xref: /freebsd/sys/dev/re/if_re.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 /*
34  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
35  *
36  * Written by Bill Paul <wpaul@windriver.com>
37  * Senior Networking Software Engineer
38  * Wind River Systems
39  */
40 
41 /*
42  * This driver is designed to support RealTek's next generation of
43  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
44  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
45  * and the RTL8110S.
46  *
47  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
48  * with the older 8139 family, however it also supports a special
49  * C+ mode of operation that provides several new performance enhancing
50  * features. These include:
51  *
52  *	o Descriptor based DMA mechanism. Each descriptor represents
53  *	  a single packet fragment. Data buffers may be aligned on
54  *	  any byte boundary.
55  *
56  *	o 64-bit DMA
57  *
58  *	o TCP/IP checksum offload for both RX and TX
59  *
60  *	o High and normal priority transmit DMA rings
61  *
62  *	o VLAN tag insertion and extraction
63  *
64  *	o TCP large send (segmentation offload)
65  *
66  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
67  * programming API is fairly straightforward. The RX filtering, EEPROM
68  * access and PHY access is the same as it is on the older 8139 series
69  * chips.
70  *
71  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
72  * same programming API and feature set as the 8139C+ with the following
73  * differences and additions:
74  *
75  *	o 1000Mbps mode
76  *
77  *	o Jumbo frames
78  *
79  * 	o GMII and TBI ports/registers for interfacing with copper
80  *	  or fiber PHYs
81  *
82  *      o RX and TX DMA rings can have up to 1024 descriptors
83  *        (the 8139C+ allows a maximum of 64)
84  *
85  *	o Slight differences in register layout from the 8139C+
86  *
87  * The TX start and timer interrupt registers are at different locations
88  * on the 8169 than they are on the 8139C+. Also, the status word in the
89  * RX descriptor has a slightly different bit layout. The 8169 does not
90  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
91  * copper gigE PHY.
92  *
93  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
94  * (the 'S' stands for 'single-chip'). These devices have the same
95  * programming API as the older 8169, but also have some vendor-specific
96  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
97  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
98  *
99  * This driver takes advantage of the RX and TX checksum offload and
100  * VLAN tag insertion/extraction features. It also implements TX
101  * interrupt moderation using the timer interrupt registers, which
102  * significantly reduces TX interrupt load. There is also support
103  * for jumbo frames, however the 8169/8169S/8110S can not transmit
104  * jumbo frames larger than 7.5K, so the max MTU possible with this
105  * driver is 7500 bytes.
106  */
107 
108 #include <sys/cdefs.h>
109 __FBSDID("$FreeBSD$");
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/ethernet.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <net/bpf.h>
128 
129 #include <machine/bus_pio.h>
130 #include <machine/bus_memio.h>
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 
142 MODULE_DEPEND(re, pci, 1, 1, 1);
143 MODULE_DEPEND(re, ether, 1, 1, 1);
144 MODULE_DEPEND(re, miibus, 1, 1, 1);
145 
146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
147 #include "miibus_if.h"
148 
149 /*
150  * Default to using PIO access for this driver.
151  */
152 #define RE_USEIOSPACE
153 
154 #include <pci/if_rlreg.h>
155 
156 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static struct rl_type re_devs[] = {
162 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163 		"RealTek 8139C+ 10/100BaseTX" },
164 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165 		"RealTek 8169 Gigabit Ethernet" },
166 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167 		"RealTek 8169S Single-chip Gigabit Ethernet" },
168 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169 		"RealTek 8110S Single-chip Gigabit Ethernet" },
170 	{ 0, 0, 0, NULL }
171 };
172 
173 static struct rl_hwrev re_hwrevs[] = {
174 	{ RL_HWREV_8139, RL_8139,  "" },
175 	{ RL_HWREV_8139A, RL_8139, "A" },
176 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177 	{ RL_HWREV_8139B, RL_8139, "B" },
178 	{ RL_HWREV_8130, RL_8139, "8130" },
179 	{ RL_HWREV_8139C, RL_8139, "C" },
180 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182 	{ RL_HWREV_8169, RL_8169, "8169"},
183 	{ RL_HWREV_8169S, RL_8169, "8169S"},
184 	{ RL_HWREV_8110S, RL_8169, "8110S"},
185 	{ RL_HWREV_8100, RL_8139, "8100"},
186 	{ RL_HWREV_8101, RL_8139, "8101"},
187 	{ 0, 0, NULL }
188 };
189 
190 static int re_probe		(device_t);
191 static int re_attach		(device_t);
192 static int re_detach		(device_t);
193 
194 static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195 
196 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198 				    bus_size_t, int);
199 static int re_allocmem		(device_t, struct rl_softc *);
200 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201 static int re_rx_list_init	(struct rl_softc *);
202 static int re_tx_list_init	(struct rl_softc *);
203 static void re_rxeof		(struct rl_softc *);
204 static void re_txeof		(struct rl_softc *);
205 static void re_intr		(void *);
206 static void re_tick		(void *);
207 static void re_start		(struct ifnet *);
208 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209 static void re_init		(void *);
210 static void re_stop		(struct rl_softc *);
211 static void re_watchdog		(struct ifnet *);
212 static int re_suspend		(device_t);
213 static int re_resume		(device_t);
214 static void re_shutdown		(device_t);
215 static int re_ifmedia_upd	(struct ifnet *);
216 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217 
218 static void re_eeprom_putbyte	(struct rl_softc *, int);
219 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221 static int re_gmii_readreg	(device_t, int, int);
222 static int re_gmii_writereg	(device_t, int, int, int);
223 
224 static int re_miibus_readreg	(device_t, int, int);
225 static int re_miibus_writereg	(device_t, int, int, int);
226 static void re_miibus_statchg	(device_t);
227 
228 static u_int8_t re_calchash	(caddr_t);
229 static void re_setmulti		(struct rl_softc *);
230 static void re_reset		(struct rl_softc *);
231 
232 static int re_diag		(struct rl_softc *);
233 
234 #ifdef RE_USEIOSPACE
235 #define RL_RES			SYS_RES_IOPORT
236 #define RL_RID			RL_PCI_LOIO
237 #else
238 #define RL_RES			SYS_RES_MEMORY
239 #define RL_RID			RL_PCI_LOMEM
240 #endif
241 
242 static device_method_t re_methods[] = {
243 	/* Device interface */
244 	DEVMETHOD(device_probe,		re_probe),
245 	DEVMETHOD(device_attach,	re_attach),
246 	DEVMETHOD(device_detach,	re_detach),
247 	DEVMETHOD(device_suspend,	re_suspend),
248 	DEVMETHOD(device_resume,	re_resume),
249 	DEVMETHOD(device_shutdown,	re_shutdown),
250 
251 	/* bus interface */
252 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254 
255 	/* MII interface */
256 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t re_driver = {
264 	"re",
265 	re_methods,
266 	sizeof(struct rl_softc)
267 };
268 
269 static devclass_t re_devclass;
270 
271 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274 
275 #define EE_SET(x)					\
276 	CSR_WRITE_1(sc, RL_EECMD,			\
277 		CSR_READ_1(sc, RL_EECMD) | x)
278 
279 #define EE_CLR(x)					\
280 	CSR_WRITE_1(sc, RL_EECMD,			\
281 		CSR_READ_1(sc, RL_EECMD) & ~x)
282 
283 /*
284  * Send a read command and address to the EEPROM, check for ACK.
285  */
286 static void
287 re_eeprom_putbyte(sc, addr)
288 	struct rl_softc		*sc;
289 	int			addr;
290 {
291 	register int		d, i;
292 
293 	d = addr | sc->rl_eecmd_read;
294 
295 	/*
296 	 * Feed in each bit and strobe the clock.
297 	 */
298 	for (i = 0x400; i; i >>= 1) {
299 		if (d & i) {
300 			EE_SET(RL_EE_DATAIN);
301 		} else {
302 			EE_CLR(RL_EE_DATAIN);
303 		}
304 		DELAY(100);
305 		EE_SET(RL_EE_CLK);
306 		DELAY(150);
307 		EE_CLR(RL_EE_CLK);
308 		DELAY(100);
309 	}
310 
311 	return;
312 }
313 
314 /*
315  * Read a word of data stored in the EEPROM at address 'addr.'
316  */
317 static void
318 re_eeprom_getword(sc, addr, dest)
319 	struct rl_softc		*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	register int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Enter EEPROM access mode. */
327 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
328 
329 	/*
330 	 * Send address of word we want to read.
331 	 */
332 	re_eeprom_putbyte(sc, addr);
333 
334 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
335 
336 	/*
337 	 * Start reading bits from EEPROM.
338 	 */
339 	for (i = 0x8000; i; i >>= 1) {
340 		EE_SET(RL_EE_CLK);
341 		DELAY(100);
342 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
343 			word |= i;
344 		EE_CLR(RL_EE_CLK);
345 		DELAY(100);
346 	}
347 
348 	/* Turn off EEPROM access mode. */
349 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
350 
351 	*dest = word;
352 
353 	return;
354 }
355 
356 /*
357  * Read a sequence of words from the EEPROM.
358  */
359 static void
360 re_read_eeprom(sc, dest, off, cnt, swap)
361 	struct rl_softc		*sc;
362 	caddr_t			dest;
363 	int			off;
364 	int			cnt;
365 	int			swap;
366 {
367 	int			i;
368 	u_int16_t		word = 0, *ptr;
369 
370 	for (i = 0; i < cnt; i++) {
371 		re_eeprom_getword(sc, off + i, &word);
372 		ptr = (u_int16_t *)(dest + (i * 2));
373 		if (swap)
374 			*ptr = ntohs(word);
375 		else
376 			*ptr = word;
377 	}
378 
379 	return;
380 }
381 
382 static int
383 re_gmii_readreg(dev, phy, reg)
384 	device_t		dev;
385 	int			phy, reg;
386 {
387 	struct rl_softc		*sc;
388 	u_int32_t		rval;
389 	int			i;
390 
391 	if (phy != 1)
392 		return(0);
393 
394 	sc = device_get_softc(dev);
395 
396 	/* Let the rgephy driver read the GMEDIASTAT register */
397 
398 	if (reg == RL_GMEDIASTAT) {
399 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
400 		return(rval);
401 	}
402 
403 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
404 	DELAY(1000);
405 
406 	for (i = 0; i < RL_TIMEOUT; i++) {
407 		rval = CSR_READ_4(sc, RL_PHYAR);
408 		if (rval & RL_PHYAR_BUSY)
409 			break;
410 		DELAY(100);
411 	}
412 
413 	if (i == RL_TIMEOUT) {
414 		printf ("re%d: PHY read failed\n", sc->rl_unit);
415 		return (0);
416 	}
417 
418 	return (rval & RL_PHYAR_PHYDATA);
419 }
420 
421 static int
422 re_gmii_writereg(dev, phy, reg, data)
423 	device_t		dev;
424 	int			phy, reg, data;
425 {
426 	struct rl_softc		*sc;
427 	u_int32_t		rval;
428 	int			i;
429 
430 	sc = device_get_softc(dev);
431 
432 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
433 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
434 	DELAY(1000);
435 
436 	for (i = 0; i < RL_TIMEOUT; i++) {
437 		rval = CSR_READ_4(sc, RL_PHYAR);
438 		if (!(rval & RL_PHYAR_BUSY))
439 			break;
440 		DELAY(100);
441 	}
442 
443 	if (i == RL_TIMEOUT) {
444 		printf ("re%d: PHY write failed\n", sc->rl_unit);
445 		return (0);
446 	}
447 
448 	return (0);
449 }
450 
451 static int
452 re_miibus_readreg(dev, phy, reg)
453 	device_t		dev;
454 	int			phy, reg;
455 {
456 	struct rl_softc		*sc;
457 	u_int16_t		rval = 0;
458 	u_int16_t		re8139_reg = 0;
459 
460 	sc = device_get_softc(dev);
461 	RL_LOCK(sc);
462 
463 	if (sc->rl_type == RL_8169) {
464 		rval = re_gmii_readreg(dev, phy, reg);
465 		RL_UNLOCK(sc);
466 		return (rval);
467 	}
468 
469 	/* Pretend the internal PHY is only at address 0 */
470 	if (phy) {
471 		RL_UNLOCK(sc);
472 		return(0);
473 	}
474 	switch(reg) {
475 	case MII_BMCR:
476 		re8139_reg = RL_BMCR;
477 		break;
478 	case MII_BMSR:
479 		re8139_reg = RL_BMSR;
480 		break;
481 	case MII_ANAR:
482 		re8139_reg = RL_ANAR;
483 		break;
484 	case MII_ANER:
485 		re8139_reg = RL_ANER;
486 		break;
487 	case MII_ANLPAR:
488 		re8139_reg = RL_LPAR;
489 		break;
490 	case MII_PHYIDR1:
491 	case MII_PHYIDR2:
492 		RL_UNLOCK(sc);
493 		return(0);
494 	/*
495 	 * Allow the rlphy driver to read the media status
496 	 * register. If we have a link partner which does not
497 	 * support NWAY, this is the register which will tell
498 	 * us the results of parallel detection.
499 	 */
500 	case RL_MEDIASTAT:
501 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
502 		RL_UNLOCK(sc);
503 		return(rval);
504 	default:
505 		printf("re%d: bad phy register\n", sc->rl_unit);
506 		RL_UNLOCK(sc);
507 		return(0);
508 	}
509 	rval = CSR_READ_2(sc, re8139_reg);
510 	RL_UNLOCK(sc);
511 	return(rval);
512 }
513 
514 static int
515 re_miibus_writereg(dev, phy, reg, data)
516 	device_t		dev;
517 	int			phy, reg, data;
518 {
519 	struct rl_softc		*sc;
520 	u_int16_t		re8139_reg = 0;
521 	int			rval = 0;
522 
523 	sc = device_get_softc(dev);
524 	RL_LOCK(sc);
525 
526 	if (sc->rl_type == RL_8169) {
527 		rval = re_gmii_writereg(dev, phy, reg, data);
528 		RL_UNLOCK(sc);
529 		return (rval);
530 	}
531 
532 	/* Pretend the internal PHY is only at address 0 */
533 	if (phy) {
534 		RL_UNLOCK(sc);
535 		return(0);
536 	}
537 	switch(reg) {
538 	case MII_BMCR:
539 		re8139_reg = RL_BMCR;
540 		break;
541 	case MII_BMSR:
542 		re8139_reg = RL_BMSR;
543 		break;
544 	case MII_ANAR:
545 		re8139_reg = RL_ANAR;
546 		break;
547 	case MII_ANER:
548 		re8139_reg = RL_ANER;
549 		break;
550 	case MII_ANLPAR:
551 		re8139_reg = RL_LPAR;
552 		break;
553 	case MII_PHYIDR1:
554 	case MII_PHYIDR2:
555 		RL_UNLOCK(sc);
556 		return(0);
557 		break;
558 	default:
559 		printf("re%d: bad phy register\n", sc->rl_unit);
560 		RL_UNLOCK(sc);
561 		return(0);
562 	}
563 	CSR_WRITE_2(sc, re8139_reg, data);
564 	RL_UNLOCK(sc);
565 	return(0);
566 }
567 
568 static void
569 re_miibus_statchg(dev)
570 	device_t		dev;
571 {
572 	return;
573 }
574 
575 /*
576  * Calculate CRC of a multicast group address, return the upper 6 bits.
577  */
578 static u_int8_t
579 re_calchash(addr)
580 	caddr_t			addr;
581 {
582 	u_int32_t		crc, carry;
583 	int			i, j;
584 	u_int8_t		c;
585 
586 	/* Compute CRC for the address value. */
587 	crc = 0xFFFFFFFF; /* initial value */
588 
589 	for (i = 0; i < 6; i++) {
590 		c = *(addr + i);
591 		for (j = 0; j < 8; j++) {
592 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
593 			crc <<= 1;
594 			c >>= 1;
595 			if (carry)
596 				crc = (crc ^ 0x04c11db6) | carry;
597 		}
598 	}
599 
600 	/* return the filter bit position */
601 	return(crc >> 26);
602 }
603 
604 /*
605  * Program the 64-bit multicast hash filter.
606  */
607 static void
608 re_setmulti(sc)
609 	struct rl_softc		*sc;
610 {
611 	struct ifnet		*ifp;
612 	int			h = 0;
613 	u_int32_t		hashes[2] = { 0, 0 };
614 	struct ifmultiaddr	*ifma;
615 	u_int32_t		rxfilt;
616 	int			mcnt = 0;
617 
618 	ifp = &sc->arpcom.ac_if;
619 
620 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
621 
622 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
623 		rxfilt |= RL_RXCFG_RX_MULTI;
624 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
625 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
626 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
627 		return;
628 	}
629 
630 	/* first, zot all the existing hash bits */
631 	CSR_WRITE_4(sc, RL_MAR0, 0);
632 	CSR_WRITE_4(sc, RL_MAR4, 0);
633 
634 	/* now program new ones */
635 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
636 		if (ifma->ifma_addr->sa_family != AF_LINK)
637 			continue;
638 		h = re_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
639 		if (h < 32)
640 			hashes[0] |= (1 << h);
641 		else
642 			hashes[1] |= (1 << (h - 32));
643 		mcnt++;
644 	}
645 
646 	if (mcnt)
647 		rxfilt |= RL_RXCFG_RX_MULTI;
648 	else
649 		rxfilt &= ~RL_RXCFG_RX_MULTI;
650 
651 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
652 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
653 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
654 
655 	return;
656 }
657 
658 static void
659 re_reset(sc)
660 	struct rl_softc		*sc;
661 {
662 	register int		i;
663 
664 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
665 
666 	for (i = 0; i < RL_TIMEOUT; i++) {
667 		DELAY(10);
668 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
669 			break;
670 	}
671 	if (i == RL_TIMEOUT)
672 		printf("re%d: reset never completed!\n", sc->rl_unit);
673 
674 	CSR_WRITE_1(sc, 0x82, 1);
675 
676 	return;
677 }
678 
679 /*
680  * The following routine is designed to test for a defect on some
681  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
682  * lines connected to the bus, however for a 32-bit only card, they
683  * should be pulled high. The result of this defect is that the
684  * NIC will not work right if you plug it into a 64-bit slot: DMA
685  * operations will be done with 64-bit transfers, which will fail
686  * because the 64-bit data lines aren't connected.
687  *
688  * There's no way to work around this (short of talking a soldering
689  * iron to the board), however we can detect it. The method we use
690  * here is to put the NIC into digital loopback mode, set the receiver
691  * to promiscuous mode, and then try to send a frame. We then compare
692  * the frame data we sent to what was received. If the data matches,
693  * then the NIC is working correctly, otherwise we know the user has
694  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
695  * slot. In the latter case, there's no way the NIC can work correctly,
696  * so we print out a message on the console and abort the device attach.
697  */
698 
699 static int
700 re_diag(sc)
701 	struct rl_softc		*sc;
702 {
703 	struct ifnet		*ifp = &sc->arpcom.ac_if;
704 	struct mbuf		*m0;
705 	struct ether_header	*eh;
706 	struct rl_desc		*cur_rx;
707 	u_int16_t		status;
708 	u_int32_t		rxstat;
709 	int			total_len, i, error = 0;
710 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
711 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
712 
713 	/* Allocate a single mbuf */
714 
715 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
716 	if (m0 == NULL)
717 		return(ENOBUFS);
718 
719 	/*
720 	 * Initialize the NIC in test mode. This sets the chip up
721 	 * so that it can send and receive frames, but performs the
722 	 * following special functions:
723 	 * - Puts receiver in promiscuous mode
724 	 * - Enables digital loopback mode
725 	 * - Leaves interrupts turned off
726 	 */
727 
728 	ifp->if_flags |= IFF_PROMISC;
729 	sc->rl_testmode = 1;
730 	re_init(sc);
731 	re_stop(sc);
732 	DELAY(100000);
733 	re_init(sc);
734 
735 	/* Put some data in the mbuf */
736 
737 	eh = mtod(m0, struct ether_header *);
738 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
739 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
740 	eh->ether_type = htons(ETHERTYPE_IP);
741 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
742 
743 	/*
744 	 * Queue the packet, start transmission.
745 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
746 	 */
747 
748 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
749 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
750 	m0 = NULL;
751 
752 	/* Wait for it to propagate through the chip */
753 
754 	DELAY(100000);
755 	for (i = 0; i < RL_TIMEOUT; i++) {
756 		status = CSR_READ_2(sc, RL_ISR);
757 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
758 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
759 			break;
760 		DELAY(10);
761 	}
762 
763 	if (i == RL_TIMEOUT) {
764 		printf("re%d: diagnostic failed, failed to receive packet "
765 		    "in loopback mode\n", sc->rl_unit);
766 		error = EIO;
767 		goto done;
768 	}
769 
770 	/*
771 	 * The packet should have been dumped into the first
772 	 * entry in the RX DMA ring. Grab it from there.
773 	 */
774 
775 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
776 	    sc->rl_ldata.rl_rx_list_map,
777 	    BUS_DMASYNC_POSTREAD);
778 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
779 	    sc->rl_ldata.rl_rx_dmamap[0],
780 	    BUS_DMASYNC_POSTWRITE);
781 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
782 	    sc->rl_ldata.rl_rx_dmamap[0]);
783 
784 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
785 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
786 	eh = mtod(m0, struct ether_header *);
787 
788 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
789 	total_len = RL_RXBYTES(cur_rx);
790 	rxstat = le32toh(cur_rx->rl_cmdstat);
791 
792 	if (total_len != ETHER_MIN_LEN) {
793 		printf("re%d: diagnostic failed, received short packet\n",
794 		    sc->rl_unit);
795 		error = EIO;
796 		goto done;
797 	}
798 
799 	/* Test that the received packet data matches what we sent. */
800 
801 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
802 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
803 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
804 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
805 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
806 		    dst, ":", src, ":", ETHERTYPE_IP);
807 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
808 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
809 		    ntohs(eh->ether_type));
810 		printf("re%d: You may have a defective 32-bit NIC plugged "
811 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
812 		printf("re%d: Please re-install the NIC in a 32-bit slot "
813 		    "for proper operation.\n", sc->rl_unit);
814 		printf("re%d: Read the re(4) man page for more details.\n",
815 		    sc->rl_unit);
816 		error = EIO;
817 	}
818 
819 done:
820 	/* Turn interface off, release resources */
821 
822 	sc->rl_testmode = 0;
823 	ifp->if_flags &= ~IFF_PROMISC;
824 	re_stop(sc);
825 	if (m0 != NULL)
826 		m_freem(m0);
827 
828 	return (error);
829 }
830 
831 /*
832  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
833  * IDs against our list and return a device name if we find a match.
834  */
835 static int
836 re_probe(dev)
837 	device_t		dev;
838 {
839 	struct rl_type		*t;
840 	struct rl_softc		*sc;
841 	int			rid;
842 	u_int32_t		hwrev;
843 
844 	t = re_devs;
845 	sc = device_get_softc(dev);
846 
847 	while(t->rl_name != NULL) {
848 		if ((pci_get_vendor(dev) == t->rl_vid) &&
849 		    (pci_get_device(dev) == t->rl_did)) {
850 
851 			/*
852 			 * Temporarily map the I/O space
853 			 * so we can read the chip ID register.
854 			 */
855 			rid = RL_RID;
856 			sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
857 			    0, ~0, 1, RF_ACTIVE);
858 			if (sc->rl_res == NULL) {
859 				device_printf(dev,
860 				    "couldn't map ports/memory\n");
861 				return(ENXIO);
862 			}
863 			sc->rl_btag = rman_get_bustag(sc->rl_res);
864 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
865 			mtx_init(&sc->rl_mtx,
866 			    device_get_nameunit(dev),
867 			    MTX_NETWORK_LOCK, MTX_DEF);
868 			RL_LOCK(sc);
869 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
870 			bus_release_resource(dev, RL_RES,
871 			    RL_RID, sc->rl_res);
872 			RL_UNLOCK(sc);
873 			mtx_destroy(&sc->rl_mtx);
874 			if (t->rl_basetype == hwrev) {
875 				device_set_desc(dev, t->rl_name);
876 				return(0);
877 			}
878 		}
879 		t++;
880 	}
881 
882 	return(ENXIO);
883 }
884 
885 /*
886  * This routine takes the segment list provided as the result of
887  * a bus_dma_map_load() operation and assigns the addresses/lengths
888  * to RealTek DMA descriptors. This can be called either by the RX
889  * code or the TX code. In the RX case, we'll probably wind up mapping
890  * at most one segment. For the TX case, there could be any number of
891  * segments since TX packets may span multiple mbufs. In either case,
892  * if the number of segments is larger than the rl_maxsegs limit
893  * specified by the caller, we abort the mapping operation. Sadly,
894  * whoever designed the buffer mapping API did not provide a way to
895  * return an error from here, so we have to fake it a bit.
896  */
897 
898 static void
899 re_dma_map_desc(arg, segs, nseg, mapsize, error)
900 	void			*arg;
901 	bus_dma_segment_t	*segs;
902 	int			nseg;
903 	bus_size_t		mapsize;
904 	int			error;
905 {
906 	struct rl_dmaload_arg	*ctx;
907 	struct rl_desc		*d = NULL;
908 	int			i = 0, idx;
909 
910 	if (error)
911 		return;
912 
913 	ctx = arg;
914 
915 	/* Signal error to caller if there's too many segments */
916 	if (nseg > ctx->rl_maxsegs) {
917 		ctx->rl_maxsegs = 0;
918 		return;
919 	}
920 
921 	/*
922 	 * Map the segment array into descriptors. Note that we set the
923 	 * start-of-frame and end-of-frame markers for either TX or RX, but
924 	 * they really only have meaning in the TX case. (In the RX case,
925 	 * it's the chip that tells us where packets begin and end.)
926 	 * We also keep track of the end of the ring and set the
927 	 * end-of-ring bits as needed, and we set the ownership bits
928 	 * in all except the very first descriptor. (The caller will
929 	 * set this descriptor later when it start transmission or
930 	 * reception.)
931 	 */
932 	idx = ctx->rl_idx;
933 	while(1) {
934 		u_int32_t		cmdstat;
935 		d = &ctx->rl_ring[idx];
936 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
937 			ctx->rl_maxsegs = 0;
938 			return;
939 		}
940 		cmdstat = segs[i].ds_len;
941 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
942 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
943 		if (i == 0)
944 			cmdstat |= RL_TDESC_CMD_SOF;
945 		else
946 			cmdstat |= RL_TDESC_CMD_OWN;
947 		if (idx == (RL_RX_DESC_CNT - 1))
948 			cmdstat |= RL_TDESC_CMD_EOR;
949 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
950 		i++;
951 		if (i == nseg)
952 			break;
953 		RL_DESC_INC(idx);
954 	}
955 
956 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
957 	ctx->rl_maxsegs = nseg;
958 	ctx->rl_idx = idx;
959 
960 	return;
961 }
962 
963 /*
964  * Map a single buffer address.
965  */
966 
967 static void
968 re_dma_map_addr(arg, segs, nseg, error)
969 	void			*arg;
970 	bus_dma_segment_t	*segs;
971 	int			nseg;
972 	int			error;
973 {
974 	u_int32_t		*addr;
975 
976 	if (error)
977 		return;
978 
979 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
980 	addr = arg;
981 	*addr = segs->ds_addr;
982 
983 	return;
984 }
985 
986 static int
987 re_allocmem(dev, sc)
988 	device_t		dev;
989 	struct rl_softc		*sc;
990 {
991 	int			error;
992 	int			nseg;
993 	int			i;
994 
995 	/*
996 	 * Allocate map for RX mbufs.
997 	 */
998 	nseg = 32;
999 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
1000 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1001 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1002 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1003 	if (error) {
1004 		device_printf(dev, "could not allocate dma tag\n");
1005 		return (ENOMEM);
1006 	}
1007 
1008 	/*
1009 	 * Allocate map for TX descriptor list.
1010 	 */
1011 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1012 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1013             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1014 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1015 	if (error) {
1016 		device_printf(dev, "could not allocate dma tag\n");
1017 		return (ENOMEM);
1018 	}
1019 
1020 	/* Allocate DMA'able memory for the TX ring */
1021 
1022         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1023 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1024             &sc->rl_ldata.rl_tx_list_map);
1025         if (error)
1026                 return (ENOMEM);
1027 
1028 	/* Load the map for the TX ring. */
1029 
1030 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1031 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1032 	     RL_TX_LIST_SZ, re_dma_map_addr,
1033 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1034 
1035 	/* Create DMA maps for TX buffers */
1036 
1037 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1038 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1039 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1040 		if (error) {
1041 			device_printf(dev, "can't create DMA map for TX\n");
1042 			return(ENOMEM);
1043 		}
1044 	}
1045 
1046 	/*
1047 	 * Allocate map for RX descriptor list.
1048 	 */
1049 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1050 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1051             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1052 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1053 	if (error) {
1054 		device_printf(dev, "could not allocate dma tag\n");
1055 		return (ENOMEM);
1056 	}
1057 
1058 	/* Allocate DMA'able memory for the RX ring */
1059 
1060         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1061 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1062             &sc->rl_ldata.rl_rx_list_map);
1063         if (error)
1064                 return (ENOMEM);
1065 
1066 	/* Load the map for the RX ring. */
1067 
1068 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1069 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1070 	     RL_TX_LIST_SZ, re_dma_map_addr,
1071 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1072 
1073 	/* Create DMA maps for RX buffers */
1074 
1075 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1076 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1077 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1078 		if (error) {
1079 			device_printf(dev, "can't create DMA map for RX\n");
1080 			return(ENOMEM);
1081 		}
1082 	}
1083 
1084 	return(0);
1085 }
1086 
1087 /*
1088  * Attach the interface. Allocate softc structures, do ifmedia
1089  * setup and ethernet/BPF attach.
1090  */
1091 static int
1092 re_attach(dev)
1093 	device_t		dev;
1094 {
1095 	u_char			eaddr[ETHER_ADDR_LEN];
1096 	u_int16_t		as[3];
1097 	struct rl_softc		*sc;
1098 	struct ifnet		*ifp;
1099 	struct rl_hwrev		*hw_rev;
1100 	int			hwrev;
1101 	u_int16_t		re_did = 0;
1102 	int			unit, error = 0, rid, i;
1103 
1104 	sc = device_get_softc(dev);
1105 	unit = device_get_unit(dev);
1106 
1107 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1108 	    MTX_DEF | MTX_RECURSE);
1109 #ifndef BURN_BRIDGES
1110 	/*
1111 	 * Handle power management nonsense.
1112 	 */
1113 
1114 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1115 		u_int32_t		iobase, membase, irq;
1116 
1117 		/* Save important PCI config data. */
1118 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1119 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1120 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1121 
1122 		/* Reset the power state. */
1123 		printf("re%d: chip is is in D%d power mode "
1124 		    "-- setting to D0\n", unit,
1125 		    pci_get_powerstate(dev));
1126 
1127 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1128 
1129 		/* Restore PCI config data. */
1130 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1131 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1132 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1133 	}
1134 #endif
1135 	/*
1136 	 * Map control/status registers.
1137 	 */
1138 	pci_enable_busmaster(dev);
1139 
1140 	rid = RL_RID;
1141 	sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
1142 	    0, ~0, 1, RF_ACTIVE);
1143 
1144 	if (sc->rl_res == NULL) {
1145 		printf ("re%d: couldn't map ports/memory\n", unit);
1146 		error = ENXIO;
1147 		goto fail;
1148 	}
1149 
1150 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1151 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1152 
1153 	/* Allocate interrupt */
1154 	rid = 0;
1155 	sc->rl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1156 	    RF_SHAREABLE | RF_ACTIVE);
1157 
1158 	if (sc->rl_irq == NULL) {
1159 		printf("re%d: couldn't map interrupt\n", unit);
1160 		error = ENXIO;
1161 		goto fail;
1162 	}
1163 
1164 	/* Reset the adapter. */
1165 	re_reset(sc);
1166 
1167 	hw_rev = re_hwrevs;
1168 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1169 	while (hw_rev->rl_desc != NULL) {
1170 		if (hw_rev->rl_rev == hwrev) {
1171 			sc->rl_type = hw_rev->rl_type;
1172 			break;
1173 		}
1174 		hw_rev++;
1175 	}
1176 
1177 	if (sc->rl_type == RL_8169) {
1178 
1179 		/* Set RX length mask */
1180 
1181 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1182 
1183 		/* Force station address autoload from the EEPROM */
1184 
1185 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1186 		for (i = 0; i < RL_TIMEOUT; i++) {
1187 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1188 				break;
1189 			DELAY(100);
1190 		}
1191 		if (i == RL_TIMEOUT)
1192 			printf ("re%d: eeprom autoload timed out\n", unit);
1193 
1194 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1195 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1196 	} else {
1197 
1198 		/* Set RX length mask */
1199 
1200 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1201 
1202 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1203 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1204 		if (re_did != 0x8129)
1205 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1206 
1207 		/*
1208 		 * Get station address from the EEPROM.
1209 		 */
1210 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1211 		for (i = 0; i < 3; i++) {
1212 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1213 			eaddr[(i * 2) + 1] = as[i] >> 8;
1214 		}
1215 	}
1216 
1217 	/*
1218 	 * A RealTek chip was detected. Inform the world.
1219 	 */
1220 	printf("re%d: Ethernet address: %6D\n", unit, eaddr, ":");
1221 
1222 	sc->rl_unit = unit;
1223 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1224 
1225 	/*
1226 	 * Allocate the parent bus DMA tag appropriate for PCI.
1227 	 */
1228 #define RL_NSEG_NEW 32
1229 	error = bus_dma_tag_create(NULL,	/* parent */
1230 			1, 0,			/* alignment, boundary */
1231 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1232 			BUS_SPACE_MAXADDR,	/* highaddr */
1233 			NULL, NULL,		/* filter, filterarg */
1234 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1235 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1236 			BUS_DMA_ALLOCNOW,	/* flags */
1237 			NULL, NULL,		/* lockfunc, lockarg */
1238 			&sc->rl_parent_tag);
1239 	if (error)
1240 		goto fail;
1241 
1242 	error = re_allocmem(dev, sc);
1243 
1244 	if (error)
1245 		goto fail;
1246 
1247 	/* Do MII setup */
1248 	if (mii_phy_probe(dev, &sc->rl_miibus,
1249 	    re_ifmedia_upd, re_ifmedia_sts)) {
1250 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1251 		error = ENXIO;
1252 		goto fail;
1253 	}
1254 
1255 	ifp = &sc->arpcom.ac_if;
1256 	ifp->if_softc = sc;
1257 	ifp->if_unit = unit;
1258 	ifp->if_name = "re";
1259 	ifp->if_mtu = ETHERMTU;
1260 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1261 	ifp->if_ioctl = re_ioctl;
1262 	ifp->if_output = ether_output;
1263 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1264 	ifp->if_start = re_start;
1265 	ifp->if_hwassist = RE_CSUM_FEATURES;
1266 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1267 	ifp->if_watchdog = re_watchdog;
1268 	ifp->if_init = re_init;
1269 	if (sc->rl_type == RL_8169)
1270 		ifp->if_baudrate = 1000000000;
1271 	else
1272 		ifp->if_baudrate = 100000000;
1273 	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1274 	ifp->if_capenable = ifp->if_capabilities;
1275 
1276 	callout_handle_init(&sc->rl_stat_ch);
1277 
1278 	/*
1279 	 * Call MI attach routine.
1280 	 */
1281 	ether_ifattach(ifp, eaddr);
1282 
1283 	/* Perform hardware diagnostic. */
1284 	error = re_diag(sc);
1285 
1286 	if (error) {
1287 		printf("re%d: attach aborted due to hardware diag failure\n",
1288 		    unit);
1289 		ether_ifdetach(ifp);
1290 		goto fail;
1291 	}
1292 
1293 	/* Hook interrupt last to avoid having to lock softc */
1294 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1295 	    re_intr, sc, &sc->rl_intrhand);
1296 
1297 	if (error) {
1298 		printf("re%d: couldn't set up irq\n", unit);
1299 		ether_ifdetach(ifp);
1300 		goto fail;
1301 	}
1302 
1303 fail:
1304 	if (error)
1305 		re_detach(dev);
1306 
1307 	return (error);
1308 }
1309 
1310 /*
1311  * Shutdown hardware and free up resources. This can be called any
1312  * time after the mutex has been initialized. It is called in both
1313  * the error case in attach and the normal detach case so it needs
1314  * to be careful about only freeing resources that have actually been
1315  * allocated.
1316  */
1317 static int
1318 re_detach(dev)
1319 	device_t		dev;
1320 {
1321 	struct rl_softc		*sc;
1322 	struct ifnet		*ifp;
1323 	int			i;
1324 
1325 	sc = device_get_softc(dev);
1326 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1327 	RL_LOCK(sc);
1328 	ifp = &sc->arpcom.ac_if;
1329 
1330 	/* These should only be active if attach succeeded */
1331 	if (device_is_attached(dev)) {
1332 		re_stop(sc);
1333 		/*
1334 		 * Force off the IFF_UP flag here, in case someone
1335 		 * still had a BPF descriptor attached to this
1336 		 * interface. If they do, ether_ifattach() will cause
1337 		 * the BPF code to try and clear the promisc mode
1338 		 * flag, which will bubble down to re_ioctl(),
1339 		 * which will try to call re_init() again. This will
1340 		 * turn the NIC back on and restart the MII ticker,
1341 		 * which will panic the system when the kernel tries
1342 		 * to invoke the re_tick() function that isn't there
1343 		 * anymore.
1344 		 */
1345 		ifp->if_flags &= ~IFF_UP;
1346 		ether_ifdetach(ifp);
1347 	}
1348 	if (sc->rl_miibus)
1349 		device_delete_child(dev, sc->rl_miibus);
1350 	bus_generic_detach(dev);
1351 
1352 	if (sc->rl_intrhand)
1353 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1354 	if (sc->rl_irq)
1355 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1356 	if (sc->rl_res)
1357 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1358 
1359 
1360 	/* Unload and free the RX DMA ring memory and map */
1361 
1362 	if (sc->rl_ldata.rl_rx_list_tag) {
1363 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1364 		    sc->rl_ldata.rl_rx_list_map);
1365 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1366 		    sc->rl_ldata.rl_rx_list,
1367 		    sc->rl_ldata.rl_rx_list_map);
1368 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1369 	}
1370 
1371 	/* Unload and free the TX DMA ring memory and map */
1372 
1373 	if (sc->rl_ldata.rl_tx_list_tag) {
1374 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1375 		    sc->rl_ldata.rl_tx_list_map);
1376 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1377 		    sc->rl_ldata.rl_tx_list,
1378 		    sc->rl_ldata.rl_tx_list_map);
1379 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1380 	}
1381 
1382 	/* Destroy all the RX and TX buffer maps */
1383 
1384 	if (sc->rl_ldata.rl_mtag) {
1385 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1386 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1387 			    sc->rl_ldata.rl_tx_dmamap[i]);
1388 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1389 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1390 			    sc->rl_ldata.rl_rx_dmamap[i]);
1391 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1392 	}
1393 
1394 	/* Unload and free the stats buffer and map */
1395 
1396 	if (sc->rl_ldata.rl_stag) {
1397 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1398 		    sc->rl_ldata.rl_rx_list_map);
1399 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1400 		    sc->rl_ldata.rl_stats,
1401 		    sc->rl_ldata.rl_smap);
1402 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1403 	}
1404 
1405 	if (sc->rl_parent_tag)
1406 		bus_dma_tag_destroy(sc->rl_parent_tag);
1407 
1408 	RL_UNLOCK(sc);
1409 	mtx_destroy(&sc->rl_mtx);
1410 
1411 	return(0);
1412 }
1413 
1414 static int
1415 re_newbuf(sc, idx, m)
1416 	struct rl_softc		*sc;
1417 	int			idx;
1418 	struct mbuf		*m;
1419 {
1420 	struct rl_dmaload_arg	arg;
1421 	struct mbuf		*n = NULL;
1422 	int			error;
1423 
1424 	if (m == NULL) {
1425 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1426 		if (n == NULL)
1427 			return(ENOBUFS);
1428 		m = n;
1429 	} else
1430 		m->m_data = m->m_ext.ext_buf;
1431 
1432 	/*
1433 	 * Initialize mbuf length fields and fixup
1434 	 * alignment so that the frame payload is
1435 	 * longword aligned.
1436 	 */
1437 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1438 	m_adj(m, ETHER_ALIGN);
1439 
1440 	arg.sc = sc;
1441 	arg.rl_idx = idx;
1442 	arg.rl_maxsegs = 1;
1443 	arg.rl_flags = 0;
1444 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1445 
1446         error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1447 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1448 	    &arg, BUS_DMA_NOWAIT);
1449 	if (error || arg.rl_maxsegs != 1) {
1450 		if (n != NULL)
1451 			m_freem(n);
1452 		return (ENOMEM);
1453 	}
1454 
1455 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1456 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1457 
1458         bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1459 	    sc->rl_ldata.rl_rx_dmamap[idx],
1460 	    BUS_DMASYNC_PREREAD);
1461 
1462 	return(0);
1463 }
1464 
1465 static int
1466 re_tx_list_init(sc)
1467 	struct rl_softc		*sc;
1468 {
1469 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1470 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1471 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1472 
1473 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1474 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1475 	sc->rl_ldata.rl_tx_prodidx = 0;
1476 	sc->rl_ldata.rl_tx_considx = 0;
1477 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1478 
1479 	return(0);
1480 }
1481 
1482 static int
1483 re_rx_list_init(sc)
1484 	struct rl_softc		*sc;
1485 {
1486 	int			i;
1487 
1488 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1489 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1490 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1491 
1492 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1493 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1494 			return(ENOBUFS);
1495 	}
1496 
1497 	/* Flush the RX descriptors */
1498 
1499 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1500 	    sc->rl_ldata.rl_rx_list_map,
1501 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1502 
1503 	sc->rl_ldata.rl_rx_prodidx = 0;
1504 	sc->rl_head = sc->rl_tail = NULL;
1505 
1506 	return(0);
1507 }
1508 
1509 /*
1510  * RX handler for C+ and 8169. For the gigE chips, we support
1511  * the reception of jumbo frames that have been fragmented
1512  * across multiple 2K mbuf cluster buffers.
1513  */
1514 static void
1515 re_rxeof(sc)
1516 	struct rl_softc		*sc;
1517 {
1518 	struct mbuf		*m;
1519 	struct ifnet		*ifp;
1520 	int			i, total_len;
1521 	struct rl_desc		*cur_rx;
1522 	u_int32_t		rxstat, rxvlan;
1523 
1524 	ifp = &sc->arpcom.ac_if;
1525 	i = sc->rl_ldata.rl_rx_prodidx;
1526 
1527 	/* Invalidate the descriptor memory */
1528 
1529 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1530 	    sc->rl_ldata.rl_rx_list_map,
1531 	    BUS_DMASYNC_POSTREAD);
1532 
1533 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1534 
1535 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1536 		m = sc->rl_ldata.rl_rx_mbuf[i];
1537 		total_len = RL_RXBYTES(cur_rx);
1538 		rxstat = le32toh(cur_rx->rl_cmdstat);
1539 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1540 
1541 		/* Invalidate the RX mbuf and unload its map */
1542 
1543 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1544 		    sc->rl_ldata.rl_rx_dmamap[i],
1545 		    BUS_DMASYNC_POSTWRITE);
1546 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1547 		    sc->rl_ldata.rl_rx_dmamap[i]);
1548 
1549 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1550 			m->m_len = MCLBYTES - ETHER_ALIGN;
1551 			if (sc->rl_head == NULL)
1552 				sc->rl_head = sc->rl_tail = m;
1553 			else {
1554 				m->m_flags &= ~M_PKTHDR;
1555 				sc->rl_tail->m_next = m;
1556 				sc->rl_tail = m;
1557 			}
1558 			re_newbuf(sc, i, NULL);
1559 			RL_DESC_INC(i);
1560 			continue;
1561 		}
1562 
1563 		/*
1564 		 * NOTE: for the 8139C+, the frame length field
1565 		 * is always 12 bits in size, but for the gigE chips,
1566 		 * it is 13 bits (since the max RX frame length is 16K).
1567 		 * Unfortunately, all 32 bits in the status word
1568 		 * were already used, so to make room for the extra
1569 		 * length bit, RealTek took out the 'frame alignment
1570 		 * error' bit and shifted the other status bits
1571 		 * over one slot. The OWN, EOR, FS and LS bits are
1572 		 * still in the same places. We have already extracted
1573 		 * the frame length and checked the OWN bit, so rather
1574 		 * than using an alternate bit mapping, we shift the
1575 		 * status bits one space to the right so we can evaluate
1576 		 * them using the 8169 status as though it was in the
1577 		 * same format as that of the 8139C+.
1578 		 */
1579 		if (sc->rl_type == RL_8169)
1580 			rxstat >>= 1;
1581 
1582 		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1583 			ifp->if_ierrors++;
1584 			/*
1585 			 * If this is part of a multi-fragment packet,
1586 			 * discard all the pieces.
1587 			 */
1588 			if (sc->rl_head != NULL) {
1589 				m_freem(sc->rl_head);
1590 				sc->rl_head = sc->rl_tail = NULL;
1591 			}
1592 			re_newbuf(sc, i, m);
1593 			RL_DESC_INC(i);
1594 			continue;
1595 		}
1596 
1597 		/*
1598 		 * If allocating a replacement mbuf fails,
1599 		 * reload the current one.
1600 		 */
1601 
1602 		if (re_newbuf(sc, i, NULL)) {
1603 			ifp->if_ierrors++;
1604 			if (sc->rl_head != NULL) {
1605 				m_freem(sc->rl_head);
1606 				sc->rl_head = sc->rl_tail = NULL;
1607 			}
1608 			re_newbuf(sc, i, m);
1609 			RL_DESC_INC(i);
1610 			continue;
1611 		}
1612 
1613 		RL_DESC_INC(i);
1614 
1615 		if (sc->rl_head != NULL) {
1616 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1617 			/*
1618 			 * Special case: if there's 4 bytes or less
1619 			 * in this buffer, the mbuf can be discarded:
1620 			 * the last 4 bytes is the CRC, which we don't
1621 			 * care about anyway.
1622 			 */
1623 			if (m->m_len <= ETHER_CRC_LEN) {
1624 				sc->rl_tail->m_len -=
1625 				    (ETHER_CRC_LEN - m->m_len);
1626 				m_freem(m);
1627 			} else {
1628 				m->m_len -= ETHER_CRC_LEN;
1629 				m->m_flags &= ~M_PKTHDR;
1630 				sc->rl_tail->m_next = m;
1631 			}
1632 			m = sc->rl_head;
1633 			sc->rl_head = sc->rl_tail = NULL;
1634 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1635 		} else
1636 			m->m_pkthdr.len = m->m_len =
1637 			    (total_len - ETHER_CRC_LEN);
1638 
1639 		ifp->if_ipackets++;
1640 		m->m_pkthdr.rcvif = ifp;
1641 
1642 		/* Do RX checksumming if enabled */
1643 
1644 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1645 
1646 			/* Check IP header checksum */
1647 			if (rxstat & RL_RDESC_STAT_PROTOID)
1648 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1649 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1650 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1651 
1652 			/* Check TCP/UDP checksum */
1653 			if ((RL_TCPPKT(rxstat) &&
1654 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1655 			    (RL_UDPPKT(rxstat) &&
1656 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1657 				m->m_pkthdr.csum_flags |=
1658 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1659 				m->m_pkthdr.csum_data = 0xffff;
1660 			}
1661 		}
1662 
1663 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1664 			VLAN_INPUT_TAG(ifp, m,
1665 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1666 		(*ifp->if_input)(ifp, m);
1667 	}
1668 
1669 	/* Flush the RX DMA ring */
1670 
1671 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1672 	    sc->rl_ldata.rl_rx_list_map,
1673 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1674 
1675 	sc->rl_ldata.rl_rx_prodidx = i;
1676 
1677 	return;
1678 }
1679 
1680 static void
1681 re_txeof(sc)
1682 	struct rl_softc		*sc;
1683 {
1684 	struct ifnet		*ifp;
1685 	u_int32_t		txstat;
1686 	int			idx;
1687 
1688 	ifp = &sc->arpcom.ac_if;
1689 	idx = sc->rl_ldata.rl_tx_considx;
1690 
1691 	/* Invalidate the TX descriptor list */
1692 
1693 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1694 	    sc->rl_ldata.rl_tx_list_map,
1695 	    BUS_DMASYNC_POSTREAD);
1696 
1697 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1698 
1699 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1700 		if (txstat & RL_TDESC_CMD_OWN)
1701 			break;
1702 
1703 		/*
1704 		 * We only stash mbufs in the last descriptor
1705 		 * in a fragment chain, which also happens to
1706 		 * be the only place where the TX status bits
1707 		 * are valid.
1708 		 */
1709 
1710 		if (txstat & RL_TDESC_CMD_EOF) {
1711 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1712 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1713 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1714 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1715 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1716 			    RL_TDESC_STAT_COLCNT))
1717 				ifp->if_collisions++;
1718 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1719 				ifp->if_oerrors++;
1720 			else
1721 				ifp->if_opackets++;
1722 		}
1723 		sc->rl_ldata.rl_tx_free++;
1724 		RL_DESC_INC(idx);
1725 	}
1726 
1727 	/* No changes made to the TX ring, so no flush needed */
1728 
1729 	if (idx != sc->rl_ldata.rl_tx_considx) {
1730 		sc->rl_ldata.rl_tx_considx = idx;
1731 		ifp->if_flags &= ~IFF_OACTIVE;
1732 		ifp->if_timer = 0;
1733 	}
1734 
1735 	/*
1736 	 * If not all descriptors have been released reaped yet,
1737 	 * reload the timer so that we will eventually get another
1738 	 * interrupt that will cause us to re-enter this routine.
1739 	 * This is done in case the transmitter has gone idle.
1740 	 */
1741 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1742                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1743 
1744 	return;
1745 }
1746 
1747 static void
1748 re_tick(xsc)
1749 	void			*xsc;
1750 {
1751 	struct rl_softc		*sc;
1752 	struct mii_data		*mii;
1753 
1754 	sc = xsc;
1755 	RL_LOCK(sc);
1756 	mii = device_get_softc(sc->rl_miibus);
1757 
1758 	mii_tick(mii);
1759 
1760 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1761 	RL_UNLOCK(sc);
1762 
1763 	return;
1764 }
1765 
1766 #ifdef DEVICE_POLLING
1767 static void
1768 re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1769 {
1770 	struct rl_softc *sc = ifp->if_softc;
1771 
1772 	RL_LOCK(sc);
1773 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1774 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1775 		goto done;
1776 	}
1777 
1778 	sc->rxcycles = count;
1779 	re_rxeof(sc);
1780 	re_txeof(sc);
1781 
1782 	if (ifp->if_snd.ifq_head != NULL)
1783 		(*ifp->if_start)(ifp);
1784 
1785 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1786 		u_int16_t       status;
1787 
1788 		status = CSR_READ_2(sc, RL_ISR);
1789 		if (status == 0xffff)
1790 			goto done;
1791 		if (status)
1792 			CSR_WRITE_2(sc, RL_ISR, status);
1793 
1794 		/*
1795 		 * XXX check behaviour on receiver stalls.
1796 		 */
1797 
1798 		if (status & RL_ISR_SYSTEM_ERR) {
1799 			re_reset(sc);
1800 			re_init(sc);
1801 		}
1802 	}
1803 done:
1804 	RL_UNLOCK(sc);
1805 }
1806 #endif /* DEVICE_POLLING */
1807 
1808 static void
1809 re_intr(arg)
1810 	void			*arg;
1811 {
1812 	struct rl_softc		*sc;
1813 	struct ifnet		*ifp;
1814 	u_int16_t		status;
1815 
1816 	sc = arg;
1817 
1818 	if (sc->suspended) {
1819 		return;
1820 	}
1821 
1822 	RL_LOCK(sc);
1823 	ifp = &sc->arpcom.ac_if;
1824 
1825 	if (!(ifp->if_flags & IFF_UP)) {
1826 		RL_UNLOCK(sc);
1827 		return;
1828 	}
1829 
1830 #ifdef DEVICE_POLLING
1831 	if  (ifp->if_flags & IFF_POLLING)
1832 		goto done;
1833 	if (ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1834 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1835 		re_poll(ifp, 0, 1);
1836 		goto done;
1837 	}
1838 #endif /* DEVICE_POLLING */
1839 
1840 	for (;;) {
1841 
1842 		status = CSR_READ_2(sc, RL_ISR);
1843 		/* If the card has gone away the read returns 0xffff. */
1844 		if (status == 0xffff)
1845 			break;
1846 		if (status)
1847 			CSR_WRITE_2(sc, RL_ISR, status);
1848 
1849 		if ((status & RL_INTRS_CPLUS) == 0)
1850 			break;
1851 
1852 		if (status & RL_ISR_RX_OK)
1853 			re_rxeof(sc);
1854 
1855 		if (status & RL_ISR_RX_ERR)
1856 			re_rxeof(sc);
1857 
1858 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1859 		    (status & RL_ISR_TX_ERR) ||
1860 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1861 			re_txeof(sc);
1862 
1863 		if (status & RL_ISR_SYSTEM_ERR) {
1864 			re_reset(sc);
1865 			re_init(sc);
1866 		}
1867 
1868 		if (status & RL_ISR_LINKCHG) {
1869 			untimeout(re_tick, sc, sc->rl_stat_ch);
1870 			re_tick(sc);
1871 		}
1872 	}
1873 
1874 	if (ifp->if_snd.ifq_head != NULL)
1875 		(*ifp->if_start)(ifp);
1876 
1877 #ifdef DEVICE_POLLING
1878 done:
1879 #endif
1880 	RL_UNLOCK(sc);
1881 
1882 	return;
1883 }
1884 
1885 static int
1886 re_encap(sc, m_head, idx)
1887 	struct rl_softc		*sc;
1888 	struct mbuf		*m_head;
1889 	int			*idx;
1890 {
1891 	struct mbuf		*m_new = NULL;
1892 	struct rl_dmaload_arg	arg;
1893 	bus_dmamap_t		map;
1894 	int			error;
1895 	struct m_tag		*mtag;
1896 
1897 	if (sc->rl_ldata.rl_tx_free <= 4)
1898 		return(EFBIG);
1899 
1900 	/*
1901 	 * Set up checksum offload. Note: checksum offload bits must
1902 	 * appear in all descriptors of a multi-descriptor transmit
1903 	 * attempt. (This is according to testing done with an 8169
1904 	 * chip. I'm not sure if this is a requirement or a bug.)
1905 	 */
1906 
1907 	arg.rl_flags = 0;
1908 
1909 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1910 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1911 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1912 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1913 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1914 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1915 
1916 	arg.sc = sc;
1917 	arg.rl_idx = *idx;
1918 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1919 	if (arg.rl_maxsegs > 4)
1920 		arg.rl_maxsegs -= 4;
1921 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1922 
1923 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1924 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1925 	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1926 
1927 	if (error && error != EFBIG) {
1928 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1929 		return(ENOBUFS);
1930 	}
1931 
1932 	/* Too many segments to map, coalesce into a single mbuf */
1933 
1934 	if (error || arg.rl_maxsegs == 0) {
1935 		m_new = m_defrag(m_head, M_DONTWAIT);
1936 		if (m_new == NULL)
1937 			return(1);
1938 		else
1939 			m_head = m_new;
1940 
1941 		arg.sc = sc;
1942 		arg.rl_idx = *idx;
1943 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1944 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1945 
1946 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1947 		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1948 		if (error) {
1949 			printf("re%d: can't map mbuf (error %d)\n",
1950 			    sc->rl_unit, error);
1951 			return(EFBIG);
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * Insure that the map for this transmission
1957 	 * is placed at the array index of the last descriptor
1958 	 * in this chain.
1959 	 */
1960 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1961 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1962 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1963 
1964 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1965 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1966 
1967 	/*
1968 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1969 	 * appear in the first descriptor of a multi-descriptor
1970 	 * transmission attempt.
1971 	 */
1972 
1973 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1974 	if (mtag != NULL)
1975 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1976 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1977 
1978 	/* Transfer ownership of packet to the chip. */
1979 
1980 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1981 	    htole32(RL_TDESC_CMD_OWN);
1982 	if (*idx != arg.rl_idx)
1983 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1984 		    htole32(RL_TDESC_CMD_OWN);
1985 
1986 	RL_DESC_INC(arg.rl_idx);
1987 	*idx = arg.rl_idx;
1988 
1989 	return(0);
1990 }
1991 
1992 /*
1993  * Main transmit routine for C+ and gigE NICs.
1994  */
1995 
1996 static void
1997 re_start(ifp)
1998 	struct ifnet		*ifp;
1999 {
2000 	struct rl_softc		*sc;
2001 	struct mbuf		*m_head = NULL;
2002 	int			idx;
2003 
2004 	sc = ifp->if_softc;
2005 	RL_LOCK(sc);
2006 
2007 	idx = sc->rl_ldata.rl_tx_prodidx;
2008 
2009 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2010 		IF_DEQUEUE(&ifp->if_snd, m_head);
2011 		if (m_head == NULL)
2012 			break;
2013 
2014 		if (re_encap(sc, m_head, &idx)) {
2015 			IF_PREPEND(&ifp->if_snd, m_head);
2016 			ifp->if_flags |= IFF_OACTIVE;
2017 			break;
2018 		}
2019 
2020 		/*
2021 		 * If there's a BPF listener, bounce a copy of this frame
2022 		 * to him.
2023 		 */
2024 		BPF_MTAP(ifp, m_head);
2025 	}
2026 
2027 	/* Flush the TX descriptors */
2028 
2029 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2030 	    sc->rl_ldata.rl_tx_list_map,
2031 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2032 
2033 	sc->rl_ldata.rl_tx_prodidx = idx;
2034 
2035 	/*
2036 	 * RealTek put the TX poll request register in a different
2037 	 * location on the 8169 gigE chip. I don't know why.
2038 	 */
2039 
2040 	if (sc->rl_type == RL_8169)
2041 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2042 	else
2043 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2044 
2045 	/*
2046 	 * Use the countdown timer for interrupt moderation.
2047 	 * 'TX done' interrupts are disabled. Instead, we reset the
2048 	 * countdown timer, which will begin counting until it hits
2049 	 * the value in the TIMERINT register, and then trigger an
2050 	 * interrupt. Each time we write to the TIMERCNT register,
2051 	 * the timer count is reset to 0.
2052 	 */
2053 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2054 
2055 	RL_UNLOCK(sc);
2056 
2057 	/*
2058 	 * Set a timeout in case the chip goes out to lunch.
2059 	 */
2060 	ifp->if_timer = 5;
2061 
2062 	return;
2063 }
2064 
2065 static void
2066 re_init(xsc)
2067 	void			*xsc;
2068 {
2069 	struct rl_softc		*sc = xsc;
2070 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2071 	struct mii_data		*mii;
2072 	u_int32_t		rxcfg = 0;
2073 
2074 	RL_LOCK(sc);
2075 	mii = device_get_softc(sc->rl_miibus);
2076 
2077 	/*
2078 	 * Cancel pending I/O and free all RX/TX buffers.
2079 	 */
2080 	re_stop(sc);
2081 
2082 	/*
2083 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2084 	 * RX checksum offload. Only enable dual-address cycle if
2085 	 * we're on a 64-bit bus. We must configure the C+ register
2086 	 * before all others.
2087 	 */
2088 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2089 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2090 	    (CSR_READ_1(sc, RL_CFG2) & RL_BUSWIDTH_64BITS ?
2091 	    RL_CPLUSCMD_PCI_DAC : 0)|RL_CPLUSCMD_VLANSTRIP|
2092 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2093 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2094 
2095 	/*
2096 	 * Init our MAC address.  Even though the chipset
2097 	 * documentation doesn't mention it, we need to enter "Config
2098 	 * register write enable" mode to modify the ID registers.
2099 	 */
2100 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2101 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2102 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2103 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2104 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2105 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2106 
2107 	/*
2108 	 * For C+ mode, initialize the RX descriptors and mbufs.
2109 	 */
2110 	re_rx_list_init(sc);
2111 	re_tx_list_init(sc);
2112 
2113 	/*
2114 	 * Enable transmit and receive.
2115 	 */
2116 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2117 
2118 	/*
2119 	 * Set the initial TX and RX configuration.
2120 	 */
2121 	if (sc->rl_testmode) {
2122 		if (sc->rl_type == RL_8169)
2123 			CSR_WRITE_4(sc, RL_TXCFG,
2124 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2125 		else
2126 			CSR_WRITE_4(sc, RL_TXCFG,
2127 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2128 	} else
2129 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2130 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2131 
2132 	/* Set the individual bit to receive frames for this host only. */
2133 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2134 	rxcfg |= RL_RXCFG_RX_INDIV;
2135 
2136 	/* If we want promiscuous mode, set the allframes bit. */
2137 	if (ifp->if_flags & IFF_PROMISC) {
2138 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2139 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2140 	} else {
2141 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2142 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2143 	}
2144 
2145 	/*
2146 	 * Set capture broadcast bit to capture broadcast frames.
2147 	 */
2148 	if (ifp->if_flags & IFF_BROADCAST) {
2149 		rxcfg |= RL_RXCFG_RX_BROAD;
2150 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2151 	} else {
2152 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2153 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2154 	}
2155 
2156 	/*
2157 	 * Program the multicast filter, if necessary.
2158 	 */
2159 	re_setmulti(sc);
2160 
2161 #ifdef DEVICE_POLLING
2162 	/*
2163 	 * Disable interrupts if we are polling.
2164 	 */
2165 	if (ifp->if_flags & IFF_POLLING)
2166 		CSR_WRITE_2(sc, RL_IMR, 0);
2167 	else	/* otherwise ... */
2168 #endif /* DEVICE_POLLING */
2169 	/*
2170 	 * Enable interrupts.
2171 	 */
2172 	if (sc->rl_testmode)
2173 		CSR_WRITE_2(sc, RL_IMR, 0);
2174 	else
2175 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2176 
2177 	/* Set initial TX threshold */
2178 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2179 
2180 	/* Start RX/TX process. */
2181 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2182 #ifdef notdef
2183 	/* Enable receiver and transmitter. */
2184 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2185 #endif
2186 	/*
2187 	 * Load the addresses of the RX and TX lists into the chip.
2188 	 */
2189 
2190 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2191 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2192 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2193 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2194 
2195 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2196 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2197 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2198 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2199 
2200 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2201 
2202 	/*
2203 	 * Initialize the timer interrupt register so that
2204 	 * a timer interrupt will be generated once the timer
2205 	 * reaches a certain number of ticks. The timer is
2206 	 * reloaded on each transmit. This gives us TX interrupt
2207 	 * moderation, which dramatically improves TX frame rate.
2208 	 */
2209 
2210 	if (sc->rl_type == RL_8169)
2211 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2212 	else
2213 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2214 
2215 	/*
2216 	 * For 8169 gigE NICs, set the max allowed RX packet
2217 	 * size so we can receive jumbo frames.
2218 	 */
2219 	if (sc->rl_type == RL_8169)
2220 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2221 
2222 	if (sc->rl_testmode) {
2223 		RL_UNLOCK(sc);
2224 		return;
2225 	}
2226 
2227 	mii_mediachg(mii);
2228 
2229 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2230 
2231 	ifp->if_flags |= IFF_RUNNING;
2232 	ifp->if_flags &= ~IFF_OACTIVE;
2233 
2234 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2235 	RL_UNLOCK(sc);
2236 
2237 	return;
2238 }
2239 
2240 /*
2241  * Set media options.
2242  */
2243 static int
2244 re_ifmedia_upd(ifp)
2245 	struct ifnet		*ifp;
2246 {
2247 	struct rl_softc		*sc;
2248 	struct mii_data		*mii;
2249 
2250 	sc = ifp->if_softc;
2251 	mii = device_get_softc(sc->rl_miibus);
2252 	mii_mediachg(mii);
2253 
2254 	return(0);
2255 }
2256 
2257 /*
2258  * Report current media status.
2259  */
2260 static void
2261 re_ifmedia_sts(ifp, ifmr)
2262 	struct ifnet		*ifp;
2263 	struct ifmediareq	*ifmr;
2264 {
2265 	struct rl_softc		*sc;
2266 	struct mii_data		*mii;
2267 
2268 	sc = ifp->if_softc;
2269 	mii = device_get_softc(sc->rl_miibus);
2270 
2271 	mii_pollstat(mii);
2272 	ifmr->ifm_active = mii->mii_media_active;
2273 	ifmr->ifm_status = mii->mii_media_status;
2274 
2275 	return;
2276 }
2277 
2278 static int
2279 re_ioctl(ifp, command, data)
2280 	struct ifnet		*ifp;
2281 	u_long			command;
2282 	caddr_t			data;
2283 {
2284 	struct rl_softc		*sc = ifp->if_softc;
2285 	struct ifreq		*ifr = (struct ifreq *) data;
2286 	struct mii_data		*mii;
2287 	int			error = 0;
2288 
2289 	RL_LOCK(sc);
2290 
2291 	switch(command) {
2292 	case SIOCSIFMTU:
2293 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2294 			error = EINVAL;
2295 		ifp->if_mtu = ifr->ifr_mtu;
2296 		break;
2297 	case SIOCSIFFLAGS:
2298 		if (ifp->if_flags & IFF_UP) {
2299 			re_init(sc);
2300 		} else {
2301 			if (ifp->if_flags & IFF_RUNNING)
2302 				re_stop(sc);
2303 		}
2304 		error = 0;
2305 		break;
2306 	case SIOCADDMULTI:
2307 	case SIOCDELMULTI:
2308 		re_setmulti(sc);
2309 		error = 0;
2310 		break;
2311 	case SIOCGIFMEDIA:
2312 	case SIOCSIFMEDIA:
2313 		mii = device_get_softc(sc->rl_miibus);
2314 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2315 		break;
2316 	case SIOCSIFCAP:
2317 		ifp->if_capenable = ifr->ifr_reqcap;
2318 		if (ifp->if_capenable & IFCAP_TXCSUM)
2319 			ifp->if_hwassist = RE_CSUM_FEATURES;
2320 		else
2321 			ifp->if_hwassist = 0;
2322 		if (ifp->if_flags & IFF_RUNNING)
2323 			re_init(sc);
2324 		break;
2325 	default:
2326 		error = ether_ioctl(ifp, command, data);
2327 		break;
2328 	}
2329 
2330 	RL_UNLOCK(sc);
2331 
2332 	return(error);
2333 }
2334 
2335 static void
2336 re_watchdog(ifp)
2337 	struct ifnet		*ifp;
2338 {
2339 	struct rl_softc		*sc;
2340 
2341 	sc = ifp->if_softc;
2342 	RL_LOCK(sc);
2343 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2344 	ifp->if_oerrors++;
2345 
2346 	re_txeof(sc);
2347 	re_rxeof(sc);
2348 
2349 	re_init(sc);
2350 
2351 	RL_UNLOCK(sc);
2352 
2353 	return;
2354 }
2355 
2356 /*
2357  * Stop the adapter and free any mbufs allocated to the
2358  * RX and TX lists.
2359  */
2360 static void
2361 re_stop(sc)
2362 	struct rl_softc		*sc;
2363 {
2364 	register int		i;
2365 	struct ifnet		*ifp;
2366 
2367 	RL_LOCK(sc);
2368 	ifp = &sc->arpcom.ac_if;
2369 	ifp->if_timer = 0;
2370 
2371 	untimeout(re_tick, sc, sc->rl_stat_ch);
2372 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2373 #ifdef DEVICE_POLLING
2374 	ether_poll_deregister(ifp);
2375 #endif /* DEVICE_POLLING */
2376 
2377 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2378 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2379 
2380 	if (sc->rl_head != NULL) {
2381 		m_freem(sc->rl_head);
2382 		sc->rl_head = sc->rl_tail = NULL;
2383 	}
2384 
2385 	/* Free the TX list buffers. */
2386 
2387 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2388 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2389 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2390 			    sc->rl_ldata.rl_tx_dmamap[i]);
2391 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2392 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2393 		}
2394 	}
2395 
2396 	/* Free the RX list buffers. */
2397 
2398 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2399 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2400 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2401 			    sc->rl_ldata.rl_rx_dmamap[i]);
2402 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2403 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2404 		}
2405 	}
2406 
2407 	RL_UNLOCK(sc);
2408 	return;
2409 }
2410 
2411 /*
2412  * Device suspend routine.  Stop the interface and save some PCI
2413  * settings in case the BIOS doesn't restore them properly on
2414  * resume.
2415  */
2416 static int
2417 re_suspend(dev)
2418 	device_t		dev;
2419 {
2420 	register int		i;
2421 	struct rl_softc		*sc;
2422 
2423 	sc = device_get_softc(dev);
2424 
2425 	re_stop(sc);
2426 
2427 	for (i = 0; i < 5; i++)
2428 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2429 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2430 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2431 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2432 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2433 
2434 	sc->suspended = 1;
2435 
2436 	return (0);
2437 }
2438 
2439 /*
2440  * Device resume routine.  Restore some PCI settings in case the BIOS
2441  * doesn't, re-enable busmastering, and restart the interface if
2442  * appropriate.
2443  */
2444 static int
2445 re_resume(dev)
2446 	device_t		dev;
2447 {
2448 	register int		i;
2449 	struct rl_softc		*sc;
2450 	struct ifnet		*ifp;
2451 
2452 	sc = device_get_softc(dev);
2453 	ifp = &sc->arpcom.ac_if;
2454 
2455 	/* better way to do this? */
2456 	for (i = 0; i < 5; i++)
2457 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2458 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2459 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2460 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2461 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2462 
2463 	/* reenable busmastering */
2464 	pci_enable_busmaster(dev);
2465 	pci_enable_io(dev, RL_RES);
2466 
2467 	/* reinitialize interface if necessary */
2468 	if (ifp->if_flags & IFF_UP)
2469 		re_init(sc);
2470 
2471 	sc->suspended = 0;
2472 
2473 	return (0);
2474 }
2475 
2476 /*
2477  * Stop all chip I/O so that the kernel's probe routines don't
2478  * get confused by errant DMAs when rebooting.
2479  */
2480 static void
2481 re_shutdown(dev)
2482 	device_t		dev;
2483 {
2484 	struct rl_softc		*sc;
2485 
2486 	sc = device_get_softc(dev);
2487 
2488 	re_stop(sc);
2489 
2490 	return;
2491 }
2492