get errors here. */ 157 #include "miibus_if.h" 158 159 /* Tunables. */ 160 static int msi_disable = 0; 161 TUNABLE_INT("hw.re.msi_disable", &msi_disable); 162 static int prefer_iomap = 0; 163 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap); 164 165 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 166 167 /* 168 * Various supported device vendors/types and their names. 169 */ 170 static struct rl_type re_devs[] = { 171 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0, 172 "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, 173 { RT_VENDORID, RT_DEVICEID_8139, 0, 174 "RealTek 8139C+ 10/100BaseTX" }, 175 { RT_VENDORID, RT_DEVICEID_8101E, 0, 176 "RealTek 8101E/8102E/8102EL/8103E PCIe 10/100baseTX" }, 177 { RT_VENDORID, RT_DEVICEID_8168, 0, 178 "RealTek 8168/8111 B/C/CP/D/DP/E PCIe Gigabit Ethernet" }, 179 { RT_VENDORID, RT_DEVICEID_8169, 0, 180 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" }, 181 { RT_VENDORID, RT_DEVICEID_8169SC, 0, 182 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" }, 183 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0, 184 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, 185 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0, 186 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, 187 { USR_VENDORID, USR_DEVICEID_997902, 0, 188 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" } 189 }; 190 191 static struct rl_hwrev re_hwrevs[] = { 192 { RL_HWREV_8139, RL_8139, "" }, 193 { RL_HWREV_8139A, RL_8139, "A" }, 194 { RL_HWREV_8139AG, RL_8139, "A-G" }, 195 { RL_HWREV_8139B, RL_8139, "B" }, 196 { RL_HWREV_8130, RL_8139, "8130" }, 197 { RL_HWREV_8139C, RL_8139, "C" }, 198 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" }, 199 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"}, 200 { RL_HWREV_8168_SPIN1, RL_8169, "8168"}, 201 { RL_HWREV_8169, RL_8169, "8169"}, 202 { RL_HWREV_8169S, RL_8169, "8169S"}, 203 { RL_HWREV_8110S, RL_8169, "8110S"}, 204 { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB"}, 205 { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC"}, 206 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL"}, 207 { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC"}, 208 { RL_HWREV_8100, RL_8139, "8100"}, 209 { RL_HWREV_8101, RL_8139, "8101"}, 210 { RL_HWREV_8100E, RL_8169, "8100E"}, 211 { RL_HWREV_8101E, RL_8169, "8101E"}, 212 { RL_HWREV_8102E, RL_8169, "8102E"}, 213 { RL_HWREV_8102EL, RL_8169, "8102EL"}, 214 { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL"}, 215 { RL_HWREV_8103E, RL_8169, "8103E"}, 216 { RL_HWREV_8168_SPIN2, RL_8169, "8168"}, 217 { RL_HWREV_8168_SPIN3, RL_8169, "8168"}, 218 { RL_HWREV_8168C, RL_8169, "8168C/8111C"}, 219 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"}, 220 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"}, 221 { RL_HWREV_8168D, RL_8169, "8168D/8111D"}, 222 { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP"}, 223 { RL_HWREV_8168E, RL_8169, "8168E/8111E"}, 224 { 0, 0, NULL } 225 }; 226 227 static int re_probe (device_t); 228 static int re_attach (device_t); 229 static int re_detach (device_t); 230 231 static int re_encap (struct rl_softc *, struct mbuf **); 232 233 static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); 234 static int re_allocmem (device_t, struct rl_softc *); 235 static __inline void re_discard_rxbuf 236 (struct rl_softc *, int); 237 static int re_newbuf (struct rl_softc *, int); 238 static int re_rx_list_init (struct rl_softc *); 239 static int re_tx_list_init (struct rl_softc *); 240 #ifdef RE_FIXUP_RX 241 static __inline void re_fixup_rx 242 (struct mbuf *); 243 #endif 244 static int re_rxeof (struct rl_softc *, int *); 245 static void re_txeof (struct rl_softc *); 246 #ifdef DEVICE_POLLING 247 static int re_poll (struct ifnet *, enum poll_cmd, int); 248 static int re_poll_locked (struct ifnet *, enum poll_cmd, int); 249 #endif 250 static int re_intr (void *); 251 static void re_tick (void *); 252 static void re_tx_task (void *, int); 253 static void re_int_task (void *, int); 254 static void re_start (struct ifnet *); 255 static int re_ioctl (struct ifnet *, u_long, caddr_t); 256 static void re_init (void *); 257 static void re_init_locked (struct rl_softc *); 258 static void re_stop (struct rl_softc *); 259 static void re_watchdog (struct rl_softc *); 260 static int re_suspend (device_t); 261 static int re_resume (device_t); 262 static int re_shutdown (device_t); 263 static int re_ifmedia_upd (struct ifnet *); 264 static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); 265 266 static void re_eeprom_putbyte (struct rl_softc *, int); 267 static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); 268 static void re_read_eeprom (struct rl_softc *, caddr_t, int, int); 269 static int re_gmii_readreg (device_t, int, int); 270 static int re_gmii_writereg (device_t, int, int, int); 271 272 static int re_miibus_readreg (device_t, int, int); 273 static int re_miibus_writereg (device_t, int, int, int); 274 static void re_miibus_statchg (device_t); 275 276 static void re_set_rxmode (struct rl_softc *); 277 static void re_reset (struct rl_softc *); 278 static void re_setwol (struct rl_softc *); 279 static void re_clrwol (struct rl_softc *); 280 281 #ifdef RE_DIAG 282 static int re_diag (struct rl_softc *); 283 #endif 284 285 static void re_add_sysctls (struct rl_softc *); 286 static int re_sysctl_stats (SYSCTL_HANDLER_ARGS); 287 288 static device_method_t re_methods[] = { 289 /* Device interface */ 290 DEVMETHOD(device_probe, re_probe), 291 DEVMETHOD(device_attach, re_attach), 292 DEVMETHOD(device_detach, re_detach), 293 DEVMETHOD(device_suspend, re_suspend), 294 DEVMETHOD(device_resume, re_resume), 295 DEVMETHOD(device_shutdown, re_shutdown), 296 297 /* bus interface */ 298 DEVMETHOD(bus_print_child, bus_generic_print_child), 299 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 300 301 /* MII interface */ 302 DEVMETHOD(miibus_readreg, re_miibus_readreg), 303 DEVMETHOD(miibus_writereg, re_miibus_writereg), 304 DEVMETHOD(miibus_statchg, re_miibus_statchg), 305 306 { 0, 0 } 307 }; 308 309 static driver_t re_driver = { 310 "re", 311 re_methods, 312 sizeof(struct rl_softc) 313 }; 314 315 static devclass_t re_devclass; 316 317 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0); 318 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0); 319 320 #define EE_SET(x) \ 321 CSR_WRITE_1(sc, RL_EECMD, \ 322 CSR_READ_1(sc, RL_EECMD) | x) 323 324 #define EE_CLR(x) \ 325 CSR_WRITE_1(sc, RL_EECMD, \ 326 CSR_READ_1(sc, RL_EECMD) & ~x) 327 328 /* 329 * Send a read command and address to the EEPROM, check for ACK. 330 */ 331 static void 332 re_eeprom_putbyte(struct rl_softc *sc, int addr) 333 { 334 int d, i; 335 336 d = addr | (RL_9346_READ << sc->rl_eewidth); 337 338 /* 339 * Feed in each bit and strobe the clock. 340 */ 341 342 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { 343 if (d & i) { 344 EE_SET(RL_EE_DATAIN); 345 } else { 346 EE_CLR(RL_EE_DATAIN); 347 } 348 DELAY(100); 349 EE_SET(RL_EE_CLK); 350 DELAY(150); 351 EE_CLR(RL_EE_CLK); 352 DELAY(100); 353 } 354 } 355 356 /* 357 * Read a word of data stored in the EEPROM at address 'addr.' 358 */ 359 static void 360 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest) 361 { 362 int i; 363 u_int16_t word = 0; 364 365 /* 366 * Send address of word we want to read. 367 */ 368 re_eeprom_putbyte(sc, addr); 369 370 /* 371 * Start reading bits from EEPROM. 372 */ 373 for (i = 0x8000; i; i >>= 1) { 374 EE_SET(RL_EE_CLK); 375 DELAY(100); 376 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) 377 word |= i; 378 EE_CLR(RL_EE_CLK); 379 DELAY(100); 380 } 381 382 *dest = word; 383 } 384 385 /* 386 * Read a sequence of words from the EEPROM. 387 */ 388 static void 389 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt) 390 { 391 int i; 392 u_int16_t word = 0, *ptr; 393 394 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 395 396 DELAY(100); 397 398 for (i = 0; i < cnt; i++) { 399 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); 400 re_eeprom_getword(sc, off + i, &word); 401 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); 402 ptr = (u_int16_t *)(dest + (i * 2)); 403 *ptr = word; 404 } 405 406 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 407 } 408 409 static int 410 re_gmii_readreg(device_t dev, int phy, int reg) 411 { 412 struct rl_softc *sc; 413 u_int32_t rval; 414 int i; 415 416 sc = device_get_softc(dev); 417 418 /* Let the rgephy driver read the GMEDIASTAT register */ 419 420 if (reg == RL_GMEDIASTAT) { 421 rval = CSR_READ_1(sc, RL_GMEDIASTAT); 422 return (rval); 423 } 424 425 CSR_WRITE_4(sc, RL_PHYAR, reg << 16); 426 427 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 428 rval = CSR_READ_4(sc, RL_PHYAR); 429 if (rval & RL_PHYAR_BUSY) 430 break; 431 DELAY(25); 432 } 433 434 if (i == RL_PHY_TIMEOUT) { 435 device_printf(sc->rl_dev, "PHY read failed\n"); 436 return (0); 437 } 438 439 /* 440 * Controller requires a 20us delay to process next MDIO request. 441 */ 442 DELAY(20); 443 444 return (rval & RL_PHYAR_PHYDATA); 445 } 446 447 static int 448 re_gmii_writereg(device_t dev, int phy, int reg, int data) 449 { 450 struct rl_softc *sc; 451 u_int32_t rval; 452 int i; 453 454 sc = device_get_softc(dev); 455 456 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | 457 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); 458 459 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 460 rval = CSR_READ_4(sc, RL_PHYAR); 461 if (!(rval & RL_PHYAR_BUSY)) 462 break; 463 DELAY(25); 464 } 465 466 if (i == RL_PHY_TIMEOUT) { 467 device_printf(sc->rl_dev, "PHY write failed\n"); 468 return (0); 469 } 470 471 /* 472 * Controller requires a 20us delay to process next MDIO request. 473 */ 474 DELAY(20); 475 476 return (0); 477 } 478 479 static int 480 re_miibus_readreg(device_t dev, int phy, int reg) 481 { 482 struct rl_softc *sc; 483 u_int16_t rval = 0; 484 u_int16_t re8139_reg = 0; 485 486 sc = device_get_softc(dev); 487 488 if (sc->rl_type == RL_8169) { 489 rval = re_gmii_readreg(dev, phy, reg); 490 return (rval); 491 } 492 493 switch (reg) { 494 case MII_BMCR: 495 re8139_reg = RL_BMCR; 496 break; 497 case MII_BMSR: 498 re8139_reg = RL_BMSR; 499 break; 500 case MII_ANAR: 501 re8139_reg = RL_ANAR; 502 break; 503 case MII_ANER: 504 re8139_reg = RL_ANER; 505 break; 506 case MII_ANLPAR: 507 re8139_reg = RL_LPAR; 508 break; 509 case MII_PHYIDR1: 510 case MII_PHYIDR2: 511 return (0); 512 /* 513 * Allow the rlphy driver to read the media status 514 * register. If we have a link partner which does not 515 * support NWAY, this is the register which will tell 516 * us the results of parallel detection. 517 */ 518 case RL_MEDIASTAT: 519 rval = CSR_READ_1(sc, RL_MEDIASTAT); 520 return (rval); 521 default: 522 device_printf(sc->rl_dev, "bad phy register\n"); 523 return (0); 524 } 525 rval = CSR_READ_2(sc, re8139_reg); 526 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) { 527 /* 8139C+ has different bit layout. */ 528 rval &= ~(BMCR_LOOP | BMCR_ISO); 529 } 530 return (rval); 531 } 532 533 static int 534 re_miibus_writereg(device_t dev, int phy, int reg, int data) 535 { 536 struct rl_softc *sc; 537 u_int16_t re8139_reg = 0; 538 int rval = 0; 539 540 sc = device_get_softc(dev); 541 542 if (sc->rl_type == RL_8169) { 543 rval = re_gmii_writereg(dev, phy, reg, data); 544 return (rval); 545 } 546 547 switch (reg) { 548 case MII_BMCR: 549 re8139_reg = RL_BMCR; 550 if (sc->rl_type == RL_8139CPLUS) { 551 /* 8139C+ has different bit layout. */ 552 data &= ~(BMCR_LOOP | BMCR_ISO); 553 } 554 break; 555 case MII_BMSR: 556 re8139_reg = RL_BMSR; 557 break; 558 case MII_ANAR: 559 re8139_reg = RL_ANAR; 560 break; 561 case MII_ANER: 562 re8139_reg = RL_ANER; 563 break; 564 case MII_ANLPAR: 565 re8139_reg = RL_LPAR; 566 break; 567 case MII_PHYIDR1: 568 case MII_PHYIDR2: 569 return (0); 570 break; 571 default: 572 device_printf(sc->rl_dev, "bad phy register\n"); 573 return (0); 574 } 575 CSR_WRITE_2(sc, re8139_reg, data); 576 return (0); 577 } 578 579 static void 580 re_miibus_statchg(device_t dev) 581 { 582 struct rl_softc *sc; 583 struct ifnet *ifp; 584 struct mii_data *mii; 585 586 sc = device_get_softc(dev); 587 mii = device_get_softc(sc->rl_miibus); 588 ifp = sc->rl_ifp; 589 if (mii == NULL || ifp == NULL || 590 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 591 return; 592 593 sc->rl_flags &= ~RL_FLAG_LINK; 594 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 595 (IFM_ACTIVE | IFM_AVALID)) { 596 switch (IFM_SUBTYPE(mii->mii_media_active)) { 597 case IFM_10_T: 598 case IFM_100_TX: 599 sc->rl_flags |= RL_FLAG_LINK; 600 break; 601 case IFM_1000_T: 602 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 603 break; 604 sc->rl_flags |= RL_FLAG_LINK; 605 break; 606 default: 607 break; 608 } 609 } 610 /* 611 * RealTek controllers does not provide any interface to 612 * Tx/Rx MACs for resolved speed, duplex and flow-control 613 * parameters. 614 */ 615 } 616 617 /* 618 * Set the RX configuration and 64-bit multicast hash filter. 619 */ 620 static void 621 re_set_rxmode(struct rl_softc *sc) 622 { 623 struct ifnet *ifp; 624 struct ifmultiaddr *ifma; 625 uint32_t hashes[2] = { 0, 0 }; 626 uint32_t h, rxfilt; 627 628 RL_LOCK_ASSERT(sc); 629 630 ifp = sc->rl_ifp; 631 632 rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD; 633 634 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 635 if (ifp->if_flags & IFF_PROMISC) 636 rxfilt |= RL_RXCFG_RX_ALLPHYS; 637 /* 638 * Unlike other hardwares, we have to explicitly set 639 * RL_RXCFG_RX_MULTI to receive multicast frames in 640 * promiscuous mode. 641 */ 642 rxfilt |= RL_RXCFG_RX_MULTI; 643 hashes[0] = hashes[1] = 0xffffffff; 644 goto done; 645 } 646 647 if_maddr_rlock(ifp); 648 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 649 if (ifma->ifma_addr->sa_family != AF_LINK) 650 continue; 651 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 652 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 653 if (h < 32) 654 hashes[0] |= (1 << h); 655 else 656 hashes[1] |= (1 << (h - 32)); 657 } 658 if_maddr_runlock(ifp); 659 660 if (hashes[0] != 0 || hashes[1] != 0) { 661 /* 662 * For some unfathomable reason, RealTek decided to 663 * reverse the order of the multicast hash registers 664 * in the PCI Express parts. This means we have to 665 * write the hash pattern in reverse order for those 666 * devices. 667 */ 668 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) { 669 h = bswap32(hashes[0]); 670 hashes[0] = bswap32(hashes[1]); 671 hashes[1] = h; 672 } 673 rxfilt |= RL_RXCFG_RX_MULTI; 674 } 675 676 done: 677 CSR_WRITE_4(sc, RL_MAR0, hashes[0]); 678 CSR_WRITE_4(sc, RL_MAR4, hashes[1]); 679 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 680 } 681 682 static void 683 re_reset(struct rl_softc *sc) 684 { 685 int i; 686 687 RL_LOCK_ASSERT(sc); 688 689 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); 690 691 for (i = 0; i < RL_TIMEOUT; i++) { 692 DELAY(10); 693 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) 694 break; 695 } 696 if (i == RL_TIMEOUT) 697 device_printf(sc->rl_dev, "reset never completed!\n"); 698 699 if ((sc->rl_flags & RL_FLAG_MACRESET) != 0) 700 CSR_WRITE_1(sc, 0x82, 1); 701 if (sc->rl_hwrev == RL_HWREV_8169S) 702 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0); 703 } 704 705 #ifdef RE_DIAG 706 707 /* 708 * The following routine is designed to test for a defect on some 709 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 710 * lines connected to the bus, however for a 32-bit only card, they 711 * should be pulled high. The result of this defect is that the 712 * NIC will not work right if you plug it into a 64-bit slot: DMA 713 * operations will be done with 64-bit transfers, which will fail 714 * because the 64-bit data lines aren't connected. 715 * 716 * There's no way to work around this (short of talking a soldering 717 * iron to the board), however we can detect it. The method we use 718 * here is to put the NIC into digital loopback mode, set the receiver 719 * to promiscuous mode, and then try to send a frame. We then compare 720 * the frame data we sent to what was received. If the data matches, 721 * then the NIC is working correctly, otherwise we know the user has 722 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 723 * slot. In the latter case, there's no way the NIC can work correctly, 724 * so we print out a message on the console and abort the device attach. 725 */ 726 727 static int 728 re_diag(struct rl_softc *sc) 729 { 730 struct ifnet *ifp = sc->rl_ifp; 731 struct mbuf *m0; 732 struct ether_header *eh; 733 struct rl_desc *cur_rx; 734 u_int16_t status; 735 u_int32_t rxstat; 736 int total_len, i, error = 0, phyaddr; 737 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 738 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 739 740 /* Allocate a single mbuf */ 741 MGETHDR(m0, M_DONTWAIT, MT_DATA); 742 if (m0 == NULL) 743 return (ENOBUFS); 744 745 RL_LOCK(sc); 746 747 /* 748 * Initialize the NIC in test mode. This sets the chip up 749 * so that it can send and receive frames, but performs the 750 * following special functions: 751 * - Puts receiver in promiscuous mode 752 * - Enables digital loopback mode 753 * - Leaves interrupts turned off 754 */ 755 756 ifp->if_flags |= IFF_PROMISC; 757 sc->rl_testmode = 1; 758 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 759 re_init_locked(sc); 760 sc->rl_flags |= RL_FLAG_LINK; 761 if (sc->rl_type == RL_8169) 762 phyaddr = 1; 763 else 764 phyaddr = 0; 765 766 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET); 767 for (i = 0; i < RL_TIMEOUT; i++) { 768 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR); 769 if (!(status & BMCR_RESET)) 770 break; 771 } 772 773 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP); 774 CSR_WRITE_2(sc, RL_ISR, RL_INTRS); 775 776 DELAY(100000); 777 778 /* Put some data in the mbuf */ 779 780 eh = mtod(m0, struct ether_header *); 781 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); 782 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); 783 eh->ether_type = htons(ETHERTYPE_IP); 784 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 785 786 /* 787 * Queue the packet, start transmission. 788 * Note: IF_HANDOFF() ultimately calls re_start() for us. 789 */ 790 791 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 792 RL_UNLOCK(sc); 793 /* XXX: re_diag must not be called when in ALTQ mode */ 794 IF_HANDOFF(&ifp->if_snd, m0, ifp); 795 RL_LOCK(sc); 796 m0 = NULL; 797 798 /* Wait for it to propagate through the chip */ 799 800 DELAY(100000); 801 for (i = 0; i < RL_TIMEOUT; i++) { 802 status = CSR_READ_2(sc, RL_ISR); 803 CSR_WRITE_2(sc, RL_ISR, status); 804 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == 805 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) 806 break; 807 DELAY(10); 808 } 809 810 if (i == RL_TIMEOUT) { 811 device_printf(sc->rl_dev, 812 "diagnostic failed, failed to receive packet in" 813 " loopback mode\n"); 814 error = EIO; 815 goto done; 816 } 817 818 /* 819 * The packet should have been dumped into the first 820 * entry in the RX DMA ring. Grab it from there. 821 */ 822 823 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 824 sc->rl_ldata.rl_rx_list_map, 825 BUS_DMASYNC_POSTREAD); 826 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 827 sc->rl_ldata.rl_rx_desc[0].rx_dmamap, 828 BUS_DMASYNC_POSTREAD); 829 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 830 sc->rl_ldata.rl_rx_desc[0].rx_dmamap); 831 832 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m; 833 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL; 834 eh = mtod(m0, struct ether_header *); 835 836 cur_rx = &sc->rl_ldata.rl_rx_list[0]; 837 total_len = RL_RXBYTES(cur_rx); 838 rxstat = le32toh(cur_rx->rl_cmdstat); 839 840 if (total_len != ETHER_MIN_LEN) { 841 device_printf(sc->rl_dev, 842 "diagnostic failed, received short packet\n"); 843 error = EIO; 844 goto done; 845 } 846 847 /* Test that the received packet data matches what we sent. */ 848 849 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 850 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 851 ntohs(eh->ether_type) != ETHERTYPE_IP) { 852 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n"); 853 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n", 854 dst, ":", src, ":", ETHERTYPE_IP); 855 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n", 856 eh->ether_dhost, ":", eh->ether_shost, ":", 857 ntohs(eh->ether_type)); 858 device_printf(sc->rl_dev, "You may have a defective 32-bit " 859 "NIC plugged into a 64-bit PCI slot.\n"); 860 device_printf(sc->rl_dev, "Please re-install the NIC in a " 861 "32-bit slot for proper operation.\n"); 862 device_printf(sc->rl_dev, "Read the re(4) man page for more " 863 "details.\n"); 864 error = EIO; 865 } 866 867 done: 868 /* Turn interface off, release resources */ 869 870 sc->rl_testmode = 0; 871 sc->rl_flags &= ~RL_FLAG_LINK; 872 ifp->if_flags &= ~IFF_PROMISC; 873 re_stop(sc); 874 if (m0 != NULL) 875 m_freem(m0); 876 877 RL_UNLOCK(sc); 878 879 return (error); 880 } 881 882 #endif 883 884 /* 885 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device 886 * IDs against our list and return a device name if we find a match. 887 */ 888 static int 889 re_probe(device_t dev) 890 { 891 struct rl_type *t; 892 uint16_t devid, vendor; 893 uint16_t revid, sdevid; 894 int i; 895 896 vendor = pci_get_vendor(dev); 897 devid = pci_get_device(dev); 898 revid = pci_get_revid(dev); 899 sdevid = pci_get_subdevice(dev); 900 901 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) { 902 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) { 903 /* 904 * Only attach to rev. 3 of the Linksys EG1032 adapter. 905 * Rev. 2 is supported by sk(4). 906 */ 907 return (ENXIO); 908 } 909 } 910 911 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { 912 if (revid != 0x20) { 913 /* 8139, let rl(4) take care of this device. */ 914 return (ENXIO); 915 } 916 } 917 918 t = re_devs; 919 for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) { 920 if (vendor == t->rl_vid && devid == t->rl_did) { 921 device_set_desc(dev, t->rl_name); 922 return (BUS_PROBE_DEFAULT); 923 } 924 } 925 926 return (ENXIO); 927 } 928 929 /* 930 * Map a single buffer address. 931 */ 932 933 static void 934 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 935 { 936 bus_addr_t *addr; 937 938 if (error) 939 return; 940 941 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 942 addr = arg; 943 *addr = segs->ds_addr; 944 } 945 946 static int 947 re_allocmem(device_t dev, struct rl_softc *sc) 948 { 949 bus_addr_t lowaddr; 950 bus_size_t rx_list_size, tx_list_size; 951 int error; 952 int i; 953 954 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc); 955 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc); 956 957 /* 958 * Allocate the parent bus DMA tag appropriate for PCI. 959 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD 960 * register should be set. However some RealTek chips are known 961 * to be buggy on DAC handling, therefore disable DAC by limiting 962 * DMA address space to 32bit. PCIe variants of RealTek chips 963 * may not have the limitation. 964 */ 965 lowaddr = BUS_SPACE_MAXADDR; 966 if ((sc->rl_flags & RL_FLAG_PCIE) == 0) 967 lowaddr = BUS_SPACE_MAXADDR_32BIT; 968 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, 969 lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, 970 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, 971 NULL, NULL, &sc->rl_parent_tag); 972 if (error) { 973 device_printf(dev, "could not allocate parent DMA tag\n"); 974 return (error); 975 } 976 977 /* 978 * Allocate map for TX mbufs. 979 */ 980 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0, 981 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 982 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0, 983 NULL, NULL, &sc->rl_ldata.rl_tx_mtag); 984 if (error) { 985 device_printf(dev, "could not allocate TX DMA tag\n"); 986 return (error); 987 } 988 989 /* 990 * Allocate map for RX mbufs. 991 */ 992 993 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0, 994 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 995 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag); 996 if (error) { 997 device_printf(dev, "could not allocate RX DMA tag\n"); 998 return (error); 999 } 1000 1001 /* 1002 * Allocate map for TX descriptor list. 1003 */ 1004 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1005 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1006 NULL, tx_list_size, 1, tx_list_size, 0, 1007 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); 1008 if (error) { 1009 device_printf(dev, "could not allocate TX DMA ring tag\n"); 1010 return (error); 1011 } 1012 1013 /* Allocate DMA'able memory for the TX ring */ 1014 1015 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, 1016 (void **)&sc->rl_ldata.rl_tx_list, 1017 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1018 &sc->rl_ldata.rl_tx_list_map); 1019 if (error) { 1020 device_printf(dev, "could not allocate TX DMA ring\n"); 1021 return (error); 1022 } 1023 1024 /* Load the map for the TX ring. */ 1025 1026 sc->rl_ldata.rl_tx_list_addr = 0; 1027 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, 1028 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, 1029 tx_list_size, re_dma_map_addr, 1030 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); 1031 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) { 1032 device_printf(dev, "could not load TX DMA ring\n"); 1033 return (ENOMEM); 1034 } 1035 1036 /* Create DMA maps for TX buffers */ 1037 1038 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1039 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0, 1040 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1041 if (error) { 1042 device_printf(dev, "could not create DMA map for TX\n"); 1043 return (error); 1044 } 1045 } 1046 1047 /* 1048 * Allocate map for RX descriptor list. 1049 */ 1050 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1051 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1052 NULL, rx_list_size, 1, rx_list_size, 0, 1053 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); 1054 if (error) { 1055 device_printf(dev, "could not create RX DMA ring tag\n"); 1056 return (error); 1057 } 1058 1059 /* Allocate DMA'able memory for the RX ring */ 1060 1061 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, 1062 (void **)&sc->rl_ldata.rl_rx_list, 1063 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1064 &sc->rl_ldata.rl_rx_list_map); 1065 if (error) { 1066 device_printf(dev, "could not allocate RX DMA ring\n"); 1067 return (error); 1068 } 1069 1070 /* Load the map for the RX ring. */ 1071 1072 sc->rl_ldata.rl_rx_list_addr = 0; 1073 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, 1074 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, 1075 rx_list_size, re_dma_map_addr, 1076 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); 1077 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) { 1078 device_printf(dev, "could not load RX DMA ring\n"); 1079 return (ENOMEM); 1080 } 1081 1082 /* Create DMA maps for RX buffers */ 1083 1084 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1085 &sc->rl_ldata.rl_rx_sparemap); 1086 if (error) { 1087 device_printf(dev, "could not create spare DMA map for RX\n"); 1088 return (error); 1089 } 1090 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1091 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1092 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1093 if (error) { 1094 device_printf(dev, "could not create DMA map for RX\n"); 1095 return (error); 1096 } 1097 } 1098 1099 /* Create DMA map for statistics. */ 1100 error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0, 1101 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1102 sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL, 1103 &sc->rl_ldata.rl_stag); 1104 if (error) { 1105 device_printf(dev, "could not create statistics DMA tag\n"); 1106 return (error); 1107 } 1108 /* Allocate DMA'able memory for statistics. */ 1109 error = bus_dmamem_alloc(sc->rl_ldata.rl_stag, 1110 (void **)&sc->rl_ldata.rl_stats, 1111 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1112 &sc->rl_ldata.rl_smap); 1113 if (error) { 1114 device_printf(dev, 1115 "could not allocate statistics DMA memory\n"); 1116 return (error); 1117 } 1118 /* Load the map for statistics. */ 1119 sc->rl_ldata.rl_stats_addr = 0; 1120 error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap, 1121 sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr, 1122 &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT); 1123 if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) { 1124 device_printf(dev, "could not load statistics DMA memory\n"); 1125 return (ENOMEM); 1126 } 1127 1128 return (0); 1129 } 1130 1131 /* 1132 * Attach the interface. Allocate softc structures, do ifmedia 1133 * setup and ethernet/BPF attach. 1134 */ 1135 static int 1136 re_attach(device_t dev) 1137 { 1138 u_char eaddr[ETHER_ADDR_LEN]; 1139 u_int16_t as[ETHER_ADDR_LEN / 2]; 1140 struct rl_softc *sc; 1141 struct ifnet *ifp; 1142 struct rl_hwrev *hw_rev; 1143 int hwrev; 1144 u_int16_t devid, re_did = 0; 1145 int error = 0, i, phy, rid; 1146 int msic, reg; 1147 uint8_t cfg; 1148 1149 sc = device_get_softc(dev); 1150 sc->rl_dev = dev; 1151 1152 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1153 MTX_DEF); 1154 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); 1155 1156 /* 1157 * Map control/status registers. 1158 */ 1159 pci_enable_busmaster(dev); 1160 1161 devid = pci_get_device(dev); 1162 /* 1163 * Prefer memory space register mapping over IO space. 1164 * Because RTL8169SC does not seem to work when memory mapping 1165 * is used always activate io mapping. 1166 */ 1167 if (devid == RT_DEVICEID_8169SC) 1168 prefer_iomap = 1; 1169 if (prefer_iomap == 0) { 1170 sc->rl_res_id = PCIR_BAR(1); 1171 sc->rl_res_type = SYS_RES_MEMORY; 1172 /* RTL8168/8101E seems to use different BARs. */ 1173 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E) 1174 sc->rl_res_id = PCIR_BAR(2); 1175 } else { 1176 sc->rl_res_id = PCIR_BAR(0); 1177 sc->rl_res_type = SYS_RES_IOPORT; 1178 } 1179 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1180 &sc->rl_res_id, RF_ACTIVE); 1181 if (sc->rl_res == NULL && prefer_iomap == 0) { 1182 sc->rl_res_id = PCIR_BAR(0); 1183 sc->rl_res_type = SYS_RES_IOPORT; 1184 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1185 &sc->rl_res_id, RF_ACTIVE); 1186 } 1187 if (sc->rl_res == NULL) { 1188 device_printf(dev, "couldn't map ports/memory\n"); 1189 error = ENXIO; 1190 goto fail; 1191 } 1192 1193 sc->rl_btag = rman_get_bustag(sc->rl_res); 1194 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 1195 1196 msic = 0; 1197 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 1198 sc->rl_flags |= RL_FLAG_PCIE; 1199 if (devid != RT_DEVICEID_8101E) { 1200 /* Set PCIe maximum read request size to 2048. */ 1201 if (pci_get_max_read_req(dev) < 2048) 1202 pci_set_max_read_req(dev, 2048); 1203 } 1204 msic = pci_msi_count(dev); 1205 if (bootverbose) 1206 device_printf(dev, "MSI count : %d\n", msic); 1207 } 1208 if (msic > 0 && msi_disable == 0) { 1209 msic = 1; 1210 if (pci_alloc_msi(dev, &msic) == 0) { 1211 if (msic == RL_MSI_MESSAGES) { 1212 device_printf(dev, "Using %d MSI messages\n", 1213 msic); 1214 sc->rl_flags |= RL_FLAG_MSI; 1215 /* Explicitly set MSI enable bit. */ 1216 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1217 cfg = CSR_READ_1(sc, RL_CFG2); 1218 cfg |= RL_CFG2_MSI; 1219 CSR_WRITE_1(sc, RL_CFG2, cfg); 1220 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1221 } else 1222 pci_release_msi(dev); 1223 } 1224 } 1225 1226 /* Allocate interrupt */ 1227 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1228 rid = 0; 1229 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1230 RF_SHAREABLE | RF_ACTIVE); 1231 if (sc->rl_irq[0] == NULL) { 1232 device_printf(dev, "couldn't allocate IRQ resources\n"); 1233 error = ENXIO; 1234 goto fail; 1235 } 1236 } else { 1237 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { 1238 sc->rl_irq[i] = bus_alloc_resource_any(dev, 1239 SYS_RES_IRQ, &rid, RF_ACTIVE); 1240 if (sc->rl_irq[i] == NULL) { 1241 device_printf(dev, 1242 "couldn't llocate IRQ resources for " 1243 "message %d\n", rid); 1244 error = ENXIO; 1245 goto fail; 1246 } 1247 } 1248 } 1249 1250 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1251 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1252 cfg = CSR_READ_1(sc, RL_CFG2); 1253 if ((cfg & RL_CFG2_MSI) != 0) { 1254 device_printf(dev, "turning off MSI enable bit.\n"); 1255 cfg &= ~RL_CFG2_MSI; 1256 CSR_WRITE_1(sc, RL_CFG2, cfg); 1257 } 1258 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1259 } 1260 1261 /* Reset the adapter. */ 1262 RL_LOCK(sc); 1263 re_reset(sc); 1264 RL_UNLOCK(sc); 1265 1266 hw_rev = re_hwrevs; 1267 hwrev = CSR_READ_4(sc, RL_TXCFG); 1268 switch (hwrev & 0x70000000) { 1269 case 0x00000000: 1270 case 0x10000000: 1271 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000); 1272 hwrev &= (RL_TXCFG_HWREV | 0x80000000); 1273 break; 1274 default: 1275 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000); 1276 hwrev &= RL_TXCFG_HWREV; 1277 break; 1278 } 1279 device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000); 1280 while (hw_rev->rl_desc != NULL) { 1281 if (hw_rev->rl_rev == hwrev) { 1282 sc->rl_type = hw_rev->rl_type; 1283 sc->rl_hwrev = hw_rev->rl_rev; 1284 break; 1285 } 1286 hw_rev++; 1287 } 1288 if (hw_rev->rl_desc == NULL) { 1289 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev); 1290 error = ENXIO; 1291 goto fail; 1292 } 1293 1294 switch (hw_rev->rl_rev) { 1295 case RL_HWREV_8139CPLUS: 1296 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER | 1297 RL_FLAG_AUTOPAD; 1298 break; 1299 case RL_HWREV_8100E: 1300 case RL_HWREV_8101E: 1301 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE | 1302 RL_FLAG_FASTETHER; 1303 break; 1304 case RL_HWREV_8102E: 1305 case RL_HWREV_8102EL: 1306 case RL_HWREV_8102EL_SPIN1: 1307 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE | 1308 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1309 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; 1310 break; 1311 case RL_HWREV_8103E: 1312 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_PHYWAKE | 1313 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1314 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | 1315 RL_FLAG_MACSLEEP; 1316 break; 1317 case RL_HWREV_8168_SPIN1: 1318 case RL_HWREV_8168_SPIN2: 1319 sc->rl_flags |= RL_FLAG_WOLRXENB; 1320 /* FALLTHROUGH */ 1321 case RL_HWREV_8168_SPIN3: 1322 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT; 1323 break; 1324 case RL_HWREV_8168C_SPIN2: 1325 sc->rl_flags |= RL_FLAG_MACSLEEP; 1326 /* FALLTHROUGH */ 1327 case RL_HWREV_8168C: 1328 if ((hwrev & 0x00700000) == 0x00200000) 1329 sc->rl_flags |= RL_FLAG_MACSLEEP; 1330 /* FALLTHROUGH */ 1331 case RL_HWREV_8168CP: 1332 case RL_HWREV_8168D: 1333 case RL_HWREV_8168DP: 1334 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1335 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1336 RL_FLAG_AUTOPAD; 1337 /* 1338 * These controllers support jumbo frame but it seems 1339 * that enabling it requires touching additional magic 1340 * registers. Depending on MAC revisions some 1341 * controllers need to disable checksum offload. So 1342 * disable jumbo frame until I have better idea what 1343 * it really requires to make it support. 1344 * RTL8168C/CP : supports up to 6KB jumbo frame. 1345 * RTL8111C/CP : supports up to 9KB jumbo frame. 1346 */ 1347 sc->rl_flags |= RL_FLAG_NOJUMBO; 1348 break; 1349 case RL_HWREV_8168E: 1350 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1351 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1352 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_NOJUMBO; 1353 break; 1354 case RL_HWREV_8169_8110SB: 1355 case RL_HWREV_8169_8110SBL: 1356 case RL_HWREV_8169_8110SC: 1357 case RL_HWREV_8169_8110SCE: 1358 sc->rl_flags |= RL_FLAG_PHYWAKE; 1359 /* FALLTHROUGH */ 1360 case RL_HWREV_8169: 1361 case RL_HWREV_8169S: 1362 case RL_HWREV_8110S: 1363 sc->rl_flags |= RL_FLAG_MACRESET; 1364 break; 1365 default: 1366 break; 1367 } 1368 1369 /* Enable PME. */ 1370 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1371 cfg = CSR_READ_1(sc, RL_CFG1); 1372 cfg |= RL_CFG1_PME; 1373 CSR_WRITE_1(sc, RL_CFG1, cfg); 1374 cfg = CSR_READ_1(sc, RL_CFG5); 1375 cfg &= RL_CFG5_PME_STS; 1376 CSR_WRITE_1(sc, RL_CFG5, cfg); 1377 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1378 1379 if ((sc->rl_flags & RL_FLAG_PAR) != 0) { 1380 /* 1381 * XXX Should have a better way to extract station 1382 * address from EEPROM. 1383 */ 1384 for (i = 0; i < ETHER_ADDR_LEN; i++) 1385 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); 1386 } else { 1387 sc->rl_eewidth = RL_9356_ADDR_LEN; 1388 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); 1389 if (re_did != 0x8129) 1390 sc->rl_eewidth = RL_9346_ADDR_LEN; 1391 1392 /* 1393 * Get station address from the EEPROM. 1394 */ 1395 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); 1396 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) 1397 as[i] = le16toh(as[i]); 1398 bcopy(as, eaddr, sizeof(eaddr)); 1399 } 1400 1401 if (sc->rl_type == RL_8169) { 1402 /* Set RX length mask and number of descriptors. */ 1403 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; 1404 sc->rl_txstart = RL_GTXSTART; 1405 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT; 1406 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT; 1407 } else { 1408 /* Set RX length mask and number of descriptors. */ 1409 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; 1410 sc->rl_txstart = RL_TXSTART; 1411 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT; 1412 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT; 1413 } 1414 1415 error = re_allocmem(dev, sc); 1416 if (error) 1417 goto fail; 1418 re_add_sysctls(sc); 1419 1420 ifp = sc->rl_ifp = if_alloc(IFT_ETHER); 1421 if (ifp == NULL) { 1422 device_printf(dev, "can not if_alloc()\n"); 1423 error = ENOSPC; 1424 goto fail; 1425 } 1426 1427 /* Take controller out of deep sleep mode. */ 1428 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 1429 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 1430 CSR_WRITE_1(sc, RL_GPIO, 1431 CSR_READ_1(sc, RL_GPIO) | 0x01); 1432 else 1433 CSR_WRITE_1(sc, RL_GPIO, 1434 CSR_READ_1(sc, RL_GPIO) & ~0x01); 1435 } 1436 1437 /* Take PHY out of power down mode. */ 1438 if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) 1439 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80); 1440 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) { 1441 re_gmii_writereg(dev, 1, 0x1f, 0); 1442 re_gmii_writereg(dev, 1, 0x0e, 0); 1443 } 1444 1445 #define RE_PHYAD_INTERNAL 0 1446 1447 /* Do MII setup. */ 1448 phy = RE_PHYAD_INTERNAL; 1449 if (sc->rl_type == RL_8169) 1450 phy = 1; 1451 error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd, 1452 re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, 0); 1453 if (error != 0) { 1454 device_printf(dev, "attaching PHYs failed\n"); 1455 goto fail; 1456 } 1457 1458 ifp->if_softc = sc; 1459 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1460 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1461 ifp->if_ioctl = re_ioctl; 1462 ifp->if_start = re_start; 1463 ifp->if_hwassist = RE_CSUM_FEATURES; 1464 ifp->if_capabilities = IFCAP_HWCSUM; 1465 ifp->if_capenable = ifp->if_capabilities; 1466 ifp->if_init = re_init; 1467 IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN); 1468 ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN; 1469 IFQ_SET_READY(&ifp->if_snd); 1470 1471 TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp); 1472 TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc); 1473 1474 /* 1475 * XXX 1476 * Still have no idea how to make TSO work on 8168C, 8168CP, 1477 * 8111C and 8111CP. 1478 */ 1479 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 1480 ifp->if_hwassist |= CSUM_TSO; 1481 ifp->if_capabilities |= IFCAP_TSO4 | IFCAP_VLAN_HWTSO; 1482 } 1483 1484 /* 1485 * Call MI attach routine. 1486 */ 1487 ether_ifattach(ifp, eaddr); 1488 1489 /* VLAN capability setup */ 1490 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 1491 if (ifp->if_capabilities & IFCAP_HWCSUM) 1492 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1493 /* Enable WOL if PM is supported. */ 1494 if (pci_find_extcap(sc->rl_dev, PCIY_PMG, ®) == 0) 1495 ifp->if_capabilities |= IFCAP_WOL; 1496 ifp->if_capenable = ifp->if_capabilities; 1497 /* 1498 * Don't enable TSO by default. Under certain 1499 * circumtances the controller generated corrupted 1500 * packets in TSO size. 1501 */ 1502 ifp->if_hwassist &= ~CSUM_TSO; 1503 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 1504 #ifdef DEVICE_POLLING 1505 ifp->if_capabilities |= IFCAP_POLLING; 1506 #endif 1507 /* 1508 * Tell the upper layer(s) we support long frames. 1509 * Must appear after the call to ether_ifattach() because 1510 * ether_ifattach() sets ifi_hdrlen to the default value. 1511 */ 1512 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1513 1514 #ifdef RE_DIAG 1515 /* 1516 * Perform hardware diagnostic on the original RTL8169. 1517 * Some 32-bit cards were incorrectly wired and would 1518 * malfunction if plugged into a 64-bit slot. 1519 */ 1520 1521 if (hwrev == RL_HWREV_8169) { 1522 error = re_diag(sc); 1523 if (error) { 1524 device_printf(dev, 1525 "attach aborted due to hardware diag failure\n"); 1526 ether_ifdetach(ifp); 1527 goto fail; 1528 } 1529 } 1530 #endif 1531 1532 /* Hook interrupt last to avoid having to lock softc */ 1533 if ((sc->rl_flags & RL_FLAG_MSI) == 0) 1534 error = bus_setup_intr(dev, sc->rl_irq[0], 1535 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, 1536 &sc->rl_intrhand[0]); 1537 else { 1538 for (i = 0; i < RL_MSI_MESSAGES; i++) { 1539 error = bus_setup_intr(dev, sc->rl_irq[i], 1540 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, 1541 &sc->rl_intrhand[i]); 1542 if (error != 0) 1543 break; 1544 } 1545 } 1546 if (error) { 1547 device_printf(dev, "couldn't set up irq\n"); 1548 ether_ifdetach(ifp); 1549 } 1550 1551 fail: 1552 1553 if (error) 1554 re_detach(dev); 1555 1556 return (error); 1557 } 1558 1559 /* 1560 * Shutdown hardware and free up resources. This can be called any 1561 * time after the mutex has been initialized. It is called in both 1562 * the error case in attach and the normal detach case so it needs 1563 * to be careful about only freeing resources that have actually been 1564 * allocated. 1565 */ 1566 static int 1567 re_detach(device_t dev) 1568 { 1569 struct rl_softc *sc; 1570 struct ifnet *ifp; 1571 int i, rid; 1572 1573 sc = device_get_softc(dev); 1574 ifp = sc->rl_ifp; 1575 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); 1576 1577 /* These should only be active if attach succeeded */ 1578 if (device_is_attached(dev)) { 1579 #ifdef DEVICE_POLLING 1580 if (ifp->if_capenable & IFCAP_POLLING) 1581 ether_poll_deregister(ifp); 1582 #endif 1583 RL_LOCK(sc); 1584 #if 0 1585 sc->suspended = 1; 1586 #endif 1587 re_stop(sc); 1588 RL_UNLOCK(sc); 1589 callout_drain(&sc->rl_stat_callout); 1590 taskqueue_drain(taskqueue_fast, &sc->rl_inttask); 1591 taskqueue_drain(taskqueue_fast, &sc->rl_txtask); 1592 /* 1593 * Force off the IFF_UP flag here, in case someone 1594 * still had a BPF descriptor attached to this 1595 * interface. If they do, ether_ifdetach() will cause 1596 * the BPF code to try and clear the promisc mode 1597 * flag, which will bubble down to re_ioctl(), 1598 * which will try to call re_init() again. This will 1599 * turn the NIC back on and restart the MII ticker, 1600 * which will panic the system when the kernel tries 1601 * to invoke the re_tick() function that isn't there 1602 * anymore. 1603 */ 1604 ifp->if_flags &= ~IFF_UP; 1605 ether_ifdetach(ifp); 1606 } 1607 if (sc->rl_miibus) 1608 device_delete_child(dev, sc->rl_miibus); 1609 bus_generic_detach(dev); 1610 1611 /* 1612 * The rest is resource deallocation, so we should already be 1613 * stopped here. 1614 */ 1615 1616 for (i = 0; i < RL_MSI_MESSAGES; i++) { 1617 if (sc->rl_intrhand[i] != NULL) { 1618 bus_teardown_intr(dev, sc->rl_irq[i], 1619 sc->rl_intrhand[i]); 1620 sc->rl_intrhand[i] = NULL; 1621 } 1622 } 1623 if (ifp != NULL) 1624 if_free(ifp); 1625 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1626 if (sc->rl_irq[0] != NULL) { 1627 bus_release_resource(dev, SYS_RES_IRQ, 0, 1628 sc->rl_irq[0]); 1629 sc->rl_irq[0] = NULL; 1630 } 1631 } else { 1632 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { 1633 if (sc->rl_irq[i] != NULL) { 1634 bus_release_resource(dev, SYS_RES_IRQ, rid, 1635 sc->rl_irq[i]); 1636 sc->rl_irq[i] = NULL; 1637 } 1638 } 1639 pci_release_msi(dev); 1640 } 1641 if (sc->rl_res) 1642 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, 1643 sc->rl_res); 1644 1645 /* Unload and free the RX DMA ring memory and map */ 1646 1647 if (sc->rl_ldata.rl_rx_list_tag) { 1648 if (sc->rl_ldata.rl_rx_list_map) 1649 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, 1650 sc->rl_ldata.rl_rx_list_map); 1651 if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list) 1652 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, 1653 sc->rl_ldata.rl_rx_list, 1654 sc->rl_ldata.rl_rx_list_map); 1655 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); 1656 } 1657 1658 /* Unload and free the TX DMA ring memory and map */ 1659 1660 if (sc->rl_ldata.rl_tx_list_tag) { 1661 if (sc->rl_ldata.rl_tx_list_map) 1662 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, 1663 sc->rl_ldata.rl_tx_list_map); 1664 if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list) 1665 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, 1666 sc->rl_ldata.rl_tx_list, 1667 sc->rl_ldata.rl_tx_list_map); 1668 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); 1669 } 1670 1671 /* Destroy all the RX and TX buffer maps */ 1672 1673 if (sc->rl_ldata.rl_tx_mtag) { 1674 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) 1675 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag, 1676 sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1677 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag); 1678 } 1679 if (sc->rl_ldata.rl_rx_mtag) { 1680 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) 1681 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1682 sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1683 if (sc->rl_ldata.rl_rx_sparemap) 1684 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1685 sc->rl_ldata.rl_rx_sparemap); 1686 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag); 1687 } 1688 1689 /* Unload and free the stats buffer and map */ 1690 1691 if (sc->rl_ldata.rl_stag) { 1692 if (sc->rl_ldata.rl_smap) 1693 bus_dmamap_unload(sc->rl_ldata.rl_stag, 1694 sc->rl_ldata.rl_smap); 1695 if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats) 1696 bus_dmamem_free(sc->rl_ldata.rl_stag, 1697 sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap); 1698 bus_dma_tag_destroy(sc->rl_ldata.rl_stag); 1699 } 1700 1701 if (sc->rl_parent_tag) 1702 bus_dma_tag_destroy(sc->rl_parent_tag); 1703 1704 mtx_destroy(&sc->rl_mtx); 1705 1706 return (0); 1707 } 1708 1709 static __inline void 1710 re_discard_rxbuf(struct rl_softc *sc, int idx) 1711 { 1712 struct rl_desc *desc; 1713 struct rl_rxdesc *rxd; 1714 uint32_t cmdstat; 1715 1716 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1717 desc = &sc->rl_ldata.rl_rx_list[idx]; 1718 desc->rl_vlanctl = 0; 1719 cmdstat = rxd->rx_size; 1720 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1721 cmdstat |= RL_RDESC_CMD_EOR; 1722 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 1723 } 1724 1725 static int 1726 re_newbuf(struct rl_softc *sc, int idx) 1727 { 1728 struct mbuf *m; 1729 struct rl_rxdesc *rxd; 1730 bus_dma_segment_t segs[1]; 1731 bus_dmamap_t map; 1732 struct rl_desc *desc; 1733 uint32_t cmdstat; 1734 int error, nsegs; 1735 1736 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1737 if (m == NULL) 1738 return (ENOBUFS); 1739 1740 m->m_len = m->m_pkthdr.len = MCLBYTES; 1741 #ifdef RE_FIXUP_RX 1742 /* 1743 * This is part of an evil trick to deal with non-x86 platforms. 1744 * The RealTek chip requires RX buffers to be aligned on 64-bit 1745 * boundaries, but that will hose non-x86 machines. To get around 1746 * this, we leave some empty space at the start of each buffer 1747 * and for non-x86 hosts, we copy the buffer back six bytes 1748 * to achieve word alignment. This is slightly more efficient 1749 * than allocating a new buffer, copying the contents, and 1750 * discarding the old buffer. 1751 */ 1752 m_adj(m, RE_ETHER_ALIGN); 1753 #endif 1754 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag, 1755 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 1756 if (error != 0) { 1757 m_freem(m); 1758 return (ENOBUFS); 1759 } 1760 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 1761 1762 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1763 if (rxd->rx_m != NULL) { 1764 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1765 BUS_DMASYNC_POSTREAD); 1766 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap); 1767 } 1768 1769 rxd->rx_m = m; 1770 map = rxd->rx_dmamap; 1771 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap; 1772 rxd->rx_size = segs[0].ds_len; 1773 sc->rl_ldata.rl_rx_sparemap = map; 1774 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1775 BUS_DMASYNC_PREREAD); 1776 1777 desc = &sc->rl_ldata.rl_rx_list[idx]; 1778 desc->rl_vlanctl = 0; 1779 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 1780 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 1781 cmdstat = segs[0].ds_len; 1782 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1783 cmdstat |= RL_RDESC_CMD_EOR; 1784 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 1785 1786 return (0); 1787 } 1788 1789 #ifdef RE_FIXUP_RX 1790 static __inline void 1791 re_fixup_rx(struct mbuf *m) 1792 { 1793 int i; 1794 uint16_t *src, *dst; 1795 1796 src = mtod(m, uint16_t *); 1797 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; 1798 1799 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1800 *dst++ = *src++; 1801 1802 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; 1803 } 1804 #endif 1805 1806 static int 1807 re_tx_list_init(struct rl_softc *sc) 1808 { 1809 struct rl_desc *desc; 1810 int i; 1811 1812 RL_LOCK_ASSERT(sc); 1813 1814 bzero(sc->rl_ldata.rl_tx_list, 1815 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc)); 1816 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) 1817 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL; 1818 /* Set EOR. */ 1819 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1]; 1820 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR); 1821 1822 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 1823 sc->rl_ldata.rl_tx_list_map, 1824 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1825 1826 sc->rl_ldata.rl_tx_prodidx = 0; 1827 sc->rl_ldata.rl_tx_considx = 0; 1828 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt; 1829 1830 return (0); 1831 } 1832 1833 static int 1834 re_rx_list_init(struct rl_softc *sc) 1835 { 1836 int error, i; 1837 1838 bzero(sc->rl_ldata.rl_rx_list, 1839 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 1840 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1841 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL; 1842 if ((error = re_newbuf(sc, i)) != 0) 1843 return (error); 1844 } 1845 1846 /* Flush the RX descriptors */ 1847 1848 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1849 sc->rl_ldata.rl_rx_list_map, 1850 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1851 1852 sc->rl_ldata.rl_rx_prodidx = 0; 1853 sc->rl_head = sc->rl_tail = NULL; 1854 1855 return (0); 1856 } 1857 1858 /* 1859 * RX handler for C+ and 8169. For the gigE chips, we support 1860 * the reception of jumbo frames that have been fragmented 1861 * across multiple 2K mbuf cluster buffers. 1862 */ 1863 static int 1864 re_rxeof(struct rl_softc *sc, int *rx_npktsp) 1865 { 1866 struct mbuf *m; 1867 struct ifnet *ifp; 1868 int i, total_len; 1869 struct rl_desc *cur_rx; 1870 u_int32_t rxstat, rxvlan; 1871 int maxpkt = 16, rx_npkts = 0; 1872 1873 RL_LOCK_ASSERT(sc); 1874 1875 ifp = sc->rl_ifp; 1876 1877 /* Invalidate the descriptor memory */ 1878 1879 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1880 sc->rl_ldata.rl_rx_list_map, 1881 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1882 1883 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0; 1884 i = RL_RX_DESC_NXT(sc, i)) { 1885 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 1886 break; 1887 cur_rx = &sc->rl_ldata.rl_rx_list[i]; 1888 rxstat = le32toh(cur_rx->rl_cmdstat); 1889 if ((rxstat & RL_RDESC_STAT_OWN) != 0) 1890 break; 1891 total_len = rxstat & sc->rl_rxlenmask; 1892 rxvlan = le32toh(cur_rx->rl_vlanctl); 1893 m = sc->rl_ldata.rl_rx_desc[i].rx_m; 1894 1895 if (!(rxstat & RL_RDESC_STAT_EOF)) { 1896 if (re_newbuf(sc, i) != 0) { 1897 /* 1898 * If this is part of a multi-fragment packet, 1899 * discard all the pieces. 1900 */ 1901 if (sc->rl_head != NULL) { 1902 m_freem(sc->rl_head); 1903 sc->rl_head = sc->rl_tail = NULL; 1904 } 1905 re_discard_rxbuf(sc, i); 1906 continue; 1907 } 1908 m->m_len = RE_RX_DESC_BUFLEN; 1909 if (sc->rl_head == NULL) 1910 sc->rl_head = sc->rl_tail = m; 1911 else { 1912 m->m_flags &= ~M_PKTHDR; 1913 sc->rl_tail->m_next = m; 1914 sc->rl_tail = m; 1915 } 1916 continue; 1917 } 1918 1919 /* 1920 * NOTE: for the 8139C+, the frame length field 1921 * is always 12 bits in size, but for the gigE chips, 1922 * it is 13 bits (since the max RX frame length is 16K). 1923 * Unfortunately, all 32 bits in the status word 1924 * were already used, so to make room for the extra 1925 * length bit, RealTek took out the 'frame alignment 1926 * error' bit and shifted the other status bits 1927 * over one slot. The OWN, EOR, FS and LS bits are 1928 * still in the same places. We have already extracted 1929 * the frame length and checked the OWN bit, so rather 1930 * than using an alternate bit mapping, we shift the 1931 * status bits one space to the right so we can evaluate 1932 * them using the 8169 status as though it was in the 1933 * same format as that of the 8139C+. 1934 */ 1935 if (sc->rl_type == RL_8169) 1936 rxstat >>= 1; 1937 1938 /* 1939 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be 1940 * set, but if CRC is clear, it will still be a valid frame. 1941 */ 1942 if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 && 1943 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) { 1944 ifp->if_ierrors++; 1945 /* 1946 * If this is part of a multi-fragment packet, 1947 * discard all the pieces. 1948 */ 1949 if (sc->rl_head != NULL) { 1950 m_freem(sc->rl_head); 1951 sc->rl_head = sc->rl_tail = NULL; 1952 } 1953 re_discard_rxbuf(sc, i); 1954 continue; 1955 } 1956 1957 /* 1958 * If allocating a replacement mbuf fails, 1959 * reload the current one. 1960 */ 1961 1962 if (re_newbuf(sc, i) != 0) { 1963 ifp->if_iqdrops++; 1964 if (sc->rl_head != NULL) { 1965 m_freem(sc->rl_head); 1966 sc->rl_head = sc->rl_tail = NULL; 1967 } 1968 re_discard_rxbuf(sc, i); 1969 continue; 1970 } 1971 1972 if (sc->rl_head != NULL) { 1973 m->m_len = total_len % RE_RX_DESC_BUFLEN; 1974 if (m->m_len == 0) 1975 m->m_len = RE_RX_DESC_BUFLEN; 1976 /* 1977 * Special case: if there's 4 bytes or less 1978 * in this buffer, the mbuf can be discarded: 1979 * the last 4 bytes is the CRC, which we don't 1980 * care about anyway. 1981 */ 1982 if (m->m_len <= ETHER_CRC_LEN) { 1983 sc->rl_tail->m_len -= 1984 (ETHER_CRC_LEN - m->m_len); 1985 m_freem(m); 1986 } else { 1987 m->m_len -= ETHER_CRC_LEN; 1988 m->m_flags &= ~M_PKTHDR; 1989 sc->rl_tail->m_next = m; 1990 } 1991 m = sc->rl_head; 1992 sc->rl_head = sc->rl_tail = NULL; 1993 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1994 } else 1995 m->m_pkthdr.len = m->m_len = 1996 (total_len - ETHER_CRC_LEN); 1997 1998 #ifdef RE_FIXUP_RX 1999 re_fixup_rx(m); 2000 #endif 2001 ifp->if_ipackets++; 2002 m->m_pkthdr.rcvif = ifp; 2003 2004 /* Do RX checksumming if enabled */ 2005 2006 if (ifp->if_capenable & IFCAP_RXCSUM) { 2007 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2008 /* Check IP header checksum */ 2009 if (rxstat & RL_RDESC_STAT_PROTOID) 2010 m->m_pkthdr.csum_flags |= 2011 CSUM_IP_CHECKED; 2012 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) 2013 m->m_pkthdr.csum_flags |= 2014 CSUM_IP_VALID; 2015 2016 /* Check TCP/UDP checksum */ 2017 if ((RL_TCPPKT(rxstat) && 2018 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2019 (RL_UDPPKT(rxstat) && 2020 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2021 m->m_pkthdr.csum_flags |= 2022 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2023 m->m_pkthdr.csum_data = 0xffff; 2024 } 2025 } else { 2026 /* 2027 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP 2028 */ 2029 if ((rxstat & RL_RDESC_STAT_PROTOID) && 2030 (rxvlan & RL_RDESC_IPV4)) 2031 m->m_pkthdr.csum_flags |= 2032 CSUM_IP_CHECKED; 2033 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) && 2034 (rxvlan & RL_RDESC_IPV4)) 2035 m->m_pkthdr.csum_flags |= 2036 CSUM_IP_VALID; 2037 if (((rxstat & RL_RDESC_STAT_TCP) && 2038 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2039 ((rxstat & RL_RDESC_STAT_UDP) && 2040 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2041 m->m_pkthdr.csum_flags |= 2042 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2043 m->m_pkthdr.csum_data = 0xffff; 2044 } 2045 } 2046 } 2047 maxpkt--; 2048 if (rxvlan & RL_RDESC_VLANCTL_TAG) { 2049 m->m_pkthdr.ether_vtag = 2050 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA)); 2051 m->m_flags |= M_VLANTAG; 2052 } 2053 RL_UNLOCK(sc); 2054 (*ifp->if_input)(ifp, m); 2055 RL_LOCK(sc); 2056 rx_npkts++; 2057 } 2058 2059 /* Flush the RX DMA ring */ 2060 2061 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2062 sc->rl_ldata.rl_rx_list_map, 2063 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2064 2065 sc->rl_ldata.rl_rx_prodidx = i; 2066 2067 if (rx_npktsp != NULL) 2068 *rx_npktsp = rx_npkts; 2069 if (maxpkt) 2070 return (EAGAIN); 2071 2072 return (0); 2073 } 2074 2075 static void 2076 re_txeof(struct rl_softc *sc) 2077 { 2078 struct ifnet *ifp; 2079 struct rl_txdesc *txd; 2080 u_int32_t txstat; 2081 int cons; 2082 2083 cons = sc->rl_ldata.rl_tx_considx; 2084 if (cons == sc->rl_ldata.rl_tx_prodidx) 2085 return; 2086 2087 ifp = sc->rl_ifp; 2088 /* Invalidate the TX descriptor list */ 2089 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2090 sc->rl_ldata.rl_tx_list_map, 2091 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2092 2093 for (; cons != sc->rl_ldata.rl_tx_prodidx; 2094 cons = RL_TX_DESC_NXT(sc, cons)) { 2095 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat); 2096 if (txstat & RL_TDESC_STAT_OWN) 2097 break; 2098 /* 2099 * We only stash mbufs in the last descriptor 2100 * in a fragment chain, which also happens to 2101 * be the only place where the TX status bits 2102 * are valid. 2103 */ 2104 if (txstat & RL_TDESC_CMD_EOF) { 2105 txd = &sc->rl_ldata.rl_tx_desc[cons]; 2106 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 2107 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2108 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 2109 txd->tx_dmamap); 2110 KASSERT(txd->tx_m != NULL, 2111 ("%s: freeing NULL mbufs!", __func__)); 2112 m_freem(txd->tx_m); 2113 txd->tx_m = NULL; 2114 if (txstat & (RL_TDESC_STAT_EXCESSCOL| 2115 RL_TDESC_STAT_COLCNT)) 2116 ifp->if_collisions++; 2117 if (txstat & RL_TDESC_STAT_TXERRSUM) 2118 ifp->if_oerrors++; 2119 else 2120 ifp->if_opackets++; 2121 } 2122 sc->rl_ldata.rl_tx_free++; 2123 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2124 } 2125 sc->rl_ldata.rl_tx_considx = cons; 2126 2127 /* No changes made to the TX ring, so no flush needed */ 2128 2129 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) { 2130 #ifdef RE_TX_MODERATION 2131 /* 2132 * If not all descriptors have been reaped yet, reload 2133 * the timer so that we will eventually get another 2134 * interrupt that will cause us to re-enter this routine. 2135 * This is done in case the transmitter has gone idle. 2136 */ 2137 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2138 #endif 2139 } else 2140 sc->rl_watchdog_timer = 0; 2141 } 2142 2143 static void 2144 re_tick(void *xsc) 2145 { 2146 struct rl_softc *sc; 2147 struct mii_data *mii; 2148 2149 sc = xsc; 2150 2151 RL_LOCK_ASSERT(sc); 2152 2153 mii = device_get_softc(sc->rl_miibus); 2154 mii_tick(mii); 2155 if ((sc->rl_flags & RL_FLAG_LINK) == 0) 2156 re_miibus_statchg(sc->rl_dev); 2157 /* 2158 * Reclaim transmitted frames here. Technically it is not 2159 * necessary to do here but it ensures periodic reclamation 2160 * regardless of Tx completion interrupt which seems to be 2161 * lost on PCIe based controllers under certain situations. 2162 */ 2163 re_txeof(sc); 2164 re_watchdog(sc); 2165 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2166 } 2167 2168 #ifdef DEVICE_POLLING 2169 static int 2170 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2171 { 2172 struct rl_softc *sc = ifp->if_softc; 2173 int rx_npkts = 0; 2174 2175 RL_LOCK(sc); 2176 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2177 rx_npkts = re_poll_locked(ifp, cmd, count); 2178 RL_UNLOCK(sc); 2179 return (rx_npkts); 2180 } 2181 2182 static int 2183 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 2184 { 2185 struct rl_softc *sc = ifp->if_softc; 2186 int rx_npkts; 2187 2188 RL_LOCK_ASSERT(sc); 2189 2190 sc->rxcycles = count; 2191 re_rxeof(sc, &rx_npkts); 2192 re_txeof(sc); 2193 2194 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2195 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 2196 2197 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2198 u_int16_t status; 2199 2200 status = CSR_READ_2(sc, RL_ISR); 2201 if (status == 0xffff) 2202 return (rx_npkts); 2203 if (status) 2204 CSR_WRITE_2(sc, RL_ISR, status); 2205 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2206 (sc->rl_flags & RL_FLAG_PCIE)) 2207 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2208 2209 /* 2210 * XXX check behaviour on receiver stalls. 2211 */ 2212 2213 if (status & RL_ISR_SYSTEM_ERR) { 2214 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2215 re_init_locked(sc); 2216 } 2217 } 2218 return (rx_npkts); 2219 } 2220 #endif /* DEVICE_POLLING */ 2221 2222 static int 2223 re_intr(void *arg) 2224 { 2225 struct rl_softc *sc; 2226 uint16_t status; 2227 2228 sc = arg; 2229 2230 status = CSR_READ_2(sc, RL_ISR); 2231 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) 2232 return (FILTER_STRAY); 2233 CSR_WRITE_2(sc, RL_IMR, 0); 2234 2235 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); 2236 2237 return (FILTER_HANDLED); 2238 } 2239 2240 static void 2241 re_int_task(void *arg, int npending) 2242 { 2243 struct rl_softc *sc; 2244 struct ifnet *ifp; 2245 u_int16_t status; 2246 int rval = 0; 2247 2248 sc = arg; 2249 ifp = sc->rl_ifp; 2250 2251 RL_LOCK(sc); 2252 2253 status = CSR_READ_2(sc, RL_ISR); 2254 CSR_WRITE_2(sc, RL_ISR, status); 2255 2256 if (sc->suspended || 2257 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2258 RL_UNLOCK(sc); 2259 return; 2260 } 2261 2262 #ifdef DEVICE_POLLING 2263 if (ifp->if_capenable & IFCAP_POLLING) { 2264 RL_UNLOCK(sc); 2265 return; 2266 } 2267 #endif 2268 2269 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW)) 2270 rval = re_rxeof(sc, NULL); 2271 2272 /* 2273 * Some chips will ignore a second TX request issued 2274 * while an existing transmission is in progress. If 2275 * the transmitter goes idle but there are still 2276 * packets waiting to be sent, we need to restart the 2277 * channel here to flush them out. This only seems to 2278 * be required with the PCIe devices. 2279 */ 2280 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2281 (sc->rl_flags & RL_FLAG_PCIE)) 2282 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2283 if (status & ( 2284 #ifdef RE_TX_MODERATION 2285 RL_ISR_TIMEOUT_EXPIRED| 2286 #else 2287 RL_ISR_TX_OK| 2288 #endif 2289 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL)) 2290 re_txeof(sc); 2291 2292 if (status & RL_ISR_SYSTEM_ERR) { 2293 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2294 re_init_locked(sc); 2295 } 2296 2297 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2298 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 2299 2300 RL_UNLOCK(sc); 2301 2302 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) { 2303 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); 2304 return; 2305 } 2306 2307 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2308 } 2309 2310 static int 2311 re_encap(struct rl_softc *sc, struct mbuf **m_head) 2312 { 2313 struct rl_txdesc *txd, *txd_last; 2314 bus_dma_segment_t segs[RL_NTXSEGS]; 2315 bus_dmamap_t map; 2316 struct mbuf *m_new; 2317 struct rl_desc *desc; 2318 int nsegs, prod; 2319 int i, error, ei, si; 2320 int padlen; 2321 uint32_t cmdstat, csum_flags, vlanctl; 2322 2323 RL_LOCK_ASSERT(sc); 2324 M_ASSERTPKTHDR((*m_head)); 2325 2326 /* 2327 * With some of the RealTek chips, using the checksum offload 2328 * support in conjunction with the autopadding feature results 2329 * in the transmission of corrupt frames. For example, if we 2330 * need to send a really small IP fragment that's less than 60 2331 * bytes in size, and IP header checksumming is enabled, the 2332 * resulting ethernet frame that appears on the wire will 2333 * have garbled payload. To work around this, if TX IP checksum 2334 * offload is enabled, we always manually pad short frames out 2335 * to the minimum ethernet frame size. 2336 */ 2337 if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 && 2338 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN && 2339 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) { 2340 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len; 2341 if (M_WRITABLE(*m_head) == 0) { 2342 /* Get a writable copy. */ 2343 m_new = m_dup(*m_head, M_DONTWAIT); 2344 m_freem(*m_head); 2345 if (m_new == NULL) { 2346 *m_head = NULL; 2347 return (ENOBUFS); 2348 } 2349 *m_head = m_new; 2350 } 2351 if ((*m_head)->m_next != NULL || 2352 M_TRAILINGSPACE(*m_head) < padlen) { 2353 m_new = m_defrag(*m_head, M_DONTWAIT); 2354 if (m_new == NULL) { 2355 m_freem(*m_head); 2356 *m_head = NULL; 2357 return (ENOBUFS); 2358 } 2359 } else 2360 m_new = *m_head; 2361 2362 /* 2363 * Manually pad short frames, and zero the pad space 2364 * to avoid leaking data. 2365 */ 2366 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen); 2367 m_new->m_pkthdr.len += padlen; 2368 m_new->m_len = m_new->m_pkthdr.len; 2369 *m_head = m_new; 2370 } 2371 2372 prod = sc->rl_ldata.rl_tx_prodidx; 2373 txd = &sc->rl_ldata.rl_tx_desc[prod]; 2374 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2375 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2376 if (error == EFBIG) { 2377 m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS); 2378 if (m_new == NULL) { 2379 m_freem(*m_head); 2380 *m_head = NULL; 2381 return (ENOBUFS); 2382 } 2383 *m_head = m_new; 2384 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, 2385 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2386 if (error != 0) { 2387 m_freem(*m_head); 2388 *m_head = NULL; 2389 return (error); 2390 } 2391 } else if (error != 0) 2392 return (error); 2393 if (nsegs == 0) { 2394 m_freem(*m_head); 2395 *m_head = NULL; 2396 return (EIO); 2397 } 2398 2399 /* Check for number of available descriptors. */ 2400 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) { 2401 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); 2402 return (ENOBUFS); 2403 } 2404 2405 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2406 BUS_DMASYNC_PREWRITE); 2407 2408 /* 2409 * Set up checksum offload. Note: checksum offload bits must 2410 * appear in all descriptors of a multi-descriptor transmit 2411 * attempt. This is according to testing done with an 8169 2412 * chip. This is a requirement. 2413 */ 2414 vlanctl = 0; 2415 csum_flags = 0; 2416 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) 2417 csum_flags = RL_TDESC_CMD_LGSEND | 2418 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2419 RL_TDESC_CMD_MSSVAL_SHIFT); 2420 else { 2421 /* 2422 * Unconditionally enable IP checksum if TCP or UDP 2423 * checksum is required. Otherwise, TCP/UDP checksum 2424 * does't make effects. 2425 */ 2426 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) { 2427 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2428 csum_flags |= RL_TDESC_CMD_IPCSUM; 2429 if (((*m_head)->m_pkthdr.csum_flags & 2430 CSUM_TCP) != 0) 2431 csum_flags |= RL_TDESC_CMD_TCPCSUM; 2432 if (((*m_head)->m_pkthdr.csum_flags & 2433 CSUM_UDP) != 0) 2434 csum_flags |= RL_TDESC_CMD_UDPCSUM; 2435 } else { 2436 vlanctl |= RL_TDESC_CMD_IPCSUMV2; 2437 if (((*m_head)->m_pkthdr.csum_flags & 2438 CSUM_TCP) != 0) 2439 vlanctl |= RL_TDESC_CMD_TCPCSUMV2; 2440 if (((*m_head)->m_pkthdr.csum_flags & 2441 CSUM_UDP) != 0) 2442 vlanctl |= RL_TDESC_CMD_UDPCSUMV2; 2443 } 2444 } 2445 } 2446 2447 /* 2448 * Set up hardware VLAN tagging. Note: vlan tag info must 2449 * appear in all descriptors of a multi-descriptor 2450 * transmission attempt. 2451 */ 2452 if ((*m_head)->m_flags & M_VLANTAG) 2453 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) | 2454 RL_TDESC_VLANCTL_TAG; 2455 2456 si = prod; 2457 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) { 2458 desc = &sc->rl_ldata.rl_tx_list[prod]; 2459 desc->rl_vlanctl = htole32(vlanctl); 2460 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); 2461 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); 2462 cmdstat = segs[i].ds_len; 2463 if (i != 0) 2464 cmdstat |= RL_TDESC_CMD_OWN; 2465 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1) 2466 cmdstat |= RL_TDESC_CMD_EOR; 2467 desc->rl_cmdstat = htole32(cmdstat | csum_flags); 2468 sc->rl_ldata.rl_tx_free--; 2469 } 2470 /* Update producer index. */ 2471 sc->rl_ldata.rl_tx_prodidx = prod; 2472 2473 /* Set EOF on the last descriptor. */ 2474 ei = RL_TX_DESC_PRV(sc, prod); 2475 desc = &sc->rl_ldata.rl_tx_list[ei]; 2476 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); 2477 2478 desc = &sc->rl_ldata.rl_tx_list[si]; 2479 /* Set SOF and transfer ownership of packet to the chip. */ 2480 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF); 2481 2482 /* 2483 * Insure that the map for this transmission 2484 * is placed at the array index of the last descriptor 2485 * in this chain. (Swap last and first dmamaps.) 2486 */ 2487 txd_last = &sc->rl_ldata.rl_tx_desc[ei]; 2488 map = txd->tx_dmamap; 2489 txd->tx_dmamap = txd_last->tx_dmamap; 2490 txd_last->tx_dmamap = map; 2491 txd_last->tx_m = *m_head; 2492 2493 return (0); 2494 } 2495 2496 static void 2497 re_tx_task(void *arg, int npending) 2498 { 2499 struct ifnet *ifp; 2500 2501 ifp = arg; 2502 re_start(ifp); 2503 } 2504 2505 /* 2506 * Main transmit routine for C+ and gigE NICs. 2507 */ 2508 static void 2509 re_start(struct ifnet *ifp) 2510 { 2511 struct rl_softc *sc; 2512 struct mbuf *m_head; 2513 int queued; 2514 2515 sc = ifp->if_softc; 2516 2517 RL_LOCK(sc); 2518 2519 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2520 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) { 2521 RL_UNLOCK(sc); 2522 return; 2523 } 2524 2525 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2526 sc->rl_ldata.rl_tx_free > 1;) { 2527 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2528 if (m_head == NULL) 2529 break; 2530 2531 if (re_encap(sc, &m_head) != 0) { 2532 if (m_head == NULL) 2533 break; 2534 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2535 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2536 break; 2537 } 2538 2539 /* 2540 * If there's a BPF listener, bounce a copy of this frame 2541 * to him. 2542 */ 2543 ETHER_BPF_MTAP(ifp, m_head); 2544 2545 queued++; 2546 } 2547 2548 if (queued == 0) { 2549 #ifdef RE_TX_MODERATION 2550 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) 2551 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2552 #endif 2553 RL_UNLOCK(sc); 2554 return; 2555 } 2556 2557 /* Flush the TX descriptors */ 2558 2559 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2560 sc->rl_ldata.rl_tx_list_map, 2561 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2562 2563 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2564 2565 #ifdef RE_TX_MODERATION 2566 /* 2567 * Use the countdown timer for interrupt moderation. 2568 * 'TX done' interrupts are disabled. Instead, we reset the 2569 * countdown timer, which will begin counting until it hits 2570 * the value in the TIMERINT register, and then trigger an 2571 * interrupt. Each time we write to the TIMERCNT register, 2572 * the timer count is reset to 0. 2573 */ 2574 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2575 #endif 2576 2577 /* 2578 * Set a timeout in case the chip goes out to lunch. 2579 */ 2580 sc->rl_watchdog_timer = 5; 2581 2582 RL_UNLOCK(sc); 2583 } 2584 2585 static void 2586 re_init(void *xsc) 2587 { 2588 struct rl_softc *sc = xsc; 2589 2590 RL_LOCK(sc); 2591 re_init_locked(sc); 2592 RL_UNLOCK(sc); 2593 } 2594 2595 static void 2596 re_init_locked(struct rl_softc *sc) 2597 { 2598 struct ifnet *ifp = sc->rl_ifp; 2599 struct mii_data *mii; 2600 uint32_t reg; 2601 uint16_t cfg; 2602 union { 2603 uint32_t align_dummy; 2604 u_char eaddr[ETHER_ADDR_LEN]; 2605 } eaddr; 2606 2607 RL_LOCK_ASSERT(sc); 2608 2609 mii = device_get_softc(sc->rl_miibus); 2610 2611 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2612 return; 2613 2614 /* 2615 * Cancel pending I/O and free all RX/TX buffers. 2616 */ 2617 re_stop(sc); 2618 2619 /* Put controller into known state. */ 2620 re_reset(sc); 2621 2622 /* 2623 * Enable C+ RX and TX mode, as well as VLAN stripping and 2624 * RX checksum offload. We must configure the C+ register 2625 * before all others. 2626 */ 2627 cfg = RL_CPLUSCMD_PCI_MRW; 2628 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2629 cfg |= RL_CPLUSCMD_RXCSUM_ENB; 2630 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2631 cfg |= RL_CPLUSCMD_VLANSTRIP; 2632 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) { 2633 cfg |= RL_CPLUSCMD_MACSTAT_DIS; 2634 /* XXX magic. */ 2635 cfg |= 0x0001; 2636 } else 2637 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB; 2638 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg); 2639 if (sc->rl_hwrev == RL_HWREV_8169_8110SC || 2640 sc->rl_hwrev == RL_HWREV_8169_8110SCE) { 2641 reg = 0x000fff00; 2642 if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0) 2643 reg |= 0x000000ff; 2644 if (sc->rl_hwrev == RL_HWREV_8169_8110SCE) 2645 reg |= 0x00f00000; 2646 CSR_WRITE_4(sc, 0x7c, reg); 2647 /* Disable interrupt mitigation. */ 2648 CSR_WRITE_2(sc, 0xe2, 0); 2649 } 2650 /* 2651 * Disable TSO if interface MTU size is greater than MSS 2652 * allowed in controller. 2653 */ 2654 if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { 2655 ifp->if_capenable &= ~IFCAP_TSO4; 2656 ifp->if_hwassist &= ~CSUM_TSO; 2657 } 2658 2659 /* 2660 * Init our MAC address. Even though the chipset 2661 * documentation doesn't mention it, we need to enter "Config 2662 * register write enable" mode to modify the ID registers. 2663 */ 2664 /* Copy MAC address on stack to align. */ 2665 bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN); 2666 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 2667 CSR_WRITE_4(sc, RL_IDR0, 2668 htole32(*(u_int32_t *)(&eaddr.eaddr[0]))); 2669 CSR_WRITE_4(sc, RL_IDR4, 2670 htole32(*(u_int32_t *)(&eaddr.eaddr[4]))); 2671 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 2672 2673 /* 2674 * For C+ mode, initialize the RX descriptors and mbufs. 2675 */ 2676 re_rx_list_init(sc); 2677 re_tx_list_init(sc); 2678 2679 /* 2680 * Load the addresses of the RX and TX lists into the chip. 2681 */ 2682 2683 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, 2684 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); 2685 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, 2686 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); 2687 2688 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, 2689 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); 2690 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, 2691 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); 2692 2693 /* 2694 * Enable transmit and receive. 2695 */ 2696 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 2697 2698 /* 2699 * Set the initial TX configuration. 2700 */ 2701 if (sc->rl_testmode) { 2702 if (sc->rl_type == RL_8169) 2703 CSR_WRITE_4(sc, RL_TXCFG, 2704 RL_TXCFG_CONFIG|RL_LOOPTEST_ON); 2705 else 2706 CSR_WRITE_4(sc, RL_TXCFG, 2707 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); 2708 } else 2709 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 2710 2711 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); 2712 2713 /* 2714 * Set the initial RX configuration. 2715 */ 2716 re_set_rxmode(sc); 2717 2718 /* Configure interrupt moderation. */ 2719 if (sc->rl_type == RL_8169) { 2720 switch (sc->rl_hwrev) { 2721 case RL_HWREV_8100E: 2722 case RL_HWREV_8101E: 2723 case RL_HWREV_8102E: 2724 case RL_HWREV_8102EL: 2725 case RL_HWREV_8102EL_SPIN1: 2726 case RL_HWREV_8103E: 2727 CSR_WRITE_2(sc, RL_INTRMOD, 0); 2728 break; 2729 default: 2730 /* Magic from vendor. */ 2731 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100); 2732 break; 2733 } 2734 } 2735 2736 #ifdef DEVICE_POLLING 2737 /* 2738 * Disable interrupts if we are polling. 2739 */ 2740 if (ifp->if_capenable & IFCAP_POLLING) 2741 CSR_WRITE_2(sc, RL_IMR, 0); 2742 else /* otherwise ... */ 2743 #endif 2744 2745 /* 2746 * Enable interrupts. 2747 */ 2748 if (sc->rl_testmode) 2749 CSR_WRITE_2(sc, RL_IMR, 0); 2750 else 2751 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2752 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS); 2753 2754 /* Set initial TX threshold */ 2755 sc->rl_txthresh = RL_TX_THRESH_INIT; 2756 2757 /* Start RX/TX process. */ 2758 CSR_WRITE_4(sc, RL_MISSEDPKT, 0); 2759 #ifdef notdef 2760 /* Enable receiver and transmitter. */ 2761 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 2762 #endif 2763 2764 #ifdef RE_TX_MODERATION 2765 /* 2766 * Initialize the timer interrupt register so that 2767 * a timer interrupt will be generated once the timer 2768 * reaches a certain number of ticks. The timer is 2769 * reloaded on each transmit. This gives us TX interrupt 2770 * moderation, which dramatically improves TX frame rate. 2771 */ 2772 if (sc->rl_type == RL_8169) 2773 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); 2774 else 2775 CSR_WRITE_4(sc, RL_TIMERINT, 0x400); 2776 #endif 2777 2778 /* 2779 * For 8169 gigE NICs, set the max allowed RX packet 2780 * size so we can receive jumbo frames. 2781 */ 2782 if (sc->rl_type == RL_8169) 2783 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); 2784 2785 if (sc->rl_testmode) 2786 return; 2787 2788 mii_mediachg(mii); 2789 2790 CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD); 2791 2792 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2793 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2794 2795 sc->rl_flags &= ~RL_FLAG_LINK; 2796 sc->rl_watchdog_timer = 0; 2797 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2798 } 2799 2800 /* 2801 * Set media options. 2802 */ 2803 static int 2804 re_ifmedia_upd(struct ifnet *ifp) 2805 { 2806 struct rl_softc *sc; 2807 struct mii_data *mii; 2808 int error; 2809 2810 sc = ifp->if_softc; 2811 mii = device_get_softc(sc->rl_miibus); 2812 RL_LOCK(sc); 2813 error = mii_mediachg(mii); 2814 RL_UNLOCK(sc); 2815 2816 return (error); 2817 } 2818 2819 /* 2820 * Report current media status. 2821 */ 2822 static void 2823 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2824 { 2825 struct rl_softc *sc; 2826 struct mii_data *mii; 2827 2828 sc = ifp->if_softc; 2829 mii = device_get_softc(sc->rl_miibus); 2830 2831 RL_LOCK(sc); 2832 mii_pollstat(mii); 2833 RL_UNLOCK(sc); 2834 ifmr->ifm_active = mii->mii_media_active; 2835 ifmr->ifm_status = mii->mii_media_status; 2836 } 2837 2838 static int 2839 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2840 { 2841 struct rl_softc *sc = ifp->if_softc; 2842 struct ifreq *ifr = (struct ifreq *) data; 2843 struct mii_data *mii; 2844 int error = 0; 2845 2846 switch (command) { 2847 case SIOCSIFMTU: 2848 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) { 2849 error = EINVAL; 2850 break; 2851 } 2852 if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 && 2853 ifr->ifr_mtu > RL_MAX_FRAMELEN) { 2854 error = EINVAL; 2855 break; 2856 } 2857 RL_LOCK(sc); 2858 if (ifp->if_mtu != ifr->ifr_mtu) 2859 ifp->if_mtu = ifr->ifr_mtu; 2860 if (ifp->if_mtu > RL_TSO_MTU && 2861 (ifp->if_capenable & IFCAP_TSO4) != 0) { 2862 ifp->if_capenable &= ~IFCAP_TSO4; 2863 ifp->if_hwassist &= ~CSUM_TSO; 2864 VLAN_CAPABILITIES(ifp); 2865 } 2866 RL_UNLOCK(sc); 2867 break; 2868 case SIOCSIFFLAGS: 2869 RL_LOCK(sc); 2870 if ((ifp->if_flags & IFF_UP) != 0) { 2871 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2872 if (((ifp->if_flags ^ sc->rl_if_flags) 2873 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2874 re_set_rxmode(sc); 2875 } else 2876 re_init_locked(sc); 2877 } else { 2878 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2879 re_stop(sc); 2880 } 2881 sc->rl_if_flags = ifp->if_flags; 2882 RL_UNLOCK(sc); 2883 break; 2884 case SIOCADDMULTI: 2885 case SIOCDELMULTI: 2886 RL_LOCK(sc); 2887 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2888 re_set_rxmode(sc); 2889 RL_UNLOCK(sc); 2890 break; 2891 case SIOCGIFMEDIA: 2892 case SIOCSIFMEDIA: 2893 mii = device_get_softc(sc->rl_miibus); 2894 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2895 break; 2896 case SIOCSIFCAP: 2897 { 2898 int mask, reinit; 2899 2900 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2901 reinit = 0; 2902 #ifdef DEVICE_POLLING 2903 if (mask & IFCAP_POLLING) { 2904 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2905 error = ether_poll_register(re_poll, ifp); 2906 if (error) 2907 return (error); 2908 RL_LOCK(sc); 2909 /* Disable interrupts */ 2910 CSR_WRITE_2(sc, RL_IMR, 0x0000); 2911 ifp->if_capenable |= IFCAP_POLLING; 2912 RL_UNLOCK(sc); 2913 } else { 2914 error = ether_poll_deregister(ifp); 2915 /* Enable interrupts. */ 2916 RL_LOCK(sc); 2917 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2918 ifp->if_capenable &= ~IFCAP_POLLING; 2919 RL_UNLOCK(sc); 2920 } 2921 } 2922 #endif /* DEVICE_POLLING */ 2923 if (mask & IFCAP_HWCSUM) { 2924 ifp->if_capenable ^= IFCAP_HWCSUM; 2925 if (ifp->if_capenable & IFCAP_TXCSUM) 2926 ifp->if_hwassist |= RE_CSUM_FEATURES; 2927 else 2928 ifp->if_hwassist &= ~RE_CSUM_FEATURES; 2929 reinit = 1; 2930 } 2931 if ((mask & IFCAP_TSO4) != 0 && 2932 (ifp->if_capabilities & IFCAP_TSO) != 0) { 2933 ifp->if_capenable ^= IFCAP_TSO4; 2934 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 2935 ifp->if_hwassist |= CSUM_TSO; 2936 else 2937 ifp->if_hwassist &= ~CSUM_TSO; 2938 if (ifp->if_mtu > RL_TSO_MTU && 2939 (ifp->if_capenable & IFCAP_TSO4) != 0) { 2940 ifp->if_capenable &= ~IFCAP_TSO4; 2941 ifp->if_hwassist &= ~CSUM_TSO; 2942 } 2943 } 2944 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 2945 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 2946 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2947 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 2948 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 2949 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2950 /* TSO over VLAN requires VLAN hardware tagging. */ 2951 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 2952 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 2953 reinit = 1; 2954 } 2955 if ((mask & IFCAP_WOL) != 0 && 2956 (ifp->if_capabilities & IFCAP_WOL) != 0) { 2957 if ((mask & IFCAP_WOL_UCAST) != 0) 2958 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2959 if ((mask & IFCAP_WOL_MCAST) != 0) 2960 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2961 if ((mask & IFCAP_WOL_MAGIC) != 0) 2962 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2963 } 2964 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) { 2965 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2966 re_init(sc); 2967 } 2968 VLAN_CAPABILITIES(ifp); 2969 } 2970 break; 2971 default: 2972 error = ether_ioctl(ifp, command, data); 2973 break; 2974 } 2975 2976 return (error); 2977 } 2978 2979 static void 2980 re_watchdog(struct rl_softc *sc) 2981 { 2982 struct ifnet *ifp; 2983 2984 RL_LOCK_ASSERT(sc); 2985 2986 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0) 2987 return; 2988 2989 ifp = sc->rl_ifp; 2990 re_txeof(sc); 2991 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) { 2992 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2993 "-- recovering\n"); 2994 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2995 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 2996 return; 2997 } 2998 2999 if_printf(ifp, "watchdog timeout\n"); 3000 ifp->if_oerrors++; 3001 3002 re_rxeof(sc, NULL); 3003 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3004 re_init_locked(sc); 3005 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3006 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 3007 } 3008 3009 /* 3010 * Stop the adapter and free any mbufs allocated to the 3011 * RX and TX lists. 3012 */ 3013 static void 3014 re_stop(struct rl_softc *sc) 3015 { 3016 int i; 3017 struct ifnet *ifp; 3018 struct rl_txdesc *txd; 3019 struct rl_rxdesc *rxd; 3020 3021 RL_LOCK_ASSERT(sc); 3022 3023 ifp = sc->rl_ifp; 3024 3025 sc->rl_watchdog_timer = 0; 3026 callout_stop(&sc->rl_stat_callout); 3027 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3028 3029 if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) 3030 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB | 3031 RL_CMD_RX_ENB); 3032 else 3033 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 3034 DELAY(1000); 3035 CSR_WRITE_2(sc, RL_IMR, 0x0000); 3036 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 3037 3038 if (sc->rl_head != NULL) { 3039 m_freem(sc->rl_head); 3040 sc->rl_head = sc->rl_tail = NULL; 3041 } 3042 3043 /* Free the TX list buffers. */ 3044 3045 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 3046 txd = &sc->rl_ldata.rl_tx_desc[i]; 3047 if (txd->tx_m != NULL) { 3048 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 3049 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3050 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 3051 txd->tx_dmamap); 3052 m_freem(txd->tx_m); 3053 txd->tx_m = NULL; 3054 } 3055 } 3056 3057 /* Free the RX list buffers. */ 3058 3059 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 3060 rxd = &sc->rl_ldata.rl_rx_desc[i]; 3061 if (rxd->rx_m != NULL) { 3062 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 3063 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3064 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 3065 rxd->rx_dmamap); 3066 m_freem(rxd->rx_m); 3067 rxd->rx_m = NULL; 3068 } 3069 } 3070 } 3071 3072 /* 3073 * Device suspend routine. Stop the interface and save some PCI 3074 * settings in case the BIOS doesn't restore them properly on 3075 * resume. 3076 */ 3077 static int 3078 re_suspend(device_t dev) 3079 { 3080 struct rl_softc *sc; 3081 3082 sc = device_get_softc(dev); 3083 3084 RL_LOCK(sc); 3085 re_stop(sc); 3086 re_setwol(sc); 3087 sc->suspended = 1; 3088 RL_UNLOCK(sc); 3089 3090 return (0); 3091 } 3092 3093 /* 3094 * Device resume routine. Restore some PCI settings in case the BIOS 3095 * doesn't, re-enable busmastering, and restart the interface if 3096 * appropriate. 3097 */ 3098 static int 3099 re_resume(device_t dev) 3100 { 3101 struct rl_softc *sc; 3102 struct ifnet *ifp; 3103 3104 sc = device_get_softc(dev); 3105 3106 RL_LOCK(sc); 3107 3108 ifp = sc->rl_ifp; 3109 /* Take controller out of sleep mode. */ 3110 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3111 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3112 CSR_WRITE_1(sc, RL_GPIO, 3113 CSR_READ_1(sc, RL_GPIO) | 0x01); 3114 } 3115 3116 /* 3117 * Clear WOL matching such that normal Rx filtering 3118 * wouldn't interfere with WOL patterns. 3119 */ 3120 re_clrwol(sc); 3121 3122 /* reinitialize interface if necessary */ 3123 if (ifp->if_flags & IFF_UP) 3124 re_init_locked(sc); 3125 3126 sc->suspended = 0; 3127 RL_UNLOCK(sc); 3128 3129 return (0); 3130 } 3131 3132 /* 3133 * Stop all chip I/O so that the kernel's probe routines don't 3134 * get confused by errant DMAs when rebooting. 3135 */ 3136 static int 3137 re_shutdown(device_t dev) 3138 { 3139 struct rl_softc *sc; 3140 3141 sc = device_get_softc(dev); 3142 3143 RL_LOCK(sc); 3144 re_stop(sc); 3145 /* 3146 * Mark interface as down since otherwise we will panic if 3147 * interrupt comes in later on, which can happen in some 3148 * cases. 3149 */ 3150 sc->rl_ifp->if_flags &= ~IFF_UP; 3151 re_setwol(sc); 3152 RL_UNLOCK(sc); 3153 3154 return (0); 3155 } 3156 3157 static void 3158 re_setwol(struct rl_softc *sc) 3159 { 3160 struct ifnet *ifp; 3161 int pmc; 3162 uint16_t pmstat; 3163 uint8_t v; 3164 3165 RL_LOCK_ASSERT(sc); 3166 3167 if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3168 return; 3169 3170 ifp = sc->rl_ifp; 3171 /* Put controller into sleep mode. */ 3172 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3173 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3174 CSR_WRITE_1(sc, RL_GPIO, 3175 CSR_READ_1(sc, RL_GPIO) & ~0x01); 3176 } 3177 if ((ifp->if_capenable & IFCAP_WOL) != 0 && 3178 (sc->rl_flags & RL_FLAG_WOLRXENB) != 0) 3179 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB); 3180 /* Enable config register write. */ 3181 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3182 3183 /* Enable PME. */ 3184 v = CSR_READ_1(sc, RL_CFG1); 3185 v &= ~RL_CFG1_PME; 3186 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3187 v |= RL_CFG1_PME; 3188 CSR_WRITE_1(sc, RL_CFG1, v); 3189 3190 v = CSR_READ_1(sc, RL_CFG3); 3191 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3192 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 3193 v |= RL_CFG3_WOL_MAGIC; 3194 CSR_WRITE_1(sc, RL_CFG3, v); 3195 3196 /* Config register write done. */ 3197 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3198 3199 v = CSR_READ_1(sc, RL_CFG5); 3200 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 3201 v &= ~RL_CFG5_WOL_LANWAKE; 3202 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 3203 v |= RL_CFG5_WOL_UCAST; 3204 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 3205 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; 3206 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3207 v |= RL_CFG5_WOL_LANWAKE; 3208 CSR_WRITE_1(sc, RL_CFG5, v); 3209 3210 if ((ifp->if_capenable & IFCAP_WOL) != 0 && 3211 (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) 3212 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80); 3213 /* 3214 * It seems that hardware resets its link speed to 100Mbps in 3215 * power down mode so switching to 100Mbps in driver is not 3216 * needed. 3217 */ 3218 3219 /* Request PME if WOL is requested. */ 3220 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); 3221 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3222 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3223 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3224 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 3225 } 3226 3227 static void 3228 re_clrwol(struct rl_softc *sc) 3229 { 3230 int pmc; 3231 uint8_t v; 3232 3233 RL_LOCK_ASSERT(sc); 3234 3235 if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3236 return; 3237 3238 /* Enable config register write. */ 3239 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3240 3241 v = CSR_READ_1(sc, RL_CFG3); 3242 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3243 CSR_WRITE_1(sc, RL_CFG3, v); 3244 3245 /* Config register write done. */ 3246 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3247 3248 v = CSR_READ_1(sc, RL_CFG5); 3249 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 3250 v &= ~RL_CFG5_WOL_LANWAKE; 3251 CSR_WRITE_1(sc, RL_CFG5, v); 3252 } 3253 3254 static void 3255 re_add_sysctls(struct rl_softc *sc) 3256 { 3257 struct sysctl_ctx_list *ctx; 3258 struct sysctl_oid_list *children; 3259 3260 ctx = device_get_sysctl_ctx(sc->rl_dev); 3261 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev)); 3262 3263 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats", 3264 CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I", 3265 "Statistics Information"); 3266 } 3267 3268 static int 3269 re_sysctl_stats(SYSCTL_HANDLER_ARGS) 3270 { 3271 struct rl_softc *sc; 3272 struct rl_stats *stats; 3273 int error, i, result; 3274 3275 result = -1; 3276 error = sysctl_handle_int(oidp, &result, 0, req); 3277 if (error || req->newptr == NULL) 3278 return (error); 3279 3280 if (result == 1) { 3281 sc = (struct rl_softc *)arg1; 3282 RL_LOCK(sc); 3283 bus_dmamap_sync(sc->rl_ldata.rl_stag, 3284 sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD); 3285 CSR_WRITE_4(sc, RL_DUMPSTATS_HI, 3286 RL_ADDR_HI(sc->rl_ldata.rl_stats_addr)); 3287 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 3288 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr)); 3289 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 3290 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr | 3291 RL_DUMPSTATS_START)); 3292 for (i = RL_TIMEOUT; i > 0; i--) { 3293 if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) & 3294 RL_DUMPSTATS_START) == 0) 3295 break; 3296 DELAY(1000); 3297 } 3298 bus_dmamap_sync(sc->rl_ldata.rl_stag, 3299 sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD); 3300 RL_UNLOCK(sc); 3301 if (i == 0) { 3302 device_printf(sc->rl_dev, 3303 "DUMP statistics request timedout\n"); 3304 return (ETIMEDOUT); 3305 } 3306 stats = sc->rl_ldata.rl_stats; 3307 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev)); 3308 printf("Tx frames : %ju\n", 3309 (uintmax_t)le64toh(stats->rl_tx_pkts)); 3310 printf("Rx frames : %ju\n", 3311 (uintmax_t)le64toh(stats->rl_rx_pkts)); 3312 printf("Tx errors : %ju\n", 3313 (uintmax_t)le64toh(stats->rl_tx_errs)); 3314 printf("Rx errors : %u\n", 3315 le32toh(stats->rl_rx_errs)); 3316 printf("Rx missed frames : %u\n", 3317 (uint32_t)le16toh(stats->rl_missed_pkts)); 3318 printf("Rx frame alignment errs : %u\n", 3319 (uint32_t)le16toh(stats->rl_rx_framealign_errs)); 3320 printf("Tx single collisions : %u\n", 3321 le32toh(stats->rl_tx_onecoll)); 3322 printf("Tx multiple collisions : %u\n", 3323 le32toh(stats->rl_tx_multicolls)); 3324 printf("Rx unicast frames : %ju\n", 3325 (uintmax_t)le64toh(stats->rl_rx_ucasts)); 3326 printf("Rx broadcast frames : %ju\n", 3327 (uintmax_t)le64toh(stats->rl_rx_bcasts)); 3328 printf("Rx multicast frames : %u\n", 3329 le32toh(stats->rl_rx_mcasts)); 3330 printf("Tx aborts : %u\n", 3331 (uint32_t)le16toh(stats->rl_tx_aborts)); 3332 printf("Tx underruns : %u\n", 3333 (uint32_t)le16toh(stats->rl_rx_underruns)); 3334 } 3335 3336 return (error); 3337 } 3338