xref: /freebsd/sys/dev/re/if_re.c (revision 7afc53b8dfcc7d5897920ce6cc7e842fbb4ab813)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/module.h>
118 #include <sys/kernel.h>
119 #include <sys/socket.h>
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/ethernet.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_vlan_var.h>
127 
128 #include <net/bpf.h>
129 
130 #include <machine/bus.h>
131 #include <machine/resource.h>
132 #include <sys/bus.h>
133 #include <sys/rman.h>
134 
135 #include <dev/mii/mii.h>
136 #include <dev/mii/miivar.h>
137 
138 #include <dev/pci/pcireg.h>
139 #include <dev/pci/pcivar.h>
140 
141 MODULE_DEPEND(re, pci, 1, 1, 1);
142 MODULE_DEPEND(re, ether, 1, 1, 1);
143 MODULE_DEPEND(re, miibus, 1, 1, 1);
144 
145 /* "controller miibus0" required.  See GENERIC if you get errors here. */
146 #include "miibus_if.h"
147 
148 /*
149  * Default to using PIO access for this driver.
150  */
151 #define RE_USEIOSPACE
152 
153 #include <pci/if_rlreg.h>
154 
155 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
156 
157 /*
158  * Various supported device vendors/types and their names.
159  */
160 static struct rl_type re_devs[] = {
161 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
162 		"RealTek 8139C+ 10/100BaseTX" },
163 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
164 		"RealTek 8169 Gigabit Ethernet" },
165 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
166 		"RealTek 8169S Single-chip Gigabit Ethernet" },
167 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB,
168 		"RealTek 8169SB Single-chip Gigabit Ethernet" },
169 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
170 		"RealTek 8110S Single-chip Gigabit Ethernet" },
171 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
172 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
173 	{ 0, 0, 0, NULL }
174 };
175 
176 static struct rl_hwrev re_hwrevs[] = {
177 	{ RL_HWREV_8139, RL_8139,  "" },
178 	{ RL_HWREV_8139A, RL_8139, "A" },
179 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
180 	{ RL_HWREV_8139B, RL_8139, "B" },
181 	{ RL_HWREV_8130, RL_8139, "8130" },
182 	{ RL_HWREV_8139C, RL_8139, "C" },
183 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
184 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
185 	{ RL_HWREV_8169, RL_8169, "8169"},
186 	{ RL_HWREV_8169S, RL_8169, "8169S"},
187 	{ RL_HWREV_8169SB, RL_8169, "8169SB"},
188 	{ RL_HWREV_8110S, RL_8169, "8110S"},
189 	{ RL_HWREV_8100, RL_8139, "8100"},
190 	{ RL_HWREV_8101, RL_8139, "8101"},
191 	{ 0, 0, NULL }
192 };
193 
194 static int re_probe		(device_t);
195 static int re_attach		(device_t);
196 static int re_detach		(device_t);
197 
198 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
199 
200 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
201 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
202 				    bus_size_t, int);
203 static int re_allocmem		(device_t, struct rl_softc *);
204 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
205 static int re_rx_list_init	(struct rl_softc *);
206 static int re_tx_list_init	(struct rl_softc *);
207 #ifdef RE_FIXUP_RX
208 static __inline void re_fixup_rx
209 				(struct mbuf *);
210 #endif
211 static void re_rxeof		(struct rl_softc *);
212 static void re_txeof		(struct rl_softc *);
213 #ifdef DEVICE_POLLING
214 static void re_poll		(struct ifnet *, enum poll_cmd, int);
215 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
216 #endif
217 static void re_intr		(void *);
218 static void re_tick		(void *);
219 static void re_tick_locked	(struct rl_softc *);
220 static void re_start		(struct ifnet *);
221 static void re_start_locked	(struct ifnet *);
222 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
223 static void re_init		(void *);
224 static void re_init_locked	(struct rl_softc *);
225 static void re_stop		(struct rl_softc *);
226 static void re_watchdog		(struct ifnet *);
227 static int re_suspend		(device_t);
228 static int re_resume		(device_t);
229 static void re_shutdown		(device_t);
230 static int re_ifmedia_upd	(struct ifnet *);
231 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
232 
233 static void re_eeprom_putbyte	(struct rl_softc *, int);
234 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
235 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
236 static int re_gmii_readreg	(device_t, int, int);
237 static int re_gmii_writereg	(device_t, int, int, int);
238 
239 static int re_miibus_readreg	(device_t, int, int);
240 static int re_miibus_writereg	(device_t, int, int, int);
241 static void re_miibus_statchg	(device_t);
242 
243 static void re_setmulti		(struct rl_softc *);
244 static void re_reset		(struct rl_softc *);
245 
246 static int re_diag		(struct rl_softc *);
247 
248 #ifdef RE_USEIOSPACE
249 #define RL_RES			SYS_RES_IOPORT
250 #define RL_RID			RL_PCI_LOIO
251 #else
252 #define RL_RES			SYS_RES_MEMORY
253 #define RL_RID			RL_PCI_LOMEM
254 #endif
255 
256 static device_method_t re_methods[] = {
257 	/* Device interface */
258 	DEVMETHOD(device_probe,		re_probe),
259 	DEVMETHOD(device_attach,	re_attach),
260 	DEVMETHOD(device_detach,	re_detach),
261 	DEVMETHOD(device_suspend,	re_suspend),
262 	DEVMETHOD(device_resume,	re_resume),
263 	DEVMETHOD(device_shutdown,	re_shutdown),
264 
265 	/* bus interface */
266 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
267 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
268 
269 	/* MII interface */
270 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
271 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
272 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
273 
274 	{ 0, 0 }
275 };
276 
277 static driver_t re_driver = {
278 	"re",
279 	re_methods,
280 	sizeof(struct rl_softc)
281 };
282 
283 static devclass_t re_devclass;
284 
285 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
286 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
287 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
288 
289 #define EE_SET(x)					\
290 	CSR_WRITE_1(sc, RL_EECMD,			\
291 		CSR_READ_1(sc, RL_EECMD) | x)
292 
293 #define EE_CLR(x)					\
294 	CSR_WRITE_1(sc, RL_EECMD,			\
295 		CSR_READ_1(sc, RL_EECMD) & ~x)
296 
297 /*
298  * Send a read command and address to the EEPROM, check for ACK.
299  */
300 static void
301 re_eeprom_putbyte(sc, addr)
302 	struct rl_softc		*sc;
303 	int			addr;
304 {
305 	register int		d, i;
306 
307 	d = addr | sc->rl_eecmd_read;
308 
309 	/*
310 	 * Feed in each bit and strobe the clock.
311 	 */
312 	for (i = 0x400; i; i >>= 1) {
313 		if (d & i) {
314 			EE_SET(RL_EE_DATAIN);
315 		} else {
316 			EE_CLR(RL_EE_DATAIN);
317 		}
318 		DELAY(100);
319 		EE_SET(RL_EE_CLK);
320 		DELAY(150);
321 		EE_CLR(RL_EE_CLK);
322 		DELAY(100);
323 	}
324 }
325 
326 /*
327  * Read a word of data stored in the EEPROM at address 'addr.'
328  */
329 static void
330 re_eeprom_getword(sc, addr, dest)
331 	struct rl_softc		*sc;
332 	int			addr;
333 	u_int16_t		*dest;
334 {
335 	register int		i;
336 	u_int16_t		word = 0;
337 
338 	/* Enter EEPROM access mode. */
339 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
340 
341 	/*
342 	 * Send address of word we want to read.
343 	 */
344 	re_eeprom_putbyte(sc, addr);
345 
346 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
347 
348 	/*
349 	 * Start reading bits from EEPROM.
350 	 */
351 	for (i = 0x8000; i; i >>= 1) {
352 		EE_SET(RL_EE_CLK);
353 		DELAY(100);
354 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
355 			word |= i;
356 		EE_CLR(RL_EE_CLK);
357 		DELAY(100);
358 	}
359 
360 	/* Turn off EEPROM access mode. */
361 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
362 
363 	*dest = word;
364 }
365 
366 /*
367  * Read a sequence of words from the EEPROM.
368  */
369 static void
370 re_read_eeprom(sc, dest, off, cnt, swap)
371 	struct rl_softc		*sc;
372 	caddr_t			dest;
373 	int			off;
374 	int			cnt;
375 	int			swap;
376 {
377 	int			i;
378 	u_int16_t		word = 0, *ptr;
379 
380 	for (i = 0; i < cnt; i++) {
381 		re_eeprom_getword(sc, off + i, &word);
382 		ptr = (u_int16_t *)(dest + (i * 2));
383 		if (swap)
384 			*ptr = ntohs(word);
385 		else
386 			*ptr = word;
387 	}
388 }
389 
390 static int
391 re_gmii_readreg(dev, phy, reg)
392 	device_t		dev;
393 	int			phy, reg;
394 {
395 	struct rl_softc		*sc;
396 	u_int32_t		rval;
397 	int			i;
398 
399 	if (phy != 1)
400 		return (0);
401 
402 	sc = device_get_softc(dev);
403 
404 	/* Let the rgephy driver read the GMEDIASTAT register */
405 
406 	if (reg == RL_GMEDIASTAT) {
407 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
408 		return (rval);
409 	}
410 
411 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
412 	DELAY(1000);
413 
414 	for (i = 0; i < RL_TIMEOUT; i++) {
415 		rval = CSR_READ_4(sc, RL_PHYAR);
416 		if (rval & RL_PHYAR_BUSY)
417 			break;
418 		DELAY(100);
419 	}
420 
421 	if (i == RL_TIMEOUT) {
422 		printf ("re%d: PHY read failed\n", sc->rl_unit);
423 		return (0);
424 	}
425 
426 	return (rval & RL_PHYAR_PHYDATA);
427 }
428 
429 static int
430 re_gmii_writereg(dev, phy, reg, data)
431 	device_t		dev;
432 	int			phy, reg, data;
433 {
434 	struct rl_softc		*sc;
435 	u_int32_t		rval;
436 	int			i;
437 
438 	sc = device_get_softc(dev);
439 
440 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
441 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
442 	DELAY(1000);
443 
444 	for (i = 0; i < RL_TIMEOUT; i++) {
445 		rval = CSR_READ_4(sc, RL_PHYAR);
446 		if (!(rval & RL_PHYAR_BUSY))
447 			break;
448 		DELAY(100);
449 	}
450 
451 	if (i == RL_TIMEOUT) {
452 		printf ("re%d: PHY write failed\n", sc->rl_unit);
453 		return (0);
454 	}
455 
456 	return (0);
457 }
458 
459 static int
460 re_miibus_readreg(dev, phy, reg)
461 	device_t		dev;
462 	int			phy, reg;
463 {
464 	struct rl_softc		*sc;
465 	u_int16_t		rval = 0;
466 	u_int16_t		re8139_reg = 0;
467 
468 	sc = device_get_softc(dev);
469 
470 	if (sc->rl_type == RL_8169) {
471 		rval = re_gmii_readreg(dev, phy, reg);
472 		return (rval);
473 	}
474 
475 	/* Pretend the internal PHY is only at address 0 */
476 	if (phy) {
477 		return (0);
478 	}
479 	switch (reg) {
480 	case MII_BMCR:
481 		re8139_reg = RL_BMCR;
482 		break;
483 	case MII_BMSR:
484 		re8139_reg = RL_BMSR;
485 		break;
486 	case MII_ANAR:
487 		re8139_reg = RL_ANAR;
488 		break;
489 	case MII_ANER:
490 		re8139_reg = RL_ANER;
491 		break;
492 	case MII_ANLPAR:
493 		re8139_reg = RL_LPAR;
494 		break;
495 	case MII_PHYIDR1:
496 	case MII_PHYIDR2:
497 		return (0);
498 	/*
499 	 * Allow the rlphy driver to read the media status
500 	 * register. If we have a link partner which does not
501 	 * support NWAY, this is the register which will tell
502 	 * us the results of parallel detection.
503 	 */
504 	case RL_MEDIASTAT:
505 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
506 		return (rval);
507 	default:
508 		printf("re%d: bad phy register\n", sc->rl_unit);
509 		return (0);
510 	}
511 	rval = CSR_READ_2(sc, re8139_reg);
512 	return (rval);
513 }
514 
515 static int
516 re_miibus_writereg(dev, phy, reg, data)
517 	device_t		dev;
518 	int			phy, reg, data;
519 {
520 	struct rl_softc		*sc;
521 	u_int16_t		re8139_reg = 0;
522 	int			rval = 0;
523 
524 	sc = device_get_softc(dev);
525 
526 	if (sc->rl_type == RL_8169) {
527 		rval = re_gmii_writereg(dev, phy, reg, data);
528 		return (rval);
529 	}
530 
531 	/* Pretend the internal PHY is only at address 0 */
532 	if (phy)
533 		return (0);
534 
535 	switch (reg) {
536 	case MII_BMCR:
537 		re8139_reg = RL_BMCR;
538 		break;
539 	case MII_BMSR:
540 		re8139_reg = RL_BMSR;
541 		break;
542 	case MII_ANAR:
543 		re8139_reg = RL_ANAR;
544 		break;
545 	case MII_ANER:
546 		re8139_reg = RL_ANER;
547 		break;
548 	case MII_ANLPAR:
549 		re8139_reg = RL_LPAR;
550 		break;
551 	case MII_PHYIDR1:
552 	case MII_PHYIDR2:
553 		return (0);
554 		break;
555 	default:
556 		printf("re%d: bad phy register\n", sc->rl_unit);
557 		return (0);
558 	}
559 	CSR_WRITE_2(sc, re8139_reg, data);
560 	return (0);
561 }
562 
563 static void
564 re_miibus_statchg(dev)
565 	device_t		dev;
566 {
567 
568 }
569 
570 /*
571  * Program the 64-bit multicast hash filter.
572  */
573 static void
574 re_setmulti(sc)
575 	struct rl_softc		*sc;
576 {
577 	struct ifnet		*ifp;
578 	int			h = 0;
579 	u_int32_t		hashes[2] = { 0, 0 };
580 	struct ifmultiaddr	*ifma;
581 	u_int32_t		rxfilt;
582 	int			mcnt = 0;
583 
584 	RL_LOCK_ASSERT(sc);
585 
586 	ifp = &sc->arpcom.ac_if;
587 
588 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
589 
590 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
591 		rxfilt |= RL_RXCFG_RX_MULTI;
592 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
593 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
594 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
595 		return;
596 	}
597 
598 	/* first, zot all the existing hash bits */
599 	CSR_WRITE_4(sc, RL_MAR0, 0);
600 	CSR_WRITE_4(sc, RL_MAR4, 0);
601 
602 	/* now program new ones */
603 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
604 		if (ifma->ifma_addr->sa_family != AF_LINK)
605 			continue;
606 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
607 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
608 		if (h < 32)
609 			hashes[0] |= (1 << h);
610 		else
611 			hashes[1] |= (1 << (h - 32));
612 		mcnt++;
613 	}
614 
615 	if (mcnt)
616 		rxfilt |= RL_RXCFG_RX_MULTI;
617 	else
618 		rxfilt &= ~RL_RXCFG_RX_MULTI;
619 
620 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
621 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
622 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
623 }
624 
625 static void
626 re_reset(sc)
627 	struct rl_softc		*sc;
628 {
629 	register int		i;
630 
631 	RL_LOCK_ASSERT(sc);
632 
633 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
634 
635 	for (i = 0; i < RL_TIMEOUT; i++) {
636 		DELAY(10);
637 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
638 			break;
639 	}
640 	if (i == RL_TIMEOUT)
641 		printf("re%d: reset never completed!\n", sc->rl_unit);
642 
643 	CSR_WRITE_1(sc, 0x82, 1);
644 }
645 
646 /*
647  * The following routine is designed to test for a defect on some
648  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
649  * lines connected to the bus, however for a 32-bit only card, they
650  * should be pulled high. The result of this defect is that the
651  * NIC will not work right if you plug it into a 64-bit slot: DMA
652  * operations will be done with 64-bit transfers, which will fail
653  * because the 64-bit data lines aren't connected.
654  *
655  * There's no way to work around this (short of talking a soldering
656  * iron to the board), however we can detect it. The method we use
657  * here is to put the NIC into digital loopback mode, set the receiver
658  * to promiscuous mode, and then try to send a frame. We then compare
659  * the frame data we sent to what was received. If the data matches,
660  * then the NIC is working correctly, otherwise we know the user has
661  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
662  * slot. In the latter case, there's no way the NIC can work correctly,
663  * so we print out a message on the console and abort the device attach.
664  */
665 
666 static int
667 re_diag(sc)
668 	struct rl_softc		*sc;
669 {
670 	struct ifnet		*ifp = &sc->arpcom.ac_if;
671 	struct mbuf		*m0;
672 	struct ether_header	*eh;
673 	struct rl_desc		*cur_rx;
674 	u_int16_t		status;
675 	u_int32_t		rxstat;
676 	int			total_len, i, error = 0;
677 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
678 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
679 
680 	/* Allocate a single mbuf */
681 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
682 	if (m0 == NULL)
683 		return (ENOBUFS);
684 
685 	RL_LOCK(sc);
686 
687 	/*
688 	 * Initialize the NIC in test mode. This sets the chip up
689 	 * so that it can send and receive frames, but performs the
690 	 * following special functions:
691 	 * - Puts receiver in promiscuous mode
692 	 * - Enables digital loopback mode
693 	 * - Leaves interrupts turned off
694 	 */
695 
696 	ifp->if_flags |= IFF_PROMISC;
697 	sc->rl_testmode = 1;
698 	re_init_locked(sc);
699 	re_stop(sc);
700 	DELAY(100000);
701 	re_init_locked(sc);
702 
703 	/* Put some data in the mbuf */
704 
705 	eh = mtod(m0, struct ether_header *);
706 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
707 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
708 	eh->ether_type = htons(ETHERTYPE_IP);
709 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
710 
711 	/*
712 	 * Queue the packet, start transmission.
713 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
714 	 */
715 
716 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
717 	RL_UNLOCK(sc);
718 	/* XXX: re_diag must not be called when in ALTQ mode */
719 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
720 	RL_LOCK(sc);
721 	m0 = NULL;
722 
723 	/* Wait for it to propagate through the chip */
724 
725 	DELAY(100000);
726 	for (i = 0; i < RL_TIMEOUT; i++) {
727 		status = CSR_READ_2(sc, RL_ISR);
728 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
729 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
730 			break;
731 		DELAY(10);
732 	}
733 
734 	if (i == RL_TIMEOUT) {
735 		printf("re%d: diagnostic failed, failed to receive packet "
736 		    "in loopback mode\n", sc->rl_unit);
737 		error = EIO;
738 		goto done;
739 	}
740 
741 	/*
742 	 * The packet should have been dumped into the first
743 	 * entry in the RX DMA ring. Grab it from there.
744 	 */
745 
746 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
747 	    sc->rl_ldata.rl_rx_list_map,
748 	    BUS_DMASYNC_POSTREAD);
749 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
750 	    sc->rl_ldata.rl_rx_dmamap[0],
751 	    BUS_DMASYNC_POSTWRITE);
752 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
753 	    sc->rl_ldata.rl_rx_dmamap[0]);
754 
755 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
756 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
757 	eh = mtod(m0, struct ether_header *);
758 
759 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
760 	total_len = RL_RXBYTES(cur_rx);
761 	rxstat = le32toh(cur_rx->rl_cmdstat);
762 
763 	if (total_len != ETHER_MIN_LEN) {
764 		printf("re%d: diagnostic failed, received short packet\n",
765 		    sc->rl_unit);
766 		error = EIO;
767 		goto done;
768 	}
769 
770 	/* Test that the received packet data matches what we sent. */
771 
772 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
773 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
774 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
775 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
776 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
777 		    dst, ":", src, ":", ETHERTYPE_IP);
778 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
779 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
780 		    ntohs(eh->ether_type));
781 		printf("re%d: You may have a defective 32-bit NIC plugged "
782 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
783 		printf("re%d: Please re-install the NIC in a 32-bit slot "
784 		    "for proper operation.\n", sc->rl_unit);
785 		printf("re%d: Read the re(4) man page for more details.\n",
786 		    sc->rl_unit);
787 		error = EIO;
788 	}
789 
790 done:
791 	/* Turn interface off, release resources */
792 
793 	sc->rl_testmode = 0;
794 	ifp->if_flags &= ~IFF_PROMISC;
795 	re_stop(sc);
796 	if (m0 != NULL)
797 		m_freem(m0);
798 
799 	RL_UNLOCK(sc);
800 
801 	return (error);
802 }
803 
804 /*
805  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
806  * IDs against our list and return a device name if we find a match.
807  */
808 static int
809 re_probe(dev)
810 	device_t		dev;
811 {
812 	struct rl_type		*t;
813 	struct rl_softc		*sc;
814 	int			rid;
815 	u_int32_t		hwrev;
816 
817 	t = re_devs;
818 	sc = device_get_softc(dev);
819 
820 	while (t->rl_name != NULL) {
821 		if ((pci_get_vendor(dev) == t->rl_vid) &&
822 		    (pci_get_device(dev) == t->rl_did)) {
823 
824 			/*
825 			 * Temporarily map the I/O space
826 			 * so we can read the chip ID register.
827 			 */
828 			rid = RL_RID;
829 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
830 			    RF_ACTIVE);
831 			if (sc->rl_res == NULL) {
832 				device_printf(dev,
833 				    "couldn't map ports/memory\n");
834 				return (ENXIO);
835 			}
836 			sc->rl_btag = rman_get_bustag(sc->rl_res);
837 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
838 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
839 			bus_release_resource(dev, RL_RES,
840 			    RL_RID, sc->rl_res);
841 			if (t->rl_basetype == hwrev) {
842 				device_set_desc(dev, t->rl_name);
843 				return (BUS_PROBE_DEFAULT);
844 			}
845 		}
846 		t++;
847 	}
848 
849 	return (ENXIO);
850 }
851 
852 /*
853  * This routine takes the segment list provided as the result of
854  * a bus_dma_map_load() operation and assigns the addresses/lengths
855  * to RealTek DMA descriptors. This can be called either by the RX
856  * code or the TX code. In the RX case, we'll probably wind up mapping
857  * at most one segment. For the TX case, there could be any number of
858  * segments since TX packets may span multiple mbufs. In either case,
859  * if the number of segments is larger than the rl_maxsegs limit
860  * specified by the caller, we abort the mapping operation. Sadly,
861  * whoever designed the buffer mapping API did not provide a way to
862  * return an error from here, so we have to fake it a bit.
863  */
864 
865 static void
866 re_dma_map_desc(arg, segs, nseg, mapsize, error)
867 	void			*arg;
868 	bus_dma_segment_t	*segs;
869 	int			nseg;
870 	bus_size_t		mapsize;
871 	int			error;
872 {
873 	struct rl_dmaload_arg	*ctx;
874 	struct rl_desc		*d = NULL;
875 	int			i = 0, idx;
876 
877 	if (error)
878 		return;
879 
880 	ctx = arg;
881 
882 	/* Signal error to caller if there's too many segments */
883 	if (nseg > ctx->rl_maxsegs) {
884 		ctx->rl_maxsegs = 0;
885 		return;
886 	}
887 
888 	/*
889 	 * Map the segment array into descriptors. Note that we set the
890 	 * start-of-frame and end-of-frame markers for either TX or RX, but
891 	 * they really only have meaning in the TX case. (In the RX case,
892 	 * it's the chip that tells us where packets begin and end.)
893 	 * We also keep track of the end of the ring and set the
894 	 * end-of-ring bits as needed, and we set the ownership bits
895 	 * in all except the very first descriptor. (The caller will
896 	 * set this descriptor later when it start transmission or
897 	 * reception.)
898 	 */
899 	idx = ctx->rl_idx;
900 	for (;;) {
901 		u_int32_t		cmdstat;
902 		d = &ctx->rl_ring[idx];
903 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
904 			ctx->rl_maxsegs = 0;
905 			return;
906 		}
907 		cmdstat = segs[i].ds_len;
908 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
909 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
910 		if (i == 0)
911 			cmdstat |= RL_TDESC_CMD_SOF;
912 		else
913 			cmdstat |= RL_TDESC_CMD_OWN;
914 		if (idx == (RL_RX_DESC_CNT - 1))
915 			cmdstat |= RL_TDESC_CMD_EOR;
916 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
917 		i++;
918 		if (i == nseg)
919 			break;
920 		RL_DESC_INC(idx);
921 	}
922 
923 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
924 	ctx->rl_maxsegs = nseg;
925 	ctx->rl_idx = idx;
926 }
927 
928 /*
929  * Map a single buffer address.
930  */
931 
932 static void
933 re_dma_map_addr(arg, segs, nseg, error)
934 	void			*arg;
935 	bus_dma_segment_t	*segs;
936 	int			nseg;
937 	int			error;
938 {
939 	u_int32_t		*addr;
940 
941 	if (error)
942 		return;
943 
944 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
945 	addr = arg;
946 	*addr = segs->ds_addr;
947 }
948 
949 static int
950 re_allocmem(dev, sc)
951 	device_t		dev;
952 	struct rl_softc		*sc;
953 {
954 	int			error;
955 	int			nseg;
956 	int			i;
957 
958 	/*
959 	 * Allocate map for RX mbufs.
960 	 */
961 	nseg = 32;
962 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
963 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
964 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
965 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
966 	if (error) {
967 		device_printf(dev, "could not allocate dma tag\n");
968 		return (ENOMEM);
969 	}
970 
971 	/*
972 	 * Allocate map for TX descriptor list.
973 	 */
974 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
975 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
976 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
977 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
978 	if (error) {
979 		device_printf(dev, "could not allocate dma tag\n");
980 		return (ENOMEM);
981 	}
982 
983 	/* Allocate DMA'able memory for the TX ring */
984 
985 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
986 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
987 	    &sc->rl_ldata.rl_tx_list_map);
988 	if (error)
989 		return (ENOMEM);
990 
991 	/* Load the map for the TX ring. */
992 
993 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
994 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
995 	     RL_TX_LIST_SZ, re_dma_map_addr,
996 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
997 
998 	/* Create DMA maps for TX buffers */
999 
1000 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1001 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1002 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1003 		if (error) {
1004 			device_printf(dev, "can't create DMA map for TX\n");
1005 			return (ENOMEM);
1006 		}
1007 	}
1008 
1009 	/*
1010 	 * Allocate map for RX descriptor list.
1011 	 */
1012 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1013 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1014 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1015 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1016 	if (error) {
1017 		device_printf(dev, "could not allocate dma tag\n");
1018 		return (ENOMEM);
1019 	}
1020 
1021 	/* Allocate DMA'able memory for the RX ring */
1022 
1023 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1024 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1025 	    &sc->rl_ldata.rl_rx_list_map);
1026 	if (error)
1027 		return (ENOMEM);
1028 
1029 	/* Load the map for the RX ring. */
1030 
1031 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1032 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1033 	     RL_RX_LIST_SZ, re_dma_map_addr,
1034 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1035 
1036 	/* Create DMA maps for RX buffers */
1037 
1038 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1039 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1040 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1041 		if (error) {
1042 			device_printf(dev, "can't create DMA map for RX\n");
1043 			return (ENOMEM);
1044 		}
1045 	}
1046 
1047 	return (0);
1048 }
1049 
1050 /*
1051  * Attach the interface. Allocate softc structures, do ifmedia
1052  * setup and ethernet/BPF attach.
1053  */
1054 static int
1055 re_attach(dev)
1056 	device_t		dev;
1057 {
1058 	u_char			eaddr[ETHER_ADDR_LEN];
1059 	u_int16_t		as[3];
1060 	struct rl_softc		*sc;
1061 	struct ifnet		*ifp;
1062 	struct rl_hwrev		*hw_rev;
1063 	int			hwrev;
1064 	u_int16_t		re_did = 0;
1065 	int			unit, error = 0, rid, i;
1066 
1067 	sc = device_get_softc(dev);
1068 	unit = device_get_unit(dev);
1069 
1070 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1071 	    MTX_DEF);
1072 	/*
1073 	 * Map control/status registers.
1074 	 */
1075 	pci_enable_busmaster(dev);
1076 
1077 	rid = RL_RID;
1078 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1079 	    RF_ACTIVE);
1080 
1081 	if (sc->rl_res == NULL) {
1082 		printf ("re%d: couldn't map ports/memory\n", unit);
1083 		error = ENXIO;
1084 		goto fail;
1085 	}
1086 
1087 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1088 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1089 
1090 	/* Allocate interrupt */
1091 	rid = 0;
1092 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1093 	    RF_SHAREABLE | RF_ACTIVE);
1094 
1095 	if (sc->rl_irq == NULL) {
1096 		printf("re%d: couldn't map interrupt\n", unit);
1097 		error = ENXIO;
1098 		goto fail;
1099 	}
1100 
1101 	/* Reset the adapter. */
1102 	RL_LOCK(sc);
1103 	re_reset(sc);
1104 	RL_UNLOCK(sc);
1105 
1106 	hw_rev = re_hwrevs;
1107 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1108 	while (hw_rev->rl_desc != NULL) {
1109 		if (hw_rev->rl_rev == hwrev) {
1110 			sc->rl_type = hw_rev->rl_type;
1111 			break;
1112 		}
1113 		hw_rev++;
1114 	}
1115 
1116 	if (sc->rl_type == RL_8169) {
1117 
1118 		/* Set RX length mask */
1119 
1120 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1121 
1122 		/* Force station address autoload from the EEPROM */
1123 
1124 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1125 		for (i = 0; i < RL_TIMEOUT; i++) {
1126 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1127 				break;
1128 			DELAY(100);
1129 		}
1130 		if (i == RL_TIMEOUT)
1131 			printf ("re%d: eeprom autoload timed out\n", unit);
1132 
1133 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1134 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1135 	} else {
1136 
1137 		/* Set RX length mask */
1138 
1139 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1140 
1141 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1142 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1143 		if (re_did != 0x8129)
1144 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1145 
1146 		/*
1147 		 * Get station address from the EEPROM.
1148 		 */
1149 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1150 		for (i = 0; i < 3; i++) {
1151 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1152 			eaddr[(i * 2) + 1] = as[i] >> 8;
1153 		}
1154 	}
1155 
1156 	sc->rl_unit = unit;
1157 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1158 
1159 	/*
1160 	 * Allocate the parent bus DMA tag appropriate for PCI.
1161 	 */
1162 #define RL_NSEG_NEW 32
1163 	error = bus_dma_tag_create(NULL,	/* parent */
1164 			1, 0,			/* alignment, boundary */
1165 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1166 			BUS_SPACE_MAXADDR,	/* highaddr */
1167 			NULL, NULL,		/* filter, filterarg */
1168 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1169 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1170 			BUS_DMA_ALLOCNOW,	/* flags */
1171 			NULL, NULL,		/* lockfunc, lockarg */
1172 			&sc->rl_parent_tag);
1173 	if (error)
1174 		goto fail;
1175 
1176 	error = re_allocmem(dev, sc);
1177 
1178 	if (error)
1179 		goto fail;
1180 
1181 	/* Do MII setup */
1182 	if (mii_phy_probe(dev, &sc->rl_miibus,
1183 	    re_ifmedia_upd, re_ifmedia_sts)) {
1184 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1185 		error = ENXIO;
1186 		goto fail;
1187 	}
1188 
1189 	ifp = &sc->arpcom.ac_if;
1190 	ifp->if_softc = sc;
1191 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1192 	ifp->if_mtu = ETHERMTU;
1193 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1194 	ifp->if_ioctl = re_ioctl;
1195 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1196 	ifp->if_start = re_start;
1197 	ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
1198 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1199 #ifdef DEVICE_POLLING
1200 	ifp->if_capabilities |= IFCAP_POLLING;
1201 #endif
1202 	ifp->if_watchdog = re_watchdog;
1203 	ifp->if_init = re_init;
1204 	if (sc->rl_type == RL_8169)
1205 		ifp->if_baudrate = 1000000000;
1206 	else
1207 		ifp->if_baudrate = 100000000;
1208 	IFQ_SET_MAXLEN(&ifp->if_snd,  RL_IFQ_MAXLEN);
1209 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1210 	IFQ_SET_READY(&ifp->if_snd);
1211 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1212 
1213 	callout_handle_init(&sc->rl_stat_ch);
1214 
1215 	/*
1216 	 * Call MI attach routine.
1217 	 */
1218 	ether_ifattach(ifp, eaddr);
1219 
1220 	/* Perform hardware diagnostic. */
1221 	error = re_diag(sc);
1222 
1223 	if (error) {
1224 		printf("re%d: attach aborted due to hardware diag failure\n",
1225 		    unit);
1226 		ether_ifdetach(ifp);
1227 		goto fail;
1228 	}
1229 
1230 	/* Hook interrupt last to avoid having to lock softc */
1231 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1232 	    re_intr, sc, &sc->rl_intrhand);
1233 	if (error) {
1234 		printf("re%d: couldn't set up irq\n", unit);
1235 		ether_ifdetach(ifp);
1236 	}
1237 
1238 fail:
1239 	if (error)
1240 		re_detach(dev);
1241 
1242 	return (error);
1243 }
1244 
1245 /*
1246  * Shutdown hardware and free up resources. This can be called any
1247  * time after the mutex has been initialized. It is called in both
1248  * the error case in attach and the normal detach case so it needs
1249  * to be careful about only freeing resources that have actually been
1250  * allocated.
1251  */
1252 static int
1253 re_detach(dev)
1254 	device_t		dev;
1255 {
1256 	struct rl_softc		*sc;
1257 	struct ifnet		*ifp;
1258 	int			i;
1259 	int			attached;
1260 
1261 	sc = device_get_softc(dev);
1262 	ifp = &sc->arpcom.ac_if;
1263 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1264 
1265 	attached = device_is_attached(dev);
1266 	/* These should only be active if attach succeeded */
1267 	if (attached)
1268 		ether_ifdetach(ifp);
1269 
1270 	RL_LOCK(sc);
1271 #if 0
1272 	sc->suspended = 1;
1273 #endif
1274 
1275 	/* These should only be active if attach succeeded */
1276 	if (attached) {
1277 		re_stop(sc);
1278 		/*
1279 		 * Force off the IFF_UP flag here, in case someone
1280 		 * still had a BPF descriptor attached to this
1281 		 * interface. If they do, ether_ifdetach() will cause
1282 		 * the BPF code to try and clear the promisc mode
1283 		 * flag, which will bubble down to re_ioctl(),
1284 		 * which will try to call re_init() again. This will
1285 		 * turn the NIC back on and restart the MII ticker,
1286 		 * which will panic the system when the kernel tries
1287 		 * to invoke the re_tick() function that isn't there
1288 		 * anymore.
1289 		 */
1290 		ifp->if_flags &= ~IFF_UP;
1291 	}
1292 	if (sc->rl_miibus)
1293 		device_delete_child(dev, sc->rl_miibus);
1294 	bus_generic_detach(dev);
1295 
1296 	/*
1297 	 * The rest is resource deallocation, so we should already be
1298 	 * stopped here.
1299 	 */
1300 	RL_UNLOCK(sc);
1301 
1302 	if (sc->rl_intrhand)
1303 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1304 	if (sc->rl_irq)
1305 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1306 	if (sc->rl_res)
1307 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1308 
1309 
1310 	/* Unload and free the RX DMA ring memory and map */
1311 
1312 	if (sc->rl_ldata.rl_rx_list_tag) {
1313 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1314 		    sc->rl_ldata.rl_rx_list_map);
1315 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1316 		    sc->rl_ldata.rl_rx_list,
1317 		    sc->rl_ldata.rl_rx_list_map);
1318 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1319 	}
1320 
1321 	/* Unload and free the TX DMA ring memory and map */
1322 
1323 	if (sc->rl_ldata.rl_tx_list_tag) {
1324 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1325 		    sc->rl_ldata.rl_tx_list_map);
1326 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1327 		    sc->rl_ldata.rl_tx_list,
1328 		    sc->rl_ldata.rl_tx_list_map);
1329 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1330 	}
1331 
1332 	/* Destroy all the RX and TX buffer maps */
1333 
1334 	if (sc->rl_ldata.rl_mtag) {
1335 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1336 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1337 			    sc->rl_ldata.rl_tx_dmamap[i]);
1338 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1339 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1340 			    sc->rl_ldata.rl_rx_dmamap[i]);
1341 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1342 	}
1343 
1344 	/* Unload and free the stats buffer and map */
1345 
1346 	if (sc->rl_ldata.rl_stag) {
1347 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1348 		    sc->rl_ldata.rl_rx_list_map);
1349 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1350 		    sc->rl_ldata.rl_stats,
1351 		    sc->rl_ldata.rl_smap);
1352 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1353 	}
1354 
1355 	if (sc->rl_parent_tag)
1356 		bus_dma_tag_destroy(sc->rl_parent_tag);
1357 
1358 	mtx_destroy(&sc->rl_mtx);
1359 
1360 	return (0);
1361 }
1362 
1363 static int
1364 re_newbuf(sc, idx, m)
1365 	struct rl_softc		*sc;
1366 	int			idx;
1367 	struct mbuf		*m;
1368 {
1369 	struct rl_dmaload_arg	arg;
1370 	struct mbuf		*n = NULL;
1371 	int			error;
1372 
1373 	if (m == NULL) {
1374 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1375 		if (n == NULL)
1376 			return (ENOBUFS);
1377 		m = n;
1378 	} else
1379 		m->m_data = m->m_ext.ext_buf;
1380 
1381 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1382 #ifdef RE_FIXUP_RX
1383 	/*
1384 	 * This is part of an evil trick to deal with non-x86 platforms.
1385 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1386 	 * boundaries, but that will hose non-x86 machines. To get around
1387 	 * this, we leave some empty space at the start of each buffer
1388 	 * and for non-x86 hosts, we copy the buffer back six bytes
1389 	 * to achieve word alignment. This is slightly more efficient
1390 	 * than allocating a new buffer, copying the contents, and
1391 	 * discarding the old buffer.
1392 	 */
1393 	m_adj(m, RE_ETHER_ALIGN);
1394 #endif
1395 	arg.sc = sc;
1396 	arg.rl_idx = idx;
1397 	arg.rl_maxsegs = 1;
1398 	arg.rl_flags = 0;
1399 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1400 
1401 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1402 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1403 	    &arg, BUS_DMA_NOWAIT);
1404 	if (error || arg.rl_maxsegs != 1) {
1405 		if (n != NULL)
1406 			m_freem(n);
1407 		return (ENOMEM);
1408 	}
1409 
1410 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1411 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1412 
1413 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1414 	    sc->rl_ldata.rl_rx_dmamap[idx],
1415 	    BUS_DMASYNC_PREREAD);
1416 
1417 	return (0);
1418 }
1419 
1420 #ifdef RE_FIXUP_RX
1421 static __inline void
1422 re_fixup_rx(m)
1423 	struct mbuf		*m;
1424 {
1425 	int                     i;
1426 	uint16_t                *src, *dst;
1427 
1428 	src = mtod(m, uint16_t *);
1429 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1430 
1431 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1432 		*dst++ = *src++;
1433 
1434 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1435 
1436 	return;
1437 }
1438 #endif
1439 
1440 static int
1441 re_tx_list_init(sc)
1442 	struct rl_softc		*sc;
1443 {
1444 
1445 	RL_LOCK_ASSERT(sc);
1446 
1447 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1448 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1449 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1450 
1451 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1452 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1453 	sc->rl_ldata.rl_tx_prodidx = 0;
1454 	sc->rl_ldata.rl_tx_considx = 0;
1455 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1456 
1457 	return (0);
1458 }
1459 
1460 static int
1461 re_rx_list_init(sc)
1462 	struct rl_softc		*sc;
1463 {
1464 	int			i;
1465 
1466 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1467 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1468 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1469 
1470 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1471 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1472 			return (ENOBUFS);
1473 	}
1474 
1475 	/* Flush the RX descriptors */
1476 
1477 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1478 	    sc->rl_ldata.rl_rx_list_map,
1479 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1480 
1481 	sc->rl_ldata.rl_rx_prodidx = 0;
1482 	sc->rl_head = sc->rl_tail = NULL;
1483 
1484 	return (0);
1485 }
1486 
1487 /*
1488  * RX handler for C+ and 8169. For the gigE chips, we support
1489  * the reception of jumbo frames that have been fragmented
1490  * across multiple 2K mbuf cluster buffers.
1491  */
1492 static void
1493 re_rxeof(sc)
1494 	struct rl_softc		*sc;
1495 {
1496 	struct mbuf		*m;
1497 	struct ifnet		*ifp;
1498 	int			i, total_len;
1499 	struct rl_desc		*cur_rx;
1500 	u_int32_t		rxstat, rxvlan;
1501 
1502 	RL_LOCK_ASSERT(sc);
1503 
1504 	ifp = &sc->arpcom.ac_if;
1505 	i = sc->rl_ldata.rl_rx_prodidx;
1506 
1507 	/* Invalidate the descriptor memory */
1508 
1509 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1510 	    sc->rl_ldata.rl_rx_list_map,
1511 	    BUS_DMASYNC_POSTREAD);
1512 
1513 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1514 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1515 		m = sc->rl_ldata.rl_rx_mbuf[i];
1516 		total_len = RL_RXBYTES(cur_rx);
1517 		rxstat = le32toh(cur_rx->rl_cmdstat);
1518 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1519 
1520 		/* Invalidate the RX mbuf and unload its map */
1521 
1522 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1523 		    sc->rl_ldata.rl_rx_dmamap[i],
1524 		    BUS_DMASYNC_POSTWRITE);
1525 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1526 		    sc->rl_ldata.rl_rx_dmamap[i]);
1527 
1528 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1529 			m->m_len = RE_RX_DESC_BUFLEN;
1530 			if (sc->rl_head == NULL)
1531 				sc->rl_head = sc->rl_tail = m;
1532 			else {
1533 				m->m_flags &= ~M_PKTHDR;
1534 				sc->rl_tail->m_next = m;
1535 				sc->rl_tail = m;
1536 			}
1537 			re_newbuf(sc, i, NULL);
1538 			RL_DESC_INC(i);
1539 			continue;
1540 		}
1541 
1542 		/*
1543 		 * NOTE: for the 8139C+, the frame length field
1544 		 * is always 12 bits in size, but for the gigE chips,
1545 		 * it is 13 bits (since the max RX frame length is 16K).
1546 		 * Unfortunately, all 32 bits in the status word
1547 		 * were already used, so to make room for the extra
1548 		 * length bit, RealTek took out the 'frame alignment
1549 		 * error' bit and shifted the other status bits
1550 		 * over one slot. The OWN, EOR, FS and LS bits are
1551 		 * still in the same places. We have already extracted
1552 		 * the frame length and checked the OWN bit, so rather
1553 		 * than using an alternate bit mapping, we shift the
1554 		 * status bits one space to the right so we can evaluate
1555 		 * them using the 8169 status as though it was in the
1556 		 * same format as that of the 8139C+.
1557 		 */
1558 		if (sc->rl_type == RL_8169)
1559 			rxstat >>= 1;
1560 
1561 		/*
1562 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1563 		 * set, but if CRC is clear, it will still be a valid frame.
1564 		 */
1565 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1566 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1567 			ifp->if_ierrors++;
1568 			/*
1569 			 * If this is part of a multi-fragment packet,
1570 			 * discard all the pieces.
1571 			 */
1572 			if (sc->rl_head != NULL) {
1573 				m_freem(sc->rl_head);
1574 				sc->rl_head = sc->rl_tail = NULL;
1575 			}
1576 			re_newbuf(sc, i, m);
1577 			RL_DESC_INC(i);
1578 			continue;
1579 		}
1580 
1581 		/*
1582 		 * If allocating a replacement mbuf fails,
1583 		 * reload the current one.
1584 		 */
1585 
1586 		if (re_newbuf(sc, i, NULL)) {
1587 			ifp->if_ierrors++;
1588 			if (sc->rl_head != NULL) {
1589 				m_freem(sc->rl_head);
1590 				sc->rl_head = sc->rl_tail = NULL;
1591 			}
1592 			re_newbuf(sc, i, m);
1593 			RL_DESC_INC(i);
1594 			continue;
1595 		}
1596 
1597 		RL_DESC_INC(i);
1598 
1599 		if (sc->rl_head != NULL) {
1600 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1601 			if (m->m_len == 0)
1602 				m->m_len = RE_RX_DESC_BUFLEN;
1603 			/*
1604 			 * Special case: if there's 4 bytes or less
1605 			 * in this buffer, the mbuf can be discarded:
1606 			 * the last 4 bytes is the CRC, which we don't
1607 			 * care about anyway.
1608 			 */
1609 			if (m->m_len <= ETHER_CRC_LEN) {
1610 				sc->rl_tail->m_len -=
1611 				    (ETHER_CRC_LEN - m->m_len);
1612 				m_freem(m);
1613 			} else {
1614 				m->m_len -= ETHER_CRC_LEN;
1615 				m->m_flags &= ~M_PKTHDR;
1616 				sc->rl_tail->m_next = m;
1617 			}
1618 			m = sc->rl_head;
1619 			sc->rl_head = sc->rl_tail = NULL;
1620 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1621 		} else
1622 			m->m_pkthdr.len = m->m_len =
1623 			    (total_len - ETHER_CRC_LEN);
1624 
1625 #ifdef RE_FIXUP_RX
1626 		re_fixup_rx(m);
1627 #endif
1628 		ifp->if_ipackets++;
1629 		m->m_pkthdr.rcvif = ifp;
1630 
1631 		/* Do RX checksumming if enabled */
1632 
1633 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1634 
1635 			/* Check IP header checksum */
1636 			if (rxstat & RL_RDESC_STAT_PROTOID)
1637 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1638 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1639 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1640 
1641 			/* Check TCP/UDP checksum */
1642 			if ((RL_TCPPKT(rxstat) &&
1643 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1644 			    (RL_UDPPKT(rxstat) &&
1645 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1646 				m->m_pkthdr.csum_flags |=
1647 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1648 				m->m_pkthdr.csum_data = 0xffff;
1649 			}
1650 		}
1651 
1652 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1653 			VLAN_INPUT_TAG(ifp, m,
1654 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1655 		RL_UNLOCK(sc);
1656 		(*ifp->if_input)(ifp, m);
1657 		RL_LOCK(sc);
1658 	}
1659 
1660 	/* Flush the RX DMA ring */
1661 
1662 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1663 	    sc->rl_ldata.rl_rx_list_map,
1664 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1665 
1666 	sc->rl_ldata.rl_rx_prodidx = i;
1667 }
1668 
1669 static void
1670 re_txeof(sc)
1671 	struct rl_softc		*sc;
1672 {
1673 	struct ifnet		*ifp;
1674 	u_int32_t		txstat;
1675 	int			idx;
1676 
1677 	ifp = &sc->arpcom.ac_if;
1678 	idx = sc->rl_ldata.rl_tx_considx;
1679 
1680 	/* Invalidate the TX descriptor list */
1681 
1682 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1683 	    sc->rl_ldata.rl_tx_list_map,
1684 	    BUS_DMASYNC_POSTREAD);
1685 
1686 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1687 
1688 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1689 		if (txstat & RL_TDESC_CMD_OWN)
1690 			break;
1691 
1692 		/*
1693 		 * We only stash mbufs in the last descriptor
1694 		 * in a fragment chain, which also happens to
1695 		 * be the only place where the TX status bits
1696 		 * are valid.
1697 		 */
1698 
1699 		if (txstat & RL_TDESC_CMD_EOF) {
1700 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1701 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1702 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1703 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1704 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1705 			    RL_TDESC_STAT_COLCNT))
1706 				ifp->if_collisions++;
1707 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1708 				ifp->if_oerrors++;
1709 			else
1710 				ifp->if_opackets++;
1711 		}
1712 		sc->rl_ldata.rl_tx_free++;
1713 		RL_DESC_INC(idx);
1714 	}
1715 
1716 	/* No changes made to the TX ring, so no flush needed */
1717 
1718 	if (idx != sc->rl_ldata.rl_tx_considx) {
1719 		sc->rl_ldata.rl_tx_considx = idx;
1720 		ifp->if_flags &= ~IFF_OACTIVE;
1721 		ifp->if_timer = 0;
1722 	}
1723 
1724 	/*
1725 	 * If not all descriptors have been released reaped yet,
1726 	 * reload the timer so that we will eventually get another
1727 	 * interrupt that will cause us to re-enter this routine.
1728 	 * This is done in case the transmitter has gone idle.
1729 	 */
1730 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1731 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1732 }
1733 
1734 static void
1735 re_tick(xsc)
1736 	void			*xsc;
1737 {
1738 	struct rl_softc		*sc;
1739 
1740 	sc = xsc;
1741 	RL_LOCK(sc);
1742 	re_tick_locked(sc);
1743 	RL_UNLOCK(sc);
1744 }
1745 
1746 static void
1747 re_tick_locked(sc)
1748 	struct rl_softc		*sc;
1749 {
1750 	struct mii_data		*mii;
1751 
1752 	RL_LOCK_ASSERT(sc);
1753 
1754 	mii = device_get_softc(sc->rl_miibus);
1755 
1756 	mii_tick(mii);
1757 
1758 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1759 }
1760 
1761 #ifdef DEVICE_POLLING
1762 static void
1763 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1764 {
1765 	struct rl_softc *sc = ifp->if_softc;
1766 
1767 	RL_LOCK(sc);
1768 	re_poll_locked(ifp, cmd, count);
1769 	RL_UNLOCK(sc);
1770 }
1771 
1772 static void
1773 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1774 {
1775 	struct rl_softc *sc = ifp->if_softc;
1776 
1777 	RL_LOCK_ASSERT(sc);
1778 
1779 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1780 		ether_poll_deregister(ifp);
1781 		cmd = POLL_DEREGISTER;
1782 	}
1783 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1784 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1785 		return;
1786 	}
1787 
1788 	sc->rxcycles = count;
1789 	re_rxeof(sc);
1790 	re_txeof(sc);
1791 
1792 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1793 		re_start_locked(ifp);
1794 
1795 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1796 		u_int16_t       status;
1797 
1798 		status = CSR_READ_2(sc, RL_ISR);
1799 		if (status == 0xffff)
1800 			return;
1801 		if (status)
1802 			CSR_WRITE_2(sc, RL_ISR, status);
1803 
1804 		/*
1805 		 * XXX check behaviour on receiver stalls.
1806 		 */
1807 
1808 		if (status & RL_ISR_SYSTEM_ERR) {
1809 			re_reset(sc);
1810 			re_init_locked(sc);
1811 		}
1812 	}
1813 }
1814 #endif /* DEVICE_POLLING */
1815 
1816 static void
1817 re_intr(arg)
1818 	void			*arg;
1819 {
1820 	struct rl_softc		*sc;
1821 	struct ifnet		*ifp;
1822 	u_int16_t		status;
1823 
1824 	sc = arg;
1825 
1826 	RL_LOCK(sc);
1827 
1828 	ifp = &sc->arpcom.ac_if;
1829 
1830 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1831 		goto done_locked;
1832 
1833 #ifdef DEVICE_POLLING
1834 	if  (ifp->if_flags & IFF_POLLING)
1835 		goto done_locked;
1836 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1837 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1838 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1839 		re_poll_locked(ifp, 0, 1);
1840 		goto done_locked;
1841 	}
1842 #endif /* DEVICE_POLLING */
1843 
1844 	for (;;) {
1845 
1846 		status = CSR_READ_2(sc, RL_ISR);
1847 		/* If the card has gone away the read returns 0xffff. */
1848 		if (status == 0xffff)
1849 			break;
1850 		if (status)
1851 			CSR_WRITE_2(sc, RL_ISR, status);
1852 
1853 		if ((status & RL_INTRS_CPLUS) == 0)
1854 			break;
1855 
1856 		if ((status & RL_ISR_RX_OK) ||
1857 		    (status & RL_ISR_RX_ERR))
1858 			re_rxeof(sc);
1859 
1860 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1861 		    (status & RL_ISR_TX_ERR) ||
1862 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1863 			re_txeof(sc);
1864 
1865 		if (status & RL_ISR_SYSTEM_ERR) {
1866 			re_reset(sc);
1867 			re_init_locked(sc);
1868 		}
1869 
1870 		if (status & RL_ISR_LINKCHG) {
1871 			untimeout(re_tick, sc, sc->rl_stat_ch);
1872 			re_tick_locked(sc);
1873 		}
1874 	}
1875 
1876 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1877 		re_start_locked(ifp);
1878 
1879 done_locked:
1880 	RL_UNLOCK(sc);
1881 }
1882 
1883 static int
1884 re_encap(sc, m_head, idx)
1885 	struct rl_softc		*sc;
1886 	struct mbuf		**m_head;
1887 	int			*idx;
1888 {
1889 	struct mbuf		*m_new = NULL;
1890 	struct rl_dmaload_arg	arg;
1891 	bus_dmamap_t		map;
1892 	int			error;
1893 	struct m_tag		*mtag;
1894 
1895 	RL_LOCK_ASSERT(sc);
1896 
1897 	if (sc->rl_ldata.rl_tx_free <= 4)
1898 		return (EFBIG);
1899 
1900 	/*
1901 	 * Set up checksum offload. Note: checksum offload bits must
1902 	 * appear in all descriptors of a multi-descriptor transmit
1903 	 * attempt. This is according to testing done with an 8169
1904 	 * chip. This is a requirement.
1905 	 */
1906 
1907 	arg.rl_flags = 0;
1908 
1909 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1910 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1911 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1912 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1913 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1914 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1915 
1916 	arg.sc = sc;
1917 	arg.rl_idx = *idx;
1918 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1919 	if (arg.rl_maxsegs > 4)
1920 		arg.rl_maxsegs -= 4;
1921 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1922 
1923 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1924 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1925 	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1926 
1927 	if (error && error != EFBIG) {
1928 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1929 		return (ENOBUFS);
1930 	}
1931 
1932 	/* Too many segments to map, coalesce into a single mbuf */
1933 
1934 	if (error || arg.rl_maxsegs == 0) {
1935 		m_new = m_defrag(*m_head, M_DONTWAIT);
1936 		if (m_new == NULL)
1937 			return (ENOBUFS);
1938 		else
1939 			*m_head = m_new;
1940 
1941 		arg.sc = sc;
1942 		arg.rl_idx = *idx;
1943 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1944 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1945 
1946 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1947 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1948 		if (error) {
1949 			printf("re%d: can't map mbuf (error %d)\n",
1950 			    sc->rl_unit, error);
1951 			return (EFBIG);
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * Insure that the map for this transmission
1957 	 * is placed at the array index of the last descriptor
1958 	 * in this chain.  (Swap last and first dmamaps.)
1959 	 */
1960 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1961 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1962 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1963 
1964 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1965 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1966 
1967 	/*
1968 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1969 	 * appear in the first descriptor of a multi-descriptor
1970 	 * transmission attempt.
1971 	 */
1972 
1973 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, *m_head);
1974 	if (mtag != NULL)
1975 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1976 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1977 
1978 	/* Transfer ownership of packet to the chip. */
1979 
1980 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1981 	    htole32(RL_TDESC_CMD_OWN);
1982 	if (*idx != arg.rl_idx)
1983 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1984 		    htole32(RL_TDESC_CMD_OWN);
1985 
1986 	RL_DESC_INC(arg.rl_idx);
1987 	*idx = arg.rl_idx;
1988 
1989 	return (0);
1990 }
1991 
1992 static void
1993 re_start(ifp)
1994 	struct ifnet		*ifp;
1995 {
1996 	struct rl_softc		*sc;
1997 
1998 	sc = ifp->if_softc;
1999 	RL_LOCK(sc);
2000 	re_start_locked(ifp);
2001 	RL_UNLOCK(sc);
2002 }
2003 
2004 /*
2005  * Main transmit routine for C+ and gigE NICs.
2006  */
2007 static void
2008 re_start_locked(ifp)
2009 	struct ifnet		*ifp;
2010 {
2011 	struct rl_softc		*sc;
2012 	struct mbuf		*m_head = NULL;
2013 	int			idx, queued = 0;
2014 
2015 	sc = ifp->if_softc;
2016 
2017 	RL_LOCK_ASSERT(sc);
2018 
2019 	idx = sc->rl_ldata.rl_tx_prodidx;
2020 
2021 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2022 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2023 		if (m_head == NULL)
2024 			break;
2025 
2026 		if (re_encap(sc, &m_head, &idx)) {
2027 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2028 			ifp->if_flags |= IFF_OACTIVE;
2029 			break;
2030 		}
2031 
2032 		/*
2033 		 * If there's a BPF listener, bounce a copy of this frame
2034 		 * to him.
2035 		 */
2036 		BPF_MTAP(ifp, m_head);
2037 
2038 		queued++;
2039 	}
2040 
2041 	if (queued == 0)
2042 		return;
2043 
2044 	/* Flush the TX descriptors */
2045 
2046 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2047 	    sc->rl_ldata.rl_tx_list_map,
2048 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2049 
2050 	sc->rl_ldata.rl_tx_prodidx = idx;
2051 
2052 	/*
2053 	 * RealTek put the TX poll request register in a different
2054 	 * location on the 8169 gigE chip. I don't know why.
2055 	 */
2056 
2057 	if (sc->rl_type == RL_8169)
2058 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2059 	else
2060 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2061 
2062 	/*
2063 	 * Use the countdown timer for interrupt moderation.
2064 	 * 'TX done' interrupts are disabled. Instead, we reset the
2065 	 * countdown timer, which will begin counting until it hits
2066 	 * the value in the TIMERINT register, and then trigger an
2067 	 * interrupt. Each time we write to the TIMERCNT register,
2068 	 * the timer count is reset to 0.
2069 	 */
2070 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2071 
2072 	/*
2073 	 * Set a timeout in case the chip goes out to lunch.
2074 	 */
2075 	ifp->if_timer = 5;
2076 }
2077 
2078 static void
2079 re_init(xsc)
2080 	void			*xsc;
2081 {
2082 	struct rl_softc		*sc = xsc;
2083 
2084 	RL_LOCK(sc);
2085 	re_init_locked(sc);
2086 	RL_UNLOCK(sc);
2087 }
2088 
2089 static void
2090 re_init_locked(sc)
2091 	struct rl_softc		*sc;
2092 {
2093 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2094 	struct mii_data		*mii;
2095 	u_int32_t		rxcfg = 0;
2096 
2097 	RL_LOCK_ASSERT(sc);
2098 
2099 	mii = device_get_softc(sc->rl_miibus);
2100 
2101 	/*
2102 	 * Cancel pending I/O and free all RX/TX buffers.
2103 	 */
2104 	re_stop(sc);
2105 
2106 	/*
2107 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2108 	 * RX checksum offload. We must configure the C+ register
2109 	 * before all others.
2110 	 */
2111 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2112 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2113 	    RL_CPLUSCMD_VLANSTRIP|
2114 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2115 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2116 
2117 	/*
2118 	 * Init our MAC address.  Even though the chipset
2119 	 * documentation doesn't mention it, we need to enter "Config
2120 	 * register write enable" mode to modify the ID registers.
2121 	 */
2122 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2123 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2124 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2125 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2126 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2127 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2128 
2129 	/*
2130 	 * For C+ mode, initialize the RX descriptors and mbufs.
2131 	 */
2132 	re_rx_list_init(sc);
2133 	re_tx_list_init(sc);
2134 
2135 	/*
2136 	 * Enable transmit and receive.
2137 	 */
2138 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2139 
2140 	/*
2141 	 * Set the initial TX and RX configuration.
2142 	 */
2143 	if (sc->rl_testmode) {
2144 		if (sc->rl_type == RL_8169)
2145 			CSR_WRITE_4(sc, RL_TXCFG,
2146 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2147 		else
2148 			CSR_WRITE_4(sc, RL_TXCFG,
2149 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2150 	} else
2151 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2152 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2153 
2154 	/* Set the individual bit to receive frames for this host only. */
2155 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2156 	rxcfg |= RL_RXCFG_RX_INDIV;
2157 
2158 	/* If we want promiscuous mode, set the allframes bit. */
2159 	if (ifp->if_flags & IFF_PROMISC)
2160 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2161 	else
2162 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2163 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2164 
2165 	/*
2166 	 * Set capture broadcast bit to capture broadcast frames.
2167 	 */
2168 	if (ifp->if_flags & IFF_BROADCAST)
2169 		rxcfg |= RL_RXCFG_RX_BROAD;
2170 	else
2171 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2172 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2173 
2174 	/*
2175 	 * Program the multicast filter, if necessary.
2176 	 */
2177 	re_setmulti(sc);
2178 
2179 #ifdef DEVICE_POLLING
2180 	/*
2181 	 * Disable interrupts if we are polling.
2182 	 */
2183 	if (ifp->if_flags & IFF_POLLING)
2184 		CSR_WRITE_2(sc, RL_IMR, 0);
2185 	else	/* otherwise ... */
2186 #endif /* DEVICE_POLLING */
2187 	/*
2188 	 * Enable interrupts.
2189 	 */
2190 	if (sc->rl_testmode)
2191 		CSR_WRITE_2(sc, RL_IMR, 0);
2192 	else
2193 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2194 
2195 	/* Set initial TX threshold */
2196 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2197 
2198 	/* Start RX/TX process. */
2199 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2200 #ifdef notdef
2201 	/* Enable receiver and transmitter. */
2202 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2203 #endif
2204 	/*
2205 	 * Load the addresses of the RX and TX lists into the chip.
2206 	 */
2207 
2208 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2209 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2210 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2211 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2212 
2213 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2214 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2215 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2216 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2217 
2218 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2219 
2220 	/*
2221 	 * Initialize the timer interrupt register so that
2222 	 * a timer interrupt will be generated once the timer
2223 	 * reaches a certain number of ticks. The timer is
2224 	 * reloaded on each transmit. This gives us TX interrupt
2225 	 * moderation, which dramatically improves TX frame rate.
2226 	 */
2227 	if (sc->rl_type == RL_8169)
2228 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2229 	else
2230 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2231 
2232 	/*
2233 	 * For 8169 gigE NICs, set the max allowed RX packet
2234 	 * size so we can receive jumbo frames.
2235 	 */
2236 	if (sc->rl_type == RL_8169)
2237 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2238 
2239 	if (sc->rl_testmode)
2240 		return;
2241 
2242 	mii_mediachg(mii);
2243 
2244 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2245 
2246 	ifp->if_flags |= IFF_RUNNING;
2247 	ifp->if_flags &= ~IFF_OACTIVE;
2248 
2249 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2250 }
2251 
2252 /*
2253  * Set media options.
2254  */
2255 static int
2256 re_ifmedia_upd(ifp)
2257 	struct ifnet		*ifp;
2258 {
2259 	struct rl_softc		*sc;
2260 	struct mii_data		*mii;
2261 
2262 	sc = ifp->if_softc;
2263 	mii = device_get_softc(sc->rl_miibus);
2264 	mii_mediachg(mii);
2265 
2266 	return (0);
2267 }
2268 
2269 /*
2270  * Report current media status.
2271  */
2272 static void
2273 re_ifmedia_sts(ifp, ifmr)
2274 	struct ifnet		*ifp;
2275 	struct ifmediareq	*ifmr;
2276 {
2277 	struct rl_softc		*sc;
2278 	struct mii_data		*mii;
2279 
2280 	sc = ifp->if_softc;
2281 	mii = device_get_softc(sc->rl_miibus);
2282 
2283 	mii_pollstat(mii);
2284 	ifmr->ifm_active = mii->mii_media_active;
2285 	ifmr->ifm_status = mii->mii_media_status;
2286 }
2287 
2288 static int
2289 re_ioctl(ifp, command, data)
2290 	struct ifnet		*ifp;
2291 	u_long			command;
2292 	caddr_t			data;
2293 {
2294 	struct rl_softc		*sc = ifp->if_softc;
2295 	struct ifreq		*ifr = (struct ifreq *) data;
2296 	struct mii_data		*mii;
2297 	int			error = 0;
2298 
2299 	switch (command) {
2300 	case SIOCSIFMTU:
2301 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2302 			error = EINVAL;
2303 		ifp->if_mtu = ifr->ifr_mtu;
2304 		break;
2305 	case SIOCSIFFLAGS:
2306 		RL_LOCK(sc);
2307 		if (ifp->if_flags & IFF_UP)
2308 			re_init_locked(sc);
2309 		else if (ifp->if_flags & IFF_RUNNING)
2310 			re_stop(sc);
2311 		RL_UNLOCK(sc);
2312 		error = 0;
2313 		break;
2314 	case SIOCADDMULTI:
2315 	case SIOCDELMULTI:
2316 		RL_LOCK(sc);
2317 		re_setmulti(sc);
2318 		RL_UNLOCK(sc);
2319 		error = 0;
2320 		break;
2321 	case SIOCGIFMEDIA:
2322 	case SIOCSIFMEDIA:
2323 		mii = device_get_softc(sc->rl_miibus);
2324 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2325 		break;
2326 	case SIOCSIFCAP:
2327 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2328 		ifp->if_capenable |=
2329 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2330 		if (ifp->if_capenable & IFCAP_TXCSUM)
2331 			ifp->if_hwassist = RE_CSUM_FEATURES;
2332 		else
2333 			ifp->if_hwassist = 0;
2334 		if (ifp->if_flags & IFF_RUNNING)
2335 			re_init(sc);
2336 		break;
2337 	default:
2338 		error = ether_ioctl(ifp, command, data);
2339 		break;
2340 	}
2341 
2342 	return (error);
2343 }
2344 
2345 static void
2346 re_watchdog(ifp)
2347 	struct ifnet		*ifp;
2348 {
2349 	struct rl_softc		*sc;
2350 
2351 	sc = ifp->if_softc;
2352 	RL_LOCK(sc);
2353 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2354 	ifp->if_oerrors++;
2355 
2356 	re_txeof(sc);
2357 	re_rxeof(sc);
2358 	re_init_locked(sc);
2359 
2360 	RL_UNLOCK(sc);
2361 }
2362 
2363 /*
2364  * Stop the adapter and free any mbufs allocated to the
2365  * RX and TX lists.
2366  */
2367 static void
2368 re_stop(sc)
2369 	struct rl_softc		*sc;
2370 {
2371 	register int		i;
2372 	struct ifnet		*ifp;
2373 
2374 	RL_LOCK_ASSERT(sc);
2375 
2376 	ifp = &sc->arpcom.ac_if;
2377 	ifp->if_timer = 0;
2378 
2379 	untimeout(re_tick, sc, sc->rl_stat_ch);
2380 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2381 #ifdef DEVICE_POLLING
2382 	ether_poll_deregister(ifp);
2383 #endif /* DEVICE_POLLING */
2384 
2385 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2386 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2387 
2388 	if (sc->rl_head != NULL) {
2389 		m_freem(sc->rl_head);
2390 		sc->rl_head = sc->rl_tail = NULL;
2391 	}
2392 
2393 	/* Free the TX list buffers. */
2394 
2395 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2396 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2397 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2398 			    sc->rl_ldata.rl_tx_dmamap[i]);
2399 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2400 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2401 		}
2402 	}
2403 
2404 	/* Free the RX list buffers. */
2405 
2406 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2407 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2408 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2409 			    sc->rl_ldata.rl_rx_dmamap[i]);
2410 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2411 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2412 		}
2413 	}
2414 }
2415 
2416 /*
2417  * Device suspend routine.  Stop the interface and save some PCI
2418  * settings in case the BIOS doesn't restore them properly on
2419  * resume.
2420  */
2421 static int
2422 re_suspend(dev)
2423 	device_t		dev;
2424 {
2425 	struct rl_softc		*sc;
2426 
2427 	sc = device_get_softc(dev);
2428 
2429 	RL_LOCK(sc);
2430 	re_stop(sc);
2431 	sc->suspended = 1;
2432 	RL_UNLOCK(sc);
2433 
2434 	return (0);
2435 }
2436 
2437 /*
2438  * Device resume routine.  Restore some PCI settings in case the BIOS
2439  * doesn't, re-enable busmastering, and restart the interface if
2440  * appropriate.
2441  */
2442 static int
2443 re_resume(dev)
2444 	device_t		dev;
2445 {
2446 	struct rl_softc		*sc;
2447 	struct ifnet		*ifp;
2448 
2449 	sc = device_get_softc(dev);
2450 
2451 	RL_LOCK(sc);
2452 
2453 	ifp = &sc->arpcom.ac_if;
2454 
2455 	/* reinitialize interface if necessary */
2456 	if (ifp->if_flags & IFF_UP)
2457 		re_init_locked(sc);
2458 
2459 	sc->suspended = 0;
2460 	RL_UNLOCK(sc);
2461 
2462 	return (0);
2463 }
2464 
2465 /*
2466  * Stop all chip I/O so that the kernel's probe routines don't
2467  * get confused by errant DMAs when rebooting.
2468  */
2469 static void
2470 re_shutdown(dev)
2471 	device_t		dev;
2472 {
2473 	struct rl_softc		*sc;
2474 
2475 	sc = device_get_softc(dev);
2476 
2477 	RL_LOCK(sc);
2478 	re_stop(sc);
2479 	RL_UNLOCK(sc);
2480 }
2481