xref: /freebsd/sys/dev/re/if_re.c (revision 84ee9401a3fc8d3c22424266f421a928989cd692)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/taskqueue.h>
127 
128 #include <net/if.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/if_vlan_var.h>
135 
136 #include <net/bpf.h>
137 
138 #include <machine/bus.h>
139 #include <machine/resource.h>
140 #include <sys/bus.h>
141 #include <sys/rman.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 
149 MODULE_DEPEND(re, pci, 1, 1, 1);
150 MODULE_DEPEND(re, ether, 1, 1, 1);
151 MODULE_DEPEND(re, miibus, 1, 1, 1);
152 
153 /* "device miibus" required.  See GENERIC if you get errors here. */
154 #include "miibus_if.h"
155 
156 /*
157  * Default to using PIO access for this driver.
158  */
159 #define RE_USEIOSPACE
160 
161 #include <pci/if_rlreg.h>
162 
163 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
164 
165 /*
166  * Various supported device vendors/types and their names.
167  */
168 static struct rl_type re_devs[] = {
169 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
170 		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
171 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
172 		"RealTek 8139C+ 10/100BaseTX" },
173 	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
174 		"RealTek 8101E PCIe 10/100baseTX" },
175 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN1,
176 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
177 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN2,
178 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
179 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
180 		"RealTek 8169 Gigabit Ethernet" },
181 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
182 		"RealTek 8169S Single-chip Gigabit Ethernet" },
183 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
184 		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
185 	{ RT_VENDORID, RT_DEVICEID_8169SC, RL_HWREV_8169_8110SC,
186 		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
187 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
188 		"RealTek 8110S Single-chip Gigabit Ethernet" },
189 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
190 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
192 		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193 	{ USR_VENDORID, USR_DEVICEID_997902, RL_HWREV_8169S,
194 		"US Robotics 997902 (RTL8169S) Gigabit Ethernet" },
195 	{ 0, 0, 0, NULL }
196 };
197 
198 static struct rl_hwrev re_hwrevs[] = {
199 	{ RL_HWREV_8139, RL_8139,  "" },
200 	{ RL_HWREV_8139A, RL_8139, "A" },
201 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
202 	{ RL_HWREV_8139B, RL_8139, "B" },
203 	{ RL_HWREV_8130, RL_8139, "8130" },
204 	{ RL_HWREV_8139C, RL_8139, "C" },
205 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
206 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
207 	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
208 	{ RL_HWREV_8169, RL_8169, "8169"},
209 	{ RL_HWREV_8169S, RL_8169, "8169S"},
210 	{ RL_HWREV_8110S, RL_8169, "8110S"},
211 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
212 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
213 	{ RL_HWREV_8100, RL_8139, "8100"},
214 	{ RL_HWREV_8101, RL_8139, "8101"},
215 	{ RL_HWREV_8100E, RL_8169, "8100E"},
216 	{ RL_HWREV_8101E, RL_8169, "8101E"},
217 	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
218 	{ 0, 0, NULL }
219 };
220 
221 static int re_probe		(device_t);
222 static int re_attach		(device_t);
223 static int re_detach		(device_t);
224 
225 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
226 
227 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
228 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
229 				    bus_size_t, int);
230 static int re_allocmem		(device_t, struct rl_softc *);
231 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
232 static int re_rx_list_init	(struct rl_softc *);
233 static int re_tx_list_init	(struct rl_softc *);
234 #ifdef RE_FIXUP_RX
235 static __inline void re_fixup_rx
236 				(struct mbuf *);
237 #endif
238 static int re_rxeof		(struct rl_softc *);
239 static void re_txeof		(struct rl_softc *);
240 #ifdef DEVICE_POLLING
241 static void re_poll		(struct ifnet *, enum poll_cmd, int);
242 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
243 #endif
244 static void re_intr		(void *);
245 static void re_tick		(void *);
246 static void re_tx_task		(void *, int);
247 static void re_int_task		(void *, int);
248 static void re_start		(struct ifnet *);
249 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
250 static void re_init		(void *);
251 static void re_init_locked	(struct rl_softc *);
252 static void re_stop		(struct rl_softc *);
253 static void re_watchdog		(struct ifnet *);
254 static int re_suspend		(device_t);
255 static int re_resume		(device_t);
256 static void re_shutdown		(device_t);
257 static int re_ifmedia_upd	(struct ifnet *);
258 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
259 
260 static void re_eeprom_putbyte	(struct rl_softc *, int);
261 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
262 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
263 static int re_gmii_readreg	(device_t, int, int);
264 static int re_gmii_writereg	(device_t, int, int, int);
265 
266 static int re_miibus_readreg	(device_t, int, int);
267 static int re_miibus_writereg	(device_t, int, int, int);
268 static void re_miibus_statchg	(device_t);
269 
270 static void re_setmulti		(struct rl_softc *);
271 static void re_reset		(struct rl_softc *);
272 
273 #ifdef RE_DIAG
274 static int re_diag		(struct rl_softc *);
275 #endif
276 
277 #ifdef RE_USEIOSPACE
278 #define RL_RES			SYS_RES_IOPORT
279 #define RL_RID			RL_PCI_LOIO
280 #else
281 #define RL_RES			SYS_RES_MEMORY
282 #define RL_RID			RL_PCI_LOMEM
283 #endif
284 
285 static device_method_t re_methods[] = {
286 	/* Device interface */
287 	DEVMETHOD(device_probe,		re_probe),
288 	DEVMETHOD(device_attach,	re_attach),
289 	DEVMETHOD(device_detach,	re_detach),
290 	DEVMETHOD(device_suspend,	re_suspend),
291 	DEVMETHOD(device_resume,	re_resume),
292 	DEVMETHOD(device_shutdown,	re_shutdown),
293 
294 	/* bus interface */
295 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
296 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
297 
298 	/* MII interface */
299 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
300 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
301 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
302 
303 	{ 0, 0 }
304 };
305 
306 static driver_t re_driver = {
307 	"re",
308 	re_methods,
309 	sizeof(struct rl_softc)
310 };
311 
312 static devclass_t re_devclass;
313 
314 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
315 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
316 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
317 
318 #define EE_SET(x)					\
319 	CSR_WRITE_1(sc, RL_EECMD,			\
320 		CSR_READ_1(sc, RL_EECMD) | x)
321 
322 #define EE_CLR(x)					\
323 	CSR_WRITE_1(sc, RL_EECMD,			\
324 		CSR_READ_1(sc, RL_EECMD) & ~x)
325 
326 /*
327  * Send a read command and address to the EEPROM, check for ACK.
328  */
329 static void
330 re_eeprom_putbyte(sc, addr)
331 	struct rl_softc		*sc;
332 	int			addr;
333 {
334 	register int		d, i;
335 
336 	d = addr | (RL_9346_READ << sc->rl_eewidth);
337 
338 	/*
339 	 * Feed in each bit and strobe the clock.
340 	 */
341 
342 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
343 		if (d & i) {
344 			EE_SET(RL_EE_DATAIN);
345 		} else {
346 			EE_CLR(RL_EE_DATAIN);
347 		}
348 		DELAY(100);
349 		EE_SET(RL_EE_CLK);
350 		DELAY(150);
351 		EE_CLR(RL_EE_CLK);
352 		DELAY(100);
353 	}
354 
355 	return;
356 }
357 
358 /*
359  * Read a word of data stored in the EEPROM at address 'addr.'
360  */
361 static void
362 re_eeprom_getword(sc, addr, dest)
363 	struct rl_softc		*sc;
364 	int			addr;
365 	u_int16_t		*dest;
366 {
367 	register int		i;
368 	u_int16_t		word = 0;
369 
370 	/*
371 	 * Send address of word we want to read.
372 	 */
373 	re_eeprom_putbyte(sc, addr);
374 
375 	/*
376 	 * Start reading bits from EEPROM.
377 	 */
378 	for (i = 0x8000; i; i >>= 1) {
379 		EE_SET(RL_EE_CLK);
380 		DELAY(100);
381 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
382 			word |= i;
383 		EE_CLR(RL_EE_CLK);
384 		DELAY(100);
385 	}
386 
387 	*dest = word;
388 
389 	return;
390 }
391 
392 /*
393  * Read a sequence of words from the EEPROM.
394  */
395 static void
396 re_read_eeprom(sc, dest, off, cnt)
397 	struct rl_softc		*sc;
398 	caddr_t			dest;
399 	int			off;
400 	int			cnt;
401 {
402 	int			i;
403 	u_int16_t		word = 0, *ptr;
404 
405 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
406 
407         DELAY(100);
408 
409 	for (i = 0; i < cnt; i++) {
410 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
411 		re_eeprom_getword(sc, off + i, &word);
412 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
413 		ptr = (u_int16_t *)(dest + (i * 2));
414                 *ptr = word;
415 	}
416 
417 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
418 
419 	return;
420 }
421 
422 static int
423 re_gmii_readreg(dev, phy, reg)
424 	device_t		dev;
425 	int			phy, reg;
426 {
427 	struct rl_softc		*sc;
428 	u_int32_t		rval;
429 	int			i;
430 
431 	if (phy != 1)
432 		return (0);
433 
434 	sc = device_get_softc(dev);
435 
436 	/* Let the rgephy driver read the GMEDIASTAT register */
437 
438 	if (reg == RL_GMEDIASTAT) {
439 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
440 		return (rval);
441 	}
442 
443 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
444 	DELAY(1000);
445 
446 	for (i = 0; i < RL_TIMEOUT; i++) {
447 		rval = CSR_READ_4(sc, RL_PHYAR);
448 		if (rval & RL_PHYAR_BUSY)
449 			break;
450 		DELAY(100);
451 	}
452 
453 	if (i == RL_TIMEOUT) {
454 		device_printf(sc->rl_dev, "PHY read failed\n");
455 		return (0);
456 	}
457 
458 	return (rval & RL_PHYAR_PHYDATA);
459 }
460 
461 static int
462 re_gmii_writereg(dev, phy, reg, data)
463 	device_t		dev;
464 	int			phy, reg, data;
465 {
466 	struct rl_softc		*sc;
467 	u_int32_t		rval;
468 	int			i;
469 
470 	sc = device_get_softc(dev);
471 
472 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
473 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
474 	DELAY(1000);
475 
476 	for (i = 0; i < RL_TIMEOUT; i++) {
477 		rval = CSR_READ_4(sc, RL_PHYAR);
478 		if (!(rval & RL_PHYAR_BUSY))
479 			break;
480 		DELAY(100);
481 	}
482 
483 	if (i == RL_TIMEOUT) {
484 		device_printf(sc->rl_dev, "PHY write failed\n");
485 		return (0);
486 	}
487 
488 	return (0);
489 }
490 
491 static int
492 re_miibus_readreg(dev, phy, reg)
493 	device_t		dev;
494 	int			phy, reg;
495 {
496 	struct rl_softc		*sc;
497 	u_int16_t		rval = 0;
498 	u_int16_t		re8139_reg = 0;
499 
500 	sc = device_get_softc(dev);
501 
502 	if (sc->rl_type == RL_8169) {
503 		rval = re_gmii_readreg(dev, phy, reg);
504 		return (rval);
505 	}
506 
507 	/* Pretend the internal PHY is only at address 0 */
508 	if (phy) {
509 		return (0);
510 	}
511 	switch (reg) {
512 	case MII_BMCR:
513 		re8139_reg = RL_BMCR;
514 		break;
515 	case MII_BMSR:
516 		re8139_reg = RL_BMSR;
517 		break;
518 	case MII_ANAR:
519 		re8139_reg = RL_ANAR;
520 		break;
521 	case MII_ANER:
522 		re8139_reg = RL_ANER;
523 		break;
524 	case MII_ANLPAR:
525 		re8139_reg = RL_LPAR;
526 		break;
527 	case MII_PHYIDR1:
528 	case MII_PHYIDR2:
529 		return (0);
530 	/*
531 	 * Allow the rlphy driver to read the media status
532 	 * register. If we have a link partner which does not
533 	 * support NWAY, this is the register which will tell
534 	 * us the results of parallel detection.
535 	 */
536 	case RL_MEDIASTAT:
537 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
538 		return (rval);
539 	default:
540 		device_printf(sc->rl_dev, "bad phy register\n");
541 		return (0);
542 	}
543 	rval = CSR_READ_2(sc, re8139_reg);
544 	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
545 		/* 8139C+ has different bit layout. */
546 		rval &= ~(BMCR_LOOP | BMCR_ISO);
547 	}
548 	return (rval);
549 }
550 
551 static int
552 re_miibus_writereg(dev, phy, reg, data)
553 	device_t		dev;
554 	int			phy, reg, data;
555 {
556 	struct rl_softc		*sc;
557 	u_int16_t		re8139_reg = 0;
558 	int			rval = 0;
559 
560 	sc = device_get_softc(dev);
561 
562 	if (sc->rl_type == RL_8169) {
563 		rval = re_gmii_writereg(dev, phy, reg, data);
564 		return (rval);
565 	}
566 
567 	/* Pretend the internal PHY is only at address 0 */
568 	if (phy)
569 		return (0);
570 
571 	switch (reg) {
572 	case MII_BMCR:
573 		re8139_reg = RL_BMCR;
574 		if (sc->rl_type == RL_8139CPLUS) {
575 			/* 8139C+ has different bit layout. */
576 			data &= ~(BMCR_LOOP | BMCR_ISO);
577 		}
578 		break;
579 	case MII_BMSR:
580 		re8139_reg = RL_BMSR;
581 		break;
582 	case MII_ANAR:
583 		re8139_reg = RL_ANAR;
584 		break;
585 	case MII_ANER:
586 		re8139_reg = RL_ANER;
587 		break;
588 	case MII_ANLPAR:
589 		re8139_reg = RL_LPAR;
590 		break;
591 	case MII_PHYIDR1:
592 	case MII_PHYIDR2:
593 		return (0);
594 		break;
595 	default:
596 		device_printf(sc->rl_dev, "bad phy register\n");
597 		return (0);
598 	}
599 	CSR_WRITE_2(sc, re8139_reg, data);
600 	return (0);
601 }
602 
603 static void
604 re_miibus_statchg(dev)
605 	device_t		dev;
606 {
607 
608 }
609 
610 /*
611  * Program the 64-bit multicast hash filter.
612  */
613 static void
614 re_setmulti(sc)
615 	struct rl_softc		*sc;
616 {
617 	struct ifnet		*ifp;
618 	int			h = 0;
619 	u_int32_t		hashes[2] = { 0, 0 };
620 	struct ifmultiaddr	*ifma;
621 	u_int32_t		rxfilt;
622 	int			mcnt = 0;
623 
624 	RL_LOCK_ASSERT(sc);
625 
626 	ifp = sc->rl_ifp;
627 
628 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
629 
630 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
631 		rxfilt |= RL_RXCFG_RX_MULTI;
632 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
633 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
634 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
635 		return;
636 	}
637 
638 	/* first, zot all the existing hash bits */
639 	CSR_WRITE_4(sc, RL_MAR0, 0);
640 	CSR_WRITE_4(sc, RL_MAR4, 0);
641 
642 	/* now program new ones */
643 	IF_ADDR_LOCK(ifp);
644 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
645 		if (ifma->ifma_addr->sa_family != AF_LINK)
646 			continue;
647 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
648 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
649 		if (h < 32)
650 			hashes[0] |= (1 << h);
651 		else
652 			hashes[1] |= (1 << (h - 32));
653 		mcnt++;
654 	}
655 	IF_ADDR_UNLOCK(ifp);
656 
657 	if (mcnt)
658 		rxfilt |= RL_RXCFG_RX_MULTI;
659 	else
660 		rxfilt &= ~RL_RXCFG_RX_MULTI;
661 
662 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
663 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
664 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
665 }
666 
667 static void
668 re_reset(sc)
669 	struct rl_softc		*sc;
670 {
671 	register int		i;
672 
673 	RL_LOCK_ASSERT(sc);
674 
675 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
676 
677 	for (i = 0; i < RL_TIMEOUT; i++) {
678 		DELAY(10);
679 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
680 			break;
681 	}
682 	if (i == RL_TIMEOUT)
683 		device_printf(sc->rl_dev, "reset never completed!\n");
684 
685 	CSR_WRITE_1(sc, 0x82, 1);
686 }
687 
688 #ifdef RE_DIAG
689 
690 /*
691  * The following routine is designed to test for a defect on some
692  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
693  * lines connected to the bus, however for a 32-bit only card, they
694  * should be pulled high. The result of this defect is that the
695  * NIC will not work right if you plug it into a 64-bit slot: DMA
696  * operations will be done with 64-bit transfers, which will fail
697  * because the 64-bit data lines aren't connected.
698  *
699  * There's no way to work around this (short of talking a soldering
700  * iron to the board), however we can detect it. The method we use
701  * here is to put the NIC into digital loopback mode, set the receiver
702  * to promiscuous mode, and then try to send a frame. We then compare
703  * the frame data we sent to what was received. If the data matches,
704  * then the NIC is working correctly, otherwise we know the user has
705  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
706  * slot. In the latter case, there's no way the NIC can work correctly,
707  * so we print out a message on the console and abort the device attach.
708  */
709 
710 static int
711 re_diag(sc)
712 	struct rl_softc		*sc;
713 {
714 	struct ifnet		*ifp = sc->rl_ifp;
715 	struct mbuf		*m0;
716 	struct ether_header	*eh;
717 	struct rl_desc		*cur_rx;
718 	u_int16_t		status;
719 	u_int32_t		rxstat;
720 	int			total_len, i, error = 0, phyaddr;
721 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
722 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
723 
724 	/* Allocate a single mbuf */
725 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
726 	if (m0 == NULL)
727 		return (ENOBUFS);
728 
729 	RL_LOCK(sc);
730 
731 	/*
732 	 * Initialize the NIC in test mode. This sets the chip up
733 	 * so that it can send and receive frames, but performs the
734 	 * following special functions:
735 	 * - Puts receiver in promiscuous mode
736 	 * - Enables digital loopback mode
737 	 * - Leaves interrupts turned off
738 	 */
739 
740 	ifp->if_flags |= IFF_PROMISC;
741 	sc->rl_testmode = 1;
742 	re_reset(sc);
743 	re_init_locked(sc);
744 	sc->rl_link = 1;
745 	if (sc->rl_type == RL_8169)
746 		phyaddr = 1;
747 	else
748 		phyaddr = 0;
749 
750 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
751 	for (i = 0; i < RL_TIMEOUT; i++) {
752 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
753 		if (!(status & BMCR_RESET))
754 			break;
755 	}
756 
757 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
758 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
759 
760 	DELAY(100000);
761 
762 	/* Put some data in the mbuf */
763 
764 	eh = mtod(m0, struct ether_header *);
765 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
766 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
767 	eh->ether_type = htons(ETHERTYPE_IP);
768 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
769 
770 	/*
771 	 * Queue the packet, start transmission.
772 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
773 	 */
774 
775 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
776 	RL_UNLOCK(sc);
777 	/* XXX: re_diag must not be called when in ALTQ mode */
778 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
779 	RL_LOCK(sc);
780 	m0 = NULL;
781 
782 	/* Wait for it to propagate through the chip */
783 
784 	DELAY(100000);
785 	for (i = 0; i < RL_TIMEOUT; i++) {
786 		status = CSR_READ_2(sc, RL_ISR);
787 		CSR_WRITE_2(sc, RL_ISR, status);
788 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
789 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
790 			break;
791 		DELAY(10);
792 	}
793 
794 	if (i == RL_TIMEOUT) {
795 		device_printf(sc->rl_dev,
796 		    "diagnostic failed, failed to receive packet in"
797 		    " loopback mode\n");
798 		error = EIO;
799 		goto done;
800 	}
801 
802 	/*
803 	 * The packet should have been dumped into the first
804 	 * entry in the RX DMA ring. Grab it from there.
805 	 */
806 
807 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
808 	    sc->rl_ldata.rl_rx_list_map,
809 	    BUS_DMASYNC_POSTREAD);
810 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
811 	    sc->rl_ldata.rl_rx_dmamap[0],
812 	    BUS_DMASYNC_POSTWRITE);
813 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
814 	    sc->rl_ldata.rl_rx_dmamap[0]);
815 
816 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
817 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
818 	eh = mtod(m0, struct ether_header *);
819 
820 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
821 	total_len = RL_RXBYTES(cur_rx);
822 	rxstat = le32toh(cur_rx->rl_cmdstat);
823 
824 	if (total_len != ETHER_MIN_LEN) {
825 		device_printf(sc->rl_dev,
826 		    "diagnostic failed, received short packet\n");
827 		error = EIO;
828 		goto done;
829 	}
830 
831 	/* Test that the received packet data matches what we sent. */
832 
833 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
834 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
835 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
836 		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
837 		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
838 		    dst, ":", src, ":", ETHERTYPE_IP);
839 		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
840 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
841 		    ntohs(eh->ether_type));
842 		device_printf(sc->rl_dev, "You may have a defective 32-bit "
843 		    "NIC plugged into a 64-bit PCI slot.\n");
844 		device_printf(sc->rl_dev, "Please re-install the NIC in a "
845 		    "32-bit slot for proper operation.\n");
846 		device_printf(sc->rl_dev, "Read the re(4) man page for more "
847 		    "details.\n");
848 		error = EIO;
849 	}
850 
851 done:
852 	/* Turn interface off, release resources */
853 
854 	sc->rl_testmode = 0;
855 	sc->rl_link = 0;
856 	ifp->if_flags &= ~IFF_PROMISC;
857 	re_stop(sc);
858 	if (m0 != NULL)
859 		m_freem(m0);
860 
861 	RL_UNLOCK(sc);
862 
863 	return (error);
864 }
865 
866 #endif
867 
868 /*
869  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
870  * IDs against our list and return a device name if we find a match.
871  */
872 static int
873 re_probe(dev)
874 	device_t		dev;
875 {
876 	struct rl_type		*t;
877 	struct rl_softc		*sc;
878 	int			rid;
879 	u_int32_t		hwrev;
880 
881 	t = re_devs;
882 	sc = device_get_softc(dev);
883 
884 	while (t->rl_name != NULL) {
885 		if ((pci_get_vendor(dev) == t->rl_vid) &&
886 		    (pci_get_device(dev) == t->rl_did)) {
887 			/*
888 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
889 			 * Rev. 2 i supported by sk(4).
890 			 */
891 			if ((t->rl_vid == LINKSYS_VENDORID) &&
892 				(t->rl_did == LINKSYS_DEVICEID_EG1032) &&
893 				(pci_get_subdevice(dev) !=
894 				LINKSYS_SUBDEVICE_EG1032_REV3)) {
895 				t++;
896 				continue;
897 			}
898 
899 			/*
900 			 * Temporarily map the I/O space
901 			 * so we can read the chip ID register.
902 			 */
903 			rid = RL_RID;
904 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
905 			    RF_ACTIVE);
906 			if (sc->rl_res == NULL) {
907 				device_printf(dev,
908 				    "couldn't map ports/memory\n");
909 				return (ENXIO);
910 			}
911 			sc->rl_btag = rman_get_bustag(sc->rl_res);
912 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
913 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
914 			bus_release_resource(dev, RL_RES,
915 			    RL_RID, sc->rl_res);
916 			if (t->rl_basetype == hwrev) {
917 				device_set_desc(dev, t->rl_name);
918 				return (BUS_PROBE_DEFAULT);
919 			}
920 		}
921 		t++;
922 	}
923 
924 	return (ENXIO);
925 }
926 
927 /*
928  * This routine takes the segment list provided as the result of
929  * a bus_dma_map_load() operation and assigns the addresses/lengths
930  * to RealTek DMA descriptors. This can be called either by the RX
931  * code or the TX code. In the RX case, we'll probably wind up mapping
932  * at most one segment. For the TX case, there could be any number of
933  * segments since TX packets may span multiple mbufs. In either case,
934  * if the number of segments is larger than the rl_maxsegs limit
935  * specified by the caller, we abort the mapping operation. Sadly,
936  * whoever designed the buffer mapping API did not provide a way to
937  * return an error from here, so we have to fake it a bit.
938  */
939 
940 static void
941 re_dma_map_desc(arg, segs, nseg, mapsize, error)
942 	void			*arg;
943 	bus_dma_segment_t	*segs;
944 	int			nseg;
945 	bus_size_t		mapsize;
946 	int			error;
947 {
948 	struct rl_dmaload_arg	*ctx;
949 	struct rl_desc		*d = NULL;
950 	int			i = 0, idx;
951 	u_int32_t		cmdstat;
952 	int			totlen = 0;
953 
954 	if (error)
955 		return;
956 
957 	ctx = arg;
958 
959 	/* Signal error to caller if there's too many segments */
960 	if (nseg > ctx->rl_maxsegs) {
961 		ctx->rl_maxsegs = 0;
962 		return;
963 	}
964 
965 	/*
966 	 * Map the segment array into descriptors. Note that we set the
967 	 * start-of-frame and end-of-frame markers for either TX or RX, but
968 	 * they really only have meaning in the TX case. (In the RX case,
969 	 * it's the chip that tells us where packets begin and end.)
970 	 * We also keep track of the end of the ring and set the
971 	 * end-of-ring bits as needed, and we set the ownership bits
972 	 * in all except the very first descriptor. (The caller will
973 	 * set this descriptor later when it start transmission or
974 	 * reception.)
975 	 */
976 	idx = ctx->rl_idx;
977 	for (;;) {
978 		d = &ctx->rl_ring[idx];
979 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
980 			ctx->rl_maxsegs = 0;
981 			return;
982 		}
983 		cmdstat = segs[i].ds_len;
984 		totlen += segs[i].ds_len;
985 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
986 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
987 		if (i == 0)
988 			cmdstat |= RL_TDESC_CMD_SOF;
989 		else
990 			cmdstat |= RL_TDESC_CMD_OWN;
991 		if (idx == (RL_RX_DESC_CNT - 1))
992 			cmdstat |= RL_TDESC_CMD_EOR;
993 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
994 		i++;
995 		if (i == nseg)
996 			break;
997 		RL_DESC_INC(idx);
998 	}
999 
1000 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
1001 	ctx->rl_maxsegs = nseg;
1002 	ctx->rl_idx = idx;
1003 }
1004 
1005 /*
1006  * Map a single buffer address.
1007  */
1008 
1009 static void
1010 re_dma_map_addr(arg, segs, nseg, error)
1011 	void			*arg;
1012 	bus_dma_segment_t	*segs;
1013 	int			nseg;
1014 	int			error;
1015 {
1016 	bus_addr_t		*addr;
1017 
1018 	if (error)
1019 		return;
1020 
1021 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
1022 	addr = arg;
1023 	*addr = segs->ds_addr;
1024 }
1025 
1026 static int
1027 re_allocmem(dev, sc)
1028 	device_t		dev;
1029 	struct rl_softc		*sc;
1030 {
1031 	int			error;
1032 	int			nseg;
1033 	int			i;
1034 
1035 	/*
1036 	 * Allocate map for RX mbufs.
1037 	 */
1038 	nseg = 32;
1039 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
1040 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1041 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1042 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1043 	if (error) {
1044 		device_printf(dev, "could not allocate dma tag\n");
1045 		return (ENOMEM);
1046 	}
1047 
1048 	/*
1049 	 * Allocate map for TX descriptor list.
1050 	 */
1051 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1052 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1053 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1054 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1055 	if (error) {
1056 		device_printf(dev, "could not allocate dma tag\n");
1057 		return (ENOMEM);
1058 	}
1059 
1060 	/* Allocate DMA'able memory for the TX ring */
1061 
1062 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1063 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1064 	    &sc->rl_ldata.rl_tx_list_map);
1065 	if (error)
1066 		return (ENOMEM);
1067 
1068 	/* Load the map for the TX ring. */
1069 
1070 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1071 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1072 	     RL_TX_LIST_SZ, re_dma_map_addr,
1073 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1074 
1075 	/* Create DMA maps for TX buffers */
1076 
1077 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1078 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1079 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1080 		if (error) {
1081 			device_printf(dev, "can't create DMA map for TX\n");
1082 			return (ENOMEM);
1083 		}
1084 	}
1085 
1086 	/*
1087 	 * Allocate map for RX descriptor list.
1088 	 */
1089 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1090 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1091 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1092 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1093 	if (error) {
1094 		device_printf(dev, "could not allocate dma tag\n");
1095 		return (ENOMEM);
1096 	}
1097 
1098 	/* Allocate DMA'able memory for the RX ring */
1099 
1100 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1101 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1102 	    &sc->rl_ldata.rl_rx_list_map);
1103 	if (error)
1104 		return (ENOMEM);
1105 
1106 	/* Load the map for the RX ring. */
1107 
1108 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1109 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1110 	     RL_RX_LIST_SZ, re_dma_map_addr,
1111 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1112 
1113 	/* Create DMA maps for RX buffers */
1114 
1115 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1116 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1117 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1118 		if (error) {
1119 			device_printf(dev, "can't create DMA map for RX\n");
1120 			return (ENOMEM);
1121 		}
1122 	}
1123 
1124 	return (0);
1125 }
1126 
1127 /*
1128  * Attach the interface. Allocate softc structures, do ifmedia
1129  * setup and ethernet/BPF attach.
1130  */
1131 static int
1132 re_attach(dev)
1133 	device_t		dev;
1134 {
1135 	u_char			eaddr[ETHER_ADDR_LEN];
1136 	u_int16_t		as[ETHER_ADDR_LEN / 2];
1137 	struct rl_softc		*sc;
1138 	struct ifnet		*ifp;
1139 	struct rl_hwrev		*hw_rev;
1140 	int			hwrev;
1141 	u_int16_t		re_did = 0;
1142 	int			error = 0, rid, i;
1143 
1144 	sc = device_get_softc(dev);
1145 	sc->rl_dev = dev;
1146 
1147 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1148 	    MTX_DEF);
1149 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1150 
1151 	/*
1152 	 * Map control/status registers.
1153 	 */
1154 	pci_enable_busmaster(dev);
1155 
1156 	rid = RL_RID;
1157 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1158 	    RF_ACTIVE);
1159 
1160 	if (sc->rl_res == NULL) {
1161 		device_printf(dev, "couldn't map ports/memory\n");
1162 		error = ENXIO;
1163 		goto fail;
1164 	}
1165 
1166 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1167 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1168 
1169 	/* Allocate interrupt */
1170 	rid = 0;
1171 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1172 	    RF_SHAREABLE | RF_ACTIVE);
1173 
1174 	if (sc->rl_irq == NULL) {
1175 		device_printf(dev, "couldn't map interrupt\n");
1176 		error = ENXIO;
1177 		goto fail;
1178 	}
1179 
1180 	/* Reset the adapter. */
1181 	RL_LOCK(sc);
1182 	re_reset(sc);
1183 	RL_UNLOCK(sc);
1184 
1185 	hw_rev = re_hwrevs;
1186 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1187 	while (hw_rev->rl_desc != NULL) {
1188 		if (hw_rev->rl_rev == hwrev) {
1189 			sc->rl_type = hw_rev->rl_type;
1190 			break;
1191 		}
1192 		hw_rev++;
1193 	}
1194 
1195 	sc->rl_eewidth = 6;
1196 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1197 	if (re_did != 0x8129)
1198 	        sc->rl_eewidth = 8;
1199 
1200 	/*
1201 	 * Get station address from the EEPROM.
1202 	 */
1203 	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1204 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1205 		as[i] = le16toh(as[i]);
1206 	bcopy(as, eaddr, sizeof(eaddr));
1207 
1208 	if (sc->rl_type == RL_8169) {
1209 		/* Set RX length mask */
1210 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1211 		sc->rl_txstart = RL_GTXSTART;
1212 	} else {
1213 		/* Set RX length mask */
1214 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1215 		sc->rl_txstart = RL_TXSTART;
1216 	}
1217 
1218 	/*
1219 	 * Allocate the parent bus DMA tag appropriate for PCI.
1220 	 */
1221 #define RL_NSEG_NEW 32
1222 	error = bus_dma_tag_create(NULL,	/* parent */
1223 			1, 0,			/* alignment, boundary */
1224 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1225 			BUS_SPACE_MAXADDR,	/* highaddr */
1226 			NULL, NULL,		/* filter, filterarg */
1227 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1228 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1229 			BUS_DMA_ALLOCNOW,	/* flags */
1230 			NULL, NULL,		/* lockfunc, lockarg */
1231 			&sc->rl_parent_tag);
1232 	if (error)
1233 		goto fail;
1234 
1235 	error = re_allocmem(dev, sc);
1236 
1237 	if (error)
1238 		goto fail;
1239 
1240 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1241 	if (ifp == NULL) {
1242 		device_printf(dev, "can not if_alloc()\n");
1243 		error = ENOSPC;
1244 		goto fail;
1245 	}
1246 
1247 	/* Do MII setup */
1248 	if (mii_phy_probe(dev, &sc->rl_miibus,
1249 	    re_ifmedia_upd, re_ifmedia_sts)) {
1250 		device_printf(dev, "MII without any phy!\n");
1251 		error = ENXIO;
1252 		goto fail;
1253 	}
1254 
1255 	ifp->if_softc = sc;
1256 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1257 	ifp->if_mtu = ETHERMTU;
1258 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1259 	ifp->if_ioctl = re_ioctl;
1260 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1261 	ifp->if_start = re_start;
1262 	ifp->if_hwassist = RE_CSUM_FEATURES;
1263 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1264 	ifp->if_capenable = ifp->if_capabilities;
1265 #ifdef DEVICE_POLLING
1266 	ifp->if_capabilities |= IFCAP_POLLING;
1267 #endif
1268 	ifp->if_watchdog = re_watchdog;
1269 	ifp->if_init = re_init;
1270 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1271 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1272 	IFQ_SET_READY(&ifp->if_snd);
1273 
1274 	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1275 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1276 
1277 	/*
1278 	 * Call MI attach routine.
1279 	 */
1280 	ether_ifattach(ifp, eaddr);
1281 
1282 #ifdef RE_DIAG
1283 	/*
1284 	 * Perform hardware diagnostic on the original RTL8169.
1285 	 * Some 32-bit cards were incorrectly wired and would
1286 	 * malfunction if plugged into a 64-bit slot.
1287 	 */
1288 
1289 	if (hwrev == RL_HWREV_8169) {
1290 		error = re_diag(sc);
1291 		if (error) {
1292 			device_printf(dev,
1293 		    	"attach aborted due to hardware diag failure\n");
1294 			ether_ifdetach(ifp);
1295 			goto fail;
1296 		}
1297 	}
1298 #endif
1299 
1300 	/* Hook interrupt last to avoid having to lock softc */
1301 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE |
1302 	    INTR_FAST, re_intr, sc, &sc->rl_intrhand);
1303 	if (error) {
1304 		device_printf(dev, "couldn't set up irq\n");
1305 		ether_ifdetach(ifp);
1306 	}
1307 
1308 fail:
1309 
1310 	if (error)
1311 		re_detach(dev);
1312 
1313 	return (error);
1314 }
1315 
1316 /*
1317  * Shutdown hardware and free up resources. This can be called any
1318  * time after the mutex has been initialized. It is called in both
1319  * the error case in attach and the normal detach case so it needs
1320  * to be careful about only freeing resources that have actually been
1321  * allocated.
1322  */
1323 static int
1324 re_detach(dev)
1325 	device_t		dev;
1326 {
1327 	struct rl_softc		*sc;
1328 	struct ifnet		*ifp;
1329 	int			i;
1330 
1331 	sc = device_get_softc(dev);
1332 	ifp = sc->rl_ifp;
1333 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1334 
1335 #ifdef DEVICE_POLLING
1336 	if (ifp->if_capenable & IFCAP_POLLING)
1337 		ether_poll_deregister(ifp);
1338 #endif
1339 	/* These should only be active if attach succeeded */
1340 	if (device_is_attached(dev)) {
1341 		RL_LOCK(sc);
1342 #if 0
1343 		sc->suspended = 1;
1344 #endif
1345 		re_stop(sc);
1346 		RL_UNLOCK(sc);
1347 		callout_drain(&sc->rl_stat_callout);
1348 		/*
1349 		 * Force off the IFF_UP flag here, in case someone
1350 		 * still had a BPF descriptor attached to this
1351 		 * interface. If they do, ether_ifdetach() will cause
1352 		 * the BPF code to try and clear the promisc mode
1353 		 * flag, which will bubble down to re_ioctl(),
1354 		 * which will try to call re_init() again. This will
1355 		 * turn the NIC back on and restart the MII ticker,
1356 		 * which will panic the system when the kernel tries
1357 		 * to invoke the re_tick() function that isn't there
1358 		 * anymore.
1359 		 */
1360 		ifp->if_flags &= ~IFF_UP;
1361 		ether_ifdetach(ifp);
1362 	}
1363 	if (sc->rl_miibus)
1364 		device_delete_child(dev, sc->rl_miibus);
1365 	bus_generic_detach(dev);
1366 
1367 	/*
1368 	 * The rest is resource deallocation, so we should already be
1369 	 * stopped here.
1370 	 */
1371 
1372 	if (sc->rl_intrhand)
1373 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1374 	if (ifp != NULL)
1375 		if_free(ifp);
1376 	if (sc->rl_irq)
1377 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1378 	if (sc->rl_res)
1379 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1380 
1381 	/* Yield the CPU long enough for any tasks to drain */
1382 
1383         tsleep(sc, PPAUSE, "rewait", hz);
1384 
1385 	/* Unload and free the RX DMA ring memory and map */
1386 
1387 	if (sc->rl_ldata.rl_rx_list_tag) {
1388 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1389 		    sc->rl_ldata.rl_rx_list_map);
1390 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1391 		    sc->rl_ldata.rl_rx_list,
1392 		    sc->rl_ldata.rl_rx_list_map);
1393 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1394 	}
1395 
1396 	/* Unload and free the TX DMA ring memory and map */
1397 
1398 	if (sc->rl_ldata.rl_tx_list_tag) {
1399 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1400 		    sc->rl_ldata.rl_tx_list_map);
1401 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1402 		    sc->rl_ldata.rl_tx_list,
1403 		    sc->rl_ldata.rl_tx_list_map);
1404 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1405 	}
1406 
1407 	/* Destroy all the RX and TX buffer maps */
1408 
1409 	if (sc->rl_ldata.rl_mtag) {
1410 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1411 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1412 			    sc->rl_ldata.rl_tx_dmamap[i]);
1413 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1414 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1415 			    sc->rl_ldata.rl_rx_dmamap[i]);
1416 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1417 	}
1418 
1419 	/* Unload and free the stats buffer and map */
1420 
1421 	if (sc->rl_ldata.rl_stag) {
1422 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1423 		    sc->rl_ldata.rl_rx_list_map);
1424 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1425 		    sc->rl_ldata.rl_stats,
1426 		    sc->rl_ldata.rl_smap);
1427 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1428 	}
1429 
1430 	if (sc->rl_parent_tag)
1431 		bus_dma_tag_destroy(sc->rl_parent_tag);
1432 
1433 	mtx_destroy(&sc->rl_mtx);
1434 
1435 	return (0);
1436 }
1437 
1438 static int
1439 re_newbuf(sc, idx, m)
1440 	struct rl_softc		*sc;
1441 	int			idx;
1442 	struct mbuf		*m;
1443 {
1444 	struct rl_dmaload_arg	arg;
1445 	struct mbuf		*n = NULL;
1446 	int			error;
1447 
1448 	if (m == NULL) {
1449 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1450 		if (n == NULL)
1451 			return (ENOBUFS);
1452 		m = n;
1453 	} else
1454 		m->m_data = m->m_ext.ext_buf;
1455 
1456 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1457 #ifdef RE_FIXUP_RX
1458 	/*
1459 	 * This is part of an evil trick to deal with non-x86 platforms.
1460 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1461 	 * boundaries, but that will hose non-x86 machines. To get around
1462 	 * this, we leave some empty space at the start of each buffer
1463 	 * and for non-x86 hosts, we copy the buffer back six bytes
1464 	 * to achieve word alignment. This is slightly more efficient
1465 	 * than allocating a new buffer, copying the contents, and
1466 	 * discarding the old buffer.
1467 	 */
1468 	m_adj(m, RE_ETHER_ALIGN);
1469 #endif
1470 	arg.sc = sc;
1471 	arg.rl_idx = idx;
1472 	arg.rl_maxsegs = 1;
1473 	arg.rl_flags = 0;
1474 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1475 
1476 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1477 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1478 	    &arg, BUS_DMA_NOWAIT);
1479 	if (error || arg.rl_maxsegs != 1) {
1480 		if (n != NULL)
1481 			m_freem(n);
1482 		return (ENOMEM);
1483 	}
1484 
1485 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1486 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1487 
1488 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1489 	    sc->rl_ldata.rl_rx_dmamap[idx],
1490 	    BUS_DMASYNC_PREREAD);
1491 
1492 	return (0);
1493 }
1494 
1495 #ifdef RE_FIXUP_RX
1496 static __inline void
1497 re_fixup_rx(m)
1498 	struct mbuf		*m;
1499 {
1500 	int                     i;
1501 	uint16_t                *src, *dst;
1502 
1503 	src = mtod(m, uint16_t *);
1504 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1505 
1506 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1507 		*dst++ = *src++;
1508 
1509 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1510 
1511 	return;
1512 }
1513 #endif
1514 
1515 static int
1516 re_tx_list_init(sc)
1517 	struct rl_softc		*sc;
1518 {
1519 
1520 	RL_LOCK_ASSERT(sc);
1521 
1522 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1523 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1524 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1525 
1526 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1527 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1528 	sc->rl_ldata.rl_tx_prodidx = 0;
1529 	sc->rl_ldata.rl_tx_considx = 0;
1530 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1531 
1532 	return (0);
1533 }
1534 
1535 static int
1536 re_rx_list_init(sc)
1537 	struct rl_softc		*sc;
1538 {
1539 	int			i;
1540 
1541 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1542 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1543 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1544 
1545 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1546 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1547 			return (ENOBUFS);
1548 	}
1549 
1550 	/* Flush the RX descriptors */
1551 
1552 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1553 	    sc->rl_ldata.rl_rx_list_map,
1554 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1555 
1556 	sc->rl_ldata.rl_rx_prodidx = 0;
1557 	sc->rl_head = sc->rl_tail = NULL;
1558 
1559 	return (0);
1560 }
1561 
1562 /*
1563  * RX handler for C+ and 8169. For the gigE chips, we support
1564  * the reception of jumbo frames that have been fragmented
1565  * across multiple 2K mbuf cluster buffers.
1566  */
1567 static int
1568 re_rxeof(sc)
1569 	struct rl_softc		*sc;
1570 {
1571 	struct mbuf		*m;
1572 	struct ifnet		*ifp;
1573 	int			i, total_len;
1574 	struct rl_desc		*cur_rx;
1575 	u_int32_t		rxstat, rxvlan;
1576 	int			maxpkt = 16;
1577 
1578 	RL_LOCK_ASSERT(sc);
1579 
1580 	ifp = sc->rl_ifp;
1581 	i = sc->rl_ldata.rl_rx_prodidx;
1582 
1583 	/* Invalidate the descriptor memory */
1584 
1585 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1586 	    sc->rl_ldata.rl_rx_list_map,
1587 	    BUS_DMASYNC_POSTREAD);
1588 
1589 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i]) && maxpkt) {
1590 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1591 		m = sc->rl_ldata.rl_rx_mbuf[i];
1592 		total_len = RL_RXBYTES(cur_rx);
1593 		rxstat = le32toh(cur_rx->rl_cmdstat);
1594 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1595 
1596 		/* Invalidate the RX mbuf and unload its map */
1597 
1598 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1599 		    sc->rl_ldata.rl_rx_dmamap[i],
1600 		    BUS_DMASYNC_POSTWRITE);
1601 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1602 		    sc->rl_ldata.rl_rx_dmamap[i]);
1603 
1604 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1605 			m->m_len = RE_RX_DESC_BUFLEN;
1606 			if (sc->rl_head == NULL)
1607 				sc->rl_head = sc->rl_tail = m;
1608 			else {
1609 				m->m_flags &= ~M_PKTHDR;
1610 				sc->rl_tail->m_next = m;
1611 				sc->rl_tail = m;
1612 			}
1613 			re_newbuf(sc, i, NULL);
1614 			RL_DESC_INC(i);
1615 			continue;
1616 		}
1617 
1618 		/*
1619 		 * NOTE: for the 8139C+, the frame length field
1620 		 * is always 12 bits in size, but for the gigE chips,
1621 		 * it is 13 bits (since the max RX frame length is 16K).
1622 		 * Unfortunately, all 32 bits in the status word
1623 		 * were already used, so to make room for the extra
1624 		 * length bit, RealTek took out the 'frame alignment
1625 		 * error' bit and shifted the other status bits
1626 		 * over one slot. The OWN, EOR, FS and LS bits are
1627 		 * still in the same places. We have already extracted
1628 		 * the frame length and checked the OWN bit, so rather
1629 		 * than using an alternate bit mapping, we shift the
1630 		 * status bits one space to the right so we can evaluate
1631 		 * them using the 8169 status as though it was in the
1632 		 * same format as that of the 8139C+.
1633 		 */
1634 		if (sc->rl_type == RL_8169)
1635 			rxstat >>= 1;
1636 
1637 		/*
1638 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1639 		 * set, but if CRC is clear, it will still be a valid frame.
1640 		 */
1641 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1642 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1643 			ifp->if_ierrors++;
1644 			/*
1645 			 * If this is part of a multi-fragment packet,
1646 			 * discard all the pieces.
1647 			 */
1648 			if (sc->rl_head != NULL) {
1649 				m_freem(sc->rl_head);
1650 				sc->rl_head = sc->rl_tail = NULL;
1651 			}
1652 			re_newbuf(sc, i, m);
1653 			RL_DESC_INC(i);
1654 			continue;
1655 		}
1656 
1657 		/*
1658 		 * If allocating a replacement mbuf fails,
1659 		 * reload the current one.
1660 		 */
1661 
1662 		if (re_newbuf(sc, i, NULL)) {
1663 			ifp->if_ierrors++;
1664 			if (sc->rl_head != NULL) {
1665 				m_freem(sc->rl_head);
1666 				sc->rl_head = sc->rl_tail = NULL;
1667 			}
1668 			re_newbuf(sc, i, m);
1669 			RL_DESC_INC(i);
1670 			continue;
1671 		}
1672 
1673 		RL_DESC_INC(i);
1674 
1675 		if (sc->rl_head != NULL) {
1676 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1677 			if (m->m_len == 0)
1678 				m->m_len = RE_RX_DESC_BUFLEN;
1679 			/*
1680 			 * Special case: if there's 4 bytes or less
1681 			 * in this buffer, the mbuf can be discarded:
1682 			 * the last 4 bytes is the CRC, which we don't
1683 			 * care about anyway.
1684 			 */
1685 			if (m->m_len <= ETHER_CRC_LEN) {
1686 				sc->rl_tail->m_len -=
1687 				    (ETHER_CRC_LEN - m->m_len);
1688 				m_freem(m);
1689 			} else {
1690 				m->m_len -= ETHER_CRC_LEN;
1691 				m->m_flags &= ~M_PKTHDR;
1692 				sc->rl_tail->m_next = m;
1693 			}
1694 			m = sc->rl_head;
1695 			sc->rl_head = sc->rl_tail = NULL;
1696 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1697 		} else
1698 			m->m_pkthdr.len = m->m_len =
1699 			    (total_len - ETHER_CRC_LEN);
1700 
1701 #ifdef RE_FIXUP_RX
1702 		re_fixup_rx(m);
1703 #endif
1704 		ifp->if_ipackets++;
1705 		m->m_pkthdr.rcvif = ifp;
1706 
1707 		/* Do RX checksumming if enabled */
1708 
1709 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1710 
1711 			/* Check IP header checksum */
1712 			if (rxstat & RL_RDESC_STAT_PROTOID)
1713 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1714 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1715 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1716 
1717 			/* Check TCP/UDP checksum */
1718 			if ((RL_TCPPKT(rxstat) &&
1719 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1720 			    (RL_UDPPKT(rxstat) &&
1721 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1722 				m->m_pkthdr.csum_flags |=
1723 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1724 				m->m_pkthdr.csum_data = 0xffff;
1725 			}
1726 		}
1727 		maxpkt--;
1728 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1729 			m->m_pkthdr.ether_vtag =
1730 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1731 			m->m_flags |= M_VLANTAG;
1732 		}
1733 		RL_UNLOCK(sc);
1734 		(*ifp->if_input)(ifp, m);
1735 		RL_LOCK(sc);
1736 	}
1737 
1738 	/* Flush the RX DMA ring */
1739 
1740 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1741 	    sc->rl_ldata.rl_rx_list_map,
1742 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1743 
1744 	sc->rl_ldata.rl_rx_prodidx = i;
1745 
1746 	if (maxpkt)
1747 		return(EAGAIN);
1748 
1749 	return(0);
1750 }
1751 
1752 static void
1753 re_txeof(sc)
1754 	struct rl_softc		*sc;
1755 {
1756 	struct ifnet		*ifp;
1757 	u_int32_t		txstat;
1758 	int			idx;
1759 
1760 	ifp = sc->rl_ifp;
1761 	idx = sc->rl_ldata.rl_tx_considx;
1762 
1763 	/* Invalidate the TX descriptor list */
1764 
1765 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1766 	    sc->rl_ldata.rl_tx_list_map,
1767 	    BUS_DMASYNC_POSTREAD);
1768 
1769 	while (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT) {
1770 
1771 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1772 		if (txstat & RL_TDESC_CMD_OWN)
1773 			break;
1774 
1775 		sc->rl_ldata.rl_tx_list[idx].rl_bufaddr_lo = 0;
1776 
1777 		/*
1778 		 * We only stash mbufs in the last descriptor
1779 		 * in a fragment chain, which also happens to
1780 		 * be the only place where the TX status bits
1781 		 * are valid.
1782 		 */
1783 
1784 		if (txstat & RL_TDESC_CMD_EOF) {
1785 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1786 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1787 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1788 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1789 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1790 			    RL_TDESC_STAT_COLCNT))
1791 				ifp->if_collisions++;
1792 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1793 				ifp->if_oerrors++;
1794 			else
1795 				ifp->if_opackets++;
1796 		}
1797 		sc->rl_ldata.rl_tx_free++;
1798 		RL_DESC_INC(idx);
1799 	}
1800 
1801 	/* No changes made to the TX ring, so no flush needed */
1802 
1803 	if (sc->rl_ldata.rl_tx_free) {
1804 		sc->rl_ldata.rl_tx_considx = idx;
1805 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1806 		ifp->if_timer = 0;
1807 	}
1808 
1809 	/*
1810 	 * Some chips will ignore a second TX request issued while an
1811 	 * existing transmission is in progress. If the transmitter goes
1812 	 * idle but there are still packets waiting to be sent, we need
1813 	 * to restart the channel here to flush them out. This only seems
1814 	 * to be required with the PCIe devices.
1815 	 */
1816 
1817 	if (sc->rl_ldata.rl_tx_free < RL_TX_DESC_CNT)
1818 	    CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1819 
1820 #ifdef RE_TX_MODERATION
1821 	/*
1822 	 * If not all descriptors have been released reaped yet,
1823 	 * reload the timer so that we will eventually get another
1824 	 * interrupt that will cause us to re-enter this routine.
1825 	 * This is done in case the transmitter has gone idle.
1826 	 */
1827 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1828 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1829 #endif
1830 
1831 }
1832 
1833 static void
1834 re_tick(xsc)
1835 	void			*xsc;
1836 {
1837 	struct rl_softc		*sc;
1838 	struct mii_data		*mii;
1839 	struct ifnet		*ifp;
1840 
1841 	sc = xsc;
1842 	ifp = sc->rl_ifp;
1843 
1844 	RL_LOCK_ASSERT(sc);
1845 
1846 	mii = device_get_softc(sc->rl_miibus);
1847 
1848 	mii_tick(mii);
1849 	if (sc->rl_link) {
1850 		if (!(mii->mii_media_status & IFM_ACTIVE))
1851 			sc->rl_link = 0;
1852 	} else {
1853 		if (mii->mii_media_status & IFM_ACTIVE &&
1854 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1855 			sc->rl_link = 1;
1856 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1857 				taskqueue_enqueue_fast(taskqueue_fast,
1858 				    &sc->rl_txtask);
1859 		}
1860 	}
1861 
1862 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1863 }
1864 
1865 #ifdef DEVICE_POLLING
1866 static void
1867 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1868 {
1869 	struct rl_softc *sc = ifp->if_softc;
1870 
1871 	RL_LOCK(sc);
1872 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1873 		re_poll_locked(ifp, cmd, count);
1874 	RL_UNLOCK(sc);
1875 }
1876 
1877 static void
1878 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1879 {
1880 	struct rl_softc *sc = ifp->if_softc;
1881 
1882 	RL_LOCK_ASSERT(sc);
1883 
1884 	sc->rxcycles = count;
1885 	re_rxeof(sc);
1886 	re_txeof(sc);
1887 
1888 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1889 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
1890 
1891 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1892 		u_int16_t       status;
1893 
1894 		status = CSR_READ_2(sc, RL_ISR);
1895 		if (status == 0xffff)
1896 			return;
1897 		if (status)
1898 			CSR_WRITE_2(sc, RL_ISR, status);
1899 
1900 		/*
1901 		 * XXX check behaviour on receiver stalls.
1902 		 */
1903 
1904 		if (status & RL_ISR_SYSTEM_ERR) {
1905 			re_reset(sc);
1906 			re_init_locked(sc);
1907 		}
1908 	}
1909 }
1910 #endif /* DEVICE_POLLING */
1911 
1912 static void
1913 re_intr(arg)
1914 	void			*arg;
1915 {
1916 	struct rl_softc		*sc;
1917 	struct ifnet		*ifp;
1918 	uint16_t		status;
1919 
1920 	sc = arg;
1921 	ifp = sc->rl_ifp;
1922 
1923 	status = CSR_READ_2(sc, RL_ISR);
1924 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
1925                 return;
1926 	CSR_WRITE_2(sc, RL_IMR, 0);
1927 
1928 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
1929 
1930 	return;
1931 }
1932 
1933 static void
1934 re_int_task(arg, npending)
1935 	void			*arg;
1936 	int			npending;
1937 {
1938 	struct rl_softc		*sc;
1939 	struct ifnet		*ifp;
1940 	u_int16_t		status;
1941 	int			rval = 0;
1942 
1943 	sc = arg;
1944 	ifp = sc->rl_ifp;
1945 
1946 	RL_LOCK(sc);
1947 
1948 	status = CSR_READ_2(sc, RL_ISR);
1949         CSR_WRITE_2(sc, RL_ISR, status);
1950 
1951 	if (sc->suspended || !(ifp->if_flags & IFF_UP)) {
1952 		RL_UNLOCK(sc);
1953 		return;
1954 	}
1955 
1956 #ifdef DEVICE_POLLING
1957 	if  (ifp->if_capenable & IFCAP_POLLING) {
1958 		RL_UNLOCK(sc);
1959 		return;
1960 	}
1961 #endif
1962 
1963 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
1964 		rval = re_rxeof(sc);
1965 
1966 #ifdef RE_TX_MODERATION
1967 	if (status & (RL_ISR_TIMEOUT_EXPIRED|
1968 #else
1969 	if (status & (RL_ISR_TX_OK|
1970 #endif
1971 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
1972 		re_txeof(sc);
1973 
1974 	if (status & RL_ISR_SYSTEM_ERR) {
1975 		re_reset(sc);
1976 		re_init_locked(sc);
1977 	}
1978 
1979 	if (status & RL_ISR_LINKCHG) {
1980 		callout_stop(&sc->rl_stat_callout);
1981 		re_tick(sc);
1982 	}
1983 
1984 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1985 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
1986 
1987 	RL_UNLOCK(sc);
1988 
1989         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
1990 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
1991 		return;
1992 	}
1993 
1994 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1995 
1996 	return;
1997 }
1998 
1999 static int
2000 re_encap(sc, m_head, idx)
2001 	struct rl_softc		*sc;
2002 	struct mbuf		**m_head;
2003 	int			*idx;
2004 {
2005 	struct mbuf		*m_new = NULL;
2006 	struct rl_dmaload_arg	arg;
2007 	bus_dmamap_t		map;
2008 	int			error;
2009 
2010 	RL_LOCK_ASSERT(sc);
2011 
2012 	if (sc->rl_ldata.rl_tx_free <= 4)
2013 		return (EFBIG);
2014 
2015 	/*
2016 	 * Set up checksum offload. Note: checksum offload bits must
2017 	 * appear in all descriptors of a multi-descriptor transmit
2018 	 * attempt. This is according to testing done with an 8169
2019 	 * chip. This is a requirement.
2020 	 */
2021 
2022 	arg.rl_flags = 0;
2023 
2024 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2025 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
2026 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2027 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
2028 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2029 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
2030 
2031 	arg.sc = sc;
2032 	arg.rl_idx = *idx;
2033 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2034 	if (arg.rl_maxsegs > 4)
2035 		arg.rl_maxsegs -= 4;
2036 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
2037 
2038 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
2039 
2040 	/*
2041 	 * With some of the RealTek chips, using the checksum offload
2042 	 * support in conjunction with the autopadding feature results
2043 	 * in the transmission of corrupt frames. For example, if we
2044 	 * need to send a really small IP fragment that's less than 60
2045 	 * bytes in size, and IP header checksumming is enabled, the
2046 	 * resulting ethernet frame that appears on the wire will
2047 	 * have garbled payload. To work around this, if TX checksum
2048 	 * offload is enabled, we always manually pad short frames out
2049 	 * to the minimum ethernet frame size. We do this by pretending
2050 	 * the mbuf chain has too many fragments so the coalescing code
2051 	 * below can assemble the packet into a single buffer that's
2052 	 * padded out to the mininum frame size.
2053 	 */
2054 
2055 	if (arg.rl_flags && (*m_head)->m_pkthdr.len < RL_MIN_FRAMELEN)
2056 		error = EFBIG;
2057 	else
2058 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2059 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2060 
2061 	if (error && error != EFBIG) {
2062 		device_printf(sc->rl_dev, "can't map mbuf (error %d)\n", error);
2063 		return (ENOBUFS);
2064 	}
2065 
2066 	/* Too many segments to map, coalesce into a single mbuf */
2067 
2068 	if (error || arg.rl_maxsegs == 0) {
2069 		m_new = m_defrag(*m_head, M_DONTWAIT);
2070 		if (m_new == NULL)
2071 			return (ENOBUFS);
2072 		else
2073 			*m_head = m_new;
2074 
2075 		/*
2076 		 * Manually pad short frames, and zero the pad space
2077 		 * to avoid leaking data.
2078 		 */
2079 
2080 		if (m_new->m_pkthdr.len < RL_MIN_FRAMELEN) {
2081 			bzero(mtod(m_new, char *) + m_new->m_pkthdr.len,
2082 			    RL_MIN_FRAMELEN - m_new->m_pkthdr.len);
2083 			m_new->m_pkthdr.len += RL_MIN_FRAMELEN -
2084 			    m_new->m_pkthdr.len;
2085 			m_new->m_len = m_new->m_pkthdr.len;
2086 		}
2087 
2088 		arg.sc = sc;
2089 		arg.rl_idx = *idx;
2090 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
2091 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
2092 
2093 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
2094 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
2095 		if (error) {
2096 			device_printf(sc->rl_dev, "can't map mbuf (error %d)\n",
2097 			    error);
2098 			return (EFBIG);
2099 		}
2100 	}
2101 
2102 	/*
2103 	 * Insure that the map for this transmission
2104 	 * is placed at the array index of the last descriptor
2105 	 * in this chain.  (Swap last and first dmamaps.)
2106 	 */
2107 	sc->rl_ldata.rl_tx_dmamap[*idx] =
2108 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
2109 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
2110 
2111 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
2112 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
2113 
2114 	/*
2115 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2116 	 * appear in the first descriptor of a multi-descriptor
2117 	 * transmission attempt.
2118 	 */
2119 	if ((*m_head)->m_flags & M_VLANTAG)
2120 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
2121 		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2122 		    RL_TDESC_VLANCTL_TAG);
2123 
2124 	/* Transfer ownership of packet to the chip. */
2125 
2126 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
2127 	    htole32(RL_TDESC_CMD_OWN);
2128 	if (*idx != arg.rl_idx)
2129 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
2130 		    htole32(RL_TDESC_CMD_OWN);
2131 
2132         RL_DESC_INC(arg.rl_idx);
2133 	*idx = arg.rl_idx;
2134 
2135 	return (0);
2136 }
2137 
2138 static void
2139 re_tx_task(arg, npending)
2140 	void			*arg;
2141 	int			npending;
2142 {
2143 	struct ifnet		*ifp;
2144 
2145 	ifp = arg;
2146 	re_start(ifp);
2147 
2148 	return;
2149 }
2150 
2151 /*
2152  * Main transmit routine for C+ and gigE NICs.
2153  */
2154 static void
2155 re_start(ifp)
2156 	struct ifnet		*ifp;
2157 {
2158 	struct rl_softc		*sc;
2159 	struct mbuf		*m_head = NULL;
2160 	int			idx, queued = 0;
2161 
2162 	sc = ifp->if_softc;
2163 
2164 	RL_LOCK(sc);
2165 
2166 	if (!sc->rl_link || ifp->if_drv_flags & IFF_DRV_OACTIVE) {
2167 		RL_UNLOCK(sc);
2168 		return;
2169 	}
2170 
2171 	idx = sc->rl_ldata.rl_tx_prodidx;
2172 
2173 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2174 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2175 		if (m_head == NULL)
2176 			break;
2177 
2178 		if (re_encap(sc, &m_head, &idx)) {
2179 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2180 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2181 			break;
2182 		}
2183 
2184 		/*
2185 		 * If there's a BPF listener, bounce a copy of this frame
2186 		 * to him.
2187 		 */
2188 		BPF_MTAP(ifp, m_head);
2189 
2190 		queued++;
2191 	}
2192 
2193 	if (queued == 0) {
2194 #ifdef RE_TX_MODERATION
2195 		if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
2196 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2197 #endif
2198 		RL_UNLOCK(sc);
2199 		return;
2200 	}
2201 
2202 	/* Flush the TX descriptors */
2203 
2204 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2205 	    sc->rl_ldata.rl_tx_list_map,
2206 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2207 
2208 	sc->rl_ldata.rl_tx_prodidx = idx;
2209 
2210 	/*
2211 	 * RealTek put the TX poll request register in a different
2212 	 * location on the 8169 gigE chip. I don't know why.
2213 	 */
2214 
2215 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2216 
2217 #ifdef RE_TX_MODERATION
2218 	/*
2219 	 * Use the countdown timer for interrupt moderation.
2220 	 * 'TX done' interrupts are disabled. Instead, we reset the
2221 	 * countdown timer, which will begin counting until it hits
2222 	 * the value in the TIMERINT register, and then trigger an
2223 	 * interrupt. Each time we write to the TIMERCNT register,
2224 	 * the timer count is reset to 0.
2225 	 */
2226 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2227 #endif
2228 
2229 	/*
2230 	 * Set a timeout in case the chip goes out to lunch.
2231 	 */
2232 
2233 	ifp->if_timer = 5;
2234 
2235 	RL_UNLOCK(sc);
2236 
2237 	return;
2238 }
2239 
2240 static void
2241 re_init(xsc)
2242 	void			*xsc;
2243 {
2244 	struct rl_softc		*sc = xsc;
2245 
2246 	RL_LOCK(sc);
2247 	re_init_locked(sc);
2248 	RL_UNLOCK(sc);
2249 }
2250 
2251 static void
2252 re_init_locked(sc)
2253 	struct rl_softc		*sc;
2254 {
2255 	struct ifnet		*ifp = sc->rl_ifp;
2256 	struct mii_data		*mii;
2257 	u_int32_t		rxcfg = 0;
2258 	union {
2259 		uint32_t align_dummy;
2260 		u_char eaddr[ETHER_ADDR_LEN];
2261         } eaddr;
2262 
2263 	RL_LOCK_ASSERT(sc);
2264 
2265 	mii = device_get_softc(sc->rl_miibus);
2266 
2267 	/*
2268 	 * Cancel pending I/O and free all RX/TX buffers.
2269 	 */
2270 	re_stop(sc);
2271 
2272 	/*
2273 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2274 	 * RX checksum offload. We must configure the C+ register
2275 	 * before all others.
2276 	 */
2277 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2278 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2279 	    RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB);
2280 
2281 	/*
2282 	 * Init our MAC address.  Even though the chipset
2283 	 * documentation doesn't mention it, we need to enter "Config
2284 	 * register write enable" mode to modify the ID registers.
2285 	 */
2286 	/* Copy MAC address on stack to align. */
2287 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2288 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2289 	CSR_WRITE_4(sc, RL_IDR0,
2290 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2291 	CSR_WRITE_4(sc, RL_IDR4,
2292 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2293 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2294 
2295 	/*
2296 	 * For C+ mode, initialize the RX descriptors and mbufs.
2297 	 */
2298 	re_rx_list_init(sc);
2299 	re_tx_list_init(sc);
2300 
2301 	/*
2302 	 * Enable transmit and receive.
2303 	 */
2304 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2305 
2306 	/*
2307 	 * Set the initial TX and RX configuration.
2308 	 */
2309 	if (sc->rl_testmode) {
2310 		if (sc->rl_type == RL_8169)
2311 			CSR_WRITE_4(sc, RL_TXCFG,
2312 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2313 		else
2314 			CSR_WRITE_4(sc, RL_TXCFG,
2315 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2316 	} else
2317 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2318 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2319 
2320 	/* Set the individual bit to receive frames for this host only. */
2321 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2322 	rxcfg |= RL_RXCFG_RX_INDIV;
2323 
2324 	/* If we want promiscuous mode, set the allframes bit. */
2325 	if (ifp->if_flags & IFF_PROMISC)
2326 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2327 	else
2328 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2329 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2330 
2331 	/*
2332 	 * Set capture broadcast bit to capture broadcast frames.
2333 	 */
2334 	if (ifp->if_flags & IFF_BROADCAST)
2335 		rxcfg |= RL_RXCFG_RX_BROAD;
2336 	else
2337 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2338 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2339 
2340 	/*
2341 	 * Program the multicast filter, if necessary.
2342 	 */
2343 	re_setmulti(sc);
2344 
2345 #ifdef DEVICE_POLLING
2346 	/*
2347 	 * Disable interrupts if we are polling.
2348 	 */
2349 	if (ifp->if_capenable & IFCAP_POLLING)
2350 		CSR_WRITE_2(sc, RL_IMR, 0);
2351 	else	/* otherwise ... */
2352 #endif
2353 
2354 	/*
2355 	 * Enable interrupts.
2356 	 */
2357 	if (sc->rl_testmode)
2358 		CSR_WRITE_2(sc, RL_IMR, 0);
2359 	else
2360 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2361 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2362 
2363 	/* Set initial TX threshold */
2364 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2365 
2366 	/* Start RX/TX process. */
2367 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2368 #ifdef notdef
2369 	/* Enable receiver and transmitter. */
2370 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2371 #endif
2372 	/*
2373 	 * Load the addresses of the RX and TX lists into the chip.
2374 	 */
2375 
2376 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2377 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2378 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2379 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2380 
2381 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2382 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2383 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2384 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2385 
2386 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2387 
2388 #ifdef RE_TX_MODERATION
2389 	/*
2390 	 * Initialize the timer interrupt register so that
2391 	 * a timer interrupt will be generated once the timer
2392 	 * reaches a certain number of ticks. The timer is
2393 	 * reloaded on each transmit. This gives us TX interrupt
2394 	 * moderation, which dramatically improves TX frame rate.
2395 	 */
2396 	if (sc->rl_type == RL_8169)
2397 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2398 	else
2399 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2400 #endif
2401 
2402 	/*
2403 	 * For 8169 gigE NICs, set the max allowed RX packet
2404 	 * size so we can receive jumbo frames.
2405 	 */
2406 	if (sc->rl_type == RL_8169)
2407 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2408 
2409 	if (sc->rl_testmode)
2410 		return;
2411 
2412 	mii_mediachg(mii);
2413 
2414 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2415 
2416 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2417 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2418 
2419 
2420 	sc->rl_link = 0;
2421 
2422 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2423 }
2424 
2425 /*
2426  * Set media options.
2427  */
2428 static int
2429 re_ifmedia_upd(ifp)
2430 	struct ifnet		*ifp;
2431 {
2432 	struct rl_softc		*sc;
2433 	struct mii_data		*mii;
2434 
2435 	sc = ifp->if_softc;
2436 	mii = device_get_softc(sc->rl_miibus);
2437 	RL_LOCK(sc);
2438 	mii_mediachg(mii);
2439 	RL_UNLOCK(sc);
2440 
2441 	return (0);
2442 }
2443 
2444 /*
2445  * Report current media status.
2446  */
2447 static void
2448 re_ifmedia_sts(ifp, ifmr)
2449 	struct ifnet		*ifp;
2450 	struct ifmediareq	*ifmr;
2451 {
2452 	struct rl_softc		*sc;
2453 	struct mii_data		*mii;
2454 
2455 	sc = ifp->if_softc;
2456 	mii = device_get_softc(sc->rl_miibus);
2457 
2458 	RL_LOCK(sc);
2459 	mii_pollstat(mii);
2460 	RL_UNLOCK(sc);
2461 	ifmr->ifm_active = mii->mii_media_active;
2462 	ifmr->ifm_status = mii->mii_media_status;
2463 }
2464 
2465 static int
2466 re_ioctl(ifp, command, data)
2467 	struct ifnet		*ifp;
2468 	u_long			command;
2469 	caddr_t			data;
2470 {
2471 	struct rl_softc		*sc = ifp->if_softc;
2472 	struct ifreq		*ifr = (struct ifreq *) data;
2473 	struct mii_data		*mii;
2474 	int			error = 0;
2475 
2476 	switch (command) {
2477 	case SIOCSIFMTU:
2478 		RL_LOCK(sc);
2479 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2480 			error = EINVAL;
2481 		ifp->if_mtu = ifr->ifr_mtu;
2482 		RL_UNLOCK(sc);
2483 		break;
2484 	case SIOCSIFFLAGS:
2485 		RL_LOCK(sc);
2486 		if (ifp->if_flags & IFF_UP)
2487 			re_init_locked(sc);
2488 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2489 			re_stop(sc);
2490 		RL_UNLOCK(sc);
2491 		break;
2492 	case SIOCADDMULTI:
2493 	case SIOCDELMULTI:
2494 		RL_LOCK(sc);
2495 		re_setmulti(sc);
2496 		RL_UNLOCK(sc);
2497 		break;
2498 	case SIOCGIFMEDIA:
2499 	case SIOCSIFMEDIA:
2500 		mii = device_get_softc(sc->rl_miibus);
2501 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2502 		break;
2503 	case SIOCSIFCAP:
2504 	    {
2505 		int mask, reinit;
2506 
2507 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2508 		reinit = 0;
2509 #ifdef DEVICE_POLLING
2510 		if (mask & IFCAP_POLLING) {
2511 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2512 				error = ether_poll_register(re_poll, ifp);
2513 				if (error)
2514 					return(error);
2515 				RL_LOCK(sc);
2516 				/* Disable interrupts */
2517 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2518 				ifp->if_capenable |= IFCAP_POLLING;
2519 				RL_UNLOCK(sc);
2520 
2521 			} else {
2522 				error = ether_poll_deregister(ifp);
2523 				/* Enable interrupts. */
2524 				RL_LOCK(sc);
2525 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2526 				ifp->if_capenable &= ~IFCAP_POLLING;
2527 				RL_UNLOCK(sc);
2528 			}
2529 		}
2530 #endif /* DEVICE_POLLING */
2531 		if (mask & IFCAP_HWCSUM) {
2532 			ifp->if_capenable ^= IFCAP_HWCSUM;
2533 			if (ifp->if_capenable & IFCAP_TXCSUM)
2534 				ifp->if_hwassist = RE_CSUM_FEATURES;
2535 			else
2536 				ifp->if_hwassist = 0;
2537 			reinit = 1;
2538 		}
2539 		if (mask & IFCAP_VLAN_HWTAGGING) {
2540 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2541 			reinit = 1;
2542 		}
2543 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2544 			re_init(sc);
2545 	    }
2546 		break;
2547 	default:
2548 		error = ether_ioctl(ifp, command, data);
2549 		break;
2550 	}
2551 
2552 	return (error);
2553 }
2554 
2555 static void
2556 re_watchdog(ifp)
2557 	struct ifnet		*ifp;
2558 {
2559 	struct rl_softc		*sc;
2560 
2561 	sc = ifp->if_softc;
2562 	RL_LOCK(sc);
2563 	if_printf(ifp, "watchdog timeout\n");
2564 	ifp->if_oerrors++;
2565 
2566 	re_txeof(sc);
2567 	re_rxeof(sc);
2568 	re_init_locked(sc);
2569 
2570 	RL_UNLOCK(sc);
2571 }
2572 
2573 /*
2574  * Stop the adapter and free any mbufs allocated to the
2575  * RX and TX lists.
2576  */
2577 static void
2578 re_stop(sc)
2579 	struct rl_softc		*sc;
2580 {
2581 	register int		i;
2582 	struct ifnet		*ifp;
2583 
2584 	RL_LOCK_ASSERT(sc);
2585 
2586 	ifp = sc->rl_ifp;
2587 	ifp->if_timer = 0;
2588 
2589 	callout_stop(&sc->rl_stat_callout);
2590 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2591 
2592 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2593 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2594 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2595 
2596 	if (sc->rl_head != NULL) {
2597 		m_freem(sc->rl_head);
2598 		sc->rl_head = sc->rl_tail = NULL;
2599 	}
2600 
2601 	/* Free the TX list buffers. */
2602 
2603 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2604 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2605 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2606 			    sc->rl_ldata.rl_tx_dmamap[i]);
2607 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2608 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2609 		}
2610 	}
2611 
2612 	/* Free the RX list buffers. */
2613 
2614 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2615 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2616 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2617 			    sc->rl_ldata.rl_rx_dmamap[i]);
2618 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2619 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2620 		}
2621 	}
2622 }
2623 
2624 /*
2625  * Device suspend routine.  Stop the interface and save some PCI
2626  * settings in case the BIOS doesn't restore them properly on
2627  * resume.
2628  */
2629 static int
2630 re_suspend(dev)
2631 	device_t		dev;
2632 {
2633 	struct rl_softc		*sc;
2634 
2635 	sc = device_get_softc(dev);
2636 
2637 	RL_LOCK(sc);
2638 	re_stop(sc);
2639 	sc->suspended = 1;
2640 	RL_UNLOCK(sc);
2641 
2642 	return (0);
2643 }
2644 
2645 /*
2646  * Device resume routine.  Restore some PCI settings in case the BIOS
2647  * doesn't, re-enable busmastering, and restart the interface if
2648  * appropriate.
2649  */
2650 static int
2651 re_resume(dev)
2652 	device_t		dev;
2653 {
2654 	struct rl_softc		*sc;
2655 	struct ifnet		*ifp;
2656 
2657 	sc = device_get_softc(dev);
2658 
2659 	RL_LOCK(sc);
2660 
2661 	ifp = sc->rl_ifp;
2662 
2663 	/* reinitialize interface if necessary */
2664 	if (ifp->if_flags & IFF_UP)
2665 		re_init_locked(sc);
2666 
2667 	sc->suspended = 0;
2668 	RL_UNLOCK(sc);
2669 
2670 	return (0);
2671 }
2672 
2673 /*
2674  * Stop all chip I/O so that the kernel's probe routines don't
2675  * get confused by errant DMAs when rebooting.
2676  */
2677 static void
2678 re_shutdown(dev)
2679 	device_t		dev;
2680 {
2681 	struct rl_softc		*sc;
2682 
2683 	sc = device_get_softc(dev);
2684 
2685 	RL_LOCK(sc);
2686 	re_stop(sc);
2687 	/*
2688 	 * Mark interface as down since otherwise we will panic if
2689 	 * interrupt comes in later on, which can happen in some
2690 	 * cases.
2691 	 */
2692 	sc->rl_ifp->if_flags &= ~IFF_UP;
2693 	RL_UNLOCK(sc);
2694 }
2695