xref: /freebsd/sys/dev/re/if_re.c (revision 8847579c57d6aff2b3371c707dce7a2cee8389aa)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/taskqueue.h>
127 
128 #include <net/if.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/if_vlan_var.h>
135 
136 #include <net/bpf.h>
137 
138 #include <machine/bus.h>
139 #include <machine/resource.h>
140 #include <sys/bus.h>
141 #include <sys/rman.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 
149 MODULE_DEPEND(re, pci, 1, 1, 1);
150 MODULE_DEPEND(re, ether, 1, 1, 1);
151 MODULE_DEPEND(re, miibus, 1, 1, 1);
152 
153 /* "device miibus" required.  See GENERIC if you get errors here. */
154 #include "miibus_if.h"
155 
156 /*
157  * Default to using PIO access for this driver.
158  */
159 #define RE_USEIOSPACE
160 
161 #include <pci/if_rlreg.h>
162 
163 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
164 
165 /*
166  * Various supported device vendors/types and their names.
167  */
168 static struct rl_type re_devs[] = {
169 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
170 		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
171 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
172 		"RealTek 8139C+ 10/100BaseTX" },
173 	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
174 		"RealTek 8101E PCIe 10/100baseTX" },
175 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168,
176 		"RealTek 8168B PCIe Gigabit Ethernet" },
177 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8111,
178 		"RealTek 8111B PCIe Gigabit Ethernet" },
179 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
180 		"RealTek 8169 Gigabit Ethernet" },
181 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
182 		"RealTek 8169S Single-chip Gigabit Ethernet" },
183 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
184 		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
185 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SC,
186 		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
187 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
188 		"RealTek 8110S Single-chip Gigabit Ethernet" },
189 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
190 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
192 		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193 	{ 0, 0, 0, NULL }
194 };
195 
196 static struct rl_hwrev re_hwrevs[] = {
197 	{ RL_HWREV_8139, RL_8139,  "" },
198 	{ RL_HWREV_8139A, RL_8139, "A" },
199 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
200 	{ RL_HWREV_8139B, RL_8139, "B" },
201 	{ RL_HWREV_8130, RL_8139, "8130" },
202 	{ RL_HWREV_8139C, RL_8139, "C" },
203 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
204 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
205 	{ RL_HWREV_8168, RL_8169, "8168"},
206 	{ RL_HWREV_8169, RL_8169, "8169"},
207 	{ RL_HWREV_8169S, RL_8169, "8169S"},
208 	{ RL_HWREV_8110S, RL_8169, "8110S"},
209 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
210 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
211 	{ RL_HWREV_8100, RL_8139, "8100"},
212 	{ RL_HWREV_8101, RL_8139, "8101"},
213 	{ RL_HWREV_8100E, RL_8169, "8100E"},
214 	{ RL_HWREV_8101E, RL_8169, "8101E"},
215 	{ RL_HWREV_8111, RL_8169, "8111"},
216 	{ 0, 0, NULL }
217 };
218 
219 static int re_probe		(device_t);
220 static int re_attach		(device_t);
221 static int re_detach		(device_t);
222 
223 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
224 
225 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
226 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
227 				    bus_size_t, int);
228 static int re_allocmem		(device_t, struct rl_softc *);
229 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
230 static int re_rx_list_init	(struct rl_softc *);
231 static int re_tx_list_init	(struct rl_softc *);
232 #ifdef RE_FIXUP_RX
233 static __inline void re_fixup_rx
234 				(struct mbuf *);
235 #endif
236 static int re_rxeof		(struct rl_softc *);
237 static void re_txeof		(struct rl_softc *);
238 #ifdef DEVICE_POLLING
239 static void re_poll		(struct ifnet *, enum poll_cmd, int);
240 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
241 #endif
242 static void re_intr		(void *);
243 static void re_tick		(void *);
244 static void re_tx_task		(void *, int);
245 static void re_int_task		(void *, int);
246 static void re_start		(struct ifnet *);
247 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
248 static void re_init		(void *);
249 static void re_init_locked	(struct rl_softc *);
250 static void re_stop		(struct rl_softc *);
251 static void re_watchdog		(struct ifnet *);
252 static int re_suspend		(device_t);
253 static int re_resume		(device_t);
254 static void re_shutdown		(device_t);
255 static int re_ifmedia_upd	(struct ifnet *);
256 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
257 
258 static void re_eeprom_putbyte	(struct rl_softc *, int);
259 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
260 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
261 static int re_gmii_readreg	(device_t, int, int);
262 static int re_gmii_writereg	(device_t, int, int, int);
263 
264 static int re_miibus_readreg	(device_t, int, int);
265 static int re_miibus_writereg	(device_t, int, int, int);
266 static void re_miibus_statchg	(device_t);
267 
268 static void re_setmulti		(struct rl_softc *);
269 static void re_reset		(struct rl_softc *);
270 
271 #ifdef RE_DIAG
272 static int re_diag		(struct rl_softc *);
273 #endif
274 
275 #ifdef RE_USEIOSPACE
276 #define RL_RES			SYS_RES_IOPORT
277 #define RL_RID			RL_PCI_LOIO
278 #else
279 #define RL_RES			SYS_RES_MEMORY
280 #define RL_RID			RL_PCI_LOMEM
281 #endif
282 
283 static device_method_t re_methods[] = {
284 	/* Device interface */
285 	DEVMETHOD(device_probe,		re_probe),
286 	DEVMETHOD(device_attach,	re_attach),
287 	DEVMETHOD(device_detach,	re_detach),
288 	DEVMETHOD(device_suspend,	re_suspend),
289 	DEVMETHOD(device_resume,	re_resume),
290 	DEVMETHOD(device_shutdown,	re_shutdown),
291 
292 	/* bus interface */
293 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
294 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
295 
296 	/* MII interface */
297 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
298 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
299 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
300 
301 	{ 0, 0 }
302 };
303 
304 static driver_t re_driver = {
305 	"re",
306 	re_methods,
307 	sizeof(struct rl_softc)
308 };
309 
310 static devclass_t re_devclass;
311 
312 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
313 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
314 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
315 
316 #define EE_SET(x)					\
317 	CSR_WRITE_1(sc, RL_EECMD,			\
318 		CSR_READ_1(sc, RL_EECMD) | x)
319 
320 #define EE_CLR(x)					\
321 	CSR_WRITE_1(sc, RL_EECMD,			\
322 		CSR_READ_1(sc, RL_EECMD) & ~x)
323 
324 /*
325  * Send a read command and address to the EEPROM, check for ACK.
326  */
327 static void
328 re_eeprom_putbyte(sc, addr)
329 	struct rl_softc		*sc;
330 	int			addr;
331 {
332 	register int		d, i;
333 
334 	d = addr | (RL_9346_READ << sc->rl_eewidth);
335 
336 	/*
337 	 * Feed in each bit and strobe the clock.
338 	 */
339 
340 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
341 		if (d & i) {
342 			EE_SET(RL_EE_DATAIN);
343 		} else {
344 			EE_CLR(RL_EE_DATAIN);
345 		}
346 		DELAY(100);
347 		EE_SET(RL_EE_CLK);
348 		DELAY(150);
349 		EE_CLR(RL_EE_CLK);
350 		DELAY(100);
351 	}
352 
353 	return;
354 }
355 
356 /*
357  * Read a word of data stored in the EEPROM at address 'addr.'
358  */
359 static void
360 re_eeprom_getword(sc, addr, dest)
361 	struct rl_softc		*sc;
362 	int			addr;
363 	u_int16_t		*dest;
364 {
365 	register int		i;
366 	u_int16_t		word = 0;
367 
368 	/*
369 	 * Send address of word we want to read.
370 	 */
371 	re_eeprom_putbyte(sc, addr);
372 
373 	/*
374 	 * Start reading bits from EEPROM.
375 	 */
376 	for (i = 0x8000; i; i >>= 1) {
377 		EE_SET(RL_EE_CLK);
378 		DELAY(100);
379 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
380 			word |= i;
381 		EE_CLR(RL_EE_CLK);
382 		DELAY(100);
383 	}
384 
385 	*dest = word;
386 
387 	return;
388 }
389 
390 /*
391  * Read a sequence of words from the EEPROM.
392  */
393 static void
394 re_read_eeprom(sc, dest, off, cnt)
395 	struct rl_softc		*sc;
396 	caddr_t			dest;
397 	int			off;
398 	int			cnt;
399 {
400 	int			i;
401 	u_int16_t		word = 0, *ptr;
402 
403 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
404 
405         DELAY(100);
406 
407 	for (i = 0; i < cnt; i++) {
408 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
409 		re_eeprom_getword(sc, off + i, &word);
410 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
411 		ptr = (u_int16_t *)(dest + (i * 2));
412                 *ptr = le16toh(word);
413 	}
414 
415 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
416 
417 	return;
418 }
419 
420 static int
421 re_gmii_readreg(dev, phy, reg)
422 	device_t		dev;
423 	int			phy, reg;
424 {
425 	struct rl_softc		*sc;
426 	u_int32_t		rval;
427 	int			i;
428 
429 	if (phy != 1)
430 		return (0);
431 
432 	sc = device_get_softc(dev);
433 
434 	/* Let the rgephy driver read the GMEDIASTAT register */
435 
436 	if (reg == RL_GMEDIASTAT) {
437 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
438 		return (rval);
439 	}
440 
441 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
442 	DELAY(1000);
443 
444 	for (i = 0; i < RL_TIMEOUT; i++) {
445 		rval = CSR_READ_4(sc, RL_PHYAR);
446 		if (rval & RL_PHYAR_BUSY)
447 			break;
448 		DELAY(100);
449 	}
450 
451 	if (i == RL_TIMEOUT) {
452 		if_printf(sc->rl_ifp, "PHY read failed\n");
453 		return (0);
454 	}
455 
456 	return (rval & RL_PHYAR_PHYDATA);
457 }
458 
459 static int
460 re_gmii_writereg(dev, phy, reg, data)
461 	device_t		dev;
462 	int			phy, reg, data;
463 {
464 	struct rl_softc		*sc;
465 	u_int32_t		rval;
466 	int			i;
467 
468 	sc = device_get_softc(dev);
469 
470 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
471 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
472 	DELAY(1000);
473 
474 	for (i = 0; i < RL_TIMEOUT; i++) {
475 		rval = CSR_READ_4(sc, RL_PHYAR);
476 		if (!(rval & RL_PHYAR_BUSY))
477 			break;
478 		DELAY(100);
479 	}
480 
481 	if (i == RL_TIMEOUT) {
482 		if_printf(sc->rl_ifp, "PHY write failed\n");
483 		return (0);
484 	}
485 
486 	return (0);
487 }
488 
489 static int
490 re_miibus_readreg(dev, phy, reg)
491 	device_t		dev;
492 	int			phy, reg;
493 {
494 	struct rl_softc		*sc;
495 	u_int16_t		rval = 0;
496 	u_int16_t		re8139_reg = 0;
497 
498 	sc = device_get_softc(dev);
499 
500 	if (sc->rl_type == RL_8169) {
501 		rval = re_gmii_readreg(dev, phy, reg);
502 		return (rval);
503 	}
504 
505 	/* Pretend the internal PHY is only at address 0 */
506 	if (phy) {
507 		return (0);
508 	}
509 	switch (reg) {
510 	case MII_BMCR:
511 		re8139_reg = RL_BMCR;
512 		break;
513 	case MII_BMSR:
514 		re8139_reg = RL_BMSR;
515 		break;
516 	case MII_ANAR:
517 		re8139_reg = RL_ANAR;
518 		break;
519 	case MII_ANER:
520 		re8139_reg = RL_ANER;
521 		break;
522 	case MII_ANLPAR:
523 		re8139_reg = RL_LPAR;
524 		break;
525 	case MII_PHYIDR1:
526 	case MII_PHYIDR2:
527 		return (0);
528 	/*
529 	 * Allow the rlphy driver to read the media status
530 	 * register. If we have a link partner which does not
531 	 * support NWAY, this is the register which will tell
532 	 * us the results of parallel detection.
533 	 */
534 	case RL_MEDIASTAT:
535 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
536 		return (rval);
537 	default:
538 		if_printf(sc->rl_ifp, "bad phy register\n");
539 		return (0);
540 	}
541 	rval = CSR_READ_2(sc, re8139_reg);
542 	return (rval);
543 }
544 
545 static int
546 re_miibus_writereg(dev, phy, reg, data)
547 	device_t		dev;
548 	int			phy, reg, data;
549 {
550 	struct rl_softc		*sc;
551 	u_int16_t		re8139_reg = 0;
552 	int			rval = 0;
553 
554 	sc = device_get_softc(dev);
555 
556 	if (sc->rl_type == RL_8169) {
557 		rval = re_gmii_writereg(dev, phy, reg, data);
558 		return (rval);
559 	}
560 
561 	/* Pretend the internal PHY is only at address 0 */
562 	if (phy)
563 		return (0);
564 
565 	switch (reg) {
566 	case MII_BMCR:
567 		re8139_reg = RL_BMCR;
568 		break;
569 	case MII_BMSR:
570 		re8139_reg = RL_BMSR;
571 		break;
572 	case MII_ANAR:
573 		re8139_reg = RL_ANAR;
574 		break;
575 	case MII_ANER:
576 		re8139_reg = RL_ANER;
577 		break;
578 	case MII_ANLPAR:
579 		re8139_reg = RL_LPAR;
580 		break;
581 	case MII_PHYIDR1:
582 	case MII_PHYIDR2:
583 		return (0);
584 		break;
585 	default:
586 		if_printf(sc->rl_ifp, "bad phy register\n");
587 		return (0);
588 	}
589 	CSR_WRITE_2(sc, re8139_reg, data);
590 	return (0);
591 }
592 
593 static void
594 re_miibus_statchg(dev)
595 	device_t		dev;
596 {
597 
598 }
599 
600 /*
601  * Program the 64-bit multicast hash filter.
602  */
603 static void
604 re_setmulti(sc)
605 	struct rl_softc		*sc;
606 {
607 	struct ifnet		*ifp;
608 	int			h = 0;
609 	u_int32_t		hashes[2] = { 0, 0 };
610 	struct ifmultiaddr	*ifma;
611 	u_int32_t		rxfilt;
612 	int			mcnt = 0;
613 
614 	RL_LOCK_ASSERT(sc);
615 
616 	ifp = sc->rl_ifp;
617 
618 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
619 
620 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621 		rxfilt |= RL_RXCFG_RX_MULTI;
622 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
623 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
624 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
625 		return;
626 	}
627 
628 	/* first, zot all the existing hash bits */
629 	CSR_WRITE_4(sc, RL_MAR0, 0);
630 	CSR_WRITE_4(sc, RL_MAR4, 0);
631 
632 	/* now program new ones */
633 	IF_ADDR_LOCK(ifp);
634 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
635 		if (ifma->ifma_addr->sa_family != AF_LINK)
636 			continue;
637 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
638 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
639 		if (h < 32)
640 			hashes[0] |= (1 << h);
641 		else
642 			hashes[1] |= (1 << (h - 32));
643 		mcnt++;
644 	}
645 	IF_ADDR_UNLOCK(ifp);
646 
647 	if (mcnt)
648 		rxfilt |= RL_RXCFG_RX_MULTI;
649 	else
650 		rxfilt &= ~RL_RXCFG_RX_MULTI;
651 
652 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
653 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
654 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
655 }
656 
657 static void
658 re_reset(sc)
659 	struct rl_softc		*sc;
660 {
661 	register int		i;
662 
663 	RL_LOCK_ASSERT(sc);
664 
665 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
666 
667 	for (i = 0; i < RL_TIMEOUT; i++) {
668 		DELAY(10);
669 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
670 			break;
671 	}
672 	if (i == RL_TIMEOUT)
673 		if_printf(sc->rl_ifp, "reset never completed!\n");
674 
675 	CSR_WRITE_1(sc, 0x82, 1);
676 }
677 
678 #ifdef RE_DIAG
679 
680 /*
681  * The following routine is designed to test for a defect on some
682  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
683  * lines connected to the bus, however for a 32-bit only card, they
684  * should be pulled high. The result of this defect is that the
685  * NIC will not work right if you plug it into a 64-bit slot: DMA
686  * operations will be done with 64-bit transfers, which will fail
687  * because the 64-bit data lines aren't connected.
688  *
689  * There's no way to work around this (short of talking a soldering
690  * iron to the board), however we can detect it. The method we use
691  * here is to put the NIC into digital loopback mode, set the receiver
692  * to promiscuous mode, and then try to send a frame. We then compare
693  * the frame data we sent to what was received. If the data matches,
694  * then the NIC is working correctly, otherwise we know the user has
695  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
696  * slot. In the latter case, there's no way the NIC can work correctly,
697  * so we print out a message on the console and abort the device attach.
698  */
699 
700 static int
701 re_diag(sc)
702 	struct rl_softc		*sc;
703 {
704 	struct ifnet		*ifp = sc->rl_ifp;
705 	struct mbuf		*m0;
706 	struct ether_header	*eh;
707 	struct rl_desc		*cur_rx;
708 	u_int16_t		status;
709 	u_int32_t		rxstat;
710 	int			total_len, i, error = 0, phyaddr;
711 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
712 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
713 
714 	/* Allocate a single mbuf */
715 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
716 	if (m0 == NULL)
717 		return (ENOBUFS);
718 
719 	RL_LOCK(sc);
720 
721 	/*
722 	 * Initialize the NIC in test mode. This sets the chip up
723 	 * so that it can send and receive frames, but performs the
724 	 * following special functions:
725 	 * - Puts receiver in promiscuous mode
726 	 * - Enables digital loopback mode
727 	 * - Leaves interrupts turned off
728 	 */
729 
730 	ifp->if_flags |= IFF_PROMISC;
731 	sc->rl_testmode = 1;
732 	re_reset(sc);
733 	re_init_locked(sc);
734 	sc->rl_link = 1;
735 	if (sc->rl_type == RL_8169)
736 		phyaddr = 1;
737 	else
738 		phyaddr = 0;
739 
740 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
741 	for (i = 0; i < RL_TIMEOUT; i++) {
742 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
743 		if (!(status & BMCR_RESET))
744 			break;
745 	}
746 
747 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
748 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
749 
750 	DELAY(100000);
751 
752 	/* Put some data in the mbuf */
753 
754 	eh = mtod(m0, struct ether_header *);
755 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
756 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
757 	eh->ether_type = htons(ETHERTYPE_IP);
758 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
759 
760 	/*
761 	 * Queue the packet, start transmission.
762 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
763 	 */
764 
765 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
766 	RL_UNLOCK(sc);
767 	/* XXX: re_diag must not be called when in ALTQ mode */
768 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
769 	RL_LOCK(sc);
770 	m0 = NULL;
771 
772 	/* Wait for it to propagate through the chip */
773 
774 	DELAY(100000);
775 	for (i = 0; i < RL_TIMEOUT; i++) {
776 		status = CSR_READ_2(sc, RL_ISR);
777 		CSR_WRITE_2(sc, RL_ISR, status);
778 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
779 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
780 			break;
781 		DELAY(10);
782 	}
783 
784 	if (i == RL_TIMEOUT) {
785 		if_printf(ifp, "diagnostic failed, failed to receive packet "
786 		    "in loopback mode\n");
787 		error = EIO;
788 		goto done;
789 	}
790 
791 	/*
792 	 * The packet should have been dumped into the first
793 	 * entry in the RX DMA ring. Grab it from there.
794 	 */
795 
796 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
797 	    sc->rl_ldata.rl_rx_list_map,
798 	    BUS_DMASYNC_POSTREAD);
799 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
800 	    sc->rl_ldata.rl_rx_dmamap[0],
801 	    BUS_DMASYNC_POSTWRITE);
802 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
803 	    sc->rl_ldata.rl_rx_dmamap[0]);
804 
805 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
806 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
807 	eh = mtod(m0, struct ether_header *);
808 
809 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
810 	total_len = RL_RXBYTES(cur_rx);
811 	rxstat = le32toh(cur_rx->rl_cmdstat);
812 
813 	if (total_len != ETHER_MIN_LEN) {
814 		if_printf(ifp, "diagnostic failed, received short packet\n");
815 		error = EIO;
816 		goto done;
817 	}
818 
819 	/* Test that the received packet data matches what we sent. */
820 
821 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
822 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
823 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
824 		if_printf(ifp, "WARNING, DMA FAILURE!\n");
825 		if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n",
826 		    dst, ":", src, ":", ETHERTYPE_IP);
827 		if_printf(ifp, "received RX data: %6D/%6D/0x%x\n",
828 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
829 		    ntohs(eh->ether_type));
830 		if_printf(ifp, "You may have a defective 32-bit NIC plugged "
831 		    "into a 64-bit PCI slot.\n");
832 		if_printf(ifp, "Please re-install the NIC in a 32-bit slot "
833 		    "for proper operation.\n");
834 		if_printf(ifp, "Read the re(4) man page for more details.\n");
835 		error = EIO;
836 	}
837 
838 done:
839 	/* Turn interface off, release resources */
840 
841 	sc->rl_testmode = 0;
842 	sc->rl_link = 0;
843 	ifp->if_flags &= ~IFF_PROMISC;
844 	re_stop(sc);
845 	if (m0 != NULL)
846 		m_freem(m0);
847 
848 	RL_UNLOCK(sc);
849 
850 	return (error);
851 }
852 
853 #endif
854 
855 /*
856  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
857  * IDs against our list and return a device name if we find a match.
858  */
859 static int
860 re_probe(dev)
861 	device_t		dev;
862 {
863 	struct rl_type		*t;
864 	struct rl_softc		*sc;
865 	int			rid;
866 	u_int32_t		hwrev;
867 
868 	t = re_devs;
869 	sc = device_get_softc(dev);
870 
871 	while (t->rl_name != NULL) {
872 		if ((pci_get_vendor(dev) == t->rl_vid) &&
873 		    (pci_get_device(dev) == t->rl_did)) {
874 			/*
875 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
876 			 * Rev. 2 i supported by sk(4).
877 			 */
878 			if ((t->rl_vid == LINKSYS_VENDORID) &&
879 				(t->rl_did == LINKSYS_DEVICEID_EG1032) &&
880 				(pci_get_subdevice(dev) !=
881 				LINKSYS_SUBDEVICE_EG1032_REV3)) {
882 				t++;
883 				continue;
884 			}
885 
886 			/*
887 			 * Temporarily map the I/O space
888 			 * so we can read the chip ID register.
889 			 */
890 			rid = RL_RID;
891 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
892 			    RF_ACTIVE);
893 			if (sc->rl_res == NULL) {
894 				device_printf(dev,
895 				    "couldn't map ports/memory\n");
896 				return (ENXIO);
897 			}
898 			sc->rl_btag = rman_get_bustag(sc->rl_res);
899 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
900 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
901 			bus_release_resource(dev, RL_RES,
902 			    RL_RID, sc->rl_res);
903 			if (t->rl_basetype == hwrev) {
904 				device_set_desc(dev, t->rl_name);
905 				return (BUS_PROBE_DEFAULT);
906 			}
907 		}
908 		t++;
909 	}
910 
911 	return (ENXIO);
912 }
913 
914 /*
915  * This routine takes the segment list provided as the result of
916  * a bus_dma_map_load() operation and assigns the addresses/lengths
917  * to RealTek DMA descriptors. This can be called either by the RX
918  * code or the TX code. In the RX case, we'll probably wind up mapping
919  * at most one segment. For the TX case, there could be any number of
920  * segments since TX packets may span multiple mbufs. In either case,
921  * if the number of segments is larger than the rl_maxsegs limit
922  * specified by the caller, we abort the mapping operation. Sadly,
923  * whoever designed the buffer mapping API did not provide a way to
924  * return an error from here, so we have to fake it a bit.
925  */
926 
927 static void
928 re_dma_map_desc(arg, segs, nseg, mapsize, error)
929 	void			*arg;
930 	bus_dma_segment_t	*segs;
931 	int			nseg;
932 	bus_size_t		mapsize;
933 	int			error;
934 {
935 	struct rl_dmaload_arg	*ctx;
936 	struct rl_desc		*d = NULL;
937 	int			i = 0, idx;
938 
939 	if (error)
940 		return;
941 
942 	ctx = arg;
943 
944 	/* Signal error to caller if there's too many segments */
945 	if (nseg > ctx->rl_maxsegs) {
946 		ctx->rl_maxsegs = 0;
947 		return;
948 	}
949 
950 	/*
951 	 * Map the segment array into descriptors. Note that we set the
952 	 * start-of-frame and end-of-frame markers for either TX or RX, but
953 	 * they really only have meaning in the TX case. (In the RX case,
954 	 * it's the chip that tells us where packets begin and end.)
955 	 * We also keep track of the end of the ring and set the
956 	 * end-of-ring bits as needed, and we set the ownership bits
957 	 * in all except the very first descriptor. (The caller will
958 	 * set this descriptor later when it start transmission or
959 	 * reception.)
960 	 */
961 	idx = ctx->rl_idx;
962 	for (;;) {
963 		u_int32_t		cmdstat;
964 		d = &ctx->rl_ring[idx];
965 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
966 			ctx->rl_maxsegs = 0;
967 			return;
968 		}
969 		cmdstat = segs[i].ds_len;
970 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
971 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
972 		if (i == 0)
973 			cmdstat |= RL_TDESC_CMD_SOF;
974 		else
975 			cmdstat |= RL_TDESC_CMD_OWN;
976 		if (idx == (RL_RX_DESC_CNT - 1))
977 			cmdstat |= RL_TDESC_CMD_EOR;
978 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
979 		i++;
980 		if (i == nseg)
981 			break;
982 		RL_DESC_INC(idx);
983 	}
984 
985 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
986 	ctx->rl_maxsegs = nseg;
987 	ctx->rl_idx = idx;
988 }
989 
990 /*
991  * Map a single buffer address.
992  */
993 
994 static void
995 re_dma_map_addr(arg, segs, nseg, error)
996 	void			*arg;
997 	bus_dma_segment_t	*segs;
998 	int			nseg;
999 	int			error;
1000 {
1001 	bus_addr_t		*addr;
1002 
1003 	if (error)
1004 		return;
1005 
1006 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1007 	addr = arg;
1008 	*addr = segs->ds_addr;
1009 }
1010 
1011 static int
1012 re_allocmem(dev, sc)
1013 	device_t		dev;
1014 	struct rl_softc		*sc;
1015 {
1016 	int			error;
1017 	int			nseg;
1018 	int			i;
1019 
1020 	/*
1021 	 * Allocate map for RX mbufs.
1022 	 */
1023 	nseg = 32;
1024 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
1025 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1026 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1027 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1028 	if (error) {
1029 		device_printf(dev, "could not allocate dma tag\n");
1030 		return (ENOMEM);
1031 	}
1032 
1033 	/*
1034 	 * Allocate map for TX descriptor list.
1035 	 */
1036 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1037 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1038 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1039 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1040 	if (error) {
1041 		device_printf(dev, "could not allocate dma tag\n");
1042 		return (ENOMEM);
1043 	}
1044 
1045 	/* Allocate DMA'able memory for the TX ring */
1046 
1047 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1048 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1049 	    &sc->rl_ldata.rl_tx_list_map);
1050 	if (error)
1051 		return (ENOMEM);
1052 
1053 	/* Load the map for the TX ring. */
1054 
1055 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1056 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1057 	     RL_TX_LIST_SZ, re_dma_map_addr,
1058 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1059 
1060 	/* Create DMA maps for TX buffers */
1061 
1062 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1063 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1064 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1065 		if (error) {
1066 			device_printf(dev, "can't create DMA map for TX\n");
1067 			return (ENOMEM);
1068 		}
1069 	}
1070 
1071 	/*
1072 	 * Allocate map for RX descriptor list.
1073 	 */
1074 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1075 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1076 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1077 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1078 	if (error) {
1079 		device_printf(dev, "could not allocate dma tag\n");
1080 		return (ENOMEM);
1081 	}
1082 
1083 	/* Allocate DMA'able memory for the RX ring */
1084 
1085 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1086 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1087 	    &sc->rl_ldata.rl_rx_list_map);
1088 	if (error)
1089 		return (ENOMEM);
1090 
1091 	/* Load the map for the RX ring. */
1092 
1093 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1094 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1095 	     RL_RX_LIST_SZ, re_dma_map_addr,
1096 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1097 
1098 	/* Create DMA maps for RX buffers */
1099 
1100 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1101 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1102 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1103 		if (error) {
1104 			device_printf(dev, "can't create DMA map for RX\n");
1105 			return (ENOMEM);
1106 		}
1107 	}
1108 
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Attach the interface. Allocate softc structures, do ifmedia
1114  * setup and ethernet/BPF attach.
1115  */
1116 static int
1117 re_attach(dev)
1118 	device_t		dev;
1119 {
1120 	u_char			eaddr[ETHER_ADDR_LEN];
1121 	u_int16_t		as[3];
1122 	struct rl_softc		*sc;
1123 	struct ifnet		*ifp;
1124 	struct rl_hwrev		*hw_rev;
1125 	int			hwrev;
1126 	u_int16_t		re_did = 0;
1127 	int			error = 0, rid, i;
1128 
1129 	sc = device_get_softc(dev);
1130 	sc->rl_dev = dev;
1131 
1132 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1133 	    MTX_DEF);
1134 	mtx_init(&sc->rl_intlock, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1135 	    MTX_SPIN);
1136 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1137 
1138 	/*
1139 	 * Map control/status registers.
1140 	 */
1141 	pci_enable_busmaster(dev);
1142 
1143 	rid = RL_RID;
1144 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1145 	    RF_ACTIVE);
1146 
1147 	if (sc->rl_res == NULL) {
1148 		device_printf(dev, "couldn't map ports/memory\n");
1149 		error = ENXIO;
1150 		goto fail;
1151 	}
1152 
1153 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1154 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1155 
1156 	/* Allocate interrupt */
1157 	rid = 0;
1158 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1159 	    RF_SHAREABLE | RF_ACTIVE);
1160 
1161 	if (sc->rl_irq == NULL) {
1162 		device_printf(dev, "couldn't map interrupt\n");
1163 		error = ENXIO;
1164 		goto fail;
1165 	}
1166 
1167 	/* Reset the adapter. */
1168 	RL_LOCK(sc);
1169 	re_reset(sc);
1170 	RL_UNLOCK(sc);
1171 
1172 	hw_rev = re_hwrevs;
1173 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1174 	while (hw_rev->rl_desc != NULL) {
1175 		if (hw_rev->rl_rev == hwrev) {
1176 			sc->rl_type = hw_rev->rl_type;
1177 			break;
1178 		}
1179 		hw_rev++;
1180 	}
1181 
1182 	sc->rl_eewidth = 6;
1183 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1184 	if (re_did != 0x8129)
1185 	        sc->rl_eewidth = 8;
1186 
1187 	/*
1188 	 * Get station address from the EEPROM.
1189 	 */
1190 	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1191 	for (i = 0; i < 3; i++) {
1192 		eaddr[(i * 2) + 0] = as[i] & 0xff;
1193 		eaddr[(i * 2) + 1] = as[i] >> 8;
1194 	}
1195 
1196 	if (sc->rl_type == RL_8169) {
1197 		/* Set RX length mask */
1198 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1199 		sc->rl_txstart = RL_GTXSTART;
1200 	} else {
1201 		/* Set RX length mask */
1202 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1203 		sc->rl_txstart = RL_TXSTART;
1204 	}
1205 
1206 	/*
1207 	 * Allocate the parent bus DMA tag appropriate for PCI.
1208 	 */
1209 #define RL_NSEG_NEW 32
1210 	error = bus_dma_tag_create(NULL,	/* parent */
1211 			1, 0,			/* alignment, boundary */
1212 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1213 			BUS_SPACE_MAXADDR,	/* highaddr */
1214 			NULL, NULL,		/* filter, filterarg */
1215 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1216 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1217 			BUS_DMA_ALLOCNOW,	/* flags */
1218 			NULL, NULL,		/* lockfunc, lockarg */
1219 			&sc->rl_parent_tag);
1220 	if (error)
1221 		goto fail;
1222 
1223 	error = re_allocmem(dev, sc);
1224 
1225 	if (error)
1226 		goto fail;
1227 
1228 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1229 	if (ifp == NULL) {
1230 		device_printf(dev, "can not if_alloc()\n");
1231 		error = ENOSPC;
1232 		goto fail;
1233 	}
1234 
1235 	/* Do MII setup */
1236 	if (mii_phy_probe(dev, &sc->rl_miibus,
1237 	    re_ifmedia_upd, re_ifmedia_sts)) {
1238 		device_printf(dev, "MII without any phy!\n");
1239 		error = ENXIO;
1240 		goto fail;
1241 	}
1242 
1243 	ifp->if_softc = sc;
1244 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1245 	ifp->if_mtu = ETHERMTU;
1246 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1247 	ifp->if_ioctl = re_ioctl;
1248 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1249 	ifp->if_start = re_start;
1250 	ifp->if_hwassist = RE_CSUM_FEATURES;
1251 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1252 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1253 #ifdef DEVICE_POLLING
1254 	ifp->if_capabilities |= IFCAP_POLLING;
1255 #endif
1256 	ifp->if_watchdog = re_watchdog;
1257 	ifp->if_init = re_init;
1258 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1259 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1260 	IFQ_SET_READY(&ifp->if_snd);
1261 
1262 	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1263 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1264 
1265 	/*
1266 	 * Call MI attach routine.
1267 	 */
1268 	ether_ifattach(ifp, eaddr);
1269 
1270 #ifdef RE_DIAG
1271 	/*
1272 	 * Perform hardware diagnostic on the original RTL8169.
1273 	 * Some 32-bit cards were incorrectly wired and would
1274 	 * malfunction if plugged into a 64-bit slot.
1275 	 */
1276 
1277 	if (hwrev == RL_HWREV_8169) {
1278 		error = re_diag(sc);
1279 		if (error) {
1280 			device_printf(dev,
1281 		    	"attach aborted due to hardware diag failure\n");
1282 			ether_ifdetach(ifp);
1283 			goto fail;
1284 		}
1285 	}
1286 #endif
1287 
1288 	/* Hook interrupt last to avoid having to lock softc */
1289 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE |
1290 	    INTR_FAST, re_intr, sc, &sc->rl_intrhand);
1291 	if (error) {
1292 		device_printf(dev, "couldn't set up irq\n");
1293 		ether_ifdetach(ifp);
1294 	}
1295 
1296 fail:
1297 
1298 	if (error)
1299 		re_detach(dev);
1300 
1301 	return (error);
1302 }
1303 
1304 /*
1305  * Shutdown hardware and free up resources. This can be called any
1306  * time after the mutex has been initialized. It is called in both
1307  * the error case in attach and the normal detach case so it needs
1308  * to be careful about only freeing resources that have actually been
1309  * allocated.
1310  */
1311 static int
1312 re_detach(dev)
1313 	device_t		dev;
1314 {
1315 	struct rl_softc		*sc;
1316 	struct ifnet		*ifp;
1317 	int			i;
1318 
1319 	sc = device_get_softc(dev);
1320 	ifp = sc->rl_ifp;
1321 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1322 
1323 #ifdef DEVICE_POLLING
1324 	if (ifp->if_capenable & IFCAP_POLLING)
1325 		ether_poll_deregister(ifp);
1326 #endif
1327 	/* These should only be active if attach succeeded */
1328 	if (device_is_attached(dev)) {
1329 		RL_LOCK(sc);
1330 #if 0
1331 		sc->suspended = 1;
1332 #endif
1333 		re_stop(sc);
1334 		RL_UNLOCK(sc);
1335 		callout_drain(&sc->rl_stat_callout);
1336 		/*
1337 		 * Force off the IFF_UP flag here, in case someone
1338 		 * still had a BPF descriptor attached to this
1339 		 * interface. If they do, ether_ifdetach() will cause
1340 		 * the BPF code to try and clear the promisc mode
1341 		 * flag, which will bubble down to re_ioctl(),
1342 		 * which will try to call re_init() again. This will
1343 		 * turn the NIC back on and restart the MII ticker,
1344 		 * which will panic the system when the kernel tries
1345 		 * to invoke the re_tick() function that isn't there
1346 		 * anymore.
1347 		 */
1348 		ifp->if_flags &= ~IFF_UP;
1349 		ether_ifdetach(ifp);
1350 	}
1351 	if (sc->rl_miibus)
1352 		device_delete_child(dev, sc->rl_miibus);
1353 	bus_generic_detach(dev);
1354 
1355 	/*
1356 	 * The rest is resource deallocation, so we should already be
1357 	 * stopped here.
1358 	 */
1359 
1360 	if (sc->rl_intrhand)
1361 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1362 	if (ifp != NULL)
1363 		if_free(ifp);
1364 	if (sc->rl_irq)
1365 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1366 	if (sc->rl_res)
1367 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1368 
1369 
1370 	/* Unload and free the RX DMA ring memory and map */
1371 
1372 	if (sc->rl_ldata.rl_rx_list_tag) {
1373 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1374 		    sc->rl_ldata.rl_rx_list_map);
1375 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1376 		    sc->rl_ldata.rl_rx_list,
1377 		    sc->rl_ldata.rl_rx_list_map);
1378 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1379 	}
1380 
1381 	/* Unload and free the TX DMA ring memory and map */
1382 
1383 	if (sc->rl_ldata.rl_tx_list_tag) {
1384 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1385 		    sc->rl_ldata.rl_tx_list_map);
1386 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1387 		    sc->rl_ldata.rl_tx_list,
1388 		    sc->rl_ldata.rl_tx_list_map);
1389 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1390 	}
1391 
1392 	/* Destroy all the RX and TX buffer maps */
1393 
1394 	if (sc->rl_ldata.rl_mtag) {
1395 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1396 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1397 			    sc->rl_ldata.rl_tx_dmamap[i]);
1398 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1399 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1400 			    sc->rl_ldata.rl_rx_dmamap[i]);
1401 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1402 	}
1403 
1404 	/* Unload and free the stats buffer and map */
1405 
1406 	if (sc->rl_ldata.rl_stag) {
1407 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1408 		    sc->rl_ldata.rl_rx_list_map);
1409 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1410 		    sc->rl_ldata.rl_stats,
1411 		    sc->rl_ldata.rl_smap);
1412 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1413 	}
1414 
1415 	if (sc->rl_parent_tag)
1416 		bus_dma_tag_destroy(sc->rl_parent_tag);
1417 
1418 	mtx_destroy(&sc->rl_mtx);
1419 	mtx_destroy(&sc->rl_intlock);
1420 
1421 	return (0);
1422 }
1423 
1424 static int
1425 re_newbuf(sc, idx, m)
1426 	struct rl_softc		*sc;
1427 	int			idx;
1428 	struct mbuf		*m;
1429 {
1430 	struct rl_dmaload_arg	arg;
1431 	struct mbuf		*n = NULL;
1432 	int			error;
1433 
1434 	if (m == NULL) {
1435 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1436 		if (n == NULL)
1437 			return (ENOBUFS);
1438 		m = n;
1439 	} else
1440 		m->m_data = m->m_ext.ext_buf;
1441 
1442 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1443 #ifdef RE_FIXUP_RX
1444 	/*
1445 	 * This is part of an evil trick to deal with non-x86 platforms.
1446 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1447 	 * boundaries, but that will hose non-x86 machines. To get around
1448 	 * this, we leave some empty space at the start of each buffer
1449 	 * and for non-x86 hosts, we copy the buffer back six bytes
1450 	 * to achieve word alignment. This is slightly more efficient
1451 	 * than allocating a new buffer, copying the contents, and
1452 	 * discarding the old buffer.
1453 	 */
1454 	m_adj(m, RE_ETHER_ALIGN);
1455 #endif
1456 	arg.sc = sc;
1457 	arg.rl_idx = idx;
1458 	arg.rl_maxsegs = 1;
1459 	arg.rl_flags = 0;
1460 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1461 
1462 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1463 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1464 	    &arg, BUS_DMA_NOWAIT);
1465 	if (error || arg.rl_maxsegs != 1) {
1466 		if (n != NULL)
1467 			m_freem(n);
1468 		return (ENOMEM);
1469 	}
1470 
1471 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1472 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1473 
1474 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1475 	    sc->rl_ldata.rl_rx_dmamap[idx],
1476 	    BUS_DMASYNC_PREREAD);
1477 
1478 	return (0);
1479 }
1480 
1481 #ifdef RE_FIXUP_RX
1482 static __inline void
1483 re_fixup_rx(m)
1484 	struct mbuf		*m;
1485 {
1486 	int                     i;
1487 	uint16_t                *src, *dst;
1488 
1489 	src = mtod(m, uint16_t *);
1490 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1491 
1492 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1493 		*dst++ = *src++;
1494 
1495 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1496 
1497 	return;
1498 }
1499 #endif
1500 
1501 static int
1502 re_tx_list_init(sc)
1503 	struct rl_softc		*sc;
1504 {
1505 
1506 	RL_LOCK_ASSERT(sc);
1507 
1508 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1509 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1510 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1511 
1512 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1513 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1514 	sc->rl_ldata.rl_tx_prodidx = 0;
1515 	sc->rl_ldata.rl_tx_considx = 0;
1516 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1517 
1518 	return (0);
1519 }
1520 
1521 static int
1522 re_rx_list_init(sc)
1523 	struct rl_softc		*sc;
1524 {
1525 	int			i;
1526 
1527 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1528 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1529 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1530 
1531 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1532 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1533 			return (ENOBUFS);
1534 	}
1535 
1536 	/* Flush the RX descriptors */
1537 
1538 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1539 	    sc->rl_ldata.rl_rx_list_map,
1540 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1541 
1542 	sc->rl_ldata.rl_rx_prodidx = 0;
1543 	sc->rl_head = sc->rl_tail = NULL;
1544 
1545 	return (0);
1546 }
1547 
1548 /*
1549  * RX handler for C+ and 8169. For the gigE chips, we support
1550  * the reception of jumbo frames that have been fragmented
1551  * across multiple 2K mbuf cluster buffers.
1552  */
1553 static int
1554 re_rxeof(sc)
1555 	struct rl_softc		*sc;
1556 {
1557 	struct mbuf		*m;
1558 	struct ifnet		*ifp;
1559 	int			i, total_len;
1560 	struct rl_desc		*cur_rx;
1561 	u_int32_t		rxstat, rxvlan;
1562 	int			maxpkt = 16;
1563 
1564 	RL_LOCK_ASSERT(sc);
1565 
1566 	ifp = sc->rl_ifp;
1567 	i = sc->rl_ldata.rl_rx_prodidx;
1568 
1569 	/* Invalidate the descriptor memory */
1570 
1571 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1572 	    sc->rl_ldata.rl_rx_list_map,
1573 	    BUS_DMASYNC_POSTREAD);
1574 
1575 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i]) && maxpkt) {
1576 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1577 		m = sc->rl_ldata.rl_rx_mbuf[i];
1578 		total_len = RL_RXBYTES(cur_rx);
1579 		rxstat = le32toh(cur_rx->rl_cmdstat);
1580 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1581 
1582 		/* Invalidate the RX mbuf and unload its map */
1583 
1584 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1585 		    sc->rl_ldata.rl_rx_dmamap[i],
1586 		    BUS_DMASYNC_POSTWRITE);
1587 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1588 		    sc->rl_ldata.rl_rx_dmamap[i]);
1589 
1590 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1591 			m->m_len = RE_RX_DESC_BUFLEN;
1592 			if (sc->rl_head == NULL)
1593 				sc->rl_head = sc->rl_tail = m;
1594 			else {
1595 				m->m_flags &= ~M_PKTHDR;
1596 				sc->rl_tail->m_next = m;
1597 				sc->rl_tail = m;
1598 			}
1599 			re_newbuf(sc, i, NULL);
1600 			RL_DESC_INC(i);
1601 			continue;
1602 		}
1603 
1604 		/*
1605 		 * NOTE: for the 8139C+, the frame length field
1606 		 * is always 12 bits in size, but for the gigE chips,
1607 		 * it is 13 bits (since the max RX frame length is 16K).
1608 		 * Unfortunately, all 32 bits in the status word
1609 		 * were already used, so to make room for the extra
1610 		 * length bit, RealTek took out the 'frame alignment
1611 		 * error' bit and shifted the other status bits
1612 		 * over one slot. The OWN, EOR, FS and LS bits are
1613 		 * still in the same places. We have already extracted
1614 		 * the frame length and checked the OWN bit, so rather
1615 		 * than using an alternate bit mapping, we shift the
1616 		 * status bits one space to the right so we can evaluate
1617 		 * them using the 8169 status as though it was in the
1618 		 * same format as that of the 8139C+.
1619 		 */
1620 		if (sc->rl_type == RL_8169)
1621 			rxstat >>= 1;
1622 
1623 		/*
1624 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1625 		 * set, but if CRC is clear, it will still be a valid frame.
1626 		 */
1627 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1628 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1629 			ifp->if_ierrors++;
1630 			/*
1631 			 * If this is part of a multi-fragment packet,
1632 			 * discard all the pieces.
1633 			 */
1634 			if (sc->rl_head != NULL) {
1635 				m_freem(sc->rl_head);
1636 				sc->rl_head = sc->rl_tail = NULL;
1637 			}
1638 			re_newbuf(sc, i, m);
1639 			RL_DESC_INC(i);
1640 			continue;
1641 		}
1642 
1643 		/*
1644 		 * If allocating a replacement mbuf fails,
1645 		 * reload the current one.
1646 		 */
1647 
1648 		if (re_newbuf(sc, i, NULL)) {
1649 			ifp->if_ierrors++;
1650 			if (sc->rl_head != NULL) {
1651 				m_freem(sc->rl_head);
1652 				sc->rl_head = sc->rl_tail = NULL;
1653 			}
1654 			re_newbuf(sc, i, m);
1655 			RL_DESC_INC(i);
1656 			continue;
1657 		}
1658 
1659 		RL_DESC_INC(i);
1660 
1661 		if (sc->rl_head != NULL) {
1662 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1663 			if (m->m_len == 0)
1664 				m->m_len = RE_RX_DESC_BUFLEN;
1665 			/*
1666 			 * Special case: if there's 4 bytes or less
1667 			 * in this buffer, the mbuf can be discarded:
1668 			 * the last 4 bytes is the CRC, which we don't
1669 			 * care about anyway.
1670 			 */
1671 			if (m->m_len <= ETHER_CRC_LEN) {
1672 				sc->rl_tail->m_len -=
1673 				    (ETHER_CRC_LEN - m->m_len);
1674 				m_freem(m);
1675 			} else {
1676 				m->m_len -= ETHER_CRC_LEN;
1677 				m->m_flags &= ~M_PKTHDR;
1678 				sc->rl_tail->m_next = m;
1679 			}
1680 			m = sc->rl_head;
1681 			sc->rl_head = sc->rl_tail = NULL;
1682 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1683 		} else
1684 			m->m_pkthdr.len = m->m_len =
1685 			    (total_len - ETHER_CRC_LEN);
1686 
1687 #ifdef RE_FIXUP_RX
1688 		re_fixup_rx(m);
1689 #endif
1690 		ifp->if_ipackets++;
1691 		m->m_pkthdr.rcvif = ifp;
1692 
1693 		/* Do RX checksumming if enabled */
1694 
1695 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1696 
1697 			/* Check IP header checksum */
1698 			if (rxstat & RL_RDESC_STAT_PROTOID)
1699 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1700 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1701 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1702 
1703 			/* Check TCP/UDP checksum */
1704 			if ((RL_TCPPKT(rxstat) &&
1705 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1706 			    (RL_UDPPKT(rxstat) &&
1707 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1708 				m->m_pkthdr.csum_flags |=
1709 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1710 				m->m_pkthdr.csum_data = 0xffff;
1711 			}
1712 		}
1713 		maxpkt--;
1714 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1715 			VLAN_INPUT_TAG(ifp, m,
1716 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)));
1717 			if (m == NULL)
1718 				continue;
1719 		}
1720 		RL_UNLOCK(sc);
1721 		(*ifp->if_input)(ifp, m);
1722 		RL_LOCK(sc);
1723 	}
1724 
1725 	/* Flush the RX DMA ring */
1726 
1727 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1728 	    sc->rl_ldata.rl_rx_list_map,
1729 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1730 
1731 	sc->rl_ldata.rl_rx_prodidx = i;
1732 
1733 	if (maxpkt)
1734 		return(EAGAIN);
1735 
1736 	return(0);
1737 }
1738 
1739 static void
1740 re_txeof(sc)
1741 	struct rl_softc		*sc;
1742 {
1743 	struct ifnet		*ifp;
1744 	u_int32_t		txstat;
1745 	int			idx;
1746 
1747 	ifp = sc->rl_ifp;
1748 	idx = sc->rl_ldata.rl_tx_considx;
1749 
1750 	/* Invalidate the TX descriptor list */
1751 
1752 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1753 	    sc->rl_ldata.rl_tx_list_map,
1754 	    BUS_DMASYNC_POSTREAD);
1755 
1756 	while (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) {
1757 
1758 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1759 		if (txstat & RL_TDESC_CMD_OWN)
1760 			break;
1761 
1762 		sc->rl_ldata.rl_tx_list[idx].rl_bufaddr_lo = 0;
1763 
1764 		/*
1765 		 * We only stash mbufs in the last descriptor
1766 		 * in a fragment chain, which also happens to
1767 		 * be the only place where the TX status bits
1768 		 * are valid.
1769 		 */
1770 
1771 		if (txstat & RL_TDESC_CMD_EOF) {
1772 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1773 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1774 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1775 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1776 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1777 			    RL_TDESC_STAT_COLCNT))
1778 				ifp->if_collisions++;
1779 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1780 				ifp->if_oerrors++;
1781 			else
1782 				ifp->if_opackets++;
1783 		}
1784 		sc->rl_ldata.rl_tx_free++;
1785 		RL_DESC_INC(idx);
1786 	}
1787 
1788 	/* No changes made to the TX ring, so no flush needed */
1789 
1790 	if (sc->rl_ldata.rl_tx_free) {
1791 		sc->rl_ldata.rl_tx_considx = idx;
1792 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1793 		ifp->if_timer = 0;
1794 	}
1795 
1796 #ifdef RE_TX_MODERATION
1797 	/*
1798 	 * If not all descriptors have been released reaped yet,
1799 	 * reload the timer so that we will eventually get another
1800 	 * interrupt that will cause us to re-enter this routine.
1801 	 * This is done in case the transmitter has gone idle.
1802 	 */
1803 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1804 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1805 #endif
1806 }
1807 
1808 static void
1809 re_tick(xsc)
1810 	void			*xsc;
1811 {
1812 	struct rl_softc		*sc;
1813 	struct mii_data		*mii;
1814 	struct ifnet		*ifp;
1815 
1816 	sc = xsc;
1817 	ifp = sc->rl_ifp;
1818 
1819 	RL_LOCK_ASSERT(sc);
1820 
1821 	mii = device_get_softc(sc->rl_miibus);
1822 
1823 	mii_tick(mii);
1824 	if (sc->rl_link) {
1825 		if (!(mii->mii_media_status & IFM_ACTIVE))
1826 			sc->rl_link = 0;
1827 	} else {
1828 		if (mii->mii_media_status & IFM_ACTIVE &&
1829 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1830 			sc->rl_link = 1;
1831 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1832 				taskqueue_enqueue_fast(taskqueue_fast,
1833 				    &sc->rl_txtask);
1834 		}
1835 	}
1836 
1837 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1838 }
1839 
1840 #ifdef DEVICE_POLLING
1841 static void
1842 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1843 {
1844 	struct rl_softc *sc = ifp->if_softc;
1845 
1846 	RL_LOCK(sc);
1847 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1848 		re_poll_locked(ifp, cmd, count);
1849 	RL_UNLOCK(sc);
1850 }
1851 
1852 static void
1853 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1854 {
1855 	struct rl_softc *sc = ifp->if_softc;
1856 
1857 	RL_LOCK_ASSERT(sc);
1858 
1859 	sc->rxcycles = count;
1860 	re_rxeof(sc);
1861 	re_txeof(sc);
1862 
1863 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1864 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
1865 
1866 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1867 		u_int16_t       status;
1868 
1869 		status = CSR_READ_2(sc, RL_ISR);
1870 		if (status == 0xffff)
1871 			return;
1872 		if (status)
1873 			CSR_WRITE_2(sc, RL_ISR, status);
1874 
1875 		/*
1876 		 * XXX check behaviour on receiver stalls.
1877 		 */
1878 
1879 		if (status & RL_ISR_SYSTEM_ERR) {
1880 			re_reset(sc);
1881 			re_init_locked(sc);
1882 		}
1883 	}
1884 }
1885 #endif /* DEVICE_POLLING */
1886 
1887 static void
1888 re_intr(arg)
1889 	void			*arg;
1890 {
1891 	struct rl_softc		*sc;
1892 	struct ifnet		*ifp;
1893 	uint16_t		status;
1894 
1895 	sc = arg;
1896 	ifp = sc->rl_ifp;
1897 
1898 	mtx_lock_spin(&sc->rl_intlock);
1899 	status = CSR_READ_2(sc, RL_ISR);
1900 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) {
1901 		mtx_unlock_spin(&sc->rl_intlock);
1902                 return;
1903 	}
1904 	CSR_WRITE_2(sc, RL_IMR, 0);
1905 	mtx_unlock_spin(&sc->rl_intlock);
1906 
1907 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
1908 
1909 	return;
1910 }
1911 
1912 static void
1913 re_int_task(arg, npending)
1914 	void			*arg;
1915 	int			npending;
1916 {
1917 	struct rl_softc		*sc;
1918 	struct ifnet		*ifp;
1919 	u_int16_t		status;
1920 	int			rval = 0;
1921 
1922 	sc = arg;
1923 	ifp = sc->rl_ifp;
1924 
1925 	RL_LOCK(sc);
1926 
1927 	status = CSR_READ_2(sc, RL_ISR);
1928         CSR_WRITE_2(sc, RL_ISR, status);
1929 
1930 	if (sc->suspended || !(ifp->if_flags & IFF_UP)) {
1931 		RL_UNLOCK(sc);
1932 		return;
1933 	}
1934 
1935 #ifdef DEVICE_POLLING
1936 	if  (ifp->if_capenable & IFCAP_POLLING) {
1937 		RL_UNLOCK(sc);
1938 		return;
1939 	}
1940 #endif
1941 
1942 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
1943 		rval = re_rxeof(sc);
1944 
1945 #ifdef RE_TX_MODERATION
1946 	if (status & (RL_ISR_TIMEOUT_EXPIRED|
1947 #else
1948 	if (status & (RL_ISR_TX_OK|
1949 #endif
1950 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
1951 		re_txeof(sc);
1952 
1953 	if (status & RL_ISR_SYSTEM_ERR) {
1954 		re_reset(sc);
1955 		re_init_locked(sc);
1956 	}
1957 
1958 	if (status & RL_ISR_LINKCHG) {
1959 		callout_stop(&sc->rl_stat_callout);
1960 		re_tick(sc);
1961 	}
1962 
1963 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1964 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
1965 
1966 	RL_UNLOCK(sc);
1967 
1968         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
1969 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
1970 		return;
1971 	}
1972 
1973 	mtx_lock_spin(&sc->rl_intlock);
1974 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1975 	mtx_unlock_spin(&sc->rl_intlock);
1976 
1977 	return;
1978 }
1979 
1980 static int
1981 re_encap(sc, m_head, idx)
1982 	struct rl_softc		*sc;
1983 	struct mbuf		**m_head;
1984 	int			*idx;
1985 {
1986 	struct mbuf		*m_new = NULL;
1987 	struct rl_dmaload_arg	arg;
1988 	bus_dmamap_t		map;
1989 	int			error;
1990 	struct m_tag		*mtag;
1991 
1992 	RL_LOCK_ASSERT(sc);
1993 
1994 	if (sc->rl_ldata.rl_tx_free <= 4)
1995 		return (EFBIG);
1996 
1997 	/*
1998 	 * Set up checksum offload. Note: checksum offload bits must
1999 	 * appear in all descriptors of a multi-descriptor transmit
2000 	 * attempt. This is according to testing done with an 8169
2001 	 * chip. This is a requirement.
2002 	 */
2003 
2004 	arg.rl_flags = 0;
2005 
2006 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2007 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
2008 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2009 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
2010 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2011 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
2012 
2013 	arg.sc = sc;
2014 	arg.rl_idx = *idx;
2015 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2016 	if (arg.rl_maxsegs > 4)
2017 		arg.rl_maxsegs -= 4;
2018 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
2019 
2020 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
2021 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2022 	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2023 
2024 	if (error && error != EFBIG) {
2025 		if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n", error);
2026 		return (ENOBUFS);
2027 	}
2028 
2029 	/* Too many segments to map, coalesce into a single mbuf */
2030 
2031 	if (error || arg.rl_maxsegs == 0) {
2032 		m_new = m_defrag(*m_head, M_DONTWAIT);
2033 		if (m_new == NULL)
2034 			return (ENOBUFS);
2035 		else
2036 			*m_head = m_new;
2037 
2038 		arg.sc = sc;
2039 		arg.rl_idx = *idx;
2040 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2041 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
2042 
2043 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2044 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2045 		if (error) {
2046 			if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n",
2047 			    error);
2048 			return (EFBIG);
2049 		}
2050 	}
2051 
2052 	/*
2053 	 * Insure that the map for this transmission
2054 	 * is placed at the array index of the last descriptor
2055 	 * in this chain.  (Swap last and first dmamaps.)
2056 	 */
2057 	sc->rl_ldata.rl_tx_dmamap[*idx] =
2058 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
2059 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
2060 
2061 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
2062 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
2063 
2064 	/*
2065 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2066 	 * appear in the first descriptor of a multi-descriptor
2067 	 * transmission attempt.
2068 	 */
2069 
2070 	mtag = VLAN_OUTPUT_TAG(sc->rl_ifp, *m_head);
2071 	if (mtag != NULL)
2072 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
2073 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
2074 
2075 	/* Transfer ownership of packet to the chip. */
2076 
2077 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
2078 	    htole32(RL_TDESC_CMD_OWN);
2079 	if (*idx != arg.rl_idx)
2080 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
2081 		    htole32(RL_TDESC_CMD_OWN);
2082 
2083         RL_DESC_INC(arg.rl_idx);
2084 	*idx = arg.rl_idx;
2085 
2086 	return (0);
2087 }
2088 
2089 static void
2090 re_tx_task(arg, npending)
2091 	void			*arg;
2092 	int			npending;
2093 {
2094 	struct ifnet		*ifp;
2095 
2096 	ifp = arg;
2097 	re_start(ifp);
2098 
2099 	return;
2100 }
2101 
2102 /*
2103  * Main transmit routine for C+ and gigE NICs.
2104  */
2105 static void
2106 re_start(ifp)
2107 	struct ifnet		*ifp;
2108 {
2109 	struct rl_softc		*sc;
2110 	struct mbuf		*m_head = NULL;
2111 	int			idx, queued = 0;
2112 
2113 	sc = ifp->if_softc;
2114 
2115 	RL_LOCK(sc);
2116 
2117 	if (!sc->rl_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
2118 		RL_UNLOCK(sc);
2119 		return;
2120 	}
2121 
2122 	idx = sc->rl_ldata.rl_tx_prodidx;
2123 
2124 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2125 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2126 		if (m_head == NULL)
2127 			break;
2128 
2129 		if (re_encap(sc, &m_head, &idx)) {
2130 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2131 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2132 			break;
2133 		}
2134 
2135 		/*
2136 		 * If there's a BPF listener, bounce a copy of this frame
2137 		 * to him.
2138 		 */
2139 		BPF_MTAP(ifp, m_head);
2140 
2141 		queued++;
2142 	}
2143 
2144 	if (queued == 0) {
2145 #ifdef RE_TX_MODERATION
2146 		if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
2147 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2148 #endif
2149 		RL_UNLOCK(sc);
2150 		return;
2151 	}
2152 
2153 	/* Flush the TX descriptors */
2154 
2155 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2156 	    sc->rl_ldata.rl_tx_list_map,
2157 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2158 
2159 	sc->rl_ldata.rl_tx_prodidx = idx;
2160 
2161 	/*
2162 	 * RealTek put the TX poll request register in a different
2163 	 * location on the 8169 gigE chip. I don't know why.
2164 	 */
2165 
2166 	CSR_WRITE_2(sc, sc->rl_txstart, RL_TXSTART_START);
2167 
2168 #ifdef RE_TX_MODERATION
2169 	/*
2170 	 * Use the countdown timer for interrupt moderation.
2171 	 * 'TX done' interrupts are disabled. Instead, we reset the
2172 	 * countdown timer, which will begin counting until it hits
2173 	 * the value in the TIMERINT register, and then trigger an
2174 	 * interrupt. Each time we write to the TIMERCNT register,
2175 	 * the timer count is reset to 0.
2176 	 */
2177 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2178 #endif
2179 
2180 	/*
2181 	 * Set a timeout in case the chip goes out to lunch.
2182 	 */
2183 
2184 	ifp->if_timer = 5;
2185 
2186 	RL_UNLOCK(sc);
2187 
2188 	return;
2189 }
2190 
2191 static void
2192 re_init(xsc)
2193 	void			*xsc;
2194 {
2195 	struct rl_softc		*sc = xsc;
2196 
2197 	RL_LOCK(sc);
2198 	re_init_locked(sc);
2199 	RL_UNLOCK(sc);
2200 }
2201 
2202 static void
2203 re_init_locked(sc)
2204 	struct rl_softc		*sc;
2205 {
2206 	struct ifnet		*ifp = sc->rl_ifp;
2207 	struct mii_data		*mii;
2208 	u_int32_t		rxcfg = 0;
2209 	union {
2210 		uint32_t align_dummy;
2211 		u_char eaddr[ETHER_ADDR_LEN];
2212         } eaddr;
2213 
2214 	RL_LOCK_ASSERT(sc);
2215 
2216 	mii = device_get_softc(sc->rl_miibus);
2217 
2218 	/*
2219 	 * Cancel pending I/O and free all RX/TX buffers.
2220 	 */
2221 	re_stop(sc);
2222 
2223 	/*
2224 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2225 	 * RX checksum offload. We must configure the C+ register
2226 	 * before all others.
2227 	 */
2228 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2229 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2230 	    RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB);
2231 
2232 	/*
2233 	 * Init our MAC address.  Even though the chipset
2234 	 * documentation doesn't mention it, we need to enter "Config
2235 	 * register write enable" mode to modify the ID registers.
2236 	 */
2237 	/* Copy MAC address on stack to align. */
2238 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2239 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2240 	CSR_WRITE_4(sc, RL_IDR0,
2241 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2242 	CSR_WRITE_4(sc, RL_IDR4,
2243 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2244 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2245 
2246 	/*
2247 	 * For C+ mode, initialize the RX descriptors and mbufs.
2248 	 */
2249 	re_rx_list_init(sc);
2250 	re_tx_list_init(sc);
2251 
2252 	/*
2253 	 * Enable transmit and receive.
2254 	 */
2255 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2256 
2257 	/*
2258 	 * Set the initial TX and RX configuration.
2259 	 */
2260 	if (sc->rl_testmode) {
2261 		if (sc->rl_type == RL_8169)
2262 			CSR_WRITE_4(sc, RL_TXCFG,
2263 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2264 		else
2265 			CSR_WRITE_4(sc, RL_TXCFG,
2266 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2267 	} else
2268 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2269 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2270 
2271 	/* Set the individual bit to receive frames for this host only. */
2272 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2273 	rxcfg |= RL_RXCFG_RX_INDIV;
2274 
2275 	/* If we want promiscuous mode, set the allframes bit. */
2276 	if (ifp->if_flags & IFF_PROMISC)
2277 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2278 	else
2279 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2280 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2281 
2282 	/*
2283 	 * Set capture broadcast bit to capture broadcast frames.
2284 	 */
2285 	if (ifp->if_flags & IFF_BROADCAST)
2286 		rxcfg |= RL_RXCFG_RX_BROAD;
2287 	else
2288 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2289 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2290 
2291 	/*
2292 	 * Program the multicast filter, if necessary.
2293 	 */
2294 	re_setmulti(sc);
2295 
2296 #ifdef DEVICE_POLLING
2297 	/*
2298 	 * Disable interrupts if we are polling.
2299 	 */
2300 	if (ifp->if_capenable & IFCAP_POLLING)
2301 		CSR_WRITE_2(sc, RL_IMR, 0);
2302 	else	/* otherwise ... */
2303 #endif
2304 
2305 	/*
2306 	 * Enable interrupts.
2307 	 */
2308 	mtx_lock_spin(&sc->rl_intlock);
2309 	if (sc->rl_testmode)
2310 		CSR_WRITE_2(sc, RL_IMR, 0);
2311 	else
2312 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2313 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2314 	mtx_unlock_spin(&sc->rl_intlock);
2315 
2316 	/* Set initial TX threshold */
2317 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2318 
2319 	/* Start RX/TX process. */
2320 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2321 #ifdef notdef
2322 	/* Enable receiver and transmitter. */
2323 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2324 #endif
2325 	/*
2326 	 * Load the addresses of the RX and TX lists into the chip.
2327 	 */
2328 
2329 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2330 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2331 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2332 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2333 
2334 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2335 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2336 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2337 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2338 
2339 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2340 
2341 #ifdef RE_TX_MODERATION
2342 	/*
2343 	 * Initialize the timer interrupt register so that
2344 	 * a timer interrupt will be generated once the timer
2345 	 * reaches a certain number of ticks. The timer is
2346 	 * reloaded on each transmit. This gives us TX interrupt
2347 	 * moderation, which dramatically improves TX frame rate.
2348 	 */
2349 	if (sc->rl_type == RL_8169)
2350 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2351 	else
2352 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2353 #endif
2354 
2355 	/*
2356 	 * For 8169 gigE NICs, set the max allowed RX packet
2357 	 * size so we can receive jumbo frames.
2358 	 */
2359 	if (sc->rl_type == RL_8169)
2360 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2361 
2362 	if (sc->rl_testmode)
2363 		return;
2364 
2365 	mii_mediachg(mii);
2366 
2367 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2368 
2369 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2370 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2371 
2372 
2373 	sc->rl_link = 0;
2374 
2375 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2376 }
2377 
2378 /*
2379  * Set media options.
2380  */
2381 static int
2382 re_ifmedia_upd(ifp)
2383 	struct ifnet		*ifp;
2384 {
2385 	struct rl_softc		*sc;
2386 	struct mii_data		*mii;
2387 
2388 	sc = ifp->if_softc;
2389 	mii = device_get_softc(sc->rl_miibus);
2390 	RL_LOCK(sc);
2391 	mii_mediachg(mii);
2392 	RL_UNLOCK(sc);
2393 
2394 	return (0);
2395 }
2396 
2397 /*
2398  * Report current media status.
2399  */
2400 static void
2401 re_ifmedia_sts(ifp, ifmr)
2402 	struct ifnet		*ifp;
2403 	struct ifmediareq	*ifmr;
2404 {
2405 	struct rl_softc		*sc;
2406 	struct mii_data		*mii;
2407 
2408 	sc = ifp->if_softc;
2409 	mii = device_get_softc(sc->rl_miibus);
2410 
2411 	RL_LOCK(sc);
2412 	mii_pollstat(mii);
2413 	RL_UNLOCK(sc);
2414 	ifmr->ifm_active = mii->mii_media_active;
2415 	ifmr->ifm_status = mii->mii_media_status;
2416 }
2417 
2418 static int
2419 re_ioctl(ifp, command, data)
2420 	struct ifnet		*ifp;
2421 	u_long			command;
2422 	caddr_t			data;
2423 {
2424 	struct rl_softc		*sc = ifp->if_softc;
2425 	struct ifreq		*ifr = (struct ifreq *) data;
2426 	struct mii_data		*mii;
2427 	int			error = 0;
2428 
2429 	switch (command) {
2430 	case SIOCSIFMTU:
2431 		RL_LOCK(sc);
2432 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2433 			error = EINVAL;
2434 		ifp->if_mtu = ifr->ifr_mtu;
2435 		RL_UNLOCK(sc);
2436 		break;
2437 	case SIOCSIFFLAGS:
2438 		RL_LOCK(sc);
2439 		if (ifp->if_flags & IFF_UP)
2440 			re_init_locked(sc);
2441 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2442 			re_stop(sc);
2443 		RL_UNLOCK(sc);
2444 		break;
2445 	case SIOCADDMULTI:
2446 	case SIOCDELMULTI:
2447 		RL_LOCK(sc);
2448 		re_setmulti(sc);
2449 		RL_UNLOCK(sc);
2450 		break;
2451 	case SIOCGIFMEDIA:
2452 	case SIOCSIFMEDIA:
2453 		mii = device_get_softc(sc->rl_miibus);
2454 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2455 		break;
2456 	case SIOCSIFCAP:
2457 	    {
2458 		int mask, reinit;
2459 
2460 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2461 		reinit = 0;
2462 #ifdef DEVICE_POLLING
2463 		if (mask & IFCAP_POLLING) {
2464 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2465 				error = ether_poll_register(re_poll, ifp);
2466 				if (error)
2467 					return(error);
2468 				RL_LOCK(sc);
2469 				/* Disable interrupts */
2470 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2471 				ifp->if_capenable |= IFCAP_POLLING;
2472 				RL_UNLOCK(sc);
2473 
2474 			} else {
2475 				error = ether_poll_deregister(ifp);
2476 				/* Enable interrupts. */
2477 				RL_LOCK(sc);
2478 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2479 				ifp->if_capenable &= ~IFCAP_POLLING;
2480 				RL_UNLOCK(sc);
2481 			}
2482 		}
2483 #endif /* DEVICE_POLLING */
2484 		if (mask & IFCAP_HWCSUM) {
2485 			ifp->if_capenable ^= IFCAP_HWCSUM;
2486 			if (ifp->if_capenable & IFCAP_TXCSUM)
2487 				ifp->if_hwassist = RE_CSUM_FEATURES;
2488 			else
2489 				ifp->if_hwassist = 0;
2490 			reinit = 1;
2491 		}
2492 		if (mask & IFCAP_VLAN_HWTAGGING) {
2493 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2494 			reinit = 1;
2495 		}
2496 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2497 			re_init(sc);
2498 	    }
2499 		break;
2500 	default:
2501 		error = ether_ioctl(ifp, command, data);
2502 		break;
2503 	}
2504 
2505 	return (error);
2506 }
2507 
2508 static void
2509 re_watchdog(ifp)
2510 	struct ifnet		*ifp;
2511 {
2512 	struct rl_softc		*sc;
2513 
2514 	sc = ifp->if_softc;
2515 	RL_LOCK(sc);
2516 	if_printf(ifp, "watchdog timeout\n");
2517 	ifp->if_oerrors++;
2518 
2519 	re_txeof(sc);
2520 	re_rxeof(sc);
2521 	re_init_locked(sc);
2522 
2523 	RL_UNLOCK(sc);
2524 }
2525 
2526 /*
2527  * Stop the adapter and free any mbufs allocated to the
2528  * RX and TX lists.
2529  */
2530 static void
2531 re_stop(sc)
2532 	struct rl_softc		*sc;
2533 {
2534 	register int		i;
2535 	struct ifnet		*ifp;
2536 
2537 	RL_LOCK_ASSERT(sc);
2538 
2539 	ifp = sc->rl_ifp;
2540 	ifp->if_timer = 0;
2541 
2542 	callout_stop(&sc->rl_stat_callout);
2543 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2544 
2545 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2546 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2547 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2548 
2549 	if (sc->rl_head != NULL) {
2550 		m_freem(sc->rl_head);
2551 		sc->rl_head = sc->rl_tail = NULL;
2552 	}
2553 
2554 	/* Free the TX list buffers. */
2555 
2556 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2557 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2558 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2559 			    sc->rl_ldata.rl_tx_dmamap[i]);
2560 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2561 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2562 		}
2563 	}
2564 
2565 	/* Free the RX list buffers. */
2566 
2567 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2568 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2569 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2570 			    sc->rl_ldata.rl_rx_dmamap[i]);
2571 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2572 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2573 		}
2574 	}
2575 }
2576 
2577 /*
2578  * Device suspend routine.  Stop the interface and save some PCI
2579  * settings in case the BIOS doesn't restore them properly on
2580  * resume.
2581  */
2582 static int
2583 re_suspend(dev)
2584 	device_t		dev;
2585 {
2586 	struct rl_softc		*sc;
2587 
2588 	sc = device_get_softc(dev);
2589 
2590 	RL_LOCK(sc);
2591 	re_stop(sc);
2592 	sc->suspended = 1;
2593 	RL_UNLOCK(sc);
2594 
2595 	return (0);
2596 }
2597 
2598 /*
2599  * Device resume routine.  Restore some PCI settings in case the BIOS
2600  * doesn't, re-enable busmastering, and restart the interface if
2601  * appropriate.
2602  */
2603 static int
2604 re_resume(dev)
2605 	device_t		dev;
2606 {
2607 	struct rl_softc		*sc;
2608 	struct ifnet		*ifp;
2609 
2610 	sc = device_get_softc(dev);
2611 
2612 	RL_LOCK(sc);
2613 
2614 	ifp = sc->rl_ifp;
2615 
2616 	/* reinitialize interface if necessary */
2617 	if (ifp->if_flags & IFF_UP)
2618 		re_init_locked(sc);
2619 
2620 	sc->suspended = 0;
2621 	RL_UNLOCK(sc);
2622 
2623 	return (0);
2624 }
2625 
2626 /*
2627  * Stop all chip I/O so that the kernel's probe routines don't
2628  * get confused by errant DMAs when rebooting.
2629  */
2630 static void
2631 re_shutdown(dev)
2632 	device_t		dev;
2633 {
2634 	struct rl_softc		*sc;
2635 
2636 	sc = device_get_softc(dev);
2637 
2638 	RL_LOCK(sc);
2639 	re_stop(sc);
2640 	/*
2641 	 * Mark interface as down since otherwise we will panic if
2642 	 * interrupt comes in later on, which can happen in some
2643 	 * cases.
2644 	 */
2645 	sc->rl_ifp->if_flags &= ~IFF_UP;
2646 	RL_UNLOCK(sc);
2647 }
2648