1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1997, 1998-2003 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver 40 * 41 * Written by Bill Paul <wpaul@windriver.com> 42 * Senior Networking Software Engineer 43 * Wind River Systems 44 */ 45 46 /* 47 * This driver is designed to support RealTek's next generation of 48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 49 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, 50 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. 51 * 52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 53 * with the older 8139 family, however it also supports a special 54 * C+ mode of operation that provides several new performance enhancing 55 * features. These include: 56 * 57 * o Descriptor based DMA mechanism. Each descriptor represents 58 * a single packet fragment. Data buffers may be aligned on 59 * any byte boundary. 60 * 61 * o 64-bit DMA 62 * 63 * o TCP/IP checksum offload for both RX and TX 64 * 65 * o High and normal priority transmit DMA rings 66 * 67 * o VLAN tag insertion and extraction 68 * 69 * o TCP large send (segmentation offload) 70 * 71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 72 * programming API is fairly straightforward. The RX filtering, EEPROM 73 * access and PHY access is the same as it is on the older 8139 series 74 * chips. 75 * 76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 77 * same programming API and feature set as the 8139C+ with the following 78 * differences and additions: 79 * 80 * o 1000Mbps mode 81 * 82 * o Jumbo frames 83 * 84 * o GMII and TBI ports/registers for interfacing with copper 85 * or fiber PHYs 86 * 87 * o RX and TX DMA rings can have up to 1024 descriptors 88 * (the 8139C+ allows a maximum of 64) 89 * 90 * o Slight differences in register layout from the 8139C+ 91 * 92 * The TX start and timer interrupt registers are at different locations 93 * on the 8169 than they are on the 8139C+. Also, the status word in the 94 * RX descriptor has a slightly different bit layout. The 8169 does not 95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 96 * copper gigE PHY. 97 * 98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 99 * (the 'S' stands for 'single-chip'). These devices have the same 100 * programming API as the older 8169, but also have some vendor-specific 101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 103 * 104 * This driver takes advantage of the RX and TX checksum offload and 105 * VLAN tag insertion/extraction features. It also implements TX 106 * interrupt moderation using the timer interrupt registers, which 107 * significantly reduces TX interrupt load. There is also support 108 * for jumbo frames, however the 8169/8169S/8110S can not transmit 109 * jumbo frames larger than 7440, so the max MTU possible with this 110 * driver is 7422 bytes. 111 */ 112 113 #ifdef HAVE_KERNEL_OPTION_HEADERS 114 #include "opt_device_polling.h" 115 #endif 116 117 #include <sys/param.h> 118 #include <sys/endian.h> 119 #include <sys/systm.h> 120 #include <sys/sockio.h> 121 #include <sys/mbuf.h> 122 #include <sys/malloc.h> 123 #include <sys/module.h> 124 #include <sys/kernel.h> 125 #include <sys/socket.h> 126 #include <sys/lock.h> 127 #include <sys/mutex.h> 128 #include <sys/sysctl.h> 129 #include <sys/taskqueue.h> 130 131 #include <net/debugnet.h> 132 #include <net/if.h> 133 #include <net/if_var.h> 134 #include <net/if_arp.h> 135 #include <net/ethernet.h> 136 #include <net/if_dl.h> 137 #include <net/if_media.h> 138 #include <net/if_types.h> 139 #include <net/if_vlan_var.h> 140 141 #include <net/bpf.h> 142 143 #include <machine/bus.h> 144 #include <machine/resource.h> 145 #include <sys/bus.h> 146 #include <sys/rman.h> 147 148 #include <dev/mii/mii.h> 149 #include <dev/mii/miivar.h> 150 151 #include <dev/pci/pcireg.h> 152 #include <dev/pci/pcivar.h> 153 154 #include <dev/rl/if_rlreg.h> 155 156 MODULE_DEPEND(re, pci, 1, 1, 1); 157 MODULE_DEPEND(re, ether, 1, 1, 1); 158 MODULE_DEPEND(re, miibus, 1, 1, 1); 159 160 /* "device miibus" required. See GENERIC if you get errors here. */ 161 #include "miibus_if.h" 162 163 /* Tunables. */ 164 static int intr_filter = 0; 165 TUNABLE_INT("hw.re.intr_filter", &intr_filter); 166 static int msi_disable = 0; 167 TUNABLE_INT("hw.re.msi_disable", &msi_disable); 168 static int msix_disable = 0; 169 TUNABLE_INT("hw.re.msix_disable", &msix_disable); 170 static int prefer_iomap = 0; 171 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap); 172 173 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 174 175 /* 176 * Various supported device vendors/types and their names. 177 */ 178 static const struct rl_type re_devs[] = { 179 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0, 180 "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, 181 { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0, 182 "D-Link DGE-530(T) Gigabit Ethernet Adapter" }, 183 { RT_VENDORID, RT_DEVICEID_8139, 0, 184 "RealTek 8139C+ 10/100BaseTX" }, 185 { RT_VENDORID, RT_DEVICEID_8101E, 0, 186 "RealTek 810xE PCIe 10/100baseTX" }, 187 { RT_VENDORID, RT_DEVICEID_8168, 0, 188 "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" }, 189 { NCUBE_VENDORID, RT_DEVICEID_8168, 0, 190 "TP-Link TG-3468 v2 (RTL8168) Gigabit Ethernet" }, 191 { RT_VENDORID, RT_DEVICEID_8169, 0, 192 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" }, 193 { RT_VENDORID, RT_DEVICEID_8169SC, 0, 194 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" }, 195 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0, 196 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, 197 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0, 198 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, 199 { USR_VENDORID, USR_DEVICEID_997902, 0, 200 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" } 201 }; 202 203 static const struct rl_hwrev re_hwrevs[] = { 204 { RL_HWREV_8139, RL_8139, "", RL_MTU }, 205 { RL_HWREV_8139A, RL_8139, "A", RL_MTU }, 206 { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU }, 207 { RL_HWREV_8139B, RL_8139, "B", RL_MTU }, 208 { RL_HWREV_8130, RL_8139, "8130", RL_MTU }, 209 { RL_HWREV_8139C, RL_8139, "C", RL_MTU }, 210 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU }, 211 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU }, 212 { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU }, 213 { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU }, 214 { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU }, 215 { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU }, 216 { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU }, 217 { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU }, 218 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU }, 219 { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU }, 220 { RL_HWREV_8100, RL_8139, "8100", RL_MTU }, 221 { RL_HWREV_8101, RL_8139, "8101", RL_MTU }, 222 { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU }, 223 { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU }, 224 { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU }, 225 { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU }, 226 { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU }, 227 { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU }, 228 { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU }, 229 { RL_HWREV_8402, RL_8169, "8402", RL_MTU }, 230 { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU }, 231 { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU }, 232 { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU }, 233 { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU }, 234 { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU }, 235 { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K }, 236 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K }, 237 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K }, 238 { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K }, 239 { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K }, 240 { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K}, 241 { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K}, 242 { RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K}, 243 { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K}, 244 { RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K}, 245 { RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K}, 246 { RL_HWREV_8168H, RL_8169, "8168H/8111H", RL_JUMBO_MTU_9K}, 247 { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K}, 248 { RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K}, 249 { 0, 0, NULL, 0 } 250 }; 251 252 static int re_probe (device_t); 253 static int re_attach (device_t); 254 static int re_detach (device_t); 255 256 static int re_encap (struct rl_softc *, struct mbuf **); 257 258 static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); 259 static int re_allocmem (device_t, struct rl_softc *); 260 static __inline void re_discard_rxbuf 261 (struct rl_softc *, int); 262 static int re_newbuf (struct rl_softc *, int); 263 static int re_jumbo_newbuf (struct rl_softc *, int); 264 static int re_rx_list_init (struct rl_softc *); 265 static int re_jrx_list_init (struct rl_softc *); 266 static int re_tx_list_init (struct rl_softc *); 267 #ifdef RE_FIXUP_RX 268 static __inline void re_fixup_rx 269 (struct mbuf *); 270 #endif 271 static int re_rxeof (struct rl_softc *, int *); 272 static void re_txeof (struct rl_softc *); 273 #ifdef DEVICE_POLLING 274 static int re_poll (struct ifnet *, enum poll_cmd, int); 275 static int re_poll_locked (struct ifnet *, enum poll_cmd, int); 276 #endif 277 static int re_intr (void *); 278 static void re_intr_msi (void *); 279 static void re_tick (void *); 280 static void re_int_task (void *, int); 281 static void re_start (struct ifnet *); 282 static void re_start_locked (struct ifnet *); 283 static void re_start_tx (struct rl_softc *); 284 static int re_ioctl (struct ifnet *, u_long, caddr_t); 285 static void re_init (void *); 286 static void re_init_locked (struct rl_softc *); 287 static void re_stop (struct rl_softc *); 288 static void re_watchdog (struct rl_softc *); 289 static int re_suspend (device_t); 290 static int re_resume (device_t); 291 static int re_shutdown (device_t); 292 static int re_ifmedia_upd (struct ifnet *); 293 static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); 294 295 static void re_eeprom_putbyte (struct rl_softc *, int); 296 static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); 297 static void re_read_eeprom (struct rl_softc *, caddr_t, int, int); 298 static int re_gmii_readreg (device_t, int, int); 299 static int re_gmii_writereg (device_t, int, int, int); 300 301 static int re_miibus_readreg (device_t, int, int); 302 static int re_miibus_writereg (device_t, int, int, int); 303 static void re_miibus_statchg (device_t); 304 305 static void re_set_jumbo (struct rl_softc *, int); 306 static void re_set_rxmode (struct rl_softc *); 307 static void re_reset (struct rl_softc *); 308 static void re_setwol (struct rl_softc *); 309 static void re_clrwol (struct rl_softc *); 310 static void re_set_linkspeed (struct rl_softc *); 311 312 DEBUGNET_DEFINE(re); 313 314 #ifdef DEV_NETMAP /* see ixgbe.c for details */ 315 #include <dev/netmap/if_re_netmap.h> 316 MODULE_DEPEND(re, netmap, 1, 1, 1); 317 #endif /* !DEV_NETMAP */ 318 319 #ifdef RE_DIAG 320 static int re_diag (struct rl_softc *); 321 #endif 322 323 static void re_add_sysctls (struct rl_softc *); 324 static int re_sysctl_stats (SYSCTL_HANDLER_ARGS); 325 static int sysctl_int_range (SYSCTL_HANDLER_ARGS, int, int); 326 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS); 327 328 static device_method_t re_methods[] = { 329 /* Device interface */ 330 DEVMETHOD(device_probe, re_probe), 331 DEVMETHOD(device_attach, re_attach), 332 DEVMETHOD(device_detach, re_detach), 333 DEVMETHOD(device_suspend, re_suspend), 334 DEVMETHOD(device_resume, re_resume), 335 DEVMETHOD(device_shutdown, re_shutdown), 336 337 /* MII interface */ 338 DEVMETHOD(miibus_readreg, re_miibus_readreg), 339 DEVMETHOD(miibus_writereg, re_miibus_writereg), 340 DEVMETHOD(miibus_statchg, re_miibus_statchg), 341 342 DEVMETHOD_END 343 }; 344 345 static driver_t re_driver = { 346 "re", 347 re_methods, 348 sizeof(struct rl_softc) 349 }; 350 351 static devclass_t re_devclass; 352 353 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0); 354 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0); 355 356 #define EE_SET(x) \ 357 CSR_WRITE_1(sc, RL_EECMD, \ 358 CSR_READ_1(sc, RL_EECMD) | x) 359 360 #define EE_CLR(x) \ 361 CSR_WRITE_1(sc, RL_EECMD, \ 362 CSR_READ_1(sc, RL_EECMD) & ~x) 363 364 /* 365 * Send a read command and address to the EEPROM, check for ACK. 366 */ 367 static void 368 re_eeprom_putbyte(struct rl_softc *sc, int addr) 369 { 370 int d, i; 371 372 d = addr | (RL_9346_READ << sc->rl_eewidth); 373 374 /* 375 * Feed in each bit and strobe the clock. 376 */ 377 378 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { 379 if (d & i) { 380 EE_SET(RL_EE_DATAIN); 381 } else { 382 EE_CLR(RL_EE_DATAIN); 383 } 384 DELAY(100); 385 EE_SET(RL_EE_CLK); 386 DELAY(150); 387 EE_CLR(RL_EE_CLK); 388 DELAY(100); 389 } 390 } 391 392 /* 393 * Read a word of data stored in the EEPROM at address 'addr.' 394 */ 395 static void 396 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest) 397 { 398 int i; 399 u_int16_t word = 0; 400 401 /* 402 * Send address of word we want to read. 403 */ 404 re_eeprom_putbyte(sc, addr); 405 406 /* 407 * Start reading bits from EEPROM. 408 */ 409 for (i = 0x8000; i; i >>= 1) { 410 EE_SET(RL_EE_CLK); 411 DELAY(100); 412 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) 413 word |= i; 414 EE_CLR(RL_EE_CLK); 415 DELAY(100); 416 } 417 418 *dest = word; 419 } 420 421 /* 422 * Read a sequence of words from the EEPROM. 423 */ 424 static void 425 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt) 426 { 427 int i; 428 u_int16_t word = 0, *ptr; 429 430 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 431 432 DELAY(100); 433 434 for (i = 0; i < cnt; i++) { 435 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); 436 re_eeprom_getword(sc, off + i, &word); 437 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); 438 ptr = (u_int16_t *)(dest + (i * 2)); 439 *ptr = word; 440 } 441 442 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 443 } 444 445 static int 446 re_gmii_readreg(device_t dev, int phy, int reg) 447 { 448 struct rl_softc *sc; 449 u_int32_t rval; 450 int i; 451 452 sc = device_get_softc(dev); 453 454 /* Let the rgephy driver read the GMEDIASTAT register */ 455 456 if (reg == RL_GMEDIASTAT) { 457 rval = CSR_READ_1(sc, RL_GMEDIASTAT); 458 return (rval); 459 } 460 461 CSR_WRITE_4(sc, RL_PHYAR, reg << 16); 462 463 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 464 rval = CSR_READ_4(sc, RL_PHYAR); 465 if (rval & RL_PHYAR_BUSY) 466 break; 467 DELAY(25); 468 } 469 470 if (i == RL_PHY_TIMEOUT) { 471 device_printf(sc->rl_dev, "PHY read failed\n"); 472 return (0); 473 } 474 475 /* 476 * Controller requires a 20us delay to process next MDIO request. 477 */ 478 DELAY(20); 479 480 return (rval & RL_PHYAR_PHYDATA); 481 } 482 483 static int 484 re_gmii_writereg(device_t dev, int phy, int reg, int data) 485 { 486 struct rl_softc *sc; 487 u_int32_t rval; 488 int i; 489 490 sc = device_get_softc(dev); 491 492 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | 493 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); 494 495 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 496 rval = CSR_READ_4(sc, RL_PHYAR); 497 if (!(rval & RL_PHYAR_BUSY)) 498 break; 499 DELAY(25); 500 } 501 502 if (i == RL_PHY_TIMEOUT) { 503 device_printf(sc->rl_dev, "PHY write failed\n"); 504 return (0); 505 } 506 507 /* 508 * Controller requires a 20us delay to process next MDIO request. 509 */ 510 DELAY(20); 511 512 return (0); 513 } 514 515 static int 516 re_miibus_readreg(device_t dev, int phy, int reg) 517 { 518 struct rl_softc *sc; 519 u_int16_t rval = 0; 520 u_int16_t re8139_reg = 0; 521 522 sc = device_get_softc(dev); 523 524 if (sc->rl_type == RL_8169) { 525 rval = re_gmii_readreg(dev, phy, reg); 526 return (rval); 527 } 528 529 switch (reg) { 530 case MII_BMCR: 531 re8139_reg = RL_BMCR; 532 break; 533 case MII_BMSR: 534 re8139_reg = RL_BMSR; 535 break; 536 case MII_ANAR: 537 re8139_reg = RL_ANAR; 538 break; 539 case MII_ANER: 540 re8139_reg = RL_ANER; 541 break; 542 case MII_ANLPAR: 543 re8139_reg = RL_LPAR; 544 break; 545 case MII_PHYIDR1: 546 case MII_PHYIDR2: 547 return (0); 548 /* 549 * Allow the rlphy driver to read the media status 550 * register. If we have a link partner which does not 551 * support NWAY, this is the register which will tell 552 * us the results of parallel detection. 553 */ 554 case RL_MEDIASTAT: 555 rval = CSR_READ_1(sc, RL_MEDIASTAT); 556 return (rval); 557 default: 558 device_printf(sc->rl_dev, "bad phy register\n"); 559 return (0); 560 } 561 rval = CSR_READ_2(sc, re8139_reg); 562 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) { 563 /* 8139C+ has different bit layout. */ 564 rval &= ~(BMCR_LOOP | BMCR_ISO); 565 } 566 return (rval); 567 } 568 569 static int 570 re_miibus_writereg(device_t dev, int phy, int reg, int data) 571 { 572 struct rl_softc *sc; 573 u_int16_t re8139_reg = 0; 574 int rval = 0; 575 576 sc = device_get_softc(dev); 577 578 if (sc->rl_type == RL_8169) { 579 rval = re_gmii_writereg(dev, phy, reg, data); 580 return (rval); 581 } 582 583 switch (reg) { 584 case MII_BMCR: 585 re8139_reg = RL_BMCR; 586 if (sc->rl_type == RL_8139CPLUS) { 587 /* 8139C+ has different bit layout. */ 588 data &= ~(BMCR_LOOP | BMCR_ISO); 589 } 590 break; 591 case MII_BMSR: 592 re8139_reg = RL_BMSR; 593 break; 594 case MII_ANAR: 595 re8139_reg = RL_ANAR; 596 break; 597 case MII_ANER: 598 re8139_reg = RL_ANER; 599 break; 600 case MII_ANLPAR: 601 re8139_reg = RL_LPAR; 602 break; 603 case MII_PHYIDR1: 604 case MII_PHYIDR2: 605 return (0); 606 break; 607 default: 608 device_printf(sc->rl_dev, "bad phy register\n"); 609 return (0); 610 } 611 CSR_WRITE_2(sc, re8139_reg, data); 612 return (0); 613 } 614 615 static void 616 re_miibus_statchg(device_t dev) 617 { 618 struct rl_softc *sc; 619 struct ifnet *ifp; 620 struct mii_data *mii; 621 622 sc = device_get_softc(dev); 623 mii = device_get_softc(sc->rl_miibus); 624 ifp = sc->rl_ifp; 625 if (mii == NULL || ifp == NULL || 626 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 627 return; 628 629 sc->rl_flags &= ~RL_FLAG_LINK; 630 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 631 (IFM_ACTIVE | IFM_AVALID)) { 632 switch (IFM_SUBTYPE(mii->mii_media_active)) { 633 case IFM_10_T: 634 case IFM_100_TX: 635 sc->rl_flags |= RL_FLAG_LINK; 636 break; 637 case IFM_1000_T: 638 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 639 break; 640 sc->rl_flags |= RL_FLAG_LINK; 641 break; 642 default: 643 break; 644 } 645 } 646 /* 647 * RealTek controllers do not provide any interface to the RX/TX 648 * MACs for resolved speed, duplex and flow-control parameters. 649 */ 650 } 651 652 static u_int 653 re_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 654 { 655 uint32_t h, *hashes = arg; 656 657 h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26; 658 if (h < 32) 659 hashes[0] |= (1 << h); 660 else 661 hashes[1] |= (1 << (h - 32)); 662 663 return (1); 664 } 665 666 /* 667 * Set the RX configuration and 64-bit multicast hash filter. 668 */ 669 static void 670 re_set_rxmode(struct rl_softc *sc) 671 { 672 struct ifnet *ifp; 673 uint32_t h, hashes[2] = { 0, 0 }; 674 uint32_t rxfilt; 675 676 RL_LOCK_ASSERT(sc); 677 678 ifp = sc->rl_ifp; 679 680 rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD; 681 if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0) 682 rxfilt |= RL_RXCFG_EARLYOFF; 683 else if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) 684 rxfilt |= RL_RXCFG_EARLYOFFV2; 685 686 if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) { 687 if (ifp->if_flags & IFF_PROMISC) 688 rxfilt |= RL_RXCFG_RX_ALLPHYS; 689 /* 690 * Unlike other hardwares, we have to explicitly set 691 * RL_RXCFG_RX_MULTI to receive multicast frames in 692 * promiscuous mode. 693 */ 694 rxfilt |= RL_RXCFG_RX_MULTI; 695 hashes[0] = hashes[1] = 0xffffffff; 696 goto done; 697 } 698 699 if_foreach_llmaddr(ifp, re_hash_maddr, hashes); 700 701 if (hashes[0] != 0 || hashes[1] != 0) { 702 /* 703 * For some unfathomable reason, RealTek decided to 704 * reverse the order of the multicast hash registers 705 * in the PCI Express parts. This means we have to 706 * write the hash pattern in reverse order for those 707 * devices. 708 */ 709 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) { 710 h = bswap32(hashes[0]); 711 hashes[0] = bswap32(hashes[1]); 712 hashes[1] = h; 713 } 714 rxfilt |= RL_RXCFG_RX_MULTI; 715 } 716 717 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168F) { 718 /* Disable multicast filtering due to silicon bug. */ 719 hashes[0] = 0xffffffff; 720 hashes[1] = 0xffffffff; 721 } 722 723 done: 724 CSR_WRITE_4(sc, RL_MAR0, hashes[0]); 725 CSR_WRITE_4(sc, RL_MAR4, hashes[1]); 726 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 727 } 728 729 static void 730 re_reset(struct rl_softc *sc) 731 { 732 int i; 733 734 RL_LOCK_ASSERT(sc); 735 736 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); 737 738 for (i = 0; i < RL_TIMEOUT; i++) { 739 DELAY(10); 740 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) 741 break; 742 } 743 if (i == RL_TIMEOUT) 744 device_printf(sc->rl_dev, "reset never completed!\n"); 745 746 if ((sc->rl_flags & RL_FLAG_MACRESET) != 0) 747 CSR_WRITE_1(sc, 0x82, 1); 748 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S) 749 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0); 750 } 751 752 #ifdef RE_DIAG 753 754 /* 755 * The following routine is designed to test for a defect on some 756 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 757 * lines connected to the bus, however for a 32-bit only card, they 758 * should be pulled high. The result of this defect is that the 759 * NIC will not work right if you plug it into a 64-bit slot: DMA 760 * operations will be done with 64-bit transfers, which will fail 761 * because the 64-bit data lines aren't connected. 762 * 763 * There's no way to work around this (short of talking a soldering 764 * iron to the board), however we can detect it. The method we use 765 * here is to put the NIC into digital loopback mode, set the receiver 766 * to promiscuous mode, and then try to send a frame. We then compare 767 * the frame data we sent to what was received. If the data matches, 768 * then the NIC is working correctly, otherwise we know the user has 769 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 770 * slot. In the latter case, there's no way the NIC can work correctly, 771 * so we print out a message on the console and abort the device attach. 772 */ 773 774 static int 775 re_diag(struct rl_softc *sc) 776 { 777 struct ifnet *ifp = sc->rl_ifp; 778 struct mbuf *m0; 779 struct ether_header *eh; 780 struct rl_desc *cur_rx; 781 u_int16_t status; 782 u_int32_t rxstat; 783 int total_len, i, error = 0, phyaddr; 784 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 785 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 786 787 /* Allocate a single mbuf */ 788 MGETHDR(m0, M_NOWAIT, MT_DATA); 789 if (m0 == NULL) 790 return (ENOBUFS); 791 792 RL_LOCK(sc); 793 794 /* 795 * Initialize the NIC in test mode. This sets the chip up 796 * so that it can send and receive frames, but performs the 797 * following special functions: 798 * - Puts receiver in promiscuous mode 799 * - Enables digital loopback mode 800 * - Leaves interrupts turned off 801 */ 802 803 ifp->if_flags |= IFF_PROMISC; 804 sc->rl_testmode = 1; 805 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 806 re_init_locked(sc); 807 sc->rl_flags |= RL_FLAG_LINK; 808 if (sc->rl_type == RL_8169) 809 phyaddr = 1; 810 else 811 phyaddr = 0; 812 813 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET); 814 for (i = 0; i < RL_TIMEOUT; i++) { 815 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR); 816 if (!(status & BMCR_RESET)) 817 break; 818 } 819 820 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP); 821 CSR_WRITE_2(sc, RL_ISR, RL_INTRS); 822 823 DELAY(100000); 824 825 /* Put some data in the mbuf */ 826 827 eh = mtod(m0, struct ether_header *); 828 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); 829 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); 830 eh->ether_type = htons(ETHERTYPE_IP); 831 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 832 833 /* 834 * Queue the packet, start transmission. 835 * Note: IF_HANDOFF() ultimately calls re_start() for us. 836 */ 837 838 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 839 RL_UNLOCK(sc); 840 /* XXX: re_diag must not be called when in ALTQ mode */ 841 IF_HANDOFF(&ifp->if_snd, m0, ifp); 842 RL_LOCK(sc); 843 m0 = NULL; 844 845 /* Wait for it to propagate through the chip */ 846 847 DELAY(100000); 848 for (i = 0; i < RL_TIMEOUT; i++) { 849 status = CSR_READ_2(sc, RL_ISR); 850 CSR_WRITE_2(sc, RL_ISR, status); 851 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == 852 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) 853 break; 854 DELAY(10); 855 } 856 857 if (i == RL_TIMEOUT) { 858 device_printf(sc->rl_dev, 859 "diagnostic failed, failed to receive packet in" 860 " loopback mode\n"); 861 error = EIO; 862 goto done; 863 } 864 865 /* 866 * The packet should have been dumped into the first 867 * entry in the RX DMA ring. Grab it from there. 868 */ 869 870 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 871 sc->rl_ldata.rl_rx_list_map, 872 BUS_DMASYNC_POSTREAD); 873 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 874 sc->rl_ldata.rl_rx_desc[0].rx_dmamap, 875 BUS_DMASYNC_POSTREAD); 876 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 877 sc->rl_ldata.rl_rx_desc[0].rx_dmamap); 878 879 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m; 880 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL; 881 eh = mtod(m0, struct ether_header *); 882 883 cur_rx = &sc->rl_ldata.rl_rx_list[0]; 884 total_len = RL_RXBYTES(cur_rx); 885 rxstat = le32toh(cur_rx->rl_cmdstat); 886 887 if (total_len != ETHER_MIN_LEN) { 888 device_printf(sc->rl_dev, 889 "diagnostic failed, received short packet\n"); 890 error = EIO; 891 goto done; 892 } 893 894 /* Test that the received packet data matches what we sent. */ 895 896 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 897 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 898 ntohs(eh->ether_type) != ETHERTYPE_IP) { 899 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n"); 900 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n", 901 dst, ":", src, ":", ETHERTYPE_IP); 902 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n", 903 eh->ether_dhost, ":", eh->ether_shost, ":", 904 ntohs(eh->ether_type)); 905 device_printf(sc->rl_dev, "You may have a defective 32-bit " 906 "NIC plugged into a 64-bit PCI slot.\n"); 907 device_printf(sc->rl_dev, "Please re-install the NIC in a " 908 "32-bit slot for proper operation.\n"); 909 device_printf(sc->rl_dev, "Read the re(4) man page for more " 910 "details.\n"); 911 error = EIO; 912 } 913 914 done: 915 /* Turn interface off, release resources */ 916 917 sc->rl_testmode = 0; 918 sc->rl_flags &= ~RL_FLAG_LINK; 919 ifp->if_flags &= ~IFF_PROMISC; 920 re_stop(sc); 921 if (m0 != NULL) 922 m_freem(m0); 923 924 RL_UNLOCK(sc); 925 926 return (error); 927 } 928 929 #endif 930 931 /* 932 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device 933 * IDs against our list and return a device name if we find a match. 934 */ 935 static int 936 re_probe(device_t dev) 937 { 938 const struct rl_type *t; 939 uint16_t devid, vendor; 940 uint16_t revid, sdevid; 941 int i; 942 943 vendor = pci_get_vendor(dev); 944 devid = pci_get_device(dev); 945 revid = pci_get_revid(dev); 946 sdevid = pci_get_subdevice(dev); 947 948 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) { 949 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) { 950 /* 951 * Only attach to rev. 3 of the Linksys EG1032 adapter. 952 * Rev. 2 is supported by sk(4). 953 */ 954 return (ENXIO); 955 } 956 } 957 958 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { 959 if (revid != 0x20) { 960 /* 8139, let rl(4) take care of this device. */ 961 return (ENXIO); 962 } 963 } 964 965 t = re_devs; 966 for (i = 0; i < nitems(re_devs); i++, t++) { 967 if (vendor == t->rl_vid && devid == t->rl_did) { 968 device_set_desc(dev, t->rl_name); 969 return (BUS_PROBE_DEFAULT); 970 } 971 } 972 973 return (ENXIO); 974 } 975 976 /* 977 * Map a single buffer address. 978 */ 979 980 static void 981 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 982 { 983 bus_addr_t *addr; 984 985 if (error) 986 return; 987 988 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 989 addr = arg; 990 *addr = segs->ds_addr; 991 } 992 993 static int 994 re_allocmem(device_t dev, struct rl_softc *sc) 995 { 996 bus_addr_t lowaddr; 997 bus_size_t rx_list_size, tx_list_size; 998 int error; 999 int i; 1000 1001 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc); 1002 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc); 1003 1004 /* 1005 * Allocate the parent bus DMA tag appropriate for PCI. 1006 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD 1007 * register should be set. However some RealTek chips are known 1008 * to be buggy on DAC handling, therefore disable DAC by limiting 1009 * DMA address space to 32bit. PCIe variants of RealTek chips 1010 * may not have the limitation. 1011 */ 1012 lowaddr = BUS_SPACE_MAXADDR; 1013 if ((sc->rl_flags & RL_FLAG_PCIE) == 0) 1014 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1015 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, 1016 lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, 1017 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, 1018 NULL, NULL, &sc->rl_parent_tag); 1019 if (error) { 1020 device_printf(dev, "could not allocate parent DMA tag\n"); 1021 return (error); 1022 } 1023 1024 /* 1025 * Allocate map for TX mbufs. 1026 */ 1027 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0, 1028 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1029 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0, 1030 NULL, NULL, &sc->rl_ldata.rl_tx_mtag); 1031 if (error) { 1032 device_printf(dev, "could not allocate TX DMA tag\n"); 1033 return (error); 1034 } 1035 1036 /* 1037 * Allocate map for RX mbufs. 1038 */ 1039 1040 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 1041 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 1042 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1043 MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL, 1044 &sc->rl_ldata.rl_jrx_mtag); 1045 if (error) { 1046 device_printf(dev, 1047 "could not allocate jumbo RX DMA tag\n"); 1048 return (error); 1049 } 1050 } 1051 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0, 1052 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1053 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag); 1054 if (error) { 1055 device_printf(dev, "could not allocate RX DMA tag\n"); 1056 return (error); 1057 } 1058 1059 /* 1060 * Allocate map for TX descriptor list. 1061 */ 1062 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1063 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1064 NULL, tx_list_size, 1, tx_list_size, 0, 1065 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); 1066 if (error) { 1067 device_printf(dev, "could not allocate TX DMA ring tag\n"); 1068 return (error); 1069 } 1070 1071 /* Allocate DMA'able memory for the TX ring */ 1072 1073 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, 1074 (void **)&sc->rl_ldata.rl_tx_list, 1075 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1076 &sc->rl_ldata.rl_tx_list_map); 1077 if (error) { 1078 device_printf(dev, "could not allocate TX DMA ring\n"); 1079 return (error); 1080 } 1081 1082 /* Load the map for the TX ring. */ 1083 1084 sc->rl_ldata.rl_tx_list_addr = 0; 1085 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, 1086 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, 1087 tx_list_size, re_dma_map_addr, 1088 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); 1089 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) { 1090 device_printf(dev, "could not load TX DMA ring\n"); 1091 return (ENOMEM); 1092 } 1093 1094 /* Create DMA maps for TX buffers */ 1095 1096 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1097 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0, 1098 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1099 if (error) { 1100 device_printf(dev, "could not create DMA map for TX\n"); 1101 return (error); 1102 } 1103 } 1104 1105 /* 1106 * Allocate map for RX descriptor list. 1107 */ 1108 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1109 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1110 NULL, rx_list_size, 1, rx_list_size, 0, 1111 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); 1112 if (error) { 1113 device_printf(dev, "could not create RX DMA ring tag\n"); 1114 return (error); 1115 } 1116 1117 /* Allocate DMA'able memory for the RX ring */ 1118 1119 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, 1120 (void **)&sc->rl_ldata.rl_rx_list, 1121 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1122 &sc->rl_ldata.rl_rx_list_map); 1123 if (error) { 1124 device_printf(dev, "could not allocate RX DMA ring\n"); 1125 return (error); 1126 } 1127 1128 /* Load the map for the RX ring. */ 1129 1130 sc->rl_ldata.rl_rx_list_addr = 0; 1131 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, 1132 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, 1133 rx_list_size, re_dma_map_addr, 1134 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); 1135 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) { 1136 device_printf(dev, "could not load RX DMA ring\n"); 1137 return (ENOMEM); 1138 } 1139 1140 /* Create DMA maps for RX buffers */ 1141 1142 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 1143 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0, 1144 &sc->rl_ldata.rl_jrx_sparemap); 1145 if (error) { 1146 device_printf(dev, 1147 "could not create spare DMA map for jumbo RX\n"); 1148 return (error); 1149 } 1150 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1151 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0, 1152 &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap); 1153 if (error) { 1154 device_printf(dev, 1155 "could not create DMA map for jumbo RX\n"); 1156 return (error); 1157 } 1158 } 1159 } 1160 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1161 &sc->rl_ldata.rl_rx_sparemap); 1162 if (error) { 1163 device_printf(dev, "could not create spare DMA map for RX\n"); 1164 return (error); 1165 } 1166 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1167 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1168 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1169 if (error) { 1170 device_printf(dev, "could not create DMA map for RX\n"); 1171 return (error); 1172 } 1173 } 1174 1175 /* Create DMA map for statistics. */ 1176 error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0, 1177 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1178 sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL, 1179 &sc->rl_ldata.rl_stag); 1180 if (error) { 1181 device_printf(dev, "could not create statistics DMA tag\n"); 1182 return (error); 1183 } 1184 /* Allocate DMA'able memory for statistics. */ 1185 error = bus_dmamem_alloc(sc->rl_ldata.rl_stag, 1186 (void **)&sc->rl_ldata.rl_stats, 1187 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1188 &sc->rl_ldata.rl_smap); 1189 if (error) { 1190 device_printf(dev, 1191 "could not allocate statistics DMA memory\n"); 1192 return (error); 1193 } 1194 /* Load the map for statistics. */ 1195 sc->rl_ldata.rl_stats_addr = 0; 1196 error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap, 1197 sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr, 1198 &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT); 1199 if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) { 1200 device_printf(dev, "could not load statistics DMA memory\n"); 1201 return (ENOMEM); 1202 } 1203 1204 return (0); 1205 } 1206 1207 /* 1208 * Attach the interface. Allocate softc structures, do ifmedia 1209 * setup and ethernet/BPF attach. 1210 */ 1211 static int 1212 re_attach(device_t dev) 1213 { 1214 u_char eaddr[ETHER_ADDR_LEN]; 1215 u_int16_t as[ETHER_ADDR_LEN / 2]; 1216 struct rl_softc *sc; 1217 struct ifnet *ifp; 1218 const struct rl_hwrev *hw_rev; 1219 int capmask, error = 0, hwrev, i, msic, msixc, 1220 phy, reg, rid; 1221 u_int32_t cap, ctl; 1222 u_int16_t devid, re_did = 0; 1223 uint8_t cfg; 1224 1225 sc = device_get_softc(dev); 1226 sc->rl_dev = dev; 1227 1228 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1229 MTX_DEF); 1230 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); 1231 1232 /* 1233 * Map control/status registers. 1234 */ 1235 pci_enable_busmaster(dev); 1236 1237 devid = pci_get_device(dev); 1238 /* 1239 * Prefer memory space register mapping over IO space. 1240 * Because RTL8169SC does not seem to work when memory mapping 1241 * is used always activate io mapping. 1242 */ 1243 if (devid == RT_DEVICEID_8169SC) 1244 prefer_iomap = 1; 1245 if (prefer_iomap == 0) { 1246 sc->rl_res_id = PCIR_BAR(1); 1247 sc->rl_res_type = SYS_RES_MEMORY; 1248 /* RTL8168/8101E seems to use different BARs. */ 1249 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E) 1250 sc->rl_res_id = PCIR_BAR(2); 1251 } else { 1252 sc->rl_res_id = PCIR_BAR(0); 1253 sc->rl_res_type = SYS_RES_IOPORT; 1254 } 1255 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1256 &sc->rl_res_id, RF_ACTIVE); 1257 if (sc->rl_res == NULL && prefer_iomap == 0) { 1258 sc->rl_res_id = PCIR_BAR(0); 1259 sc->rl_res_type = SYS_RES_IOPORT; 1260 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1261 &sc->rl_res_id, RF_ACTIVE); 1262 } 1263 if (sc->rl_res == NULL) { 1264 device_printf(dev, "couldn't map ports/memory\n"); 1265 error = ENXIO; 1266 goto fail; 1267 } 1268 1269 sc->rl_btag = rman_get_bustag(sc->rl_res); 1270 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 1271 1272 msic = pci_msi_count(dev); 1273 msixc = pci_msix_count(dev); 1274 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 1275 sc->rl_flags |= RL_FLAG_PCIE; 1276 sc->rl_expcap = reg; 1277 } 1278 if (bootverbose) { 1279 device_printf(dev, "MSI count : %d\n", msic); 1280 device_printf(dev, "MSI-X count : %d\n", msixc); 1281 } 1282 if (msix_disable > 0) 1283 msixc = 0; 1284 if (msi_disable > 0) 1285 msic = 0; 1286 /* Prefer MSI-X to MSI. */ 1287 if (msixc > 0) { 1288 msixc = RL_MSI_MESSAGES; 1289 rid = PCIR_BAR(4); 1290 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1291 &rid, RF_ACTIVE); 1292 if (sc->rl_res_pba == NULL) { 1293 device_printf(sc->rl_dev, 1294 "could not allocate MSI-X PBA resource\n"); 1295 } 1296 if (sc->rl_res_pba != NULL && 1297 pci_alloc_msix(dev, &msixc) == 0) { 1298 if (msixc == RL_MSI_MESSAGES) { 1299 device_printf(dev, "Using %d MSI-X message\n", 1300 msixc); 1301 sc->rl_flags |= RL_FLAG_MSIX; 1302 } else 1303 pci_release_msi(dev); 1304 } 1305 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) { 1306 if (sc->rl_res_pba != NULL) 1307 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1308 sc->rl_res_pba); 1309 sc->rl_res_pba = NULL; 1310 msixc = 0; 1311 } 1312 } 1313 /* Prefer MSI to INTx. */ 1314 if (msixc == 0 && msic > 0) { 1315 msic = RL_MSI_MESSAGES; 1316 if (pci_alloc_msi(dev, &msic) == 0) { 1317 if (msic == RL_MSI_MESSAGES) { 1318 device_printf(dev, "Using %d MSI message\n", 1319 msic); 1320 sc->rl_flags |= RL_FLAG_MSI; 1321 /* Explicitly set MSI enable bit. */ 1322 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1323 cfg = CSR_READ_1(sc, RL_CFG2); 1324 cfg |= RL_CFG2_MSI; 1325 CSR_WRITE_1(sc, RL_CFG2, cfg); 1326 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1327 } else 1328 pci_release_msi(dev); 1329 } 1330 if ((sc->rl_flags & RL_FLAG_MSI) == 0) 1331 msic = 0; 1332 } 1333 1334 /* Allocate interrupt */ 1335 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) { 1336 rid = 0; 1337 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1338 RF_SHAREABLE | RF_ACTIVE); 1339 if (sc->rl_irq[0] == NULL) { 1340 device_printf(dev, "couldn't allocate IRQ resources\n"); 1341 error = ENXIO; 1342 goto fail; 1343 } 1344 } else { 1345 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { 1346 sc->rl_irq[i] = bus_alloc_resource_any(dev, 1347 SYS_RES_IRQ, &rid, RF_ACTIVE); 1348 if (sc->rl_irq[i] == NULL) { 1349 device_printf(dev, 1350 "couldn't allocate IRQ resources for " 1351 "message %d\n", rid); 1352 error = ENXIO; 1353 goto fail; 1354 } 1355 } 1356 } 1357 1358 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1359 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1360 cfg = CSR_READ_1(sc, RL_CFG2); 1361 if ((cfg & RL_CFG2_MSI) != 0) { 1362 device_printf(dev, "turning off MSI enable bit.\n"); 1363 cfg &= ~RL_CFG2_MSI; 1364 CSR_WRITE_1(sc, RL_CFG2, cfg); 1365 } 1366 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1367 } 1368 1369 /* Disable ASPM L0S/L1 and CLKREQ. */ 1370 if (sc->rl_expcap != 0) { 1371 cap = pci_read_config(dev, sc->rl_expcap + 1372 PCIER_LINK_CAP, 2); 1373 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) { 1374 ctl = pci_read_config(dev, sc->rl_expcap + 1375 PCIER_LINK_CTL, 2); 1376 if ((ctl & (PCIEM_LINK_CTL_ECPM | 1377 PCIEM_LINK_CTL_ASPMC))!= 0) { 1378 ctl &= ~(PCIEM_LINK_CTL_ECPM | 1379 PCIEM_LINK_CTL_ASPMC); 1380 pci_write_config(dev, sc->rl_expcap + 1381 PCIER_LINK_CTL, ctl, 2); 1382 device_printf(dev, "ASPM disabled\n"); 1383 } 1384 } else 1385 device_printf(dev, "no ASPM capability\n"); 1386 } 1387 1388 hw_rev = re_hwrevs; 1389 hwrev = CSR_READ_4(sc, RL_TXCFG); 1390 switch (hwrev & 0x70000000) { 1391 case 0x00000000: 1392 case 0x10000000: 1393 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000); 1394 hwrev &= (RL_TXCFG_HWREV | 0x80000000); 1395 break; 1396 default: 1397 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000); 1398 sc->rl_macrev = hwrev & 0x00700000; 1399 hwrev &= RL_TXCFG_HWREV; 1400 break; 1401 } 1402 device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev); 1403 while (hw_rev->rl_desc != NULL) { 1404 if (hw_rev->rl_rev == hwrev) { 1405 sc->rl_type = hw_rev->rl_type; 1406 sc->rl_hwrev = hw_rev; 1407 break; 1408 } 1409 hw_rev++; 1410 } 1411 if (hw_rev->rl_desc == NULL) { 1412 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev); 1413 error = ENXIO; 1414 goto fail; 1415 } 1416 1417 switch (hw_rev->rl_rev) { 1418 case RL_HWREV_8139CPLUS: 1419 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD; 1420 break; 1421 case RL_HWREV_8100E: 1422 case RL_HWREV_8101E: 1423 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER; 1424 break; 1425 case RL_HWREV_8102E: 1426 case RL_HWREV_8102EL: 1427 case RL_HWREV_8102EL_SPIN1: 1428 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | 1429 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | 1430 RL_FLAG_AUTOPAD; 1431 break; 1432 case RL_HWREV_8103E: 1433 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | 1434 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | 1435 RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP; 1436 break; 1437 case RL_HWREV_8401E: 1438 case RL_HWREV_8105E: 1439 case RL_HWREV_8105E_SPIN1: 1440 case RL_HWREV_8106E: 1441 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1442 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1443 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; 1444 break; 1445 case RL_HWREV_8402: 1446 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1447 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1448 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | 1449 RL_FLAG_CMDSTOP_WAIT_TXQ; 1450 break; 1451 case RL_HWREV_8168B_SPIN1: 1452 case RL_HWREV_8168B_SPIN2: 1453 sc->rl_flags |= RL_FLAG_WOLRXENB; 1454 /* FALLTHROUGH */ 1455 case RL_HWREV_8168B_SPIN3: 1456 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT; 1457 break; 1458 case RL_HWREV_8168C_SPIN2: 1459 sc->rl_flags |= RL_FLAG_MACSLEEP; 1460 /* FALLTHROUGH */ 1461 case RL_HWREV_8168C: 1462 if (sc->rl_macrev == 0x00200000) 1463 sc->rl_flags |= RL_FLAG_MACSLEEP; 1464 /* FALLTHROUGH */ 1465 case RL_HWREV_8168CP: 1466 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1467 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1468 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK; 1469 break; 1470 case RL_HWREV_8168D: 1471 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1472 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1473 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1474 RL_FLAG_WOL_MANLINK; 1475 break; 1476 case RL_HWREV_8168DP: 1477 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1478 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD | 1479 RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK; 1480 break; 1481 case RL_HWREV_8168E: 1482 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1483 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1484 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1485 RL_FLAG_WOL_MANLINK; 1486 break; 1487 case RL_HWREV_8168E_VL: 1488 case RL_HWREV_8168F: 1489 sc->rl_flags |= RL_FLAG_EARLYOFF; 1490 /* FALLTHROUGH */ 1491 case RL_HWREV_8411: 1492 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1493 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1494 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1495 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK; 1496 break; 1497 case RL_HWREV_8168EP: 1498 case RL_HWREV_8168G: 1499 case RL_HWREV_8411B: 1500 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1501 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1502 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1503 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK | 1504 RL_FLAG_8168G_PLUS; 1505 break; 1506 case RL_HWREV_8168GU: 1507 case RL_HWREV_8168H: 1508 if (pci_get_device(dev) == RT_DEVICEID_8101E) { 1509 /* RTL8106E(US), RTL8107E */ 1510 sc->rl_flags |= RL_FLAG_FASTETHER; 1511 } else 1512 sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK; 1513 1514 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1515 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1516 RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ | 1517 RL_FLAG_8168G_PLUS; 1518 break; 1519 case RL_HWREV_8169_8110SB: 1520 case RL_HWREV_8169_8110SBL: 1521 case RL_HWREV_8169_8110SC: 1522 case RL_HWREV_8169_8110SCE: 1523 sc->rl_flags |= RL_FLAG_PHYWAKE; 1524 /* FALLTHROUGH */ 1525 case RL_HWREV_8169: 1526 case RL_HWREV_8169S: 1527 case RL_HWREV_8110S: 1528 sc->rl_flags |= RL_FLAG_MACRESET; 1529 break; 1530 default: 1531 break; 1532 } 1533 1534 if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) { 1535 sc->rl_cfg0 = RL_8139_CFG0; 1536 sc->rl_cfg1 = RL_8139_CFG1; 1537 sc->rl_cfg2 = 0; 1538 sc->rl_cfg3 = RL_8139_CFG3; 1539 sc->rl_cfg4 = RL_8139_CFG4; 1540 sc->rl_cfg5 = RL_8139_CFG5; 1541 } else { 1542 sc->rl_cfg0 = RL_CFG0; 1543 sc->rl_cfg1 = RL_CFG1; 1544 sc->rl_cfg2 = RL_CFG2; 1545 sc->rl_cfg3 = RL_CFG3; 1546 sc->rl_cfg4 = RL_CFG4; 1547 sc->rl_cfg5 = RL_CFG5; 1548 } 1549 1550 /* Reset the adapter. */ 1551 RL_LOCK(sc); 1552 re_reset(sc); 1553 RL_UNLOCK(sc); 1554 1555 /* Enable PME. */ 1556 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1557 cfg = CSR_READ_1(sc, sc->rl_cfg1); 1558 cfg |= RL_CFG1_PME; 1559 CSR_WRITE_1(sc, sc->rl_cfg1, cfg); 1560 cfg = CSR_READ_1(sc, sc->rl_cfg5); 1561 cfg &= RL_CFG5_PME_STS; 1562 CSR_WRITE_1(sc, sc->rl_cfg5, cfg); 1563 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1564 1565 if ((sc->rl_flags & RL_FLAG_PAR) != 0) { 1566 /* 1567 * XXX Should have a better way to extract station 1568 * address from EEPROM. 1569 */ 1570 for (i = 0; i < ETHER_ADDR_LEN; i++) 1571 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); 1572 } else { 1573 sc->rl_eewidth = RL_9356_ADDR_LEN; 1574 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); 1575 if (re_did != 0x8129) 1576 sc->rl_eewidth = RL_9346_ADDR_LEN; 1577 1578 /* 1579 * Get station address from the EEPROM. 1580 */ 1581 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); 1582 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) 1583 as[i] = le16toh(as[i]); 1584 bcopy(as, eaddr, ETHER_ADDR_LEN); 1585 } 1586 1587 if (sc->rl_type == RL_8169) { 1588 /* Set RX length mask and number of descriptors. */ 1589 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; 1590 sc->rl_txstart = RL_GTXSTART; 1591 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT; 1592 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT; 1593 } else { 1594 /* Set RX length mask and number of descriptors. */ 1595 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; 1596 sc->rl_txstart = RL_TXSTART; 1597 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT; 1598 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT; 1599 } 1600 1601 error = re_allocmem(dev, sc); 1602 if (error) 1603 goto fail; 1604 re_add_sysctls(sc); 1605 1606 ifp = sc->rl_ifp = if_alloc(IFT_ETHER); 1607 if (ifp == NULL) { 1608 device_printf(dev, "can not if_alloc()\n"); 1609 error = ENOSPC; 1610 goto fail; 1611 } 1612 1613 /* Take controller out of deep sleep mode. */ 1614 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 1615 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 1616 CSR_WRITE_1(sc, RL_GPIO, 1617 CSR_READ_1(sc, RL_GPIO) | 0x01); 1618 else 1619 CSR_WRITE_1(sc, RL_GPIO, 1620 CSR_READ_1(sc, RL_GPIO) & ~0x01); 1621 } 1622 1623 /* Take PHY out of power down mode. */ 1624 if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) { 1625 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80); 1626 if (hw_rev->rl_rev == RL_HWREV_8401E) 1627 CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08); 1628 } 1629 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) { 1630 re_gmii_writereg(dev, 1, 0x1f, 0); 1631 re_gmii_writereg(dev, 1, 0x0e, 0); 1632 } 1633 1634 ifp->if_softc = sc; 1635 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1636 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1637 ifp->if_ioctl = re_ioctl; 1638 ifp->if_start = re_start; 1639 /* 1640 * RTL8168/8111C generates wrong IP checksummed frame if the 1641 * packet has IP options so disable TX checksum offloading. 1642 */ 1643 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C || 1644 sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 || 1645 sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) { 1646 ifp->if_hwassist = 0; 1647 ifp->if_capabilities = IFCAP_RXCSUM | IFCAP_TSO4; 1648 } else { 1649 ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP; 1650 ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4; 1651 } 1652 ifp->if_hwassist |= CSUM_TSO; 1653 ifp->if_capenable = ifp->if_capabilities; 1654 ifp->if_init = re_init; 1655 IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN); 1656 ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN; 1657 IFQ_SET_READY(&ifp->if_snd); 1658 1659 TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc); 1660 1661 #define RE_PHYAD_INTERNAL 0 1662 1663 /* Do MII setup. */ 1664 phy = RE_PHYAD_INTERNAL; 1665 if (sc->rl_type == RL_8169) 1666 phy = 1; 1667 capmask = BMSR_DEFCAPMASK; 1668 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 1669 capmask &= ~BMSR_EXTSTAT; 1670 error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd, 1671 re_ifmedia_sts, capmask, phy, MII_OFFSET_ANY, MIIF_DOPAUSE); 1672 if (error != 0) { 1673 device_printf(dev, "attaching PHYs failed\n"); 1674 goto fail; 1675 } 1676 1677 /* 1678 * Call MI attach routine. 1679 */ 1680 ether_ifattach(ifp, eaddr); 1681 1682 /* VLAN capability setup */ 1683 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 1684 if (ifp->if_capabilities & IFCAP_HWCSUM) 1685 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1686 /* Enable WOL if PM is supported. */ 1687 if (pci_find_cap(sc->rl_dev, PCIY_PMG, ®) == 0) 1688 ifp->if_capabilities |= IFCAP_WOL; 1689 ifp->if_capenable = ifp->if_capabilities; 1690 ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST); 1691 /* 1692 * Don't enable TSO by default. It is known to generate 1693 * corrupted TCP segments(bad TCP options) under certain 1694 * circumstances. 1695 */ 1696 ifp->if_hwassist &= ~CSUM_TSO; 1697 ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 1698 #ifdef DEVICE_POLLING 1699 ifp->if_capabilities |= IFCAP_POLLING; 1700 #endif 1701 /* 1702 * Tell the upper layer(s) we support long frames. 1703 * Must appear after the call to ether_ifattach() because 1704 * ether_ifattach() sets ifi_hdrlen to the default value. 1705 */ 1706 ifp->if_hdrlen = sizeof(struct ether_vlan_header); 1707 1708 #ifdef DEV_NETMAP 1709 re_netmap_attach(sc); 1710 #endif /* DEV_NETMAP */ 1711 1712 #ifdef RE_DIAG 1713 /* 1714 * Perform hardware diagnostic on the original RTL8169. 1715 * Some 32-bit cards were incorrectly wired and would 1716 * malfunction if plugged into a 64-bit slot. 1717 */ 1718 if (hwrev == RL_HWREV_8169) { 1719 error = re_diag(sc); 1720 if (error) { 1721 device_printf(dev, 1722 "attach aborted due to hardware diag failure\n"); 1723 ether_ifdetach(ifp); 1724 goto fail; 1725 } 1726 } 1727 #endif 1728 1729 #ifdef RE_TX_MODERATION 1730 intr_filter = 1; 1731 #endif 1732 /* Hook interrupt last to avoid having to lock softc */ 1733 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 && 1734 intr_filter == 0) { 1735 error = bus_setup_intr(dev, sc->rl_irq[0], 1736 INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc, 1737 &sc->rl_intrhand[0]); 1738 } else { 1739 error = bus_setup_intr(dev, sc->rl_irq[0], 1740 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, 1741 &sc->rl_intrhand[0]); 1742 } 1743 if (error) { 1744 device_printf(dev, "couldn't set up irq\n"); 1745 ether_ifdetach(ifp); 1746 goto fail; 1747 } 1748 1749 DEBUGNET_SET(ifp, re); 1750 1751 fail: 1752 if (error) 1753 re_detach(dev); 1754 1755 return (error); 1756 } 1757 1758 /* 1759 * Shutdown hardware and free up resources. This can be called any 1760 * time after the mutex has been initialized. It is called in both 1761 * the error case in attach and the normal detach case so it needs 1762 * to be careful about only freeing resources that have actually been 1763 * allocated. 1764 */ 1765 static int 1766 re_detach(device_t dev) 1767 { 1768 struct rl_softc *sc; 1769 struct ifnet *ifp; 1770 int i, rid; 1771 1772 sc = device_get_softc(dev); 1773 ifp = sc->rl_ifp; 1774 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); 1775 1776 /* These should only be active if attach succeeded */ 1777 if (device_is_attached(dev)) { 1778 #ifdef DEVICE_POLLING 1779 if (ifp->if_capenable & IFCAP_POLLING) 1780 ether_poll_deregister(ifp); 1781 #endif 1782 RL_LOCK(sc); 1783 #if 0 1784 sc->suspended = 1; 1785 #endif 1786 re_stop(sc); 1787 RL_UNLOCK(sc); 1788 callout_drain(&sc->rl_stat_callout); 1789 taskqueue_drain(taskqueue_fast, &sc->rl_inttask); 1790 /* 1791 * Force off the IFF_UP flag here, in case someone 1792 * still had a BPF descriptor attached to this 1793 * interface. If they do, ether_ifdetach() will cause 1794 * the BPF code to try and clear the promisc mode 1795 * flag, which will bubble down to re_ioctl(), 1796 * which will try to call re_init() again. This will 1797 * turn the NIC back on and restart the MII ticker, 1798 * which will panic the system when the kernel tries 1799 * to invoke the re_tick() function that isn't there 1800 * anymore. 1801 */ 1802 ifp->if_flags &= ~IFF_UP; 1803 ether_ifdetach(ifp); 1804 } 1805 if (sc->rl_miibus) 1806 device_delete_child(dev, sc->rl_miibus); 1807 bus_generic_detach(dev); 1808 1809 /* 1810 * The rest is resource deallocation, so we should already be 1811 * stopped here. 1812 */ 1813 1814 if (sc->rl_intrhand[0] != NULL) { 1815 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]); 1816 sc->rl_intrhand[0] = NULL; 1817 } 1818 if (ifp != NULL) { 1819 #ifdef DEV_NETMAP 1820 netmap_detach(ifp); 1821 #endif /* DEV_NETMAP */ 1822 if_free(ifp); 1823 } 1824 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) 1825 rid = 0; 1826 else 1827 rid = 1; 1828 if (sc->rl_irq[0] != NULL) { 1829 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]); 1830 sc->rl_irq[0] = NULL; 1831 } 1832 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0) 1833 pci_release_msi(dev); 1834 if (sc->rl_res_pba) { 1835 rid = PCIR_BAR(4); 1836 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba); 1837 } 1838 if (sc->rl_res) 1839 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, 1840 sc->rl_res); 1841 1842 /* Unload and free the RX DMA ring memory and map */ 1843 1844 if (sc->rl_ldata.rl_rx_list_tag) { 1845 if (sc->rl_ldata.rl_rx_list_addr) 1846 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, 1847 sc->rl_ldata.rl_rx_list_map); 1848 if (sc->rl_ldata.rl_rx_list) 1849 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, 1850 sc->rl_ldata.rl_rx_list, 1851 sc->rl_ldata.rl_rx_list_map); 1852 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); 1853 } 1854 1855 /* Unload and free the TX DMA ring memory and map */ 1856 1857 if (sc->rl_ldata.rl_tx_list_tag) { 1858 if (sc->rl_ldata.rl_tx_list_addr) 1859 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, 1860 sc->rl_ldata.rl_tx_list_map); 1861 if (sc->rl_ldata.rl_tx_list) 1862 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, 1863 sc->rl_ldata.rl_tx_list, 1864 sc->rl_ldata.rl_tx_list_map); 1865 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); 1866 } 1867 1868 /* Destroy all the RX and TX buffer maps */ 1869 1870 if (sc->rl_ldata.rl_tx_mtag) { 1871 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1872 if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap) 1873 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag, 1874 sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1875 } 1876 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag); 1877 } 1878 if (sc->rl_ldata.rl_rx_mtag) { 1879 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1880 if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap) 1881 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1882 sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1883 } 1884 if (sc->rl_ldata.rl_rx_sparemap) 1885 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1886 sc->rl_ldata.rl_rx_sparemap); 1887 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag); 1888 } 1889 if (sc->rl_ldata.rl_jrx_mtag) { 1890 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1891 if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap) 1892 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag, 1893 sc->rl_ldata.rl_jrx_desc[i].rx_dmamap); 1894 } 1895 if (sc->rl_ldata.rl_jrx_sparemap) 1896 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag, 1897 sc->rl_ldata.rl_jrx_sparemap); 1898 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag); 1899 } 1900 /* Unload and free the stats buffer and map */ 1901 1902 if (sc->rl_ldata.rl_stag) { 1903 if (sc->rl_ldata.rl_stats_addr) 1904 bus_dmamap_unload(sc->rl_ldata.rl_stag, 1905 sc->rl_ldata.rl_smap); 1906 if (sc->rl_ldata.rl_stats) 1907 bus_dmamem_free(sc->rl_ldata.rl_stag, 1908 sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap); 1909 bus_dma_tag_destroy(sc->rl_ldata.rl_stag); 1910 } 1911 1912 if (sc->rl_parent_tag) 1913 bus_dma_tag_destroy(sc->rl_parent_tag); 1914 1915 mtx_destroy(&sc->rl_mtx); 1916 1917 return (0); 1918 } 1919 1920 static __inline void 1921 re_discard_rxbuf(struct rl_softc *sc, int idx) 1922 { 1923 struct rl_desc *desc; 1924 struct rl_rxdesc *rxd; 1925 uint32_t cmdstat; 1926 1927 if (sc->rl_ifp->if_mtu > RL_MTU && 1928 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) 1929 rxd = &sc->rl_ldata.rl_jrx_desc[idx]; 1930 else 1931 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1932 desc = &sc->rl_ldata.rl_rx_list[idx]; 1933 desc->rl_vlanctl = 0; 1934 cmdstat = rxd->rx_size; 1935 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1936 cmdstat |= RL_RDESC_CMD_EOR; 1937 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 1938 } 1939 1940 static int 1941 re_newbuf(struct rl_softc *sc, int idx) 1942 { 1943 struct mbuf *m; 1944 struct rl_rxdesc *rxd; 1945 bus_dma_segment_t segs[1]; 1946 bus_dmamap_t map; 1947 struct rl_desc *desc; 1948 uint32_t cmdstat; 1949 int error, nsegs; 1950 1951 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1952 if (m == NULL) 1953 return (ENOBUFS); 1954 1955 m->m_len = m->m_pkthdr.len = MCLBYTES; 1956 #ifdef RE_FIXUP_RX 1957 /* 1958 * This is part of an evil trick to deal with non-x86 platforms. 1959 * The RealTek chip requires RX buffers to be aligned on 64-bit 1960 * boundaries, but that will hose non-x86 machines. To get around 1961 * this, we leave some empty space at the start of each buffer 1962 * and for non-x86 hosts, we copy the buffer back six bytes 1963 * to achieve word alignment. This is slightly more efficient 1964 * than allocating a new buffer, copying the contents, and 1965 * discarding the old buffer. 1966 */ 1967 m_adj(m, RE_ETHER_ALIGN); 1968 #endif 1969 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag, 1970 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 1971 if (error != 0) { 1972 m_freem(m); 1973 return (ENOBUFS); 1974 } 1975 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 1976 1977 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1978 if (rxd->rx_m != NULL) { 1979 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1980 BUS_DMASYNC_POSTREAD); 1981 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap); 1982 } 1983 1984 rxd->rx_m = m; 1985 map = rxd->rx_dmamap; 1986 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap; 1987 rxd->rx_size = segs[0].ds_len; 1988 sc->rl_ldata.rl_rx_sparemap = map; 1989 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1990 BUS_DMASYNC_PREREAD); 1991 1992 desc = &sc->rl_ldata.rl_rx_list[idx]; 1993 desc->rl_vlanctl = 0; 1994 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 1995 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 1996 cmdstat = segs[0].ds_len; 1997 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1998 cmdstat |= RL_RDESC_CMD_EOR; 1999 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 2000 2001 return (0); 2002 } 2003 2004 static int 2005 re_jumbo_newbuf(struct rl_softc *sc, int idx) 2006 { 2007 struct mbuf *m; 2008 struct rl_rxdesc *rxd; 2009 bus_dma_segment_t segs[1]; 2010 bus_dmamap_t map; 2011 struct rl_desc *desc; 2012 uint32_t cmdstat; 2013 int error, nsegs; 2014 2015 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 2016 if (m == NULL) 2017 return (ENOBUFS); 2018 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 2019 #ifdef RE_FIXUP_RX 2020 m_adj(m, RE_ETHER_ALIGN); 2021 #endif 2022 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag, 2023 sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 2024 if (error != 0) { 2025 m_freem(m); 2026 return (ENOBUFS); 2027 } 2028 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 2029 2030 rxd = &sc->rl_ldata.rl_jrx_desc[idx]; 2031 if (rxd->rx_m != NULL) { 2032 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap, 2033 BUS_DMASYNC_POSTREAD); 2034 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap); 2035 } 2036 2037 rxd->rx_m = m; 2038 map = rxd->rx_dmamap; 2039 rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap; 2040 rxd->rx_size = segs[0].ds_len; 2041 sc->rl_ldata.rl_jrx_sparemap = map; 2042 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap, 2043 BUS_DMASYNC_PREREAD); 2044 2045 desc = &sc->rl_ldata.rl_rx_list[idx]; 2046 desc->rl_vlanctl = 0; 2047 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 2048 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 2049 cmdstat = segs[0].ds_len; 2050 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 2051 cmdstat |= RL_RDESC_CMD_EOR; 2052 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 2053 2054 return (0); 2055 } 2056 2057 #ifdef RE_FIXUP_RX 2058 static __inline void 2059 re_fixup_rx(struct mbuf *m) 2060 { 2061 int i; 2062 uint16_t *src, *dst; 2063 2064 src = mtod(m, uint16_t *); 2065 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; 2066 2067 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 2068 *dst++ = *src++; 2069 2070 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; 2071 } 2072 #endif 2073 2074 static int 2075 re_tx_list_init(struct rl_softc *sc) 2076 { 2077 struct rl_desc *desc; 2078 int i; 2079 2080 RL_LOCK_ASSERT(sc); 2081 2082 bzero(sc->rl_ldata.rl_tx_list, 2083 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc)); 2084 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) 2085 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL; 2086 #ifdef DEV_NETMAP 2087 re_netmap_tx_init(sc); 2088 #endif /* DEV_NETMAP */ 2089 /* Set EOR. */ 2090 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1]; 2091 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR); 2092 2093 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2094 sc->rl_ldata.rl_tx_list_map, 2095 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2096 2097 sc->rl_ldata.rl_tx_prodidx = 0; 2098 sc->rl_ldata.rl_tx_considx = 0; 2099 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt; 2100 2101 return (0); 2102 } 2103 2104 static int 2105 re_rx_list_init(struct rl_softc *sc) 2106 { 2107 int error, i; 2108 2109 bzero(sc->rl_ldata.rl_rx_list, 2110 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 2111 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 2112 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL; 2113 if ((error = re_newbuf(sc, i)) != 0) 2114 return (error); 2115 } 2116 #ifdef DEV_NETMAP 2117 re_netmap_rx_init(sc); 2118 #endif /* DEV_NETMAP */ 2119 2120 /* Flush the RX descriptors */ 2121 2122 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2123 sc->rl_ldata.rl_rx_list_map, 2124 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2125 2126 sc->rl_ldata.rl_rx_prodidx = 0; 2127 sc->rl_head = sc->rl_tail = NULL; 2128 sc->rl_int_rx_act = 0; 2129 2130 return (0); 2131 } 2132 2133 static int 2134 re_jrx_list_init(struct rl_softc *sc) 2135 { 2136 int error, i; 2137 2138 bzero(sc->rl_ldata.rl_rx_list, 2139 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 2140 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 2141 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL; 2142 if ((error = re_jumbo_newbuf(sc, i)) != 0) 2143 return (error); 2144 } 2145 2146 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2147 sc->rl_ldata.rl_rx_list_map, 2148 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2149 2150 sc->rl_ldata.rl_rx_prodidx = 0; 2151 sc->rl_head = sc->rl_tail = NULL; 2152 sc->rl_int_rx_act = 0; 2153 2154 return (0); 2155 } 2156 2157 /* 2158 * RX handler for C+ and 8169. For the gigE chips, we support 2159 * the reception of jumbo frames that have been fragmented 2160 * across multiple 2K mbuf cluster buffers. 2161 */ 2162 static int 2163 re_rxeof(struct rl_softc *sc, int *rx_npktsp) 2164 { 2165 struct mbuf *m; 2166 struct ifnet *ifp; 2167 int i, rxerr, total_len; 2168 struct rl_desc *cur_rx; 2169 u_int32_t rxstat, rxvlan; 2170 int jumbo, maxpkt = 16, rx_npkts = 0; 2171 2172 RL_LOCK_ASSERT(sc); 2173 2174 ifp = sc->rl_ifp; 2175 #ifdef DEV_NETMAP 2176 if (netmap_rx_irq(ifp, 0, &rx_npkts)) 2177 return 0; 2178 #endif /* DEV_NETMAP */ 2179 if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) 2180 jumbo = 1; 2181 else 2182 jumbo = 0; 2183 2184 /* Invalidate the descriptor memory */ 2185 2186 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2187 sc->rl_ldata.rl_rx_list_map, 2188 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2189 2190 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0; 2191 i = RL_RX_DESC_NXT(sc, i)) { 2192 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2193 break; 2194 cur_rx = &sc->rl_ldata.rl_rx_list[i]; 2195 rxstat = le32toh(cur_rx->rl_cmdstat); 2196 if ((rxstat & RL_RDESC_STAT_OWN) != 0) 2197 break; 2198 total_len = rxstat & sc->rl_rxlenmask; 2199 rxvlan = le32toh(cur_rx->rl_vlanctl); 2200 if (jumbo != 0) 2201 m = sc->rl_ldata.rl_jrx_desc[i].rx_m; 2202 else 2203 m = sc->rl_ldata.rl_rx_desc[i].rx_m; 2204 2205 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 2206 (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) != 2207 (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) { 2208 /* 2209 * RTL8168C or later controllers do not 2210 * support multi-fragment packet. 2211 */ 2212 re_discard_rxbuf(sc, i); 2213 continue; 2214 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) { 2215 if (re_newbuf(sc, i) != 0) { 2216 /* 2217 * If this is part of a multi-fragment packet, 2218 * discard all the pieces. 2219 */ 2220 if (sc->rl_head != NULL) { 2221 m_freem(sc->rl_head); 2222 sc->rl_head = sc->rl_tail = NULL; 2223 } 2224 re_discard_rxbuf(sc, i); 2225 continue; 2226 } 2227 m->m_len = RE_RX_DESC_BUFLEN; 2228 if (sc->rl_head == NULL) 2229 sc->rl_head = sc->rl_tail = m; 2230 else { 2231 m->m_flags &= ~M_PKTHDR; 2232 sc->rl_tail->m_next = m; 2233 sc->rl_tail = m; 2234 } 2235 continue; 2236 } 2237 2238 /* 2239 * NOTE: for the 8139C+, the frame length field 2240 * is always 12 bits in size, but for the gigE chips, 2241 * it is 13 bits (since the max RX frame length is 16K). 2242 * Unfortunately, all 32 bits in the status word 2243 * were already used, so to make room for the extra 2244 * length bit, RealTek took out the 'frame alignment 2245 * error' bit and shifted the other status bits 2246 * over one slot. The OWN, EOR, FS and LS bits are 2247 * still in the same places. We have already extracted 2248 * the frame length and checked the OWN bit, so rather 2249 * than using an alternate bit mapping, we shift the 2250 * status bits one space to the right so we can evaluate 2251 * them using the 8169 status as though it was in the 2252 * same format as that of the 8139C+. 2253 */ 2254 if (sc->rl_type == RL_8169) 2255 rxstat >>= 1; 2256 2257 /* 2258 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be 2259 * set, but if CRC is clear, it will still be a valid frame. 2260 */ 2261 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) { 2262 rxerr = 1; 2263 if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 && 2264 total_len > 8191 && 2265 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT) 2266 rxerr = 0; 2267 if (rxerr != 0) { 2268 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2269 /* 2270 * If this is part of a multi-fragment packet, 2271 * discard all the pieces. 2272 */ 2273 if (sc->rl_head != NULL) { 2274 m_freem(sc->rl_head); 2275 sc->rl_head = sc->rl_tail = NULL; 2276 } 2277 re_discard_rxbuf(sc, i); 2278 continue; 2279 } 2280 } 2281 2282 /* 2283 * If allocating a replacement mbuf fails, 2284 * reload the current one. 2285 */ 2286 if (jumbo != 0) 2287 rxerr = re_jumbo_newbuf(sc, i); 2288 else 2289 rxerr = re_newbuf(sc, i); 2290 if (rxerr != 0) { 2291 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2292 if (sc->rl_head != NULL) { 2293 m_freem(sc->rl_head); 2294 sc->rl_head = sc->rl_tail = NULL; 2295 } 2296 re_discard_rxbuf(sc, i); 2297 continue; 2298 } 2299 2300 if (sc->rl_head != NULL) { 2301 if (jumbo != 0) 2302 m->m_len = total_len; 2303 else { 2304 m->m_len = total_len % RE_RX_DESC_BUFLEN; 2305 if (m->m_len == 0) 2306 m->m_len = RE_RX_DESC_BUFLEN; 2307 } 2308 /* 2309 * Special case: if there's 4 bytes or less 2310 * in this buffer, the mbuf can be discarded: 2311 * the last 4 bytes is the CRC, which we don't 2312 * care about anyway. 2313 */ 2314 if (m->m_len <= ETHER_CRC_LEN) { 2315 sc->rl_tail->m_len -= 2316 (ETHER_CRC_LEN - m->m_len); 2317 m_freem(m); 2318 } else { 2319 m->m_len -= ETHER_CRC_LEN; 2320 m->m_flags &= ~M_PKTHDR; 2321 sc->rl_tail->m_next = m; 2322 } 2323 m = sc->rl_head; 2324 sc->rl_head = sc->rl_tail = NULL; 2325 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 2326 } else 2327 m->m_pkthdr.len = m->m_len = 2328 (total_len - ETHER_CRC_LEN); 2329 2330 #ifdef RE_FIXUP_RX 2331 re_fixup_rx(m); 2332 #endif 2333 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2334 m->m_pkthdr.rcvif = ifp; 2335 2336 /* Do RX checksumming if enabled */ 2337 2338 if (ifp->if_capenable & IFCAP_RXCSUM) { 2339 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2340 /* Check IP header checksum */ 2341 if (rxstat & RL_RDESC_STAT_PROTOID) 2342 m->m_pkthdr.csum_flags |= 2343 CSUM_IP_CHECKED; 2344 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) 2345 m->m_pkthdr.csum_flags |= 2346 CSUM_IP_VALID; 2347 2348 /* Check TCP/UDP checksum */ 2349 if ((RL_TCPPKT(rxstat) && 2350 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2351 (RL_UDPPKT(rxstat) && 2352 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2353 m->m_pkthdr.csum_flags |= 2354 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2355 m->m_pkthdr.csum_data = 0xffff; 2356 } 2357 } else { 2358 /* 2359 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP 2360 */ 2361 if ((rxstat & RL_RDESC_STAT_PROTOID) && 2362 (rxvlan & RL_RDESC_IPV4)) 2363 m->m_pkthdr.csum_flags |= 2364 CSUM_IP_CHECKED; 2365 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) && 2366 (rxvlan & RL_RDESC_IPV4)) 2367 m->m_pkthdr.csum_flags |= 2368 CSUM_IP_VALID; 2369 if (((rxstat & RL_RDESC_STAT_TCP) && 2370 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2371 ((rxstat & RL_RDESC_STAT_UDP) && 2372 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2373 m->m_pkthdr.csum_flags |= 2374 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2375 m->m_pkthdr.csum_data = 0xffff; 2376 } 2377 } 2378 } 2379 maxpkt--; 2380 if (rxvlan & RL_RDESC_VLANCTL_TAG) { 2381 m->m_pkthdr.ether_vtag = 2382 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA)); 2383 m->m_flags |= M_VLANTAG; 2384 } 2385 RL_UNLOCK(sc); 2386 (*ifp->if_input)(ifp, m); 2387 RL_LOCK(sc); 2388 rx_npkts++; 2389 } 2390 2391 /* Flush the RX DMA ring */ 2392 2393 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2394 sc->rl_ldata.rl_rx_list_map, 2395 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2396 2397 sc->rl_ldata.rl_rx_prodidx = i; 2398 2399 if (rx_npktsp != NULL) 2400 *rx_npktsp = rx_npkts; 2401 if (maxpkt) 2402 return (EAGAIN); 2403 2404 return (0); 2405 } 2406 2407 static void 2408 re_txeof(struct rl_softc *sc) 2409 { 2410 struct ifnet *ifp; 2411 struct rl_txdesc *txd; 2412 u_int32_t txstat; 2413 int cons; 2414 2415 cons = sc->rl_ldata.rl_tx_considx; 2416 if (cons == sc->rl_ldata.rl_tx_prodidx) 2417 return; 2418 2419 ifp = sc->rl_ifp; 2420 #ifdef DEV_NETMAP 2421 if (netmap_tx_irq(ifp, 0)) 2422 return; 2423 #endif /* DEV_NETMAP */ 2424 /* Invalidate the TX descriptor list */ 2425 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2426 sc->rl_ldata.rl_tx_list_map, 2427 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2428 2429 for (; cons != sc->rl_ldata.rl_tx_prodidx; 2430 cons = RL_TX_DESC_NXT(sc, cons)) { 2431 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat); 2432 if (txstat & RL_TDESC_STAT_OWN) 2433 break; 2434 /* 2435 * We only stash mbufs in the last descriptor 2436 * in a fragment chain, which also happens to 2437 * be the only place where the TX status bits 2438 * are valid. 2439 */ 2440 if (txstat & RL_TDESC_CMD_EOF) { 2441 txd = &sc->rl_ldata.rl_tx_desc[cons]; 2442 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 2443 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2444 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 2445 txd->tx_dmamap); 2446 KASSERT(txd->tx_m != NULL, 2447 ("%s: freeing NULL mbufs!", __func__)); 2448 m_freem(txd->tx_m); 2449 txd->tx_m = NULL; 2450 if (txstat & (RL_TDESC_STAT_EXCESSCOL| 2451 RL_TDESC_STAT_COLCNT)) 2452 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 2453 if (txstat & RL_TDESC_STAT_TXERRSUM) 2454 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2455 else 2456 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2457 } 2458 sc->rl_ldata.rl_tx_free++; 2459 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2460 } 2461 sc->rl_ldata.rl_tx_considx = cons; 2462 2463 /* No changes made to the TX ring, so no flush needed */ 2464 2465 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) { 2466 #ifdef RE_TX_MODERATION 2467 /* 2468 * If not all descriptors have been reaped yet, reload 2469 * the timer so that we will eventually get another 2470 * interrupt that will cause us to re-enter this routine. 2471 * This is done in case the transmitter has gone idle. 2472 */ 2473 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2474 #endif 2475 } else 2476 sc->rl_watchdog_timer = 0; 2477 } 2478 2479 static void 2480 re_tick(void *xsc) 2481 { 2482 struct rl_softc *sc; 2483 struct mii_data *mii; 2484 2485 sc = xsc; 2486 2487 RL_LOCK_ASSERT(sc); 2488 2489 mii = device_get_softc(sc->rl_miibus); 2490 mii_tick(mii); 2491 if ((sc->rl_flags & RL_FLAG_LINK) == 0) 2492 re_miibus_statchg(sc->rl_dev); 2493 /* 2494 * Reclaim transmitted frames here. Technically it is not 2495 * necessary to do here but it ensures periodic reclamation 2496 * regardless of Tx completion interrupt which seems to be 2497 * lost on PCIe based controllers under certain situations. 2498 */ 2499 re_txeof(sc); 2500 re_watchdog(sc); 2501 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2502 } 2503 2504 #ifdef DEVICE_POLLING 2505 static int 2506 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2507 { 2508 struct rl_softc *sc = ifp->if_softc; 2509 int rx_npkts = 0; 2510 2511 RL_LOCK(sc); 2512 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2513 rx_npkts = re_poll_locked(ifp, cmd, count); 2514 RL_UNLOCK(sc); 2515 return (rx_npkts); 2516 } 2517 2518 static int 2519 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 2520 { 2521 struct rl_softc *sc = ifp->if_softc; 2522 int rx_npkts; 2523 2524 RL_LOCK_ASSERT(sc); 2525 2526 sc->rxcycles = count; 2527 re_rxeof(sc, &rx_npkts); 2528 re_txeof(sc); 2529 2530 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2531 re_start_locked(ifp); 2532 2533 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2534 u_int16_t status; 2535 2536 status = CSR_READ_2(sc, RL_ISR); 2537 if (status == 0xffff) 2538 return (rx_npkts); 2539 if (status) 2540 CSR_WRITE_2(sc, RL_ISR, status); 2541 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2542 (sc->rl_flags & RL_FLAG_PCIE)) 2543 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2544 2545 /* 2546 * XXX check behaviour on receiver stalls. 2547 */ 2548 2549 if (status & RL_ISR_SYSTEM_ERR) { 2550 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2551 re_init_locked(sc); 2552 } 2553 } 2554 return (rx_npkts); 2555 } 2556 #endif /* DEVICE_POLLING */ 2557 2558 static int 2559 re_intr(void *arg) 2560 { 2561 struct rl_softc *sc; 2562 uint16_t status; 2563 2564 sc = arg; 2565 2566 status = CSR_READ_2(sc, RL_ISR); 2567 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) 2568 return (FILTER_STRAY); 2569 CSR_WRITE_2(sc, RL_IMR, 0); 2570 2571 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask); 2572 2573 return (FILTER_HANDLED); 2574 } 2575 2576 static void 2577 re_int_task(void *arg, int npending) 2578 { 2579 struct rl_softc *sc; 2580 struct ifnet *ifp; 2581 u_int16_t status; 2582 int rval = 0; 2583 2584 sc = arg; 2585 ifp = sc->rl_ifp; 2586 2587 RL_LOCK(sc); 2588 2589 status = CSR_READ_2(sc, RL_ISR); 2590 CSR_WRITE_2(sc, RL_ISR, status); 2591 2592 if (sc->suspended || 2593 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2594 RL_UNLOCK(sc); 2595 return; 2596 } 2597 2598 #ifdef DEVICE_POLLING 2599 if (ifp->if_capenable & IFCAP_POLLING) { 2600 RL_UNLOCK(sc); 2601 return; 2602 } 2603 #endif 2604 2605 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW)) 2606 rval = re_rxeof(sc, NULL); 2607 2608 /* 2609 * Some chips will ignore a second TX request issued 2610 * while an existing transmission is in progress. If 2611 * the transmitter goes idle but there are still 2612 * packets waiting to be sent, we need to restart the 2613 * channel here to flush them out. This only seems to 2614 * be required with the PCIe devices. 2615 */ 2616 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2617 (sc->rl_flags & RL_FLAG_PCIE)) 2618 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2619 if (status & ( 2620 #ifdef RE_TX_MODERATION 2621 RL_ISR_TIMEOUT_EXPIRED| 2622 #else 2623 RL_ISR_TX_OK| 2624 #endif 2625 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL)) 2626 re_txeof(sc); 2627 2628 if (status & RL_ISR_SYSTEM_ERR) { 2629 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2630 re_init_locked(sc); 2631 } 2632 2633 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2634 re_start_locked(ifp); 2635 2636 RL_UNLOCK(sc); 2637 2638 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) { 2639 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask); 2640 return; 2641 } 2642 2643 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2644 } 2645 2646 static void 2647 re_intr_msi(void *xsc) 2648 { 2649 struct rl_softc *sc; 2650 struct ifnet *ifp; 2651 uint16_t intrs, status; 2652 2653 sc = xsc; 2654 RL_LOCK(sc); 2655 2656 ifp = sc->rl_ifp; 2657 #ifdef DEVICE_POLLING 2658 if (ifp->if_capenable & IFCAP_POLLING) { 2659 RL_UNLOCK(sc); 2660 return; 2661 } 2662 #endif 2663 /* Disable interrupts. */ 2664 CSR_WRITE_2(sc, RL_IMR, 0); 2665 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2666 RL_UNLOCK(sc); 2667 return; 2668 } 2669 2670 intrs = RL_INTRS_CPLUS; 2671 status = CSR_READ_2(sc, RL_ISR); 2672 CSR_WRITE_2(sc, RL_ISR, status); 2673 if (sc->rl_int_rx_act > 0) { 2674 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW | 2675 RL_ISR_RX_OVERRUN); 2676 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW | 2677 RL_ISR_RX_OVERRUN); 2678 } 2679 2680 if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR | 2681 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) { 2682 re_rxeof(sc, NULL); 2683 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2684 if (sc->rl_int_rx_mod != 0 && 2685 (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR | 2686 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) { 2687 /* Rearm one-shot timer. */ 2688 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2689 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | 2690 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN); 2691 sc->rl_int_rx_act = 1; 2692 } else { 2693 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR | 2694 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN; 2695 sc->rl_int_rx_act = 0; 2696 } 2697 } 2698 } 2699 2700 /* 2701 * Some chips will ignore a second TX request issued 2702 * while an existing transmission is in progress. If 2703 * the transmitter goes idle but there are still 2704 * packets waiting to be sent, we need to restart the 2705 * channel here to flush them out. This only seems to 2706 * be required with the PCIe devices. 2707 */ 2708 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2709 (sc->rl_flags & RL_FLAG_PCIE)) 2710 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2711 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL)) 2712 re_txeof(sc); 2713 2714 if (status & RL_ISR_SYSTEM_ERR) { 2715 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 2716 re_init_locked(sc); 2717 } 2718 2719 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2720 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2721 re_start_locked(ifp); 2722 CSR_WRITE_2(sc, RL_IMR, intrs); 2723 } 2724 RL_UNLOCK(sc); 2725 } 2726 2727 static int 2728 re_encap(struct rl_softc *sc, struct mbuf **m_head) 2729 { 2730 struct rl_txdesc *txd, *txd_last; 2731 bus_dma_segment_t segs[RL_NTXSEGS]; 2732 bus_dmamap_t map; 2733 struct mbuf *m_new; 2734 struct rl_desc *desc; 2735 int nsegs, prod; 2736 int i, error, ei, si; 2737 int padlen; 2738 uint32_t cmdstat, csum_flags, vlanctl; 2739 2740 RL_LOCK_ASSERT(sc); 2741 M_ASSERTPKTHDR((*m_head)); 2742 2743 /* 2744 * With some of the RealTek chips, using the checksum offload 2745 * support in conjunction with the autopadding feature results 2746 * in the transmission of corrupt frames. For example, if we 2747 * need to send a really small IP fragment that's less than 60 2748 * bytes in size, and IP header checksumming is enabled, the 2749 * resulting ethernet frame that appears on the wire will 2750 * have garbled payload. To work around this, if TX IP checksum 2751 * offload is enabled, we always manually pad short frames out 2752 * to the minimum ethernet frame size. 2753 */ 2754 if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 && 2755 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN && 2756 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) { 2757 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len; 2758 if (M_WRITABLE(*m_head) == 0) { 2759 /* Get a writable copy. */ 2760 m_new = m_dup(*m_head, M_NOWAIT); 2761 m_freem(*m_head); 2762 if (m_new == NULL) { 2763 *m_head = NULL; 2764 return (ENOBUFS); 2765 } 2766 *m_head = m_new; 2767 } 2768 if ((*m_head)->m_next != NULL || 2769 M_TRAILINGSPACE(*m_head) < padlen) { 2770 m_new = m_defrag(*m_head, M_NOWAIT); 2771 if (m_new == NULL) { 2772 m_freem(*m_head); 2773 *m_head = NULL; 2774 return (ENOBUFS); 2775 } 2776 } else 2777 m_new = *m_head; 2778 2779 /* 2780 * Manually pad short frames, and zero the pad space 2781 * to avoid leaking data. 2782 */ 2783 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen); 2784 m_new->m_pkthdr.len += padlen; 2785 m_new->m_len = m_new->m_pkthdr.len; 2786 *m_head = m_new; 2787 } 2788 2789 prod = sc->rl_ldata.rl_tx_prodidx; 2790 txd = &sc->rl_ldata.rl_tx_desc[prod]; 2791 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2792 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2793 if (error == EFBIG) { 2794 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS); 2795 if (m_new == NULL) { 2796 m_freem(*m_head); 2797 *m_head = NULL; 2798 return (ENOBUFS); 2799 } 2800 *m_head = m_new; 2801 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, 2802 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2803 if (error != 0) { 2804 m_freem(*m_head); 2805 *m_head = NULL; 2806 return (error); 2807 } 2808 } else if (error != 0) 2809 return (error); 2810 if (nsegs == 0) { 2811 m_freem(*m_head); 2812 *m_head = NULL; 2813 return (EIO); 2814 } 2815 2816 /* Check for number of available descriptors. */ 2817 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) { 2818 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); 2819 return (ENOBUFS); 2820 } 2821 2822 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2823 BUS_DMASYNC_PREWRITE); 2824 2825 /* 2826 * Set up checksum offload. Note: checksum offload bits must 2827 * appear in all descriptors of a multi-descriptor transmit 2828 * attempt. This is according to testing done with an 8169 2829 * chip. This is a requirement. 2830 */ 2831 vlanctl = 0; 2832 csum_flags = 0; 2833 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2834 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) { 2835 csum_flags |= RL_TDESC_CMD_LGSEND; 2836 vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2837 RL_TDESC_CMD_MSSVALV2_SHIFT); 2838 } else { 2839 csum_flags |= RL_TDESC_CMD_LGSEND | 2840 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2841 RL_TDESC_CMD_MSSVAL_SHIFT); 2842 } 2843 } else { 2844 /* 2845 * Unconditionally enable IP checksum if TCP or UDP 2846 * checksum is required. Otherwise, TCP/UDP checksum 2847 * doesn't make effects. 2848 */ 2849 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) { 2850 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2851 csum_flags |= RL_TDESC_CMD_IPCSUM; 2852 if (((*m_head)->m_pkthdr.csum_flags & 2853 CSUM_TCP) != 0) 2854 csum_flags |= RL_TDESC_CMD_TCPCSUM; 2855 if (((*m_head)->m_pkthdr.csum_flags & 2856 CSUM_UDP) != 0) 2857 csum_flags |= RL_TDESC_CMD_UDPCSUM; 2858 } else { 2859 vlanctl |= RL_TDESC_CMD_IPCSUMV2; 2860 if (((*m_head)->m_pkthdr.csum_flags & 2861 CSUM_TCP) != 0) 2862 vlanctl |= RL_TDESC_CMD_TCPCSUMV2; 2863 if (((*m_head)->m_pkthdr.csum_flags & 2864 CSUM_UDP) != 0) 2865 vlanctl |= RL_TDESC_CMD_UDPCSUMV2; 2866 } 2867 } 2868 } 2869 2870 /* 2871 * Set up hardware VLAN tagging. Note: vlan tag info must 2872 * appear in all descriptors of a multi-descriptor 2873 * transmission attempt. 2874 */ 2875 if ((*m_head)->m_flags & M_VLANTAG) 2876 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) | 2877 RL_TDESC_VLANCTL_TAG; 2878 2879 si = prod; 2880 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) { 2881 desc = &sc->rl_ldata.rl_tx_list[prod]; 2882 desc->rl_vlanctl = htole32(vlanctl); 2883 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); 2884 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); 2885 cmdstat = segs[i].ds_len; 2886 if (i != 0) 2887 cmdstat |= RL_TDESC_CMD_OWN; 2888 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1) 2889 cmdstat |= RL_TDESC_CMD_EOR; 2890 desc->rl_cmdstat = htole32(cmdstat | csum_flags); 2891 sc->rl_ldata.rl_tx_free--; 2892 } 2893 /* Update producer index. */ 2894 sc->rl_ldata.rl_tx_prodidx = prod; 2895 2896 /* Set EOF on the last descriptor. */ 2897 ei = RL_TX_DESC_PRV(sc, prod); 2898 desc = &sc->rl_ldata.rl_tx_list[ei]; 2899 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); 2900 2901 desc = &sc->rl_ldata.rl_tx_list[si]; 2902 /* Set SOF and transfer ownership of packet to the chip. */ 2903 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF); 2904 2905 /* 2906 * Insure that the map for this transmission 2907 * is placed at the array index of the last descriptor 2908 * in this chain. (Swap last and first dmamaps.) 2909 */ 2910 txd_last = &sc->rl_ldata.rl_tx_desc[ei]; 2911 map = txd->tx_dmamap; 2912 txd->tx_dmamap = txd_last->tx_dmamap; 2913 txd_last->tx_dmamap = map; 2914 txd_last->tx_m = *m_head; 2915 2916 return (0); 2917 } 2918 2919 static void 2920 re_start(struct ifnet *ifp) 2921 { 2922 struct rl_softc *sc; 2923 2924 sc = ifp->if_softc; 2925 RL_LOCK(sc); 2926 re_start_locked(ifp); 2927 RL_UNLOCK(sc); 2928 } 2929 2930 /* 2931 * Main transmit routine for C+ and gigE NICs. 2932 */ 2933 static void 2934 re_start_locked(struct ifnet *ifp) 2935 { 2936 struct rl_softc *sc; 2937 struct mbuf *m_head; 2938 int queued; 2939 2940 sc = ifp->if_softc; 2941 2942 #ifdef DEV_NETMAP 2943 /* XXX is this necessary ? */ 2944 if (ifp->if_capenable & IFCAP_NETMAP) { 2945 struct netmap_kring *kring = NA(ifp)->tx_rings[0]; 2946 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) { 2947 /* kick the tx unit */ 2948 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2949 #ifdef RE_TX_MODERATION 2950 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2951 #endif 2952 sc->rl_watchdog_timer = 5; 2953 } 2954 return; 2955 } 2956 #endif /* DEV_NETMAP */ 2957 2958 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2959 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) 2960 return; 2961 2962 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2963 sc->rl_ldata.rl_tx_free > 1;) { 2964 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2965 if (m_head == NULL) 2966 break; 2967 2968 if (re_encap(sc, &m_head) != 0) { 2969 if (m_head == NULL) 2970 break; 2971 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2972 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2973 break; 2974 } 2975 2976 /* 2977 * If there's a BPF listener, bounce a copy of this frame 2978 * to him. 2979 */ 2980 ETHER_BPF_MTAP(ifp, m_head); 2981 2982 queued++; 2983 } 2984 2985 if (queued == 0) { 2986 #ifdef RE_TX_MODERATION 2987 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) 2988 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2989 #endif 2990 return; 2991 } 2992 2993 re_start_tx(sc); 2994 } 2995 2996 static void 2997 re_start_tx(struct rl_softc *sc) 2998 { 2999 3000 /* Flush the TX descriptors */ 3001 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 3002 sc->rl_ldata.rl_tx_list_map, 3003 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 3004 3005 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 3006 3007 #ifdef RE_TX_MODERATION 3008 /* 3009 * Use the countdown timer for interrupt moderation. 3010 * 'TX done' interrupts are disabled. Instead, we reset the 3011 * countdown timer, which will begin counting until it hits 3012 * the value in the TIMERINT register, and then trigger an 3013 * interrupt. Each time we write to the TIMERCNT register, 3014 * the timer count is reset to 0. 3015 */ 3016 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 3017 #endif 3018 3019 /* 3020 * Set a timeout in case the chip goes out to lunch. 3021 */ 3022 sc->rl_watchdog_timer = 5; 3023 } 3024 3025 static void 3026 re_set_jumbo(struct rl_softc *sc, int jumbo) 3027 { 3028 3029 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) { 3030 pci_set_max_read_req(sc->rl_dev, 4096); 3031 return; 3032 } 3033 3034 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 3035 if (jumbo != 0) { 3036 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) | 3037 RL_CFG3_JUMBO_EN0); 3038 switch (sc->rl_hwrev->rl_rev) { 3039 case RL_HWREV_8168DP: 3040 break; 3041 case RL_HWREV_8168E: 3042 CSR_WRITE_1(sc, sc->rl_cfg4, 3043 CSR_READ_1(sc, sc->rl_cfg4) | 0x01); 3044 break; 3045 default: 3046 CSR_WRITE_1(sc, sc->rl_cfg4, 3047 CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1); 3048 } 3049 } else { 3050 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) & 3051 ~RL_CFG3_JUMBO_EN0); 3052 switch (sc->rl_hwrev->rl_rev) { 3053 case RL_HWREV_8168DP: 3054 break; 3055 case RL_HWREV_8168E: 3056 CSR_WRITE_1(sc, sc->rl_cfg4, 3057 CSR_READ_1(sc, sc->rl_cfg4) & ~0x01); 3058 break; 3059 default: 3060 CSR_WRITE_1(sc, sc->rl_cfg4, 3061 CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1); 3062 } 3063 } 3064 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3065 3066 switch (sc->rl_hwrev->rl_rev) { 3067 case RL_HWREV_8168DP: 3068 pci_set_max_read_req(sc->rl_dev, 4096); 3069 break; 3070 default: 3071 if (jumbo != 0) 3072 pci_set_max_read_req(sc->rl_dev, 512); 3073 else 3074 pci_set_max_read_req(sc->rl_dev, 4096); 3075 } 3076 } 3077 3078 static void 3079 re_init(void *xsc) 3080 { 3081 struct rl_softc *sc = xsc; 3082 3083 RL_LOCK(sc); 3084 re_init_locked(sc); 3085 RL_UNLOCK(sc); 3086 } 3087 3088 static void 3089 re_init_locked(struct rl_softc *sc) 3090 { 3091 struct ifnet *ifp = sc->rl_ifp; 3092 struct mii_data *mii; 3093 uint32_t reg; 3094 uint16_t cfg; 3095 union { 3096 uint32_t align_dummy; 3097 u_char eaddr[ETHER_ADDR_LEN]; 3098 } eaddr; 3099 3100 RL_LOCK_ASSERT(sc); 3101 3102 mii = device_get_softc(sc->rl_miibus); 3103 3104 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3105 return; 3106 3107 /* 3108 * Cancel pending I/O and free all RX/TX buffers. 3109 */ 3110 re_stop(sc); 3111 3112 /* Put controller into known state. */ 3113 re_reset(sc); 3114 3115 /* 3116 * For C+ mode, initialize the RX descriptors and mbufs. 3117 */ 3118 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3119 if (ifp->if_mtu > RL_MTU) { 3120 if (re_jrx_list_init(sc) != 0) { 3121 device_printf(sc->rl_dev, 3122 "no memory for jumbo RX buffers\n"); 3123 re_stop(sc); 3124 return; 3125 } 3126 /* Disable checksum offloading for jumbo frames. */ 3127 ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4); 3128 ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO); 3129 } else { 3130 if (re_rx_list_init(sc) != 0) { 3131 device_printf(sc->rl_dev, 3132 "no memory for RX buffers\n"); 3133 re_stop(sc); 3134 return; 3135 } 3136 } 3137 re_set_jumbo(sc, ifp->if_mtu > RL_MTU); 3138 } else { 3139 if (re_rx_list_init(sc) != 0) { 3140 device_printf(sc->rl_dev, "no memory for RX buffers\n"); 3141 re_stop(sc); 3142 return; 3143 } 3144 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 && 3145 pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) { 3146 if (ifp->if_mtu > RL_MTU) 3147 pci_set_max_read_req(sc->rl_dev, 512); 3148 else 3149 pci_set_max_read_req(sc->rl_dev, 4096); 3150 } 3151 } 3152 re_tx_list_init(sc); 3153 3154 /* 3155 * Enable C+ RX and TX mode, as well as VLAN stripping and 3156 * RX checksum offload. We must configure the C+ register 3157 * before all others. 3158 */ 3159 cfg = RL_CPLUSCMD_PCI_MRW; 3160 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 3161 cfg |= RL_CPLUSCMD_RXCSUM_ENB; 3162 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 3163 cfg |= RL_CPLUSCMD_VLANSTRIP; 3164 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) { 3165 cfg |= RL_CPLUSCMD_MACSTAT_DIS; 3166 /* XXX magic. */ 3167 cfg |= 0x0001; 3168 } else 3169 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB; 3170 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg); 3171 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC || 3172 sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) { 3173 reg = 0x000fff00; 3174 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0) 3175 reg |= 0x000000ff; 3176 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) 3177 reg |= 0x00f00000; 3178 CSR_WRITE_4(sc, 0x7c, reg); 3179 /* Disable interrupt mitigation. */ 3180 CSR_WRITE_2(sc, 0xe2, 0); 3181 } 3182 /* 3183 * Disable TSO if interface MTU size is greater than MSS 3184 * allowed in controller. 3185 */ 3186 if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { 3187 ifp->if_capenable &= ~IFCAP_TSO4; 3188 ifp->if_hwassist &= ~CSUM_TSO; 3189 } 3190 3191 /* 3192 * Init our MAC address. Even though the chipset 3193 * documentation doesn't mention it, we need to enter "Config 3194 * register write enable" mode to modify the ID registers. 3195 */ 3196 /* Copy MAC address on stack to align. */ 3197 bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN); 3198 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 3199 CSR_WRITE_4(sc, RL_IDR0, 3200 htole32(*(u_int32_t *)(&eaddr.eaddr[0]))); 3201 CSR_WRITE_4(sc, RL_IDR4, 3202 htole32(*(u_int32_t *)(&eaddr.eaddr[4]))); 3203 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3204 3205 /* 3206 * Load the addresses of the RX and TX lists into the chip. 3207 */ 3208 3209 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, 3210 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); 3211 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, 3212 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); 3213 3214 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, 3215 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); 3216 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, 3217 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); 3218 3219 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3220 /* Disable RXDV gate. */ 3221 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) & 3222 ~0x00080000); 3223 } 3224 3225 /* 3226 * Enable transmit and receive for pre-RTL8168G controllers. 3227 * RX/TX MACs should be enabled before RX/TX configuration. 3228 */ 3229 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) == 0) 3230 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB); 3231 3232 /* 3233 * Set the initial TX configuration. 3234 */ 3235 if (sc->rl_testmode) { 3236 if (sc->rl_type == RL_8169) 3237 CSR_WRITE_4(sc, RL_TXCFG, 3238 RL_TXCFG_CONFIG|RL_LOOPTEST_ON); 3239 else 3240 CSR_WRITE_4(sc, RL_TXCFG, 3241 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); 3242 } else 3243 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 3244 3245 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); 3246 3247 /* 3248 * Set the initial RX configuration. 3249 */ 3250 re_set_rxmode(sc); 3251 3252 /* Configure interrupt moderation. */ 3253 if (sc->rl_type == RL_8169) { 3254 /* Magic from vendor. */ 3255 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100); 3256 } 3257 3258 /* 3259 * Enable transmit and receive for RTL8168G and later controllers. 3260 * RX/TX MACs should be enabled after RX/TX configuration. 3261 */ 3262 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) 3263 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB); 3264 3265 #ifdef DEVICE_POLLING 3266 /* 3267 * Disable interrupts if we are polling. 3268 */ 3269 if (ifp->if_capenable & IFCAP_POLLING) 3270 CSR_WRITE_2(sc, RL_IMR, 0); 3271 else /* otherwise ... */ 3272 #endif 3273 3274 /* 3275 * Enable interrupts. 3276 */ 3277 if (sc->rl_testmode) 3278 CSR_WRITE_2(sc, RL_IMR, 0); 3279 else 3280 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 3281 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS); 3282 3283 /* Set initial TX threshold */ 3284 sc->rl_txthresh = RL_TX_THRESH_INIT; 3285 3286 /* Start RX/TX process. */ 3287 CSR_WRITE_4(sc, RL_MISSEDPKT, 0); 3288 3289 /* 3290 * Initialize the timer interrupt register so that 3291 * a timer interrupt will be generated once the timer 3292 * reaches a certain number of ticks. The timer is 3293 * reloaded on each transmit. 3294 */ 3295 #ifdef RE_TX_MODERATION 3296 /* 3297 * Use timer interrupt register to moderate TX interrupt 3298 * moderation, which dramatically improves TX frame rate. 3299 */ 3300 if (sc->rl_type == RL_8169) 3301 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); 3302 else 3303 CSR_WRITE_4(sc, RL_TIMERINT, 0x400); 3304 #else 3305 /* 3306 * Use timer interrupt register to moderate RX interrupt 3307 * moderation. 3308 */ 3309 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 && 3310 intr_filter == 0) { 3311 if (sc->rl_type == RL_8169) 3312 CSR_WRITE_4(sc, RL_TIMERINT_8169, 3313 RL_USECS(sc->rl_int_rx_mod)); 3314 } else { 3315 if (sc->rl_type == RL_8169) 3316 CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0)); 3317 } 3318 #endif 3319 3320 /* 3321 * For 8169 gigE NICs, set the max allowed RX packet 3322 * size so we can receive jumbo frames. 3323 */ 3324 if (sc->rl_type == RL_8169) { 3325 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3326 /* 3327 * For controllers that use new jumbo frame scheme, 3328 * set maximum size of jumbo frame depending on 3329 * controller revisions. 3330 */ 3331 if (ifp->if_mtu > RL_MTU) 3332 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 3333 sc->rl_hwrev->rl_max_mtu + 3334 ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN + 3335 ETHER_CRC_LEN); 3336 else 3337 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 3338 RE_RX_DESC_BUFLEN); 3339 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 && 3340 sc->rl_hwrev->rl_max_mtu == RL_MTU) { 3341 /* RTL810x has no jumbo frame support. */ 3342 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN); 3343 } else 3344 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); 3345 } 3346 3347 if (sc->rl_testmode) 3348 return; 3349 3350 CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) | 3351 RL_CFG1_DRVLOAD); 3352 3353 ifp->if_drv_flags |= IFF_DRV_RUNNING; 3354 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 3355 3356 sc->rl_flags &= ~RL_FLAG_LINK; 3357 mii_mediachg(mii); 3358 3359 sc->rl_watchdog_timer = 0; 3360 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 3361 } 3362 3363 /* 3364 * Set media options. 3365 */ 3366 static int 3367 re_ifmedia_upd(struct ifnet *ifp) 3368 { 3369 struct rl_softc *sc; 3370 struct mii_data *mii; 3371 int error; 3372 3373 sc = ifp->if_softc; 3374 mii = device_get_softc(sc->rl_miibus); 3375 RL_LOCK(sc); 3376 error = mii_mediachg(mii); 3377 RL_UNLOCK(sc); 3378 3379 return (error); 3380 } 3381 3382 /* 3383 * Report current media status. 3384 */ 3385 static void 3386 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 3387 { 3388 struct rl_softc *sc; 3389 struct mii_data *mii; 3390 3391 sc = ifp->if_softc; 3392 mii = device_get_softc(sc->rl_miibus); 3393 3394 RL_LOCK(sc); 3395 mii_pollstat(mii); 3396 ifmr->ifm_active = mii->mii_media_active; 3397 ifmr->ifm_status = mii->mii_media_status; 3398 RL_UNLOCK(sc); 3399 } 3400 3401 static int 3402 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 3403 { 3404 struct rl_softc *sc = ifp->if_softc; 3405 struct ifreq *ifr = (struct ifreq *) data; 3406 struct mii_data *mii; 3407 int error = 0; 3408 3409 switch (command) { 3410 case SIOCSIFMTU: 3411 if (ifr->ifr_mtu < ETHERMIN || 3412 ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu || 3413 ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 && 3414 ifr->ifr_mtu > RL_MTU)) { 3415 error = EINVAL; 3416 break; 3417 } 3418 RL_LOCK(sc); 3419 if (ifp->if_mtu != ifr->ifr_mtu) { 3420 ifp->if_mtu = ifr->ifr_mtu; 3421 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 3422 (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 3423 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3424 re_init_locked(sc); 3425 } 3426 if (ifp->if_mtu > RL_TSO_MTU && 3427 (ifp->if_capenable & IFCAP_TSO4) != 0) { 3428 ifp->if_capenable &= ~(IFCAP_TSO4 | 3429 IFCAP_VLAN_HWTSO); 3430 ifp->if_hwassist &= ~CSUM_TSO; 3431 } 3432 VLAN_CAPABILITIES(ifp); 3433 } 3434 RL_UNLOCK(sc); 3435 break; 3436 case SIOCSIFFLAGS: 3437 RL_LOCK(sc); 3438 if ((ifp->if_flags & IFF_UP) != 0) { 3439 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 3440 if (((ifp->if_flags ^ sc->rl_if_flags) 3441 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 3442 re_set_rxmode(sc); 3443 } else 3444 re_init_locked(sc); 3445 } else { 3446 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3447 re_stop(sc); 3448 } 3449 sc->rl_if_flags = ifp->if_flags; 3450 RL_UNLOCK(sc); 3451 break; 3452 case SIOCADDMULTI: 3453 case SIOCDELMULTI: 3454 RL_LOCK(sc); 3455 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 3456 re_set_rxmode(sc); 3457 RL_UNLOCK(sc); 3458 break; 3459 case SIOCGIFMEDIA: 3460 case SIOCSIFMEDIA: 3461 mii = device_get_softc(sc->rl_miibus); 3462 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 3463 break; 3464 case SIOCSIFCAP: 3465 { 3466 int mask, reinit; 3467 3468 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 3469 reinit = 0; 3470 #ifdef DEVICE_POLLING 3471 if (mask & IFCAP_POLLING) { 3472 if (ifr->ifr_reqcap & IFCAP_POLLING) { 3473 error = ether_poll_register(re_poll, ifp); 3474 if (error) 3475 return (error); 3476 RL_LOCK(sc); 3477 /* Disable interrupts */ 3478 CSR_WRITE_2(sc, RL_IMR, 0x0000); 3479 ifp->if_capenable |= IFCAP_POLLING; 3480 RL_UNLOCK(sc); 3481 } else { 3482 error = ether_poll_deregister(ifp); 3483 /* Enable interrupts. */ 3484 RL_LOCK(sc); 3485 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 3486 ifp->if_capenable &= ~IFCAP_POLLING; 3487 RL_UNLOCK(sc); 3488 } 3489 } 3490 #endif /* DEVICE_POLLING */ 3491 RL_LOCK(sc); 3492 if ((mask & IFCAP_TXCSUM) != 0 && 3493 (ifp->if_capabilities & IFCAP_TXCSUM) != 0) { 3494 ifp->if_capenable ^= IFCAP_TXCSUM; 3495 if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) 3496 ifp->if_hwassist |= RE_CSUM_FEATURES; 3497 else 3498 ifp->if_hwassist &= ~RE_CSUM_FEATURES; 3499 reinit = 1; 3500 } 3501 if ((mask & IFCAP_RXCSUM) != 0 && 3502 (ifp->if_capabilities & IFCAP_RXCSUM) != 0) { 3503 ifp->if_capenable ^= IFCAP_RXCSUM; 3504 reinit = 1; 3505 } 3506 if ((mask & IFCAP_TSO4) != 0 && 3507 (ifp->if_capabilities & IFCAP_TSO4) != 0) { 3508 ifp->if_capenable ^= IFCAP_TSO4; 3509 if ((IFCAP_TSO4 & ifp->if_capenable) != 0) 3510 ifp->if_hwassist |= CSUM_TSO; 3511 else 3512 ifp->if_hwassist &= ~CSUM_TSO; 3513 if (ifp->if_mtu > RL_TSO_MTU && 3514 (ifp->if_capenable & IFCAP_TSO4) != 0) { 3515 ifp->if_capenable &= ~IFCAP_TSO4; 3516 ifp->if_hwassist &= ~CSUM_TSO; 3517 } 3518 } 3519 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 3520 (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0) 3521 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 3522 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 3523 (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) { 3524 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 3525 /* TSO over VLAN requires VLAN hardware tagging. */ 3526 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0) 3527 ifp->if_capenable &= ~IFCAP_VLAN_HWTSO; 3528 reinit = 1; 3529 } 3530 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 3531 (mask & (IFCAP_HWCSUM | IFCAP_TSO4 | 3532 IFCAP_VLAN_HWTSO)) != 0) 3533 reinit = 1; 3534 if ((mask & IFCAP_WOL) != 0 && 3535 (ifp->if_capabilities & IFCAP_WOL) != 0) { 3536 if ((mask & IFCAP_WOL_UCAST) != 0) 3537 ifp->if_capenable ^= IFCAP_WOL_UCAST; 3538 if ((mask & IFCAP_WOL_MCAST) != 0) 3539 ifp->if_capenable ^= IFCAP_WOL_MCAST; 3540 if ((mask & IFCAP_WOL_MAGIC) != 0) 3541 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 3542 } 3543 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) { 3544 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3545 re_init_locked(sc); 3546 } 3547 RL_UNLOCK(sc); 3548 VLAN_CAPABILITIES(ifp); 3549 } 3550 break; 3551 default: 3552 error = ether_ioctl(ifp, command, data); 3553 break; 3554 } 3555 3556 return (error); 3557 } 3558 3559 static void 3560 re_watchdog(struct rl_softc *sc) 3561 { 3562 struct ifnet *ifp; 3563 3564 RL_LOCK_ASSERT(sc); 3565 3566 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0) 3567 return; 3568 3569 ifp = sc->rl_ifp; 3570 re_txeof(sc); 3571 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) { 3572 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 3573 "-- recovering\n"); 3574 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3575 re_start_locked(ifp); 3576 return; 3577 } 3578 3579 if_printf(ifp, "watchdog timeout\n"); 3580 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3581 3582 re_rxeof(sc, NULL); 3583 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 3584 re_init_locked(sc); 3585 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 3586 re_start_locked(ifp); 3587 } 3588 3589 /* 3590 * Stop the adapter and free any mbufs allocated to the 3591 * RX and TX lists. 3592 */ 3593 static void 3594 re_stop(struct rl_softc *sc) 3595 { 3596 int i; 3597 struct ifnet *ifp; 3598 struct rl_txdesc *txd; 3599 struct rl_rxdesc *rxd; 3600 3601 RL_LOCK_ASSERT(sc); 3602 3603 ifp = sc->rl_ifp; 3604 3605 sc->rl_watchdog_timer = 0; 3606 callout_stop(&sc->rl_stat_callout); 3607 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 3608 3609 /* 3610 * Disable accepting frames to put RX MAC into idle state. 3611 * Otherwise it's possible to get frames while stop command 3612 * execution is in progress and controller can DMA the frame 3613 * to already freed RX buffer during that period. 3614 */ 3615 CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) & 3616 ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI | 3617 RL_RXCFG_RX_BROAD)); 3618 3619 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3620 /* Enable RXDV gate. */ 3621 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) | 3622 0x00080000); 3623 } 3624 3625 if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) { 3626 for (i = RL_TIMEOUT; i > 0; i--) { 3627 if ((CSR_READ_1(sc, sc->rl_txstart) & 3628 RL_TXSTART_START) == 0) 3629 break; 3630 DELAY(20); 3631 } 3632 if (i == 0) 3633 device_printf(sc->rl_dev, 3634 "stopping TX poll timed out!\n"); 3635 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 3636 } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) { 3637 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB | 3638 RL_CMD_RX_ENB); 3639 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) { 3640 for (i = RL_TIMEOUT; i > 0; i--) { 3641 if ((CSR_READ_4(sc, RL_TXCFG) & 3642 RL_TXCFG_QUEUE_EMPTY) != 0) 3643 break; 3644 DELAY(100); 3645 } 3646 if (i == 0) 3647 device_printf(sc->rl_dev, 3648 "stopping TXQ timed out!\n"); 3649 } 3650 } else 3651 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 3652 DELAY(1000); 3653 CSR_WRITE_2(sc, RL_IMR, 0x0000); 3654 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 3655 3656 if (sc->rl_head != NULL) { 3657 m_freem(sc->rl_head); 3658 sc->rl_head = sc->rl_tail = NULL; 3659 } 3660 3661 /* Free the TX list buffers. */ 3662 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 3663 txd = &sc->rl_ldata.rl_tx_desc[i]; 3664 if (txd->tx_m != NULL) { 3665 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 3666 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3667 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 3668 txd->tx_dmamap); 3669 m_freem(txd->tx_m); 3670 txd->tx_m = NULL; 3671 } 3672 } 3673 3674 /* Free the RX list buffers. */ 3675 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 3676 rxd = &sc->rl_ldata.rl_rx_desc[i]; 3677 if (rxd->rx_m != NULL) { 3678 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 3679 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3680 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 3681 rxd->rx_dmamap); 3682 m_freem(rxd->rx_m); 3683 rxd->rx_m = NULL; 3684 } 3685 } 3686 3687 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3688 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 3689 rxd = &sc->rl_ldata.rl_jrx_desc[i]; 3690 if (rxd->rx_m != NULL) { 3691 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, 3692 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3693 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, 3694 rxd->rx_dmamap); 3695 m_freem(rxd->rx_m); 3696 rxd->rx_m = NULL; 3697 } 3698 } 3699 } 3700 } 3701 3702 /* 3703 * Device suspend routine. Stop the interface and save some PCI 3704 * settings in case the BIOS doesn't restore them properly on 3705 * resume. 3706 */ 3707 static int 3708 re_suspend(device_t dev) 3709 { 3710 struct rl_softc *sc; 3711 3712 sc = device_get_softc(dev); 3713 3714 RL_LOCK(sc); 3715 re_stop(sc); 3716 re_setwol(sc); 3717 sc->suspended = 1; 3718 RL_UNLOCK(sc); 3719 3720 return (0); 3721 } 3722 3723 /* 3724 * Device resume routine. Restore some PCI settings in case the BIOS 3725 * doesn't, re-enable busmastering, and restart the interface if 3726 * appropriate. 3727 */ 3728 static int 3729 re_resume(device_t dev) 3730 { 3731 struct rl_softc *sc; 3732 struct ifnet *ifp; 3733 3734 sc = device_get_softc(dev); 3735 3736 RL_LOCK(sc); 3737 3738 ifp = sc->rl_ifp; 3739 /* Take controller out of sleep mode. */ 3740 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3741 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3742 CSR_WRITE_1(sc, RL_GPIO, 3743 CSR_READ_1(sc, RL_GPIO) | 0x01); 3744 } 3745 3746 /* 3747 * Clear WOL matching such that normal Rx filtering 3748 * wouldn't interfere with WOL patterns. 3749 */ 3750 re_clrwol(sc); 3751 3752 /* reinitialize interface if necessary */ 3753 if (ifp->if_flags & IFF_UP) 3754 re_init_locked(sc); 3755 3756 sc->suspended = 0; 3757 RL_UNLOCK(sc); 3758 3759 return (0); 3760 } 3761 3762 /* 3763 * Stop all chip I/O so that the kernel's probe routines don't 3764 * get confused by errant DMAs when rebooting. 3765 */ 3766 static int 3767 re_shutdown(device_t dev) 3768 { 3769 struct rl_softc *sc; 3770 3771 sc = device_get_softc(dev); 3772 3773 RL_LOCK(sc); 3774 re_stop(sc); 3775 /* 3776 * Mark interface as down since otherwise we will panic if 3777 * interrupt comes in later on, which can happen in some 3778 * cases. 3779 */ 3780 sc->rl_ifp->if_flags &= ~IFF_UP; 3781 re_setwol(sc); 3782 RL_UNLOCK(sc); 3783 3784 return (0); 3785 } 3786 3787 static void 3788 re_set_linkspeed(struct rl_softc *sc) 3789 { 3790 struct mii_softc *miisc; 3791 struct mii_data *mii; 3792 int aneg, i, phyno; 3793 3794 RL_LOCK_ASSERT(sc); 3795 3796 mii = device_get_softc(sc->rl_miibus); 3797 mii_pollstat(mii); 3798 aneg = 0; 3799 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 3800 (IFM_ACTIVE | IFM_AVALID)) { 3801 switch IFM_SUBTYPE(mii->mii_media_active) { 3802 case IFM_10_T: 3803 case IFM_100_TX: 3804 return; 3805 case IFM_1000_T: 3806 aneg++; 3807 break; 3808 default: 3809 break; 3810 } 3811 } 3812 miisc = LIST_FIRST(&mii->mii_phys); 3813 phyno = miisc->mii_phy; 3814 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 3815 PHY_RESET(miisc); 3816 re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0); 3817 re_miibus_writereg(sc->rl_dev, phyno, 3818 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 3819 re_miibus_writereg(sc->rl_dev, phyno, 3820 MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); 3821 DELAY(1000); 3822 if (aneg != 0) { 3823 /* 3824 * Poll link state until re(4) get a 10/100Mbps link. 3825 */ 3826 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 3827 mii_pollstat(mii); 3828 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 3829 == (IFM_ACTIVE | IFM_AVALID)) { 3830 switch (IFM_SUBTYPE(mii->mii_media_active)) { 3831 case IFM_10_T: 3832 case IFM_100_TX: 3833 return; 3834 default: 3835 break; 3836 } 3837 } 3838 RL_UNLOCK(sc); 3839 pause("relnk", hz); 3840 RL_LOCK(sc); 3841 } 3842 if (i == MII_ANEGTICKS_GIGE) 3843 device_printf(sc->rl_dev, 3844 "establishing a link failed, WOL may not work!"); 3845 } 3846 /* 3847 * No link, force MAC to have 100Mbps, full-duplex link. 3848 * MAC does not require reprogramming on resolved speed/duplex, 3849 * so this is just for completeness. 3850 */ 3851 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 3852 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 3853 } 3854 3855 static void 3856 re_setwol(struct rl_softc *sc) 3857 { 3858 struct ifnet *ifp; 3859 int pmc; 3860 uint16_t pmstat; 3861 uint8_t v; 3862 3863 RL_LOCK_ASSERT(sc); 3864 3865 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3866 return; 3867 3868 ifp = sc->rl_ifp; 3869 /* Put controller into sleep mode. */ 3870 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3871 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3872 CSR_WRITE_1(sc, RL_GPIO, 3873 CSR_READ_1(sc, RL_GPIO) & ~0x01); 3874 } 3875 if ((ifp->if_capenable & IFCAP_WOL) != 0) { 3876 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3877 /* Disable RXDV gate. */ 3878 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) & 3879 ~0x00080000); 3880 } 3881 re_set_rxmode(sc); 3882 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0) 3883 re_set_linkspeed(sc); 3884 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0) 3885 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB); 3886 } 3887 /* Enable config register write. */ 3888 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3889 3890 /* Enable PME. */ 3891 v = CSR_READ_1(sc, sc->rl_cfg1); 3892 v &= ~RL_CFG1_PME; 3893 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3894 v |= RL_CFG1_PME; 3895 CSR_WRITE_1(sc, sc->rl_cfg1, v); 3896 3897 v = CSR_READ_1(sc, sc->rl_cfg3); 3898 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3899 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 3900 v |= RL_CFG3_WOL_MAGIC; 3901 CSR_WRITE_1(sc, sc->rl_cfg3, v); 3902 3903 v = CSR_READ_1(sc, sc->rl_cfg5); 3904 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST | 3905 RL_CFG5_WOL_LANWAKE); 3906 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 3907 v |= RL_CFG5_WOL_UCAST; 3908 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 3909 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; 3910 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3911 v |= RL_CFG5_WOL_LANWAKE; 3912 CSR_WRITE_1(sc, sc->rl_cfg5, v); 3913 3914 /* Config register write done. */ 3915 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3916 3917 if ((ifp->if_capenable & IFCAP_WOL) == 0 && 3918 (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) 3919 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80); 3920 /* 3921 * It seems that hardware resets its link speed to 100Mbps in 3922 * power down mode so switching to 100Mbps in driver is not 3923 * needed. 3924 */ 3925 3926 /* Request PME if WOL is requested. */ 3927 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); 3928 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3929 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3930 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3931 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 3932 } 3933 3934 static void 3935 re_clrwol(struct rl_softc *sc) 3936 { 3937 int pmc; 3938 uint8_t v; 3939 3940 RL_LOCK_ASSERT(sc); 3941 3942 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3943 return; 3944 3945 /* Enable config register write. */ 3946 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3947 3948 v = CSR_READ_1(sc, sc->rl_cfg3); 3949 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3950 CSR_WRITE_1(sc, sc->rl_cfg3, v); 3951 3952 /* Config register write done. */ 3953 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3954 3955 v = CSR_READ_1(sc, sc->rl_cfg5); 3956 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 3957 v &= ~RL_CFG5_WOL_LANWAKE; 3958 CSR_WRITE_1(sc, sc->rl_cfg5, v); 3959 } 3960 3961 static void 3962 re_add_sysctls(struct rl_softc *sc) 3963 { 3964 struct sysctl_ctx_list *ctx; 3965 struct sysctl_oid_list *children; 3966 int error; 3967 3968 ctx = device_get_sysctl_ctx(sc->rl_dev); 3969 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev)); 3970 3971 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats", 3972 CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I", 3973 "Statistics Information"); 3974 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) 3975 return; 3976 3977 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod", 3978 CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0, 3979 sysctl_hw_re_int_mod, "I", "re RX interrupt moderation"); 3980 /* Pull in device tunables. */ 3981 sc->rl_int_rx_mod = RL_TIMER_DEFAULT; 3982 error = resource_int_value(device_get_name(sc->rl_dev), 3983 device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod); 3984 if (error == 0) { 3985 if (sc->rl_int_rx_mod < RL_TIMER_MIN || 3986 sc->rl_int_rx_mod > RL_TIMER_MAX) { 3987 device_printf(sc->rl_dev, "int_rx_mod value out of " 3988 "range; using default: %d\n", 3989 RL_TIMER_DEFAULT); 3990 sc->rl_int_rx_mod = RL_TIMER_DEFAULT; 3991 } 3992 } 3993 } 3994 3995 static int 3996 re_sysctl_stats(SYSCTL_HANDLER_ARGS) 3997 { 3998 struct rl_softc *sc; 3999 struct rl_stats *stats; 4000 int error, i, result; 4001 4002 result = -1; 4003 error = sysctl_handle_int(oidp, &result, 0, req); 4004 if (error || req->newptr == NULL) 4005 return (error); 4006 4007 if (result == 1) { 4008 sc = (struct rl_softc *)arg1; 4009 RL_LOCK(sc); 4010 if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 4011 RL_UNLOCK(sc); 4012 goto done; 4013 } 4014 bus_dmamap_sync(sc->rl_ldata.rl_stag, 4015 sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD); 4016 CSR_WRITE_4(sc, RL_DUMPSTATS_HI, 4017 RL_ADDR_HI(sc->rl_ldata.rl_stats_addr)); 4018 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 4019 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr)); 4020 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 4021 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr | 4022 RL_DUMPSTATS_START)); 4023 for (i = RL_TIMEOUT; i > 0; i--) { 4024 if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) & 4025 RL_DUMPSTATS_START) == 0) 4026 break; 4027 DELAY(1000); 4028 } 4029 bus_dmamap_sync(sc->rl_ldata.rl_stag, 4030 sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD); 4031 RL_UNLOCK(sc); 4032 if (i == 0) { 4033 device_printf(sc->rl_dev, 4034 "DUMP statistics request timed out\n"); 4035 return (ETIMEDOUT); 4036 } 4037 done: 4038 stats = sc->rl_ldata.rl_stats; 4039 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev)); 4040 printf("Tx frames : %ju\n", 4041 (uintmax_t)le64toh(stats->rl_tx_pkts)); 4042 printf("Rx frames : %ju\n", 4043 (uintmax_t)le64toh(stats->rl_rx_pkts)); 4044 printf("Tx errors : %ju\n", 4045 (uintmax_t)le64toh(stats->rl_tx_errs)); 4046 printf("Rx errors : %u\n", 4047 le32toh(stats->rl_rx_errs)); 4048 printf("Rx missed frames : %u\n", 4049 (uint32_t)le16toh(stats->rl_missed_pkts)); 4050 printf("Rx frame alignment errs : %u\n", 4051 (uint32_t)le16toh(stats->rl_rx_framealign_errs)); 4052 printf("Tx single collisions : %u\n", 4053 le32toh(stats->rl_tx_onecoll)); 4054 printf("Tx multiple collisions : %u\n", 4055 le32toh(stats->rl_tx_multicolls)); 4056 printf("Rx unicast frames : %ju\n", 4057 (uintmax_t)le64toh(stats->rl_rx_ucasts)); 4058 printf("Rx broadcast frames : %ju\n", 4059 (uintmax_t)le64toh(stats->rl_rx_bcasts)); 4060 printf("Rx multicast frames : %u\n", 4061 le32toh(stats->rl_rx_mcasts)); 4062 printf("Tx aborts : %u\n", 4063 (uint32_t)le16toh(stats->rl_tx_aborts)); 4064 printf("Tx underruns : %u\n", 4065 (uint32_t)le16toh(stats->rl_rx_underruns)); 4066 } 4067 4068 return (error); 4069 } 4070 4071 static int 4072 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4073 { 4074 int error, value; 4075 4076 if (arg1 == NULL) 4077 return (EINVAL); 4078 value = *(int *)arg1; 4079 error = sysctl_handle_int(oidp, &value, 0, req); 4080 if (error || req->newptr == NULL) 4081 return (error); 4082 if (value < low || value > high) 4083 return (EINVAL); 4084 *(int *)arg1 = value; 4085 4086 return (0); 4087 } 4088 4089 static int 4090 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS) 4091 { 4092 4093 return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN, 4094 RL_TIMER_MAX)); 4095 } 4096 4097 #ifdef DEBUGNET 4098 static void 4099 re_debugnet_init(struct ifnet *ifp, int *nrxr, int *ncl, int *clsize) 4100 { 4101 struct rl_softc *sc; 4102 4103 sc = if_getsoftc(ifp); 4104 RL_LOCK(sc); 4105 *nrxr = sc->rl_ldata.rl_rx_desc_cnt; 4106 *ncl = DEBUGNET_MAX_IN_FLIGHT; 4107 *clsize = (ifp->if_mtu > RL_MTU && 4108 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) ? MJUM9BYTES : MCLBYTES; 4109 RL_UNLOCK(sc); 4110 } 4111 4112 static void 4113 re_debugnet_event(struct ifnet *ifp __unused, enum debugnet_ev event __unused) 4114 { 4115 } 4116 4117 static int 4118 re_debugnet_transmit(struct ifnet *ifp, struct mbuf *m) 4119 { 4120 struct rl_softc *sc; 4121 int error; 4122 4123 sc = if_getsoftc(ifp); 4124 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4125 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) 4126 return (EBUSY); 4127 4128 error = re_encap(sc, &m); 4129 if (error == 0) 4130 re_start_tx(sc); 4131 return (error); 4132 } 4133 4134 static int 4135 re_debugnet_poll(struct ifnet *ifp, int count) 4136 { 4137 struct rl_softc *sc; 4138 int error; 4139 4140 sc = if_getsoftc(ifp); 4141 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 4142 (sc->rl_flags & RL_FLAG_LINK) == 0) 4143 return (EBUSY); 4144 4145 re_txeof(sc); 4146 error = re_rxeof(sc, NULL); 4147 if (error != 0 && error != EAGAIN) 4148 return (error); 4149 return (0); 4150 } 4151 #endif /* DEBUGNET */ 4152