1 /*- 2 * Copyright (c) 1997, 1998-2003 3 * Bill Paul <wpaul@windriver.com>. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by Bill Paul. 16 * 4. Neither the name of the author nor the names of any co-contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 30 * THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 /* 37 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver 38 * 39 * Written by Bill Paul <wpaul@windriver.com> 40 * Senior Networking Software Engineer 41 * Wind River Systems 42 */ 43 44 /* 45 * This driver is designed to support RealTek's next generation of 46 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 47 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, 48 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. 49 * 50 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 51 * with the older 8139 family, however it also supports a special 52 * C+ mode of operation that provides several new performance enhancing 53 * features. These include: 54 * 55 * o Descriptor based DMA mechanism. Each descriptor represents 56 * a single packet fragment. Data buffers may be aligned on 57 * any byte boundary. 58 * 59 * o 64-bit DMA 60 * 61 * o TCP/IP checksum offload for both RX and TX 62 * 63 * o High and normal priority transmit DMA rings 64 * 65 * o VLAN tag insertion and extraction 66 * 67 * o TCP large send (segmentation offload) 68 * 69 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 70 * programming API is fairly straightforward. The RX filtering, EEPROM 71 * access and PHY access is the same as it is on the older 8139 series 72 * chips. 73 * 74 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 75 * same programming API and feature set as the 8139C+ with the following 76 * differences and additions: 77 * 78 * o 1000Mbps mode 79 * 80 * o Jumbo frames 81 * 82 * o GMII and TBI ports/registers for interfacing with copper 83 * or fiber PHYs 84 * 85 * o RX and TX DMA rings can have up to 1024 descriptors 86 * (the 8139C+ allows a maximum of 64) 87 * 88 * o Slight differences in register layout from the 8139C+ 89 * 90 * The TX start and timer interrupt registers are at different locations 91 * on the 8169 than they are on the 8139C+. Also, the status word in the 92 * RX descriptor has a slightly different bit layout. The 8169 does not 93 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 94 * copper gigE PHY. 95 * 96 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 97 * (the 'S' stands for 'single-chip'). These devices have the same 98 * programming API as the older 8169, but also have some vendor-specific 99 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 100 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 101 * 102 * This driver takes advantage of the RX and TX checksum offload and 103 * VLAN tag insertion/extraction features. It also implements TX 104 * interrupt moderation using the timer interrupt registers, which 105 * significantly reduces TX interrupt load. There is also support 106 * for jumbo frames, however the 8169/8169S/8110S can not transmit 107 * jumbo frames larger than 7440, so the max MTU possible with this 108 * driver is 7422 bytes. 109 */ 110 111 #ifdef HAVE_KERNEL_OPTION_HEADERS 112 #include "opt_device_polling.h" 113 #endif 114 115 #include <sys/param.h> 116 #include <sys/endian.h> 117 #include <sys/systm.h> 118 #include <sys/sockio.h> 119 #include <sys/mbuf.h> 120 #include <sys/malloc.h> 121 #include <sys/module.h> 122 #include <sys/kernel.h> 123 #include <sys/socket.h> 124 #include <sys/lock.h> 125 #include <sys/mutex.h> 126 #include <sys/taskqueue.h> 127 128 #include <net/if.h> 129 #include <net/if_arp.h> 130 #include <net/ethernet.h> 131 #include <net/if_dl.h> 132 #include <net/if_media.h> 133 #include <net/if_types.h> 134 #include <net/if_vlan_var.h> 135 136 #include <net/bpf.h> 137 138 #include <machine/bus.h> 139 #include <machine/resource.h> 140 #include <sys/bus.h> 141 #include <sys/rman.h> 142 143 #include <dev/mii/mii.h> 144 #include <dev/mii/miivar.h> 145 146 #include <dev/pci/pcireg.h> 147 #include <dev/pci/pcivar.h> 148 149 #include <pci/if_rlreg.h> 150 151 MODULE_DEPEND(re, pci, 1, 1, 1); 152 MODULE_DEPEND(re, ether, 1, 1, 1); 153 MODULE_DEPEND(re, miibus, 1, 1, 1); 154 155 /* "device miibus" required. See GENERIC if you get errors here. */ 156 #include "miibus_if.h" 157 158 /* Tunables. */ 159 static int msi_disable = 1; 160 TUNABLE_INT("hw.re.msi_disable", &msi_disable); 161 162 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 163 164 /* 165 * Various supported device vendors/types and their names. 166 */ 167 static struct rl_type re_devs[] = { 168 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0, 169 "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, 170 { RT_VENDORID, RT_DEVICEID_8139, 0, 171 "RealTek 8139C+ 10/100BaseTX" }, 172 { RT_VENDORID, RT_DEVICEID_8101E, 0, 173 "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" }, 174 { RT_VENDORID, RT_DEVICEID_8168, 0, 175 "RealTek 8168/8168B/8168C/8168CP/8168D/8111B/8111C/8111CP PCIe " 176 "Gigabit Ethernet" }, 177 { RT_VENDORID, RT_DEVICEID_8169, 0, 178 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" }, 179 { RT_VENDORID, RT_DEVICEID_8169SC, 0, 180 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" }, 181 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0, 182 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, 183 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0, 184 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, 185 { USR_VENDORID, USR_DEVICEID_997902, 0, 186 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" } 187 }; 188 189 static struct rl_hwrev re_hwrevs[] = { 190 { RL_HWREV_8139, RL_8139, "" }, 191 { RL_HWREV_8139A, RL_8139, "A" }, 192 { RL_HWREV_8139AG, RL_8139, "A-G" }, 193 { RL_HWREV_8139B, RL_8139, "B" }, 194 { RL_HWREV_8130, RL_8139, "8130" }, 195 { RL_HWREV_8139C, RL_8139, "C" }, 196 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" }, 197 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"}, 198 { RL_HWREV_8168_SPIN1, RL_8169, "8168"}, 199 { RL_HWREV_8169, RL_8169, "8169"}, 200 { RL_HWREV_8169S, RL_8169, "8169S"}, 201 { RL_HWREV_8110S, RL_8169, "8110S"}, 202 { RL_HWREV_8169_8110SB, RL_8169, "8169SB"}, 203 { RL_HWREV_8169_8110SC, RL_8169, "8169SC"}, 204 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL"}, 205 { RL_HWREV_8100, RL_8139, "8100"}, 206 { RL_HWREV_8101, RL_8139, "8101"}, 207 { RL_HWREV_8100E, RL_8169, "8100E"}, 208 { RL_HWREV_8101E, RL_8169, "8101E"}, 209 { RL_HWREV_8102E, RL_8169, "8102E"}, 210 { RL_HWREV_8102EL, RL_8169, "8102EL"}, 211 { RL_HWREV_8168_SPIN2, RL_8169, "8168"}, 212 { RL_HWREV_8168_SPIN3, RL_8169, "8168"}, 213 { RL_HWREV_8168C, RL_8169, "8168C/8111C"}, 214 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"}, 215 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"}, 216 { RL_HWREV_8168D, RL_8169, "8168D"}, 217 { 0, 0, NULL } 218 }; 219 220 static int re_probe (device_t); 221 static int re_attach (device_t); 222 static int re_detach (device_t); 223 224 static int re_encap (struct rl_softc *, struct mbuf **); 225 226 static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); 227 static int re_allocmem (device_t, struct rl_softc *); 228 static __inline void re_discard_rxbuf 229 (struct rl_softc *, int); 230 static int re_newbuf (struct rl_softc *, int); 231 static int re_rx_list_init (struct rl_softc *); 232 static int re_tx_list_init (struct rl_softc *); 233 #ifdef RE_FIXUP_RX 234 static __inline void re_fixup_rx 235 (struct mbuf *); 236 #endif 237 static int re_rxeof (struct rl_softc *); 238 static void re_txeof (struct rl_softc *); 239 #ifdef DEVICE_POLLING 240 static void re_poll (struct ifnet *, enum poll_cmd, int); 241 static void re_poll_locked (struct ifnet *, enum poll_cmd, int); 242 #endif 243 static int re_intr (void *); 244 static void re_tick (void *); 245 static void re_tx_task (void *, int); 246 static void re_int_task (void *, int); 247 static void re_start (struct ifnet *); 248 static int re_ioctl (struct ifnet *, u_long, caddr_t); 249 static void re_init (void *); 250 static void re_init_locked (struct rl_softc *); 251 static void re_stop (struct rl_softc *); 252 static void re_watchdog (struct rl_softc *); 253 static int re_suspend (device_t); 254 static int re_resume (device_t); 255 static int re_shutdown (device_t); 256 static int re_ifmedia_upd (struct ifnet *); 257 static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); 258 259 static void re_eeprom_putbyte (struct rl_softc *, int); 260 static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); 261 static void re_read_eeprom (struct rl_softc *, caddr_t, int, int); 262 static int re_gmii_readreg (device_t, int, int); 263 static int re_gmii_writereg (device_t, int, int, int); 264 265 static int re_miibus_readreg (device_t, int, int); 266 static int re_miibus_writereg (device_t, int, int, int); 267 static void re_miibus_statchg (device_t); 268 269 static void re_setmulti (struct rl_softc *); 270 static void re_reset (struct rl_softc *); 271 static void re_setwol (struct rl_softc *); 272 static void re_clrwol (struct rl_softc *); 273 274 #ifdef RE_DIAG 275 static int re_diag (struct rl_softc *); 276 #endif 277 278 static device_method_t re_methods[] = { 279 /* Device interface */ 280 DEVMETHOD(device_probe, re_probe), 281 DEVMETHOD(device_attach, re_attach), 282 DEVMETHOD(device_detach, re_detach), 283 DEVMETHOD(device_suspend, re_suspend), 284 DEVMETHOD(device_resume, re_resume), 285 DEVMETHOD(device_shutdown, re_shutdown), 286 287 /* bus interface */ 288 DEVMETHOD(bus_print_child, bus_generic_print_child), 289 DEVMETHOD(bus_driver_added, bus_generic_driver_added), 290 291 /* MII interface */ 292 DEVMETHOD(miibus_readreg, re_miibus_readreg), 293 DEVMETHOD(miibus_writereg, re_miibus_writereg), 294 DEVMETHOD(miibus_statchg, re_miibus_statchg), 295 296 { 0, 0 } 297 }; 298 299 static driver_t re_driver = { 300 "re", 301 re_methods, 302 sizeof(struct rl_softc) 303 }; 304 305 static devclass_t re_devclass; 306 307 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0); 308 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0); 309 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0); 310 311 #define EE_SET(x) \ 312 CSR_WRITE_1(sc, RL_EECMD, \ 313 CSR_READ_1(sc, RL_EECMD) | x) 314 315 #define EE_CLR(x) \ 316 CSR_WRITE_1(sc, RL_EECMD, \ 317 CSR_READ_1(sc, RL_EECMD) & ~x) 318 319 /* 320 * Send a read command and address to the EEPROM, check for ACK. 321 */ 322 static void 323 re_eeprom_putbyte(struct rl_softc *sc, int addr) 324 { 325 int d, i; 326 327 d = addr | (RL_9346_READ << sc->rl_eewidth); 328 329 /* 330 * Feed in each bit and strobe the clock. 331 */ 332 333 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { 334 if (d & i) { 335 EE_SET(RL_EE_DATAIN); 336 } else { 337 EE_CLR(RL_EE_DATAIN); 338 } 339 DELAY(100); 340 EE_SET(RL_EE_CLK); 341 DELAY(150); 342 EE_CLR(RL_EE_CLK); 343 DELAY(100); 344 } 345 } 346 347 /* 348 * Read a word of data stored in the EEPROM at address 'addr.' 349 */ 350 static void 351 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest) 352 { 353 int i; 354 u_int16_t word = 0; 355 356 /* 357 * Send address of word we want to read. 358 */ 359 re_eeprom_putbyte(sc, addr); 360 361 /* 362 * Start reading bits from EEPROM. 363 */ 364 for (i = 0x8000; i; i >>= 1) { 365 EE_SET(RL_EE_CLK); 366 DELAY(100); 367 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) 368 word |= i; 369 EE_CLR(RL_EE_CLK); 370 DELAY(100); 371 } 372 373 *dest = word; 374 } 375 376 /* 377 * Read a sequence of words from the EEPROM. 378 */ 379 static void 380 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt) 381 { 382 int i; 383 u_int16_t word = 0, *ptr; 384 385 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 386 387 DELAY(100); 388 389 for (i = 0; i < cnt; i++) { 390 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); 391 re_eeprom_getword(sc, off + i, &word); 392 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); 393 ptr = (u_int16_t *)(dest + (i * 2)); 394 *ptr = word; 395 } 396 397 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 398 } 399 400 static int 401 re_gmii_readreg(device_t dev, int phy, int reg) 402 { 403 struct rl_softc *sc; 404 u_int32_t rval; 405 int i; 406 407 if (phy != 1) 408 return (0); 409 410 sc = device_get_softc(dev); 411 412 /* Let the rgephy driver read the GMEDIASTAT register */ 413 414 if (reg == RL_GMEDIASTAT) { 415 rval = CSR_READ_1(sc, RL_GMEDIASTAT); 416 return (rval); 417 } 418 419 CSR_WRITE_4(sc, RL_PHYAR, reg << 16); 420 421 for (i = 0; i < RL_TIMEOUT; i++) { 422 rval = CSR_READ_4(sc, RL_PHYAR); 423 if (rval & RL_PHYAR_BUSY) 424 break; 425 DELAY(100); 426 } 427 428 if (i == RL_TIMEOUT) { 429 device_printf(sc->rl_dev, "PHY read failed\n"); 430 return (0); 431 } 432 433 return (rval & RL_PHYAR_PHYDATA); 434 } 435 436 static int 437 re_gmii_writereg(device_t dev, int phy, int reg, int data) 438 { 439 struct rl_softc *sc; 440 u_int32_t rval; 441 int i; 442 443 sc = device_get_softc(dev); 444 445 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | 446 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); 447 448 for (i = 0; i < RL_TIMEOUT; i++) { 449 rval = CSR_READ_4(sc, RL_PHYAR); 450 if (!(rval & RL_PHYAR_BUSY)) 451 break; 452 DELAY(100); 453 } 454 455 if (i == RL_TIMEOUT) { 456 device_printf(sc->rl_dev, "PHY write failed\n"); 457 return (0); 458 } 459 460 return (0); 461 } 462 463 static int 464 re_miibus_readreg(device_t dev, int phy, int reg) 465 { 466 struct rl_softc *sc; 467 u_int16_t rval = 0; 468 u_int16_t re8139_reg = 0; 469 470 sc = device_get_softc(dev); 471 472 if (sc->rl_type == RL_8169) { 473 rval = re_gmii_readreg(dev, phy, reg); 474 return (rval); 475 } 476 477 /* Pretend the internal PHY is only at address 0 */ 478 if (phy) { 479 return (0); 480 } 481 switch (reg) { 482 case MII_BMCR: 483 re8139_reg = RL_BMCR; 484 break; 485 case MII_BMSR: 486 re8139_reg = RL_BMSR; 487 break; 488 case MII_ANAR: 489 re8139_reg = RL_ANAR; 490 break; 491 case MII_ANER: 492 re8139_reg = RL_ANER; 493 break; 494 case MII_ANLPAR: 495 re8139_reg = RL_LPAR; 496 break; 497 case MII_PHYIDR1: 498 case MII_PHYIDR2: 499 return (0); 500 /* 501 * Allow the rlphy driver to read the media status 502 * register. If we have a link partner which does not 503 * support NWAY, this is the register which will tell 504 * us the results of parallel detection. 505 */ 506 case RL_MEDIASTAT: 507 rval = CSR_READ_1(sc, RL_MEDIASTAT); 508 return (rval); 509 default: 510 device_printf(sc->rl_dev, "bad phy register\n"); 511 return (0); 512 } 513 rval = CSR_READ_2(sc, re8139_reg); 514 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) { 515 /* 8139C+ has different bit layout. */ 516 rval &= ~(BMCR_LOOP | BMCR_ISO); 517 } 518 return (rval); 519 } 520 521 static int 522 re_miibus_writereg(device_t dev, int phy, int reg, int data) 523 { 524 struct rl_softc *sc; 525 u_int16_t re8139_reg = 0; 526 int rval = 0; 527 528 sc = device_get_softc(dev); 529 530 if (sc->rl_type == RL_8169) { 531 rval = re_gmii_writereg(dev, phy, reg, data); 532 return (rval); 533 } 534 535 /* Pretend the internal PHY is only at address 0 */ 536 if (phy) 537 return (0); 538 539 switch (reg) { 540 case MII_BMCR: 541 re8139_reg = RL_BMCR; 542 if (sc->rl_type == RL_8139CPLUS) { 543 /* 8139C+ has different bit layout. */ 544 data &= ~(BMCR_LOOP | BMCR_ISO); 545 } 546 break; 547 case MII_BMSR: 548 re8139_reg = RL_BMSR; 549 break; 550 case MII_ANAR: 551 re8139_reg = RL_ANAR; 552 break; 553 case MII_ANER: 554 re8139_reg = RL_ANER; 555 break; 556 case MII_ANLPAR: 557 re8139_reg = RL_LPAR; 558 break; 559 case MII_PHYIDR1: 560 case MII_PHYIDR2: 561 return (0); 562 break; 563 default: 564 device_printf(sc->rl_dev, "bad phy register\n"); 565 return (0); 566 } 567 CSR_WRITE_2(sc, re8139_reg, data); 568 return (0); 569 } 570 571 static void 572 re_miibus_statchg(device_t dev) 573 { 574 struct rl_softc *sc; 575 struct ifnet *ifp; 576 struct mii_data *mii; 577 578 sc = device_get_softc(dev); 579 mii = device_get_softc(sc->rl_miibus); 580 ifp = sc->rl_ifp; 581 if (mii == NULL || ifp == NULL || 582 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 583 return; 584 585 sc->rl_flags &= ~RL_FLAG_LINK; 586 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 587 (IFM_ACTIVE | IFM_AVALID)) { 588 switch (IFM_SUBTYPE(mii->mii_media_active)) { 589 case IFM_10_T: 590 case IFM_100_TX: 591 sc->rl_flags |= RL_FLAG_LINK; 592 break; 593 case IFM_1000_T: 594 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 595 break; 596 sc->rl_flags |= RL_FLAG_LINK; 597 break; 598 default: 599 break; 600 } 601 } 602 /* 603 * RealTek controllers does not provide any interface to 604 * Tx/Rx MACs for resolved speed, duplex and flow-control 605 * parameters. 606 */ 607 } 608 609 /* 610 * Program the 64-bit multicast hash filter. 611 */ 612 static void 613 re_setmulti(struct rl_softc *sc) 614 { 615 struct ifnet *ifp; 616 int h = 0; 617 u_int32_t hashes[2] = { 0, 0 }; 618 struct ifmultiaddr *ifma; 619 u_int32_t rxfilt; 620 int mcnt = 0; 621 622 RL_LOCK_ASSERT(sc); 623 624 ifp = sc->rl_ifp; 625 626 627 rxfilt = CSR_READ_4(sc, RL_RXCFG); 628 rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI); 629 if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { 630 if (ifp->if_flags & IFF_PROMISC) 631 rxfilt |= RL_RXCFG_RX_ALLPHYS; 632 /* 633 * Unlike other hardwares, we have to explicitly set 634 * RL_RXCFG_RX_MULTI to receive multicast frames in 635 * promiscuous mode. 636 */ 637 rxfilt |= RL_RXCFG_RX_MULTI; 638 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 639 CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF); 640 CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF); 641 return; 642 } 643 644 /* first, zot all the existing hash bits */ 645 CSR_WRITE_4(sc, RL_MAR0, 0); 646 CSR_WRITE_4(sc, RL_MAR4, 0); 647 648 /* now program new ones */ 649 IF_ADDR_LOCK(ifp); 650 TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 651 if (ifma->ifma_addr->sa_family != AF_LINK) 652 continue; 653 h = ether_crc32_be(LLADDR((struct sockaddr_dl *) 654 ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; 655 if (h < 32) 656 hashes[0] |= (1 << h); 657 else 658 hashes[1] |= (1 << (h - 32)); 659 mcnt++; 660 } 661 IF_ADDR_UNLOCK(ifp); 662 663 if (mcnt) 664 rxfilt |= RL_RXCFG_RX_MULTI; 665 else 666 rxfilt &= ~RL_RXCFG_RX_MULTI; 667 668 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 669 670 /* 671 * For some unfathomable reason, RealTek decided to reverse 672 * the order of the multicast hash registers in the PCI Express 673 * parts. This means we have to write the hash pattern in reverse 674 * order for those devices. 675 */ 676 677 if ((sc->rl_flags & RL_FLAG_INVMAR) != 0) { 678 CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1])); 679 CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0])); 680 } else { 681 CSR_WRITE_4(sc, RL_MAR0, hashes[0]); 682 CSR_WRITE_4(sc, RL_MAR4, hashes[1]); 683 } 684 } 685 686 static void 687 re_reset(struct rl_softc *sc) 688 { 689 int i; 690 691 RL_LOCK_ASSERT(sc); 692 693 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); 694 695 for (i = 0; i < RL_TIMEOUT; i++) { 696 DELAY(10); 697 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) 698 break; 699 } 700 if (i == RL_TIMEOUT) 701 device_printf(sc->rl_dev, "reset never completed!\n"); 702 703 if ((sc->rl_flags & RL_FLAG_PHY8169) != 0) 704 CSR_WRITE_1(sc, 0x82, 1); 705 if ((sc->rl_flags & RL_FLAG_PHY8110S) != 0) { 706 CSR_WRITE_1(sc, 0x82, 1); 707 re_gmii_writereg(sc->rl_dev, 1, 0x0B, 0); 708 } 709 } 710 711 #ifdef RE_DIAG 712 713 /* 714 * The following routine is designed to test for a defect on some 715 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 716 * lines connected to the bus, however for a 32-bit only card, they 717 * should be pulled high. The result of this defect is that the 718 * NIC will not work right if you plug it into a 64-bit slot: DMA 719 * operations will be done with 64-bit transfers, which will fail 720 * because the 64-bit data lines aren't connected. 721 * 722 * There's no way to work around this (short of talking a soldering 723 * iron to the board), however we can detect it. The method we use 724 * here is to put the NIC into digital loopback mode, set the receiver 725 * to promiscuous mode, and then try to send a frame. We then compare 726 * the frame data we sent to what was received. If the data matches, 727 * then the NIC is working correctly, otherwise we know the user has 728 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 729 * slot. In the latter case, there's no way the NIC can work correctly, 730 * so we print out a message on the console and abort the device attach. 731 */ 732 733 static int 734 re_diag(struct rl_softc *sc) 735 { 736 struct ifnet *ifp = sc->rl_ifp; 737 struct mbuf *m0; 738 struct ether_header *eh; 739 struct rl_desc *cur_rx; 740 u_int16_t status; 741 u_int32_t rxstat; 742 int total_len, i, error = 0, phyaddr; 743 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 744 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 745 746 /* Allocate a single mbuf */ 747 MGETHDR(m0, M_DONTWAIT, MT_DATA); 748 if (m0 == NULL) 749 return (ENOBUFS); 750 751 RL_LOCK(sc); 752 753 /* 754 * Initialize the NIC in test mode. This sets the chip up 755 * so that it can send and receive frames, but performs the 756 * following special functions: 757 * - Puts receiver in promiscuous mode 758 * - Enables digital loopback mode 759 * - Leaves interrupts turned off 760 */ 761 762 ifp->if_flags |= IFF_PROMISC; 763 sc->rl_testmode = 1; 764 re_init_locked(sc); 765 sc->rl_flags |= RL_FLAG_LINK; 766 if (sc->rl_type == RL_8169) 767 phyaddr = 1; 768 else 769 phyaddr = 0; 770 771 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET); 772 for (i = 0; i < RL_TIMEOUT; i++) { 773 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR); 774 if (!(status & BMCR_RESET)) 775 break; 776 } 777 778 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP); 779 CSR_WRITE_2(sc, RL_ISR, RL_INTRS); 780 781 DELAY(100000); 782 783 /* Put some data in the mbuf */ 784 785 eh = mtod(m0, struct ether_header *); 786 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); 787 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); 788 eh->ether_type = htons(ETHERTYPE_IP); 789 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 790 791 /* 792 * Queue the packet, start transmission. 793 * Note: IF_HANDOFF() ultimately calls re_start() for us. 794 */ 795 796 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 797 RL_UNLOCK(sc); 798 /* XXX: re_diag must not be called when in ALTQ mode */ 799 IF_HANDOFF(&ifp->if_snd, m0, ifp); 800 RL_LOCK(sc); 801 m0 = NULL; 802 803 /* Wait for it to propagate through the chip */ 804 805 DELAY(100000); 806 for (i = 0; i < RL_TIMEOUT; i++) { 807 status = CSR_READ_2(sc, RL_ISR); 808 CSR_WRITE_2(sc, RL_ISR, status); 809 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == 810 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) 811 break; 812 DELAY(10); 813 } 814 815 if (i == RL_TIMEOUT) { 816 device_printf(sc->rl_dev, 817 "diagnostic failed, failed to receive packet in" 818 " loopback mode\n"); 819 error = EIO; 820 goto done; 821 } 822 823 /* 824 * The packet should have been dumped into the first 825 * entry in the RX DMA ring. Grab it from there. 826 */ 827 828 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 829 sc->rl_ldata.rl_rx_list_map, 830 BUS_DMASYNC_POSTREAD); 831 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 832 sc->rl_ldata.rl_rx_desc[0].rx_dmamap, 833 BUS_DMASYNC_POSTREAD); 834 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 835 sc->rl_ldata.rl_rx_desc[0].rx_dmamap); 836 837 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m; 838 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL; 839 eh = mtod(m0, struct ether_header *); 840 841 cur_rx = &sc->rl_ldata.rl_rx_list[0]; 842 total_len = RL_RXBYTES(cur_rx); 843 rxstat = le32toh(cur_rx->rl_cmdstat); 844 845 if (total_len != ETHER_MIN_LEN) { 846 device_printf(sc->rl_dev, 847 "diagnostic failed, received short packet\n"); 848 error = EIO; 849 goto done; 850 } 851 852 /* Test that the received packet data matches what we sent. */ 853 854 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 855 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 856 ntohs(eh->ether_type) != ETHERTYPE_IP) { 857 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n"); 858 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n", 859 dst, ":", src, ":", ETHERTYPE_IP); 860 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n", 861 eh->ether_dhost, ":", eh->ether_shost, ":", 862 ntohs(eh->ether_type)); 863 device_printf(sc->rl_dev, "You may have a defective 32-bit " 864 "NIC plugged into a 64-bit PCI slot.\n"); 865 device_printf(sc->rl_dev, "Please re-install the NIC in a " 866 "32-bit slot for proper operation.\n"); 867 device_printf(sc->rl_dev, "Read the re(4) man page for more " 868 "details.\n"); 869 error = EIO; 870 } 871 872 done: 873 /* Turn interface off, release resources */ 874 875 sc->rl_testmode = 0; 876 sc->rl_flags &= ~RL_FLAG_LINK; 877 ifp->if_flags &= ~IFF_PROMISC; 878 re_stop(sc); 879 if (m0 != NULL) 880 m_freem(m0); 881 882 RL_UNLOCK(sc); 883 884 return (error); 885 } 886 887 #endif 888 889 /* 890 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device 891 * IDs against our list and return a device name if we find a match. 892 */ 893 static int 894 re_probe(device_t dev) 895 { 896 struct rl_type *t; 897 uint16_t devid, vendor; 898 uint16_t revid, sdevid; 899 int i; 900 901 vendor = pci_get_vendor(dev); 902 devid = pci_get_device(dev); 903 revid = pci_get_revid(dev); 904 sdevid = pci_get_subdevice(dev); 905 906 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) { 907 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) { 908 /* 909 * Only attach to rev. 3 of the Linksys EG1032 adapter. 910 * Rev. 2 is supported by sk(4). 911 */ 912 return (ENXIO); 913 } 914 } 915 916 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { 917 if (revid != 0x20) { 918 /* 8139, let rl(4) take care of this device. */ 919 return (ENXIO); 920 } 921 } 922 923 t = re_devs; 924 for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) { 925 if (vendor == t->rl_vid && devid == t->rl_did) { 926 device_set_desc(dev, t->rl_name); 927 return (BUS_PROBE_DEFAULT); 928 } 929 } 930 931 return (ENXIO); 932 } 933 934 /* 935 * Map a single buffer address. 936 */ 937 938 static void 939 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 940 { 941 bus_addr_t *addr; 942 943 if (error) 944 return; 945 946 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 947 addr = arg; 948 *addr = segs->ds_addr; 949 } 950 951 static int 952 re_allocmem(device_t dev, struct rl_softc *sc) 953 { 954 bus_size_t rx_list_size, tx_list_size; 955 int error; 956 int i; 957 958 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc); 959 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc); 960 961 /* 962 * Allocate the parent bus DMA tag appropriate for PCI. 963 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD 964 * register should be set. However some RealTek chips are known 965 * to be buggy on DAC handling, therefore disable DAC by limiting 966 * DMA address space to 32bit. PCIe variants of RealTek chips 967 * may not have the limitation but I took safer path. 968 */ 969 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, 970 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 971 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, 972 NULL, NULL, &sc->rl_parent_tag); 973 if (error) { 974 device_printf(dev, "could not allocate parent DMA tag\n"); 975 return (error); 976 } 977 978 /* 979 * Allocate map for TX mbufs. 980 */ 981 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0, 982 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 983 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0, 984 NULL, NULL, &sc->rl_ldata.rl_tx_mtag); 985 if (error) { 986 device_printf(dev, "could not allocate TX DMA tag\n"); 987 return (error); 988 } 989 990 /* 991 * Allocate map for RX mbufs. 992 */ 993 994 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0, 995 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 996 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag); 997 if (error) { 998 device_printf(dev, "could not allocate RX DMA tag\n"); 999 return (error); 1000 } 1001 1002 /* 1003 * Allocate map for TX descriptor list. 1004 */ 1005 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1006 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1007 NULL, tx_list_size, 1, tx_list_size, 0, 1008 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); 1009 if (error) { 1010 device_printf(dev, "could not allocate TX DMA ring tag\n"); 1011 return (error); 1012 } 1013 1014 /* Allocate DMA'able memory for the TX ring */ 1015 1016 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, 1017 (void **)&sc->rl_ldata.rl_tx_list, 1018 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1019 &sc->rl_ldata.rl_tx_list_map); 1020 if (error) { 1021 device_printf(dev, "could not allocate TX DMA ring\n"); 1022 return (error); 1023 } 1024 1025 /* Load the map for the TX ring. */ 1026 1027 sc->rl_ldata.rl_tx_list_addr = 0; 1028 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, 1029 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, 1030 tx_list_size, re_dma_map_addr, 1031 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); 1032 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) { 1033 device_printf(dev, "could not load TX DMA ring\n"); 1034 return (ENOMEM); 1035 } 1036 1037 /* Create DMA maps for TX buffers */ 1038 1039 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1040 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0, 1041 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1042 if (error) { 1043 device_printf(dev, "could not create DMA map for TX\n"); 1044 return (error); 1045 } 1046 } 1047 1048 /* 1049 * Allocate map for RX descriptor list. 1050 */ 1051 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1052 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1053 NULL, rx_list_size, 1, rx_list_size, 0, 1054 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); 1055 if (error) { 1056 device_printf(dev, "could not create RX DMA ring tag\n"); 1057 return (error); 1058 } 1059 1060 /* Allocate DMA'able memory for the RX ring */ 1061 1062 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, 1063 (void **)&sc->rl_ldata.rl_rx_list, 1064 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1065 &sc->rl_ldata.rl_rx_list_map); 1066 if (error) { 1067 device_printf(dev, "could not allocate RX DMA ring\n"); 1068 return (error); 1069 } 1070 1071 /* Load the map for the RX ring. */ 1072 1073 sc->rl_ldata.rl_rx_list_addr = 0; 1074 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, 1075 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, 1076 rx_list_size, re_dma_map_addr, 1077 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); 1078 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) { 1079 device_printf(dev, "could not load RX DMA ring\n"); 1080 return (ENOMEM); 1081 } 1082 1083 /* Create DMA maps for RX buffers */ 1084 1085 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1086 &sc->rl_ldata.rl_rx_sparemap); 1087 if (error) { 1088 device_printf(dev, "could not create spare DMA map for RX\n"); 1089 return (error); 1090 } 1091 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1092 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1093 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1094 if (error) { 1095 device_printf(dev, "could not create DMA map for RX\n"); 1096 return (error); 1097 } 1098 } 1099 1100 return (0); 1101 } 1102 1103 /* 1104 * Attach the interface. Allocate softc structures, do ifmedia 1105 * setup and ethernet/BPF attach. 1106 */ 1107 static int 1108 re_attach(device_t dev) 1109 { 1110 u_char eaddr[ETHER_ADDR_LEN]; 1111 u_int16_t as[ETHER_ADDR_LEN / 2]; 1112 struct rl_softc *sc; 1113 struct ifnet *ifp; 1114 struct rl_hwrev *hw_rev; 1115 int hwrev; 1116 u_int16_t devid, re_did = 0; 1117 int error = 0, rid, i; 1118 int msic, reg; 1119 uint8_t cfg; 1120 1121 sc = device_get_softc(dev); 1122 sc->rl_dev = dev; 1123 1124 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1125 MTX_DEF); 1126 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); 1127 1128 /* 1129 * Map control/status registers. 1130 */ 1131 pci_enable_busmaster(dev); 1132 1133 devid = pci_get_device(dev); 1134 /* Prefer memory space register mapping over IO space. */ 1135 sc->rl_res_id = PCIR_BAR(1); 1136 sc->rl_res_type = SYS_RES_MEMORY; 1137 /* RTL8168/8101E seems to use different BARs. */ 1138 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E) 1139 sc->rl_res_id = PCIR_BAR(2); 1140 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1141 &sc->rl_res_id, RF_ACTIVE); 1142 1143 if (sc->rl_res == NULL) { 1144 sc->rl_res_id = PCIR_BAR(0); 1145 sc->rl_res_type = SYS_RES_IOPORT; 1146 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1147 &sc->rl_res_id, RF_ACTIVE); 1148 if (sc->rl_res == NULL) { 1149 device_printf(dev, "couldn't map ports/memory\n"); 1150 error = ENXIO; 1151 goto fail; 1152 } 1153 } 1154 1155 sc->rl_btag = rman_get_bustag(sc->rl_res); 1156 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 1157 1158 msic = 0; 1159 if (pci_find_extcap(dev, PCIY_EXPRESS, ®) == 0) { 1160 sc->rl_flags |= RL_FLAG_PCIE; 1161 msic = pci_msi_count(dev); 1162 if (bootverbose) 1163 device_printf(dev, "MSI count : %d\n", msic); 1164 } 1165 if (msic == RL_MSI_MESSAGES && msi_disable == 0) { 1166 if (pci_alloc_msi(dev, &msic) == 0) { 1167 if (msic == RL_MSI_MESSAGES) { 1168 device_printf(dev, "Using %d MSI messages\n", 1169 msic); 1170 sc->rl_flags |= RL_FLAG_MSI; 1171 /* Explicitly set MSI enable bit. */ 1172 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1173 cfg = CSR_READ_1(sc, RL_CFG2); 1174 cfg |= RL_CFG2_MSI; 1175 CSR_WRITE_1(sc, RL_CFG2, cfg); 1176 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1177 } else 1178 pci_release_msi(dev); 1179 } 1180 } 1181 1182 /* Allocate interrupt */ 1183 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1184 rid = 0; 1185 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1186 RF_SHAREABLE | RF_ACTIVE); 1187 if (sc->rl_irq[0] == NULL) { 1188 device_printf(dev, "couldn't allocate IRQ resources\n"); 1189 error = ENXIO; 1190 goto fail; 1191 } 1192 } else { 1193 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { 1194 sc->rl_irq[i] = bus_alloc_resource_any(dev, 1195 SYS_RES_IRQ, &rid, RF_ACTIVE); 1196 if (sc->rl_irq[i] == NULL) { 1197 device_printf(dev, 1198 "couldn't llocate IRQ resources for " 1199 "message %d\n", rid); 1200 error = ENXIO; 1201 goto fail; 1202 } 1203 } 1204 } 1205 1206 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1207 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1208 cfg = CSR_READ_1(sc, RL_CFG2); 1209 if ((cfg & RL_CFG2_MSI) != 0) { 1210 device_printf(dev, "turning off MSI enable bit.\n"); 1211 cfg &= ~RL_CFG2_MSI; 1212 CSR_WRITE_1(sc, RL_CFG2, cfg); 1213 } 1214 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1215 } 1216 1217 /* Reset the adapter. */ 1218 RL_LOCK(sc); 1219 re_reset(sc); 1220 RL_UNLOCK(sc); 1221 1222 hw_rev = re_hwrevs; 1223 hwrev = CSR_READ_4(sc, RL_TXCFG); 1224 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000); 1225 device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000); 1226 hwrev &= RL_TXCFG_HWREV; 1227 while (hw_rev->rl_desc != NULL) { 1228 if (hw_rev->rl_rev == hwrev) { 1229 sc->rl_type = hw_rev->rl_type; 1230 break; 1231 } 1232 hw_rev++; 1233 } 1234 if (hw_rev->rl_desc == NULL) { 1235 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev); 1236 error = ENXIO; 1237 goto fail; 1238 } 1239 1240 switch (hw_rev->rl_rev) { 1241 case RL_HWREV_8139CPLUS: 1242 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_FASTETHER; 1243 break; 1244 case RL_HWREV_8110S: 1245 sc->rl_flags |= RL_FLAG_PHY8110S; 1246 break; 1247 case RL_HWREV_8100E: 1248 case RL_HWREV_8101E: 1249 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR | 1250 RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER; 1251 break; 1252 case RL_HWREV_8102E: 1253 case RL_HWREV_8102EL: 1254 sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR | 1255 RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | 1256 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP; 1257 break; 1258 case RL_HWREV_8168_SPIN1: 1259 case RL_HWREV_8168_SPIN2: 1260 sc->rl_flags |= RL_FLAG_WOLRXENB; 1261 /* FALLTHROUGH */ 1262 case RL_HWREV_8168_SPIN3: 1263 sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | 1264 RL_FLAG_MACSTAT; 1265 break; 1266 case RL_HWREV_8168C_SPIN2: 1267 sc->rl_flags |= RL_FLAG_MACSLEEP; 1268 /* FALLTHROUGH */ 1269 case RL_HWREV_8168C: 1270 if ((hwrev & 0x00700000) == 0x00200000) 1271 sc->rl_flags |= RL_FLAG_MACSLEEP; 1272 /* FALLTHROUGH */ 1273 case RL_HWREV_8168CP: 1274 case RL_HWREV_8168D: 1275 sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE | 1276 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1277 RL_FLAG_CMDSTOP; 1278 /* 1279 * These controllers support jumbo frame but it seems 1280 * that enabling it requires touching additional magic 1281 * registers. Depending on MAC revisions some 1282 * controllers need to disable checksum offload. So 1283 * disable jumbo frame until I have better idea what 1284 * it really requires to make it support. 1285 * RTL8168C/CP : supports up to 6KB jumbo frame. 1286 * RTL8111C/CP : supports up to 9KB jumbo frame. 1287 */ 1288 sc->rl_flags |= RL_FLAG_NOJUMBO; 1289 break; 1290 case RL_HWREV_8169: 1291 case RL_HWREV_8169S: 1292 sc->rl_flags |= RL_FLAG_PHY8169; 1293 break; 1294 case RL_HWREV_8169_8110SB: 1295 case RL_HWREV_8169_8110SC: 1296 case RL_HWREV_8169_8110SBL: 1297 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHY8169; 1298 break; 1299 default: 1300 break; 1301 } 1302 1303 /* Enable PME. */ 1304 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1305 cfg = CSR_READ_1(sc, RL_CFG1); 1306 cfg |= RL_CFG1_PME; 1307 CSR_WRITE_1(sc, RL_CFG1, cfg); 1308 cfg = CSR_READ_1(sc, RL_CFG5); 1309 cfg &= RL_CFG5_PME_STS; 1310 CSR_WRITE_1(sc, RL_CFG5, cfg); 1311 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1312 1313 if ((sc->rl_flags & RL_FLAG_PAR) != 0) { 1314 /* 1315 * XXX Should have a better way to extract station 1316 * address from EEPROM. 1317 */ 1318 for (i = 0; i < ETHER_ADDR_LEN; i++) 1319 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); 1320 } else { 1321 sc->rl_eewidth = RL_9356_ADDR_LEN; 1322 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); 1323 if (re_did != 0x8129) 1324 sc->rl_eewidth = RL_9346_ADDR_LEN; 1325 1326 /* 1327 * Get station address from the EEPROM. 1328 */ 1329 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); 1330 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) 1331 as[i] = le16toh(as[i]); 1332 bcopy(as, eaddr, sizeof(eaddr)); 1333 } 1334 1335 if (sc->rl_type == RL_8169) { 1336 /* Set RX length mask and number of descriptors. */ 1337 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; 1338 sc->rl_txstart = RL_GTXSTART; 1339 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT; 1340 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT; 1341 } else { 1342 /* Set RX length mask and number of descriptors. */ 1343 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; 1344 sc->rl_txstart = RL_TXSTART; 1345 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT; 1346 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT; 1347 } 1348 1349 error = re_allocmem(dev, sc); 1350 if (error) 1351 goto fail; 1352 1353 ifp = sc->rl_ifp = if_alloc(IFT_ETHER); 1354 if (ifp == NULL) { 1355 device_printf(dev, "can not if_alloc()\n"); 1356 error = ENOSPC; 1357 goto fail; 1358 } 1359 1360 /* Take controller out of deep sleep mode. */ 1361 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 1362 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 1363 CSR_WRITE_1(sc, RL_GPIO, 1364 CSR_READ_1(sc, RL_GPIO) | 0x01); 1365 else 1366 CSR_WRITE_1(sc, RL_GPIO, 1367 CSR_READ_1(sc, RL_GPIO) & ~0x01); 1368 } 1369 1370 /* Take PHY out of power down mode. */ 1371 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) { 1372 re_gmii_writereg(dev, 1, 0x1f, 0); 1373 re_gmii_writereg(dev, 1, 0x0e, 0); 1374 } 1375 1376 /* Do MII setup */ 1377 if (mii_phy_probe(dev, &sc->rl_miibus, 1378 re_ifmedia_upd, re_ifmedia_sts)) { 1379 device_printf(dev, "MII without any phy!\n"); 1380 error = ENXIO; 1381 goto fail; 1382 } 1383 1384 ifp->if_softc = sc; 1385 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1386 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1387 ifp->if_ioctl = re_ioctl; 1388 ifp->if_start = re_start; 1389 ifp->if_hwassist = RE_CSUM_FEATURES; 1390 ifp->if_capabilities = IFCAP_HWCSUM; 1391 ifp->if_capenable = ifp->if_capabilities; 1392 ifp->if_init = re_init; 1393 IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN); 1394 ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN; 1395 IFQ_SET_READY(&ifp->if_snd); 1396 1397 TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp); 1398 TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc); 1399 1400 /* 1401 * XXX 1402 * Still have no idea how to make TSO work on 8168C, 8168CP, 1403 * 8111C and 8111CP. 1404 */ 1405 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 1406 ifp->if_hwassist |= CSUM_TSO; 1407 ifp->if_capabilities |= IFCAP_TSO4; 1408 } 1409 1410 /* 1411 * Call MI attach routine. 1412 */ 1413 ether_ifattach(ifp, eaddr); 1414 1415 /* VLAN capability setup */ 1416 ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING; 1417 if (ifp->if_capabilities & IFCAP_HWCSUM) 1418 ifp->if_capabilities |= IFCAP_VLAN_HWCSUM; 1419 /* Enable WOL if PM is supported. */ 1420 if (pci_find_extcap(sc->rl_dev, PCIY_PMG, ®) == 0) 1421 ifp->if_capabilities |= IFCAP_WOL; 1422 ifp->if_capenable = ifp->if_capabilities; 1423 /* 1424 * Don't enable TSO by default. Under certain 1425 * circumtances the controller generated corrupted 1426 * packets in TSO size. 1427 */ 1428 ifp->if_hwassist &= ~CSUM_TSO; 1429 ifp->if_capenable &= ~IFCAP_TSO4; 1430 #ifdef DEVICE_POLLING 1431 ifp->if_capabilities |= IFCAP_POLLING; 1432 #endif 1433 /* 1434 * Tell the upper layer(s) we support long frames. 1435 * Must appear after the call to ether_ifattach() because 1436 * ether_ifattach() sets ifi_hdrlen to the default value. 1437 */ 1438 ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header); 1439 1440 #ifdef RE_DIAG 1441 /* 1442 * Perform hardware diagnostic on the original RTL8169. 1443 * Some 32-bit cards were incorrectly wired and would 1444 * malfunction if plugged into a 64-bit slot. 1445 */ 1446 1447 if (hwrev == RL_HWREV_8169) { 1448 error = re_diag(sc); 1449 if (error) { 1450 device_printf(dev, 1451 "attach aborted due to hardware diag failure\n"); 1452 ether_ifdetach(ifp); 1453 goto fail; 1454 } 1455 } 1456 #endif 1457 1458 /* Hook interrupt last to avoid having to lock softc */ 1459 if ((sc->rl_flags & RL_FLAG_MSI) == 0) 1460 error = bus_setup_intr(dev, sc->rl_irq[0], 1461 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, 1462 &sc->rl_intrhand[0]); 1463 else { 1464 for (i = 0; i < RL_MSI_MESSAGES; i++) { 1465 error = bus_setup_intr(dev, sc->rl_irq[i], 1466 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, 1467 &sc->rl_intrhand[i]); 1468 if (error != 0) 1469 break; 1470 } 1471 } 1472 if (error) { 1473 device_printf(dev, "couldn't set up irq\n"); 1474 ether_ifdetach(ifp); 1475 } 1476 1477 fail: 1478 1479 if (error) 1480 re_detach(dev); 1481 1482 return (error); 1483 } 1484 1485 /* 1486 * Shutdown hardware and free up resources. This can be called any 1487 * time after the mutex has been initialized. It is called in both 1488 * the error case in attach and the normal detach case so it needs 1489 * to be careful about only freeing resources that have actually been 1490 * allocated. 1491 */ 1492 static int 1493 re_detach(device_t dev) 1494 { 1495 struct rl_softc *sc; 1496 struct ifnet *ifp; 1497 int i, rid; 1498 1499 sc = device_get_softc(dev); 1500 ifp = sc->rl_ifp; 1501 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); 1502 1503 /* These should only be active if attach succeeded */ 1504 if (device_is_attached(dev)) { 1505 #ifdef DEVICE_POLLING 1506 if (ifp->if_capenable & IFCAP_POLLING) 1507 ether_poll_deregister(ifp); 1508 #endif 1509 RL_LOCK(sc); 1510 #if 0 1511 sc->suspended = 1; 1512 #endif 1513 re_stop(sc); 1514 RL_UNLOCK(sc); 1515 callout_drain(&sc->rl_stat_callout); 1516 taskqueue_drain(taskqueue_fast, &sc->rl_inttask); 1517 taskqueue_drain(taskqueue_fast, &sc->rl_txtask); 1518 /* 1519 * Force off the IFF_UP flag here, in case someone 1520 * still had a BPF descriptor attached to this 1521 * interface. If they do, ether_ifdetach() will cause 1522 * the BPF code to try and clear the promisc mode 1523 * flag, which will bubble down to re_ioctl(), 1524 * which will try to call re_init() again. This will 1525 * turn the NIC back on and restart the MII ticker, 1526 * which will panic the system when the kernel tries 1527 * to invoke the re_tick() function that isn't there 1528 * anymore. 1529 */ 1530 ifp->if_flags &= ~IFF_UP; 1531 ether_ifdetach(ifp); 1532 } 1533 if (sc->rl_miibus) 1534 device_delete_child(dev, sc->rl_miibus); 1535 bus_generic_detach(dev); 1536 1537 /* 1538 * The rest is resource deallocation, so we should already be 1539 * stopped here. 1540 */ 1541 1542 for (i = 0; i < RL_MSI_MESSAGES; i++) { 1543 if (sc->rl_intrhand[i] != NULL) { 1544 bus_teardown_intr(dev, sc->rl_irq[i], 1545 sc->rl_intrhand[i]); 1546 sc->rl_intrhand[i] = NULL; 1547 } 1548 } 1549 if (ifp != NULL) 1550 if_free(ifp); 1551 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1552 if (sc->rl_irq[0] != NULL) { 1553 bus_release_resource(dev, SYS_RES_IRQ, 0, 1554 sc->rl_irq[0]); 1555 sc->rl_irq[0] = NULL; 1556 } 1557 } else { 1558 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { 1559 if (sc->rl_irq[i] != NULL) { 1560 bus_release_resource(dev, SYS_RES_IRQ, rid, 1561 sc->rl_irq[i]); 1562 sc->rl_irq[i] = NULL; 1563 } 1564 } 1565 pci_release_msi(dev); 1566 } 1567 if (sc->rl_res) 1568 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, 1569 sc->rl_res); 1570 1571 /* Unload and free the RX DMA ring memory and map */ 1572 1573 if (sc->rl_ldata.rl_rx_list_tag) { 1574 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, 1575 sc->rl_ldata.rl_rx_list_map); 1576 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, 1577 sc->rl_ldata.rl_rx_list, 1578 sc->rl_ldata.rl_rx_list_map); 1579 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); 1580 } 1581 1582 /* Unload and free the TX DMA ring memory and map */ 1583 1584 if (sc->rl_ldata.rl_tx_list_tag) { 1585 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, 1586 sc->rl_ldata.rl_tx_list_map); 1587 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, 1588 sc->rl_ldata.rl_tx_list, 1589 sc->rl_ldata.rl_tx_list_map); 1590 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); 1591 } 1592 1593 /* Destroy all the RX and TX buffer maps */ 1594 1595 if (sc->rl_ldata.rl_tx_mtag) { 1596 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) 1597 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag, 1598 sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1599 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag); 1600 } 1601 if (sc->rl_ldata.rl_rx_mtag) { 1602 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) 1603 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1604 sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1605 if (sc->rl_ldata.rl_rx_sparemap) 1606 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1607 sc->rl_ldata.rl_rx_sparemap); 1608 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag); 1609 } 1610 1611 /* Unload and free the stats buffer and map */ 1612 1613 if (sc->rl_ldata.rl_stag) { 1614 bus_dmamap_unload(sc->rl_ldata.rl_stag, 1615 sc->rl_ldata.rl_rx_list_map); 1616 bus_dmamem_free(sc->rl_ldata.rl_stag, 1617 sc->rl_ldata.rl_stats, 1618 sc->rl_ldata.rl_smap); 1619 bus_dma_tag_destroy(sc->rl_ldata.rl_stag); 1620 } 1621 1622 if (sc->rl_parent_tag) 1623 bus_dma_tag_destroy(sc->rl_parent_tag); 1624 1625 mtx_destroy(&sc->rl_mtx); 1626 1627 return (0); 1628 } 1629 1630 static __inline void 1631 re_discard_rxbuf(struct rl_softc *sc, int idx) 1632 { 1633 struct rl_desc *desc; 1634 struct rl_rxdesc *rxd; 1635 uint32_t cmdstat; 1636 1637 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1638 desc = &sc->rl_ldata.rl_rx_list[idx]; 1639 desc->rl_vlanctl = 0; 1640 cmdstat = rxd->rx_size; 1641 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1642 cmdstat |= RL_RDESC_CMD_EOR; 1643 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 1644 } 1645 1646 static int 1647 re_newbuf(struct rl_softc *sc, int idx) 1648 { 1649 struct mbuf *m; 1650 struct rl_rxdesc *rxd; 1651 bus_dma_segment_t segs[1]; 1652 bus_dmamap_t map; 1653 struct rl_desc *desc; 1654 uint32_t cmdstat; 1655 int error, nsegs; 1656 1657 m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1658 if (m == NULL) 1659 return (ENOBUFS); 1660 1661 m->m_len = m->m_pkthdr.len = MCLBYTES; 1662 #ifdef RE_FIXUP_RX 1663 /* 1664 * This is part of an evil trick to deal with non-x86 platforms. 1665 * The RealTek chip requires RX buffers to be aligned on 64-bit 1666 * boundaries, but that will hose non-x86 machines. To get around 1667 * this, we leave some empty space at the start of each buffer 1668 * and for non-x86 hosts, we copy the buffer back six bytes 1669 * to achieve word alignment. This is slightly more efficient 1670 * than allocating a new buffer, copying the contents, and 1671 * discarding the old buffer. 1672 */ 1673 m_adj(m, RE_ETHER_ALIGN); 1674 #endif 1675 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag, 1676 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 1677 if (error != 0) { 1678 m_freem(m); 1679 return (ENOBUFS); 1680 } 1681 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 1682 1683 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1684 if (rxd->rx_m != NULL) { 1685 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1686 BUS_DMASYNC_POSTREAD); 1687 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap); 1688 } 1689 1690 rxd->rx_m = m; 1691 map = rxd->rx_dmamap; 1692 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap; 1693 rxd->rx_size = segs[0].ds_len; 1694 sc->rl_ldata.rl_rx_sparemap = map; 1695 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1696 BUS_DMASYNC_PREREAD); 1697 1698 desc = &sc->rl_ldata.rl_rx_list[idx]; 1699 desc->rl_vlanctl = 0; 1700 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 1701 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 1702 cmdstat = segs[0].ds_len; 1703 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1704 cmdstat |= RL_RDESC_CMD_EOR; 1705 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 1706 1707 return (0); 1708 } 1709 1710 #ifdef RE_FIXUP_RX 1711 static __inline void 1712 re_fixup_rx(struct mbuf *m) 1713 { 1714 int i; 1715 uint16_t *src, *dst; 1716 1717 src = mtod(m, uint16_t *); 1718 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; 1719 1720 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 1721 *dst++ = *src++; 1722 1723 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; 1724 } 1725 #endif 1726 1727 static int 1728 re_tx_list_init(struct rl_softc *sc) 1729 { 1730 struct rl_desc *desc; 1731 int i; 1732 1733 RL_LOCK_ASSERT(sc); 1734 1735 bzero(sc->rl_ldata.rl_tx_list, 1736 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc)); 1737 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) 1738 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL; 1739 /* Set EOR. */ 1740 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1]; 1741 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR); 1742 1743 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 1744 sc->rl_ldata.rl_tx_list_map, 1745 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 1746 1747 sc->rl_ldata.rl_tx_prodidx = 0; 1748 sc->rl_ldata.rl_tx_considx = 0; 1749 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt; 1750 1751 return (0); 1752 } 1753 1754 static int 1755 re_rx_list_init(struct rl_softc *sc) 1756 { 1757 int error, i; 1758 1759 bzero(sc->rl_ldata.rl_rx_list, 1760 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 1761 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1762 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL; 1763 if ((error = re_newbuf(sc, i)) != 0) 1764 return (error); 1765 } 1766 1767 /* Flush the RX descriptors */ 1768 1769 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1770 sc->rl_ldata.rl_rx_list_map, 1771 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1772 1773 sc->rl_ldata.rl_rx_prodidx = 0; 1774 sc->rl_head = sc->rl_tail = NULL; 1775 1776 return (0); 1777 } 1778 1779 /* 1780 * RX handler for C+ and 8169. For the gigE chips, we support 1781 * the reception of jumbo frames that have been fragmented 1782 * across multiple 2K mbuf cluster buffers. 1783 */ 1784 static int 1785 re_rxeof(struct rl_softc *sc) 1786 { 1787 struct mbuf *m; 1788 struct ifnet *ifp; 1789 int i, total_len; 1790 struct rl_desc *cur_rx; 1791 u_int32_t rxstat, rxvlan; 1792 int maxpkt = 16; 1793 1794 RL_LOCK_ASSERT(sc); 1795 1796 ifp = sc->rl_ifp; 1797 1798 /* Invalidate the descriptor memory */ 1799 1800 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1801 sc->rl_ldata.rl_rx_list_map, 1802 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 1803 1804 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0; 1805 i = RL_RX_DESC_NXT(sc, i)) { 1806 cur_rx = &sc->rl_ldata.rl_rx_list[i]; 1807 rxstat = le32toh(cur_rx->rl_cmdstat); 1808 if ((rxstat & RL_RDESC_STAT_OWN) != 0) 1809 break; 1810 total_len = rxstat & sc->rl_rxlenmask; 1811 rxvlan = le32toh(cur_rx->rl_vlanctl); 1812 m = sc->rl_ldata.rl_rx_desc[i].rx_m; 1813 1814 if (!(rxstat & RL_RDESC_STAT_EOF)) { 1815 if (re_newbuf(sc, i) != 0) { 1816 /* 1817 * If this is part of a multi-fragment packet, 1818 * discard all the pieces. 1819 */ 1820 if (sc->rl_head != NULL) { 1821 m_freem(sc->rl_head); 1822 sc->rl_head = sc->rl_tail = NULL; 1823 } 1824 re_discard_rxbuf(sc, i); 1825 continue; 1826 } 1827 m->m_len = RE_RX_DESC_BUFLEN; 1828 if (sc->rl_head == NULL) 1829 sc->rl_head = sc->rl_tail = m; 1830 else { 1831 m->m_flags &= ~M_PKTHDR; 1832 sc->rl_tail->m_next = m; 1833 sc->rl_tail = m; 1834 } 1835 continue; 1836 } 1837 1838 /* 1839 * NOTE: for the 8139C+, the frame length field 1840 * is always 12 bits in size, but for the gigE chips, 1841 * it is 13 bits (since the max RX frame length is 16K). 1842 * Unfortunately, all 32 bits in the status word 1843 * were already used, so to make room for the extra 1844 * length bit, RealTek took out the 'frame alignment 1845 * error' bit and shifted the other status bits 1846 * over one slot. The OWN, EOR, FS and LS bits are 1847 * still in the same places. We have already extracted 1848 * the frame length and checked the OWN bit, so rather 1849 * than using an alternate bit mapping, we shift the 1850 * status bits one space to the right so we can evaluate 1851 * them using the 8169 status as though it was in the 1852 * same format as that of the 8139C+. 1853 */ 1854 if (sc->rl_type == RL_8169) 1855 rxstat >>= 1; 1856 1857 /* 1858 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be 1859 * set, but if CRC is clear, it will still be a valid frame. 1860 */ 1861 if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 && 1862 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) { 1863 ifp->if_ierrors++; 1864 /* 1865 * If this is part of a multi-fragment packet, 1866 * discard all the pieces. 1867 */ 1868 if (sc->rl_head != NULL) { 1869 m_freem(sc->rl_head); 1870 sc->rl_head = sc->rl_tail = NULL; 1871 } 1872 re_discard_rxbuf(sc, i); 1873 continue; 1874 } 1875 1876 /* 1877 * If allocating a replacement mbuf fails, 1878 * reload the current one. 1879 */ 1880 1881 if (re_newbuf(sc, i) != 0) { 1882 ifp->if_iqdrops++; 1883 if (sc->rl_head != NULL) { 1884 m_freem(sc->rl_head); 1885 sc->rl_head = sc->rl_tail = NULL; 1886 } 1887 re_discard_rxbuf(sc, i); 1888 continue; 1889 } 1890 1891 if (sc->rl_head != NULL) { 1892 m->m_len = total_len % RE_RX_DESC_BUFLEN; 1893 if (m->m_len == 0) 1894 m->m_len = RE_RX_DESC_BUFLEN; 1895 /* 1896 * Special case: if there's 4 bytes or less 1897 * in this buffer, the mbuf can be discarded: 1898 * the last 4 bytes is the CRC, which we don't 1899 * care about anyway. 1900 */ 1901 if (m->m_len <= ETHER_CRC_LEN) { 1902 sc->rl_tail->m_len -= 1903 (ETHER_CRC_LEN - m->m_len); 1904 m_freem(m); 1905 } else { 1906 m->m_len -= ETHER_CRC_LEN; 1907 m->m_flags &= ~M_PKTHDR; 1908 sc->rl_tail->m_next = m; 1909 } 1910 m = sc->rl_head; 1911 sc->rl_head = sc->rl_tail = NULL; 1912 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 1913 } else 1914 m->m_pkthdr.len = m->m_len = 1915 (total_len - ETHER_CRC_LEN); 1916 1917 #ifdef RE_FIXUP_RX 1918 re_fixup_rx(m); 1919 #endif 1920 ifp->if_ipackets++; 1921 m->m_pkthdr.rcvif = ifp; 1922 1923 /* Do RX checksumming if enabled */ 1924 1925 if (ifp->if_capenable & IFCAP_RXCSUM) { 1926 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 1927 /* Check IP header checksum */ 1928 if (rxstat & RL_RDESC_STAT_PROTOID) 1929 m->m_pkthdr.csum_flags |= 1930 CSUM_IP_CHECKED; 1931 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) 1932 m->m_pkthdr.csum_flags |= 1933 CSUM_IP_VALID; 1934 1935 /* Check TCP/UDP checksum */ 1936 if ((RL_TCPPKT(rxstat) && 1937 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 1938 (RL_UDPPKT(rxstat) && 1939 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 1940 m->m_pkthdr.csum_flags |= 1941 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1942 m->m_pkthdr.csum_data = 0xffff; 1943 } 1944 } else { 1945 /* 1946 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP 1947 */ 1948 if ((rxstat & RL_RDESC_STAT_PROTOID) && 1949 (rxvlan & RL_RDESC_IPV4)) 1950 m->m_pkthdr.csum_flags |= 1951 CSUM_IP_CHECKED; 1952 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) && 1953 (rxvlan & RL_RDESC_IPV4)) 1954 m->m_pkthdr.csum_flags |= 1955 CSUM_IP_VALID; 1956 if (((rxstat & RL_RDESC_STAT_TCP) && 1957 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 1958 ((rxstat & RL_RDESC_STAT_UDP) && 1959 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 1960 m->m_pkthdr.csum_flags |= 1961 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 1962 m->m_pkthdr.csum_data = 0xffff; 1963 } 1964 } 1965 } 1966 maxpkt--; 1967 if (rxvlan & RL_RDESC_VLANCTL_TAG) { 1968 m->m_pkthdr.ether_vtag = 1969 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA)); 1970 m->m_flags |= M_VLANTAG; 1971 } 1972 RL_UNLOCK(sc); 1973 (*ifp->if_input)(ifp, m); 1974 RL_LOCK(sc); 1975 } 1976 1977 /* Flush the RX DMA ring */ 1978 1979 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 1980 sc->rl_ldata.rl_rx_list_map, 1981 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 1982 1983 sc->rl_ldata.rl_rx_prodidx = i; 1984 1985 if (maxpkt) 1986 return(EAGAIN); 1987 1988 return(0); 1989 } 1990 1991 static void 1992 re_txeof(struct rl_softc *sc) 1993 { 1994 struct ifnet *ifp; 1995 struct rl_txdesc *txd; 1996 u_int32_t txstat; 1997 int cons; 1998 1999 cons = sc->rl_ldata.rl_tx_considx; 2000 if (cons == sc->rl_ldata.rl_tx_prodidx) 2001 return; 2002 2003 ifp = sc->rl_ifp; 2004 /* Invalidate the TX descriptor list */ 2005 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2006 sc->rl_ldata.rl_tx_list_map, 2007 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2008 2009 for (; cons != sc->rl_ldata.rl_tx_prodidx; 2010 cons = RL_TX_DESC_NXT(sc, cons)) { 2011 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat); 2012 if (txstat & RL_TDESC_STAT_OWN) 2013 break; 2014 /* 2015 * We only stash mbufs in the last descriptor 2016 * in a fragment chain, which also happens to 2017 * be the only place where the TX status bits 2018 * are valid. 2019 */ 2020 if (txstat & RL_TDESC_CMD_EOF) { 2021 txd = &sc->rl_ldata.rl_tx_desc[cons]; 2022 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 2023 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2024 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 2025 txd->tx_dmamap); 2026 KASSERT(txd->tx_m != NULL, 2027 ("%s: freeing NULL mbufs!", __func__)); 2028 m_freem(txd->tx_m); 2029 txd->tx_m = NULL; 2030 if (txstat & (RL_TDESC_STAT_EXCESSCOL| 2031 RL_TDESC_STAT_COLCNT)) 2032 ifp->if_collisions++; 2033 if (txstat & RL_TDESC_STAT_TXERRSUM) 2034 ifp->if_oerrors++; 2035 else 2036 ifp->if_opackets++; 2037 } 2038 sc->rl_ldata.rl_tx_free++; 2039 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2040 } 2041 sc->rl_ldata.rl_tx_considx = cons; 2042 2043 /* No changes made to the TX ring, so no flush needed */ 2044 2045 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) { 2046 #ifdef RE_TX_MODERATION 2047 /* 2048 * If not all descriptors have been reaped yet, reload 2049 * the timer so that we will eventually get another 2050 * interrupt that will cause us to re-enter this routine. 2051 * This is done in case the transmitter has gone idle. 2052 */ 2053 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2054 #endif 2055 } else 2056 sc->rl_watchdog_timer = 0; 2057 } 2058 2059 static void 2060 re_tick(void *xsc) 2061 { 2062 struct rl_softc *sc; 2063 struct mii_data *mii; 2064 2065 sc = xsc; 2066 2067 RL_LOCK_ASSERT(sc); 2068 2069 mii = device_get_softc(sc->rl_miibus); 2070 mii_tick(mii); 2071 if ((sc->rl_flags & RL_FLAG_LINK) == 0) 2072 re_miibus_statchg(sc->rl_dev); 2073 re_watchdog(sc); 2074 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2075 } 2076 2077 #ifdef DEVICE_POLLING 2078 static void 2079 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) 2080 { 2081 struct rl_softc *sc = ifp->if_softc; 2082 2083 RL_LOCK(sc); 2084 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2085 re_poll_locked(ifp, cmd, count); 2086 RL_UNLOCK(sc); 2087 } 2088 2089 static void 2090 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) 2091 { 2092 struct rl_softc *sc = ifp->if_softc; 2093 2094 RL_LOCK_ASSERT(sc); 2095 2096 sc->rxcycles = count; 2097 re_rxeof(sc); 2098 re_txeof(sc); 2099 2100 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2101 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 2102 2103 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2104 u_int16_t status; 2105 2106 status = CSR_READ_2(sc, RL_ISR); 2107 if (status == 0xffff) 2108 return; 2109 if (status) 2110 CSR_WRITE_2(sc, RL_ISR, status); 2111 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2112 (sc->rl_flags & RL_FLAG_PCIE)) 2113 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2114 2115 /* 2116 * XXX check behaviour on receiver stalls. 2117 */ 2118 2119 if (status & RL_ISR_SYSTEM_ERR) 2120 re_init_locked(sc); 2121 } 2122 } 2123 #endif /* DEVICE_POLLING */ 2124 2125 static int 2126 re_intr(void *arg) 2127 { 2128 struct rl_softc *sc; 2129 uint16_t status; 2130 2131 sc = arg; 2132 2133 status = CSR_READ_2(sc, RL_ISR); 2134 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) 2135 return (FILTER_STRAY); 2136 CSR_WRITE_2(sc, RL_IMR, 0); 2137 2138 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); 2139 2140 return (FILTER_HANDLED); 2141 } 2142 2143 static void 2144 re_int_task(void *arg, int npending) 2145 { 2146 struct rl_softc *sc; 2147 struct ifnet *ifp; 2148 u_int16_t status; 2149 int rval = 0; 2150 2151 sc = arg; 2152 ifp = sc->rl_ifp; 2153 2154 RL_LOCK(sc); 2155 2156 status = CSR_READ_2(sc, RL_ISR); 2157 CSR_WRITE_2(sc, RL_ISR, status); 2158 2159 if (sc->suspended || 2160 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 2161 RL_UNLOCK(sc); 2162 return; 2163 } 2164 2165 #ifdef DEVICE_POLLING 2166 if (ifp->if_capenable & IFCAP_POLLING) { 2167 RL_UNLOCK(sc); 2168 return; 2169 } 2170 #endif 2171 2172 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW)) 2173 rval = re_rxeof(sc); 2174 2175 /* 2176 * Some chips will ignore a second TX request issued 2177 * while an existing transmission is in progress. If 2178 * the transmitter goes idle but there are still 2179 * packets waiting to be sent, we need to restart the 2180 * channel here to flush them out. This only seems to 2181 * be required with the PCIe devices. 2182 */ 2183 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2184 (sc->rl_flags & RL_FLAG_PCIE)) 2185 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2186 if (status & ( 2187 #ifdef RE_TX_MODERATION 2188 RL_ISR_TIMEOUT_EXPIRED| 2189 #else 2190 RL_ISR_TX_OK| 2191 #endif 2192 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL)) 2193 re_txeof(sc); 2194 2195 if (status & RL_ISR_SYSTEM_ERR) 2196 re_init_locked(sc); 2197 2198 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2199 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 2200 2201 RL_UNLOCK(sc); 2202 2203 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) { 2204 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask); 2205 return; 2206 } 2207 2208 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2209 } 2210 2211 static int 2212 re_encap(struct rl_softc *sc, struct mbuf **m_head) 2213 { 2214 struct rl_txdesc *txd, *txd_last; 2215 bus_dma_segment_t segs[RL_NTXSEGS]; 2216 bus_dmamap_t map; 2217 struct mbuf *m_new; 2218 struct rl_desc *desc; 2219 int nsegs, prod; 2220 int i, error, ei, si; 2221 int padlen; 2222 uint32_t cmdstat, csum_flags, vlanctl; 2223 2224 RL_LOCK_ASSERT(sc); 2225 M_ASSERTPKTHDR((*m_head)); 2226 2227 /* 2228 * With some of the RealTek chips, using the checksum offload 2229 * support in conjunction with the autopadding feature results 2230 * in the transmission of corrupt frames. For example, if we 2231 * need to send a really small IP fragment that's less than 60 2232 * bytes in size, and IP header checksumming is enabled, the 2233 * resulting ethernet frame that appears on the wire will 2234 * have garbled payload. To work around this, if TX IP checksum 2235 * offload is enabled, we always manually pad short frames out 2236 * to the minimum ethernet frame size. 2237 */ 2238 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 && 2239 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN && 2240 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) { 2241 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len; 2242 if (M_WRITABLE(*m_head) == 0) { 2243 /* Get a writable copy. */ 2244 m_new = m_dup(*m_head, M_DONTWAIT); 2245 m_freem(*m_head); 2246 if (m_new == NULL) { 2247 *m_head = NULL; 2248 return (ENOBUFS); 2249 } 2250 *m_head = m_new; 2251 } 2252 if ((*m_head)->m_next != NULL || 2253 M_TRAILINGSPACE(*m_head) < padlen) { 2254 m_new = m_defrag(*m_head, M_DONTWAIT); 2255 if (m_new == NULL) { 2256 m_freem(*m_head); 2257 *m_head = NULL; 2258 return (ENOBUFS); 2259 } 2260 } else 2261 m_new = *m_head; 2262 2263 /* 2264 * Manually pad short frames, and zero the pad space 2265 * to avoid leaking data. 2266 */ 2267 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen); 2268 m_new->m_pkthdr.len += padlen; 2269 m_new->m_len = m_new->m_pkthdr.len; 2270 *m_head = m_new; 2271 } 2272 2273 prod = sc->rl_ldata.rl_tx_prodidx; 2274 txd = &sc->rl_ldata.rl_tx_desc[prod]; 2275 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2276 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2277 if (error == EFBIG) { 2278 m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS); 2279 if (m_new == NULL) { 2280 m_freem(*m_head); 2281 *m_head = NULL; 2282 return (ENOBUFS); 2283 } 2284 *m_head = m_new; 2285 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, 2286 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2287 if (error != 0) { 2288 m_freem(*m_head); 2289 *m_head = NULL; 2290 return (error); 2291 } 2292 } else if (error != 0) 2293 return (error); 2294 if (nsegs == 0) { 2295 m_freem(*m_head); 2296 *m_head = NULL; 2297 return (EIO); 2298 } 2299 2300 /* Check for number of available descriptors. */ 2301 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) { 2302 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); 2303 return (ENOBUFS); 2304 } 2305 2306 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2307 BUS_DMASYNC_PREWRITE); 2308 2309 /* 2310 * Set up checksum offload. Note: checksum offload bits must 2311 * appear in all descriptors of a multi-descriptor transmit 2312 * attempt. This is according to testing done with an 8169 2313 * chip. This is a requirement. 2314 */ 2315 vlanctl = 0; 2316 csum_flags = 0; 2317 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) 2318 csum_flags = RL_TDESC_CMD_LGSEND | 2319 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2320 RL_TDESC_CMD_MSSVAL_SHIFT); 2321 else { 2322 /* 2323 * Unconditionally enable IP checksum if TCP or UDP 2324 * checksum is required. Otherwise, TCP/UDP checksum 2325 * does't make effects. 2326 */ 2327 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) { 2328 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2329 csum_flags |= RL_TDESC_CMD_IPCSUM; 2330 if (((*m_head)->m_pkthdr.csum_flags & 2331 CSUM_TCP) != 0) 2332 csum_flags |= RL_TDESC_CMD_TCPCSUM; 2333 if (((*m_head)->m_pkthdr.csum_flags & 2334 CSUM_UDP) != 0) 2335 csum_flags |= RL_TDESC_CMD_UDPCSUM; 2336 } else { 2337 vlanctl |= RL_TDESC_CMD_IPCSUMV2; 2338 if (((*m_head)->m_pkthdr.csum_flags & 2339 CSUM_TCP) != 0) 2340 vlanctl |= RL_TDESC_CMD_TCPCSUMV2; 2341 if (((*m_head)->m_pkthdr.csum_flags & 2342 CSUM_UDP) != 0) 2343 vlanctl |= RL_TDESC_CMD_UDPCSUMV2; 2344 } 2345 } 2346 } 2347 2348 /* 2349 * Set up hardware VLAN tagging. Note: vlan tag info must 2350 * appear in all descriptors of a multi-descriptor 2351 * transmission attempt. 2352 */ 2353 if ((*m_head)->m_flags & M_VLANTAG) 2354 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) | 2355 RL_TDESC_VLANCTL_TAG; 2356 2357 si = prod; 2358 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) { 2359 desc = &sc->rl_ldata.rl_tx_list[prod]; 2360 desc->rl_vlanctl = htole32(vlanctl); 2361 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); 2362 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); 2363 cmdstat = segs[i].ds_len; 2364 if (i != 0) 2365 cmdstat |= RL_TDESC_CMD_OWN; 2366 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1) 2367 cmdstat |= RL_TDESC_CMD_EOR; 2368 desc->rl_cmdstat = htole32(cmdstat | csum_flags); 2369 sc->rl_ldata.rl_tx_free--; 2370 } 2371 /* Update producer index. */ 2372 sc->rl_ldata.rl_tx_prodidx = prod; 2373 2374 /* Set EOF on the last descriptor. */ 2375 ei = RL_TX_DESC_PRV(sc, prod); 2376 desc = &sc->rl_ldata.rl_tx_list[ei]; 2377 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); 2378 2379 desc = &sc->rl_ldata.rl_tx_list[si]; 2380 /* Set SOF and transfer ownership of packet to the chip. */ 2381 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF); 2382 2383 /* 2384 * Insure that the map for this transmission 2385 * is placed at the array index of the last descriptor 2386 * in this chain. (Swap last and first dmamaps.) 2387 */ 2388 txd_last = &sc->rl_ldata.rl_tx_desc[ei]; 2389 map = txd->tx_dmamap; 2390 txd->tx_dmamap = txd_last->tx_dmamap; 2391 txd_last->tx_dmamap = map; 2392 txd_last->tx_m = *m_head; 2393 2394 return (0); 2395 } 2396 2397 static void 2398 re_tx_task(void *arg, int npending) 2399 { 2400 struct ifnet *ifp; 2401 2402 ifp = arg; 2403 re_start(ifp); 2404 } 2405 2406 /* 2407 * Main transmit routine for C+ and gigE NICs. 2408 */ 2409 static void 2410 re_start(struct ifnet *ifp) 2411 { 2412 struct rl_softc *sc; 2413 struct mbuf *m_head; 2414 int queued; 2415 2416 sc = ifp->if_softc; 2417 2418 RL_LOCK(sc); 2419 2420 if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2421 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) { 2422 RL_UNLOCK(sc); 2423 return; 2424 } 2425 2426 for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && 2427 sc->rl_ldata.rl_tx_free > 1;) { 2428 IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); 2429 if (m_head == NULL) 2430 break; 2431 2432 if (re_encap(sc, &m_head) != 0) { 2433 if (m_head == NULL) 2434 break; 2435 IFQ_DRV_PREPEND(&ifp->if_snd, m_head); 2436 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2437 break; 2438 } 2439 2440 /* 2441 * If there's a BPF listener, bounce a copy of this frame 2442 * to him. 2443 */ 2444 ETHER_BPF_MTAP(ifp, m_head); 2445 2446 queued++; 2447 } 2448 2449 if (queued == 0) { 2450 #ifdef RE_TX_MODERATION 2451 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) 2452 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2453 #endif 2454 RL_UNLOCK(sc); 2455 return; 2456 } 2457 2458 /* Flush the TX descriptors */ 2459 2460 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2461 sc->rl_ldata.rl_tx_list_map, 2462 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2463 2464 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2465 2466 #ifdef RE_TX_MODERATION 2467 /* 2468 * Use the countdown timer for interrupt moderation. 2469 * 'TX done' interrupts are disabled. Instead, we reset the 2470 * countdown timer, which will begin counting until it hits 2471 * the value in the TIMERINT register, and then trigger an 2472 * interrupt. Each time we write to the TIMERCNT register, 2473 * the timer count is reset to 0. 2474 */ 2475 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2476 #endif 2477 2478 /* 2479 * Set a timeout in case the chip goes out to lunch. 2480 */ 2481 sc->rl_watchdog_timer = 5; 2482 2483 RL_UNLOCK(sc); 2484 } 2485 2486 static void 2487 re_init(void *xsc) 2488 { 2489 struct rl_softc *sc = xsc; 2490 2491 RL_LOCK(sc); 2492 re_init_locked(sc); 2493 RL_UNLOCK(sc); 2494 } 2495 2496 static void 2497 re_init_locked(struct rl_softc *sc) 2498 { 2499 struct ifnet *ifp = sc->rl_ifp; 2500 struct mii_data *mii; 2501 u_int32_t rxcfg = 0; 2502 uint16_t cfg; 2503 union { 2504 uint32_t align_dummy; 2505 u_char eaddr[ETHER_ADDR_LEN]; 2506 } eaddr; 2507 2508 RL_LOCK_ASSERT(sc); 2509 2510 mii = device_get_softc(sc->rl_miibus); 2511 2512 /* 2513 * Cancel pending I/O and free all RX/TX buffers. 2514 */ 2515 re_stop(sc); 2516 2517 /* Put controller into known state. */ 2518 re_reset(sc); 2519 2520 /* 2521 * Enable C+ RX and TX mode, as well as VLAN stripping and 2522 * RX checksum offload. We must configure the C+ register 2523 * before all others. 2524 */ 2525 cfg = RL_CPLUSCMD_PCI_MRW; 2526 if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) 2527 cfg |= RL_CPLUSCMD_RXCSUM_ENB; 2528 if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) 2529 cfg |= RL_CPLUSCMD_VLANSTRIP; 2530 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) { 2531 cfg |= RL_CPLUSCMD_MACSTAT_DIS; 2532 /* XXX magic. */ 2533 cfg |= 0x0001; 2534 } else 2535 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB; 2536 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg); 2537 /* 2538 * Disable TSO if interface MTU size is greater than MSS 2539 * allowed in controller. 2540 */ 2541 if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) { 2542 ifp->if_capenable &= ~IFCAP_TSO4; 2543 ifp->if_hwassist &= ~CSUM_TSO; 2544 } 2545 2546 /* 2547 * Init our MAC address. Even though the chipset 2548 * documentation doesn't mention it, we need to enter "Config 2549 * register write enable" mode to modify the ID registers. 2550 */ 2551 /* Copy MAC address on stack to align. */ 2552 bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN); 2553 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 2554 CSR_WRITE_4(sc, RL_IDR0, 2555 htole32(*(u_int32_t *)(&eaddr.eaddr[0]))); 2556 CSR_WRITE_4(sc, RL_IDR4, 2557 htole32(*(u_int32_t *)(&eaddr.eaddr[4]))); 2558 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 2559 2560 /* 2561 * For C+ mode, initialize the RX descriptors and mbufs. 2562 */ 2563 re_rx_list_init(sc); 2564 re_tx_list_init(sc); 2565 2566 /* 2567 * Load the addresses of the RX and TX lists into the chip. 2568 */ 2569 2570 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, 2571 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); 2572 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, 2573 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); 2574 2575 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, 2576 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); 2577 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, 2578 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); 2579 2580 /* 2581 * Enable transmit and receive. 2582 */ 2583 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 2584 2585 /* 2586 * Set the initial TX and RX configuration. 2587 */ 2588 if (sc->rl_testmode) { 2589 if (sc->rl_type == RL_8169) 2590 CSR_WRITE_4(sc, RL_TXCFG, 2591 RL_TXCFG_CONFIG|RL_LOOPTEST_ON); 2592 else 2593 CSR_WRITE_4(sc, RL_TXCFG, 2594 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); 2595 } else 2596 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 2597 2598 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); 2599 2600 CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); 2601 2602 /* Set the individual bit to receive frames for this host only. */ 2603 rxcfg = CSR_READ_4(sc, RL_RXCFG); 2604 rxcfg |= RL_RXCFG_RX_INDIV; 2605 2606 /* If we want promiscuous mode, set the allframes bit. */ 2607 if (ifp->if_flags & IFF_PROMISC) 2608 rxcfg |= RL_RXCFG_RX_ALLPHYS; 2609 else 2610 rxcfg &= ~RL_RXCFG_RX_ALLPHYS; 2611 CSR_WRITE_4(sc, RL_RXCFG, rxcfg); 2612 2613 /* 2614 * Set capture broadcast bit to capture broadcast frames. 2615 */ 2616 if (ifp->if_flags & IFF_BROADCAST) 2617 rxcfg |= RL_RXCFG_RX_BROAD; 2618 else 2619 rxcfg &= ~RL_RXCFG_RX_BROAD; 2620 CSR_WRITE_4(sc, RL_RXCFG, rxcfg); 2621 2622 /* 2623 * Program the multicast filter, if necessary. 2624 */ 2625 re_setmulti(sc); 2626 2627 #ifdef DEVICE_POLLING 2628 /* 2629 * Disable interrupts if we are polling. 2630 */ 2631 if (ifp->if_capenable & IFCAP_POLLING) 2632 CSR_WRITE_2(sc, RL_IMR, 0); 2633 else /* otherwise ... */ 2634 #endif 2635 2636 /* 2637 * Enable interrupts. 2638 */ 2639 if (sc->rl_testmode) 2640 CSR_WRITE_2(sc, RL_IMR, 0); 2641 else 2642 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2643 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS); 2644 2645 /* Set initial TX threshold */ 2646 sc->rl_txthresh = RL_TX_THRESH_INIT; 2647 2648 /* Start RX/TX process. */ 2649 CSR_WRITE_4(sc, RL_MISSEDPKT, 0); 2650 #ifdef notdef 2651 /* Enable receiver and transmitter. */ 2652 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); 2653 #endif 2654 2655 #ifdef RE_TX_MODERATION 2656 /* 2657 * Initialize the timer interrupt register so that 2658 * a timer interrupt will be generated once the timer 2659 * reaches a certain number of ticks. The timer is 2660 * reloaded on each transmit. This gives us TX interrupt 2661 * moderation, which dramatically improves TX frame rate. 2662 */ 2663 if (sc->rl_type == RL_8169) 2664 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); 2665 else 2666 CSR_WRITE_4(sc, RL_TIMERINT, 0x400); 2667 #endif 2668 2669 /* 2670 * For 8169 gigE NICs, set the max allowed RX packet 2671 * size so we can receive jumbo frames. 2672 */ 2673 if (sc->rl_type == RL_8169) 2674 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); 2675 2676 if (sc->rl_testmode) 2677 return; 2678 2679 mii_mediachg(mii); 2680 2681 CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD); 2682 2683 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2684 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2685 2686 sc->rl_flags &= ~RL_FLAG_LINK; 2687 sc->rl_watchdog_timer = 0; 2688 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2689 } 2690 2691 /* 2692 * Set media options. 2693 */ 2694 static int 2695 re_ifmedia_upd(struct ifnet *ifp) 2696 { 2697 struct rl_softc *sc; 2698 struct mii_data *mii; 2699 int error; 2700 2701 sc = ifp->if_softc; 2702 mii = device_get_softc(sc->rl_miibus); 2703 RL_LOCK(sc); 2704 error = mii_mediachg(mii); 2705 RL_UNLOCK(sc); 2706 2707 return (error); 2708 } 2709 2710 /* 2711 * Report current media status. 2712 */ 2713 static void 2714 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) 2715 { 2716 struct rl_softc *sc; 2717 struct mii_data *mii; 2718 2719 sc = ifp->if_softc; 2720 mii = device_get_softc(sc->rl_miibus); 2721 2722 RL_LOCK(sc); 2723 mii_pollstat(mii); 2724 RL_UNLOCK(sc); 2725 ifmr->ifm_active = mii->mii_media_active; 2726 ifmr->ifm_status = mii->mii_media_status; 2727 } 2728 2729 static int 2730 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data) 2731 { 2732 struct rl_softc *sc = ifp->if_softc; 2733 struct ifreq *ifr = (struct ifreq *) data; 2734 struct mii_data *mii; 2735 int error = 0; 2736 2737 switch (command) { 2738 case SIOCSIFMTU: 2739 if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) { 2740 error = EINVAL; 2741 break; 2742 } 2743 if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 && 2744 ifr->ifr_mtu > RL_MAX_FRAMELEN) { 2745 error = EINVAL; 2746 break; 2747 } 2748 RL_LOCK(sc); 2749 if (ifp->if_mtu != ifr->ifr_mtu) 2750 ifp->if_mtu = ifr->ifr_mtu; 2751 if (ifp->if_mtu > RL_TSO_MTU && 2752 (ifp->if_capenable & IFCAP_TSO4) != 0) { 2753 ifp->if_capenable &= ~IFCAP_TSO4; 2754 ifp->if_hwassist &= ~CSUM_TSO; 2755 } 2756 RL_UNLOCK(sc); 2757 break; 2758 case SIOCSIFFLAGS: 2759 RL_LOCK(sc); 2760 if ((ifp->if_flags & IFF_UP) != 0) { 2761 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { 2762 if (((ifp->if_flags ^ sc->rl_if_flags) 2763 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 2764 re_setmulti(sc); 2765 } else 2766 re_init_locked(sc); 2767 } else { 2768 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) 2769 re_stop(sc); 2770 } 2771 sc->rl_if_flags = ifp->if_flags; 2772 RL_UNLOCK(sc); 2773 break; 2774 case SIOCADDMULTI: 2775 case SIOCDELMULTI: 2776 RL_LOCK(sc); 2777 re_setmulti(sc); 2778 RL_UNLOCK(sc); 2779 break; 2780 case SIOCGIFMEDIA: 2781 case SIOCSIFMEDIA: 2782 mii = device_get_softc(sc->rl_miibus); 2783 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 2784 break; 2785 case SIOCSIFCAP: 2786 { 2787 int mask, reinit; 2788 2789 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2790 reinit = 0; 2791 #ifdef DEVICE_POLLING 2792 if (mask & IFCAP_POLLING) { 2793 if (ifr->ifr_reqcap & IFCAP_POLLING) { 2794 error = ether_poll_register(re_poll, ifp); 2795 if (error) 2796 return(error); 2797 RL_LOCK(sc); 2798 /* Disable interrupts */ 2799 CSR_WRITE_2(sc, RL_IMR, 0x0000); 2800 ifp->if_capenable |= IFCAP_POLLING; 2801 RL_UNLOCK(sc); 2802 } else { 2803 error = ether_poll_deregister(ifp); 2804 /* Enable interrupts. */ 2805 RL_LOCK(sc); 2806 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2807 ifp->if_capenable &= ~IFCAP_POLLING; 2808 RL_UNLOCK(sc); 2809 } 2810 } 2811 #endif /* DEVICE_POLLING */ 2812 if (mask & IFCAP_HWCSUM) { 2813 ifp->if_capenable ^= IFCAP_HWCSUM; 2814 if (ifp->if_capenable & IFCAP_TXCSUM) 2815 ifp->if_hwassist |= RE_CSUM_FEATURES; 2816 else 2817 ifp->if_hwassist &= ~RE_CSUM_FEATURES; 2818 reinit = 1; 2819 } 2820 if (mask & IFCAP_VLAN_HWTAGGING) { 2821 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2822 reinit = 1; 2823 } 2824 if (mask & IFCAP_TSO4) { 2825 ifp->if_capenable ^= IFCAP_TSO4; 2826 if ((IFCAP_TSO4 & ifp->if_capenable) && 2827 (IFCAP_TSO4 & ifp->if_capabilities)) 2828 ifp->if_hwassist |= CSUM_TSO; 2829 else 2830 ifp->if_hwassist &= ~CSUM_TSO; 2831 if (ifp->if_mtu > RL_TSO_MTU && 2832 (ifp->if_capenable & IFCAP_TSO4) != 0) { 2833 ifp->if_capenable &= ~IFCAP_TSO4; 2834 ifp->if_hwassist &= ~CSUM_TSO; 2835 } 2836 } 2837 if ((mask & IFCAP_WOL) != 0 && 2838 (ifp->if_capabilities & IFCAP_WOL) != 0) { 2839 if ((mask & IFCAP_WOL_UCAST) != 0) 2840 ifp->if_capenable ^= IFCAP_WOL_UCAST; 2841 if ((mask & IFCAP_WOL_MCAST) != 0) 2842 ifp->if_capenable ^= IFCAP_WOL_MCAST; 2843 if ((mask & IFCAP_WOL_MAGIC) != 0) 2844 ifp->if_capenable ^= IFCAP_WOL_MAGIC; 2845 } 2846 if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) 2847 re_init(sc); 2848 VLAN_CAPABILITIES(ifp); 2849 } 2850 break; 2851 default: 2852 error = ether_ioctl(ifp, command, data); 2853 break; 2854 } 2855 2856 return (error); 2857 } 2858 2859 static void 2860 re_watchdog(struct rl_softc *sc) 2861 { 2862 struct ifnet *ifp; 2863 2864 RL_LOCK_ASSERT(sc); 2865 2866 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0) 2867 return; 2868 2869 ifp = sc->rl_ifp; 2870 re_txeof(sc); 2871 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) { 2872 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 2873 "-- recovering\n"); 2874 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2875 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 2876 return; 2877 } 2878 2879 if_printf(ifp, "watchdog timeout\n"); 2880 ifp->if_oerrors++; 2881 2882 re_rxeof(sc); 2883 re_init_locked(sc); 2884 if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) 2885 taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask); 2886 } 2887 2888 /* 2889 * Stop the adapter and free any mbufs allocated to the 2890 * RX and TX lists. 2891 */ 2892 static void 2893 re_stop(struct rl_softc *sc) 2894 { 2895 int i; 2896 struct ifnet *ifp; 2897 struct rl_txdesc *txd; 2898 struct rl_rxdesc *rxd; 2899 2900 RL_LOCK_ASSERT(sc); 2901 2902 ifp = sc->rl_ifp; 2903 2904 sc->rl_watchdog_timer = 0; 2905 callout_stop(&sc->rl_stat_callout); 2906 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2907 2908 if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) 2909 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB | 2910 RL_CMD_RX_ENB); 2911 else 2912 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 2913 DELAY(1000); 2914 CSR_WRITE_2(sc, RL_IMR, 0x0000); 2915 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 2916 2917 if (sc->rl_head != NULL) { 2918 m_freem(sc->rl_head); 2919 sc->rl_head = sc->rl_tail = NULL; 2920 } 2921 2922 /* Free the TX list buffers. */ 2923 2924 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 2925 txd = &sc->rl_ldata.rl_tx_desc[i]; 2926 if (txd->tx_m != NULL) { 2927 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 2928 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2929 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 2930 txd->tx_dmamap); 2931 m_freem(txd->tx_m); 2932 txd->tx_m = NULL; 2933 } 2934 } 2935 2936 /* Free the RX list buffers. */ 2937 2938 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 2939 rxd = &sc->rl_ldata.rl_rx_desc[i]; 2940 if (rxd->rx_m != NULL) { 2941 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 2942 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 2943 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 2944 rxd->rx_dmamap); 2945 m_freem(rxd->rx_m); 2946 rxd->rx_m = NULL; 2947 } 2948 } 2949 } 2950 2951 /* 2952 * Device suspend routine. Stop the interface and save some PCI 2953 * settings in case the BIOS doesn't restore them properly on 2954 * resume. 2955 */ 2956 static int 2957 re_suspend(device_t dev) 2958 { 2959 struct rl_softc *sc; 2960 2961 sc = device_get_softc(dev); 2962 2963 RL_LOCK(sc); 2964 re_stop(sc); 2965 re_setwol(sc); 2966 sc->suspended = 1; 2967 RL_UNLOCK(sc); 2968 2969 return (0); 2970 } 2971 2972 /* 2973 * Device resume routine. Restore some PCI settings in case the BIOS 2974 * doesn't, re-enable busmastering, and restart the interface if 2975 * appropriate. 2976 */ 2977 static int 2978 re_resume(device_t dev) 2979 { 2980 struct rl_softc *sc; 2981 struct ifnet *ifp; 2982 2983 sc = device_get_softc(dev); 2984 2985 RL_LOCK(sc); 2986 2987 ifp = sc->rl_ifp; 2988 /* Take controller out of sleep mode. */ 2989 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 2990 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 2991 CSR_WRITE_1(sc, RL_GPIO, 2992 CSR_READ_1(sc, RL_GPIO) | 0x01); 2993 } 2994 2995 /* reinitialize interface if necessary */ 2996 if (ifp->if_flags & IFF_UP) 2997 re_init_locked(sc); 2998 2999 /* 3000 * Clear WOL matching such that normal Rx filtering 3001 * wouldn't interfere with WOL patterns. 3002 */ 3003 re_clrwol(sc); 3004 sc->suspended = 0; 3005 RL_UNLOCK(sc); 3006 3007 return (0); 3008 } 3009 3010 /* 3011 * Stop all chip I/O so that the kernel's probe routines don't 3012 * get confused by errant DMAs when rebooting. 3013 */ 3014 static int 3015 re_shutdown(device_t dev) 3016 { 3017 struct rl_softc *sc; 3018 3019 sc = device_get_softc(dev); 3020 3021 RL_LOCK(sc); 3022 re_stop(sc); 3023 /* 3024 * Mark interface as down since otherwise we will panic if 3025 * interrupt comes in later on, which can happen in some 3026 * cases. 3027 */ 3028 sc->rl_ifp->if_flags &= ~IFF_UP; 3029 re_setwol(sc); 3030 RL_UNLOCK(sc); 3031 3032 return (0); 3033 } 3034 3035 static void 3036 re_setwol(struct rl_softc *sc) 3037 { 3038 struct ifnet *ifp; 3039 int pmc; 3040 uint16_t pmstat; 3041 uint8_t v; 3042 3043 RL_LOCK_ASSERT(sc); 3044 3045 if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3046 return; 3047 3048 ifp = sc->rl_ifp; 3049 /* Put controller into sleep mode. */ 3050 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3051 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3052 CSR_WRITE_1(sc, RL_GPIO, 3053 CSR_READ_1(sc, RL_GPIO) & ~0x01); 3054 } 3055 if ((ifp->if_capenable & IFCAP_WOL) != 0 && 3056 (sc->rl_flags & RL_FLAG_WOLRXENB) != 0) 3057 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB); 3058 /* Enable config register write. */ 3059 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3060 3061 /* Enable PME. */ 3062 v = CSR_READ_1(sc, RL_CFG1); 3063 v &= ~RL_CFG1_PME; 3064 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3065 v |= RL_CFG1_PME; 3066 CSR_WRITE_1(sc, RL_CFG1, v); 3067 3068 v = CSR_READ_1(sc, RL_CFG3); 3069 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3070 if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0) 3071 v |= RL_CFG3_WOL_MAGIC; 3072 CSR_WRITE_1(sc, RL_CFG3, v); 3073 3074 /* Config register write done. */ 3075 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3076 3077 v = CSR_READ_1(sc, RL_CFG5); 3078 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 3079 v &= ~RL_CFG5_WOL_LANWAKE; 3080 if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0) 3081 v |= RL_CFG5_WOL_UCAST; 3082 if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0) 3083 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; 3084 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3085 v |= RL_CFG5_WOL_LANWAKE; 3086 CSR_WRITE_1(sc, RL_CFG5, v); 3087 3088 /* 3089 * It seems that hardware resets its link speed to 100Mbps in 3090 * power down mode so switching to 100Mbps in driver is not 3091 * needed. 3092 */ 3093 3094 /* Request PME if WOL is requested. */ 3095 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); 3096 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3097 if ((ifp->if_capenable & IFCAP_WOL) != 0) 3098 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3099 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 3100 } 3101 3102 static void 3103 re_clrwol(struct rl_softc *sc) 3104 { 3105 int pmc; 3106 uint8_t v; 3107 3108 RL_LOCK_ASSERT(sc); 3109 3110 if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3111 return; 3112 3113 /* Enable config register write. */ 3114 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3115 3116 v = CSR_READ_1(sc, RL_CFG3); 3117 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3118 CSR_WRITE_1(sc, RL_CFG3, v); 3119 3120 /* Config register write done. */ 3121 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3122 3123 v = CSR_READ_1(sc, RL_CFG5); 3124 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 3125 v &= ~RL_CFG5_WOL_LANWAKE; 3126 CSR_WRITE_1(sc, RL_CFG5, v); 3127 } 3128