xref: /freebsd/sys/dev/re/if_re.c (revision 6b3455a7665208c366849f0b2b3bc916fb97516e)
1 /*
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7.5K, so the max MTU possible with this
108  * driver is 7500 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/module.h>
118 #include <sys/kernel.h>
119 #include <sys/socket.h>
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/ethernet.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_vlan_var.h>
127 
128 #include <net/bpf.h>
129 
130 #include <machine/bus_pio.h>
131 #include <machine/bus_memio.h>
132 #include <machine/bus.h>
133 #include <machine/resource.h>
134 #include <sys/bus.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 MODULE_DEPEND(re, pci, 1, 1, 1);
144 MODULE_DEPEND(re, ether, 1, 1, 1);
145 MODULE_DEPEND(re, miibus, 1, 1, 1);
146 
147 /* "controller miibus0" required.  See GENERIC if you get errors here. */
148 #include "miibus_if.h"
149 
150 /*
151  * Default to using PIO access for this driver.
152  */
153 #define RE_USEIOSPACE
154 
155 #include <pci/if_rlreg.h>
156 
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158 
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static struct rl_type re_devs[] = {
163 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
164 		"RealTek 8139C+ 10/100BaseTX" },
165 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
166 		"RealTek 8169 Gigabit Ethernet" },
167 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
168 		"RealTek 8169S Single-chip Gigabit Ethernet" },
169 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
170 		"RealTek 8110S Single-chip Gigabit Ethernet" },
171 	{ 0, 0, 0, NULL }
172 };
173 
174 static struct rl_hwrev re_hwrevs[] = {
175 	{ RL_HWREV_8139, RL_8139,  "" },
176 	{ RL_HWREV_8139A, RL_8139, "A" },
177 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
178 	{ RL_HWREV_8139B, RL_8139, "B" },
179 	{ RL_HWREV_8130, RL_8139, "8130" },
180 	{ RL_HWREV_8139C, RL_8139, "C" },
181 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
182 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
183 	{ RL_HWREV_8169, RL_8169, "8169"},
184 	{ RL_HWREV_8169S, RL_8169, "8169S"},
185 	{ RL_HWREV_8110S, RL_8169, "8110S"},
186 	{ RL_HWREV_8100, RL_8139, "8100"},
187 	{ RL_HWREV_8101, RL_8139, "8101"},
188 	{ 0, 0, NULL }
189 };
190 
191 static int re_probe		(device_t);
192 static int re_attach		(device_t);
193 static int re_detach		(device_t);
194 
195 static int re_encap		(struct rl_softc *, struct mbuf *, int *);
196 
197 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
198 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
199 				    bus_size_t, int);
200 static int re_allocmem		(device_t, struct rl_softc *);
201 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
202 static int re_rx_list_init	(struct rl_softc *);
203 static int re_tx_list_init	(struct rl_softc *);
204 static void re_rxeof		(struct rl_softc *);
205 static void re_txeof		(struct rl_softc *);
206 static void re_intr		(void *);
207 static void re_tick		(void *);
208 static void re_start		(struct ifnet *);
209 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
210 static void re_init		(void *);
211 static void re_stop		(struct rl_softc *);
212 static void re_watchdog		(struct ifnet *);
213 static int re_suspend		(device_t);
214 static int re_resume		(device_t);
215 static void re_shutdown		(device_t);
216 static int re_ifmedia_upd	(struct ifnet *);
217 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
218 
219 static void re_eeprom_putbyte	(struct rl_softc *, int);
220 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
221 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
222 static int re_gmii_readreg	(device_t, int, int);
223 static int re_gmii_writereg	(device_t, int, int, int);
224 
225 static int re_miibus_readreg	(device_t, int, int);
226 static int re_miibus_writereg	(device_t, int, int, int);
227 static void re_miibus_statchg	(device_t);
228 
229 static void re_setmulti		(struct rl_softc *);
230 static void re_reset		(struct rl_softc *);
231 
232 static int re_diag		(struct rl_softc *);
233 
234 #ifdef RE_USEIOSPACE
235 #define RL_RES			SYS_RES_IOPORT
236 #define RL_RID			RL_PCI_LOIO
237 #else
238 #define RL_RES			SYS_RES_MEMORY
239 #define RL_RID			RL_PCI_LOMEM
240 #endif
241 
242 static device_method_t re_methods[] = {
243 	/* Device interface */
244 	DEVMETHOD(device_probe,		re_probe),
245 	DEVMETHOD(device_attach,	re_attach),
246 	DEVMETHOD(device_detach,	re_detach),
247 	DEVMETHOD(device_suspend,	re_suspend),
248 	DEVMETHOD(device_resume,	re_resume),
249 	DEVMETHOD(device_shutdown,	re_shutdown),
250 
251 	/* bus interface */
252 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254 
255 	/* MII interface */
256 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t re_driver = {
264 	"re",
265 	re_methods,
266 	sizeof(struct rl_softc)
267 };
268 
269 static devclass_t re_devclass;
270 
271 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274 
275 #define EE_SET(x)					\
276 	CSR_WRITE_1(sc, RL_EECMD,			\
277 		CSR_READ_1(sc, RL_EECMD) | x)
278 
279 #define EE_CLR(x)					\
280 	CSR_WRITE_1(sc, RL_EECMD,			\
281 		CSR_READ_1(sc, RL_EECMD) & ~x)
282 
283 /*
284  * Send a read command and address to the EEPROM, check for ACK.
285  */
286 static void
287 re_eeprom_putbyte(sc, addr)
288 	struct rl_softc		*sc;
289 	int			addr;
290 {
291 	register int		d, i;
292 
293 	d = addr | sc->rl_eecmd_read;
294 
295 	/*
296 	 * Feed in each bit and strobe the clock.
297 	 */
298 	for (i = 0x400; i; i >>= 1) {
299 		if (d & i) {
300 			EE_SET(RL_EE_DATAIN);
301 		} else {
302 			EE_CLR(RL_EE_DATAIN);
303 		}
304 		DELAY(100);
305 		EE_SET(RL_EE_CLK);
306 		DELAY(150);
307 		EE_CLR(RL_EE_CLK);
308 		DELAY(100);
309 	}
310 }
311 
312 /*
313  * Read a word of data stored in the EEPROM at address 'addr.'
314  */
315 static void
316 re_eeprom_getword(sc, addr, dest)
317 	struct rl_softc		*sc;
318 	int			addr;
319 	u_int16_t		*dest;
320 {
321 	register int		i;
322 	u_int16_t		word = 0;
323 
324 	/* Enter EEPROM access mode. */
325 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
326 
327 	/*
328 	 * Send address of word we want to read.
329 	 */
330 	re_eeprom_putbyte(sc, addr);
331 
332 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
333 
334 	/*
335 	 * Start reading bits from EEPROM.
336 	 */
337 	for (i = 0x8000; i; i >>= 1) {
338 		EE_SET(RL_EE_CLK);
339 		DELAY(100);
340 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
341 			word |= i;
342 		EE_CLR(RL_EE_CLK);
343 		DELAY(100);
344 	}
345 
346 	/* Turn off EEPROM access mode. */
347 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
348 
349 	*dest = word;
350 }
351 
352 /*
353  * Read a sequence of words from the EEPROM.
354  */
355 static void
356 re_read_eeprom(sc, dest, off, cnt, swap)
357 	struct rl_softc		*sc;
358 	caddr_t			dest;
359 	int			off;
360 	int			cnt;
361 	int			swap;
362 {
363 	int			i;
364 	u_int16_t		word = 0, *ptr;
365 
366 	for (i = 0; i < cnt; i++) {
367 		re_eeprom_getword(sc, off + i, &word);
368 		ptr = (u_int16_t *)(dest + (i * 2));
369 		if (swap)
370 			*ptr = ntohs(word);
371 		else
372 			*ptr = word;
373 	}
374 }
375 
376 static int
377 re_gmii_readreg(dev, phy, reg)
378 	device_t		dev;
379 	int			phy, reg;
380 {
381 	struct rl_softc		*sc;
382 	u_int32_t		rval;
383 	int			i;
384 
385 	if (phy != 1)
386 		return (0);
387 
388 	sc = device_get_softc(dev);
389 
390 	/* Let the rgephy driver read the GMEDIASTAT register */
391 
392 	if (reg == RL_GMEDIASTAT) {
393 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
394 		return (rval);
395 	}
396 
397 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
398 	DELAY(1000);
399 
400 	for (i = 0; i < RL_TIMEOUT; i++) {
401 		rval = CSR_READ_4(sc, RL_PHYAR);
402 		if (rval & RL_PHYAR_BUSY)
403 			break;
404 		DELAY(100);
405 	}
406 
407 	if (i == RL_TIMEOUT) {
408 		printf ("re%d: PHY read failed\n", sc->rl_unit);
409 		return (0);
410 	}
411 
412 	return (rval & RL_PHYAR_PHYDATA);
413 }
414 
415 static int
416 re_gmii_writereg(dev, phy, reg, data)
417 	device_t		dev;
418 	int			phy, reg, data;
419 {
420 	struct rl_softc		*sc;
421 	u_int32_t		rval;
422 	int			i;
423 
424 	sc = device_get_softc(dev);
425 
426 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
427 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
428 	DELAY(1000);
429 
430 	for (i = 0; i < RL_TIMEOUT; i++) {
431 		rval = CSR_READ_4(sc, RL_PHYAR);
432 		if (!(rval & RL_PHYAR_BUSY))
433 			break;
434 		DELAY(100);
435 	}
436 
437 	if (i == RL_TIMEOUT) {
438 		printf ("re%d: PHY write failed\n", sc->rl_unit);
439 		return (0);
440 	}
441 
442 	return (0);
443 }
444 
445 static int
446 re_miibus_readreg(dev, phy, reg)
447 	device_t		dev;
448 	int			phy, reg;
449 {
450 	struct rl_softc		*sc;
451 	u_int16_t		rval = 0;
452 	u_int16_t		re8139_reg = 0;
453 
454 	sc = device_get_softc(dev);
455 	RL_LOCK(sc);
456 
457 	if (sc->rl_type == RL_8169) {
458 		rval = re_gmii_readreg(dev, phy, reg);
459 		RL_UNLOCK(sc);
460 		return (rval);
461 	}
462 
463 	/* Pretend the internal PHY is only at address 0 */
464 	if (phy) {
465 		RL_UNLOCK(sc);
466 		return (0);
467 	}
468 	switch (reg) {
469 	case MII_BMCR:
470 		re8139_reg = RL_BMCR;
471 		break;
472 	case MII_BMSR:
473 		re8139_reg = RL_BMSR;
474 		break;
475 	case MII_ANAR:
476 		re8139_reg = RL_ANAR;
477 		break;
478 	case MII_ANER:
479 		re8139_reg = RL_ANER;
480 		break;
481 	case MII_ANLPAR:
482 		re8139_reg = RL_LPAR;
483 		break;
484 	case MII_PHYIDR1:
485 	case MII_PHYIDR2:
486 		RL_UNLOCK(sc);
487 		return (0);
488 	/*
489 	 * Allow the rlphy driver to read the media status
490 	 * register. If we have a link partner which does not
491 	 * support NWAY, this is the register which will tell
492 	 * us the results of parallel detection.
493 	 */
494 	case RL_MEDIASTAT:
495 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
496 		RL_UNLOCK(sc);
497 		return (rval);
498 	default:
499 		printf("re%d: bad phy register\n", sc->rl_unit);
500 		RL_UNLOCK(sc);
501 		return (0);
502 	}
503 	rval = CSR_READ_2(sc, re8139_reg);
504 	RL_UNLOCK(sc);
505 	return (rval);
506 }
507 
508 static int
509 re_miibus_writereg(dev, phy, reg, data)
510 	device_t		dev;
511 	int			phy, reg, data;
512 {
513 	struct rl_softc		*sc;
514 	u_int16_t		re8139_reg = 0;
515 	int			rval = 0;
516 
517 	sc = device_get_softc(dev);
518 	RL_LOCK(sc);
519 
520 	if (sc->rl_type == RL_8169) {
521 		rval = re_gmii_writereg(dev, phy, reg, data);
522 		RL_UNLOCK(sc);
523 		return (rval);
524 	}
525 
526 	/* Pretend the internal PHY is only at address 0 */
527 	if (phy) {
528 		RL_UNLOCK(sc);
529 		return (0);
530 	}
531 	switch (reg) {
532 	case MII_BMCR:
533 		re8139_reg = RL_BMCR;
534 		break;
535 	case MII_BMSR:
536 		re8139_reg = RL_BMSR;
537 		break;
538 	case MII_ANAR:
539 		re8139_reg = RL_ANAR;
540 		break;
541 	case MII_ANER:
542 		re8139_reg = RL_ANER;
543 		break;
544 	case MII_ANLPAR:
545 		re8139_reg = RL_LPAR;
546 		break;
547 	case MII_PHYIDR1:
548 	case MII_PHYIDR2:
549 		RL_UNLOCK(sc);
550 		return (0);
551 		break;
552 	default:
553 		printf("re%d: bad phy register\n", sc->rl_unit);
554 		RL_UNLOCK(sc);
555 		return (0);
556 	}
557 	CSR_WRITE_2(sc, re8139_reg, data);
558 	RL_UNLOCK(sc);
559 	return (0);
560 }
561 
562 static void
563 re_miibus_statchg(dev)
564 	device_t		dev;
565 {
566 
567 }
568 
569 /*
570  * Program the 64-bit multicast hash filter.
571  */
572 static void
573 re_setmulti(sc)
574 	struct rl_softc		*sc;
575 {
576 	struct ifnet		*ifp;
577 	int			h = 0;
578 	u_int32_t		hashes[2] = { 0, 0 };
579 	struct ifmultiaddr	*ifma;
580 	u_int32_t		rxfilt;
581 	int			mcnt = 0;
582 
583 	ifp = &sc->arpcom.ac_if;
584 
585 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
586 
587 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
588 		rxfilt |= RL_RXCFG_RX_MULTI;
589 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
590 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
591 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
592 		return;
593 	}
594 
595 	/* first, zot all the existing hash bits */
596 	CSR_WRITE_4(sc, RL_MAR0, 0);
597 	CSR_WRITE_4(sc, RL_MAR4, 0);
598 
599 	/* now program new ones */
600 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
601 		if (ifma->ifma_addr->sa_family != AF_LINK)
602 			continue;
603 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
604 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
605 		if (h < 32)
606 			hashes[0] |= (1 << h);
607 		else
608 			hashes[1] |= (1 << (h - 32));
609 		mcnt++;
610 	}
611 
612 	if (mcnt)
613 		rxfilt |= RL_RXCFG_RX_MULTI;
614 	else
615 		rxfilt &= ~RL_RXCFG_RX_MULTI;
616 
617 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
618 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
619 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
620 }
621 
622 static void
623 re_reset(sc)
624 	struct rl_softc		*sc;
625 {
626 	register int		i;
627 
628 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
629 
630 	for (i = 0; i < RL_TIMEOUT; i++) {
631 		DELAY(10);
632 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
633 			break;
634 	}
635 	if (i == RL_TIMEOUT)
636 		printf("re%d: reset never completed!\n", sc->rl_unit);
637 
638 	CSR_WRITE_1(sc, 0x82, 1);
639 }
640 
641 /*
642  * The following routine is designed to test for a defect on some
643  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
644  * lines connected to the bus, however for a 32-bit only card, they
645  * should be pulled high. The result of this defect is that the
646  * NIC will not work right if you plug it into a 64-bit slot: DMA
647  * operations will be done with 64-bit transfers, which will fail
648  * because the 64-bit data lines aren't connected.
649  *
650  * There's no way to work around this (short of talking a soldering
651  * iron to the board), however we can detect it. The method we use
652  * here is to put the NIC into digital loopback mode, set the receiver
653  * to promiscuous mode, and then try to send a frame. We then compare
654  * the frame data we sent to what was received. If the data matches,
655  * then the NIC is working correctly, otherwise we know the user has
656  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
657  * slot. In the latter case, there's no way the NIC can work correctly,
658  * so we print out a message on the console and abort the device attach.
659  */
660 
661 static int
662 re_diag(sc)
663 	struct rl_softc		*sc;
664 {
665 	struct ifnet		*ifp = &sc->arpcom.ac_if;
666 	struct mbuf		*m0;
667 	struct ether_header	*eh;
668 	struct rl_desc		*cur_rx;
669 	u_int16_t		status;
670 	u_int32_t		rxstat;
671 	int			total_len, i, error = 0;
672 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
673 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
674 
675 	/* Allocate a single mbuf */
676 
677 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
678 	if (m0 == NULL)
679 		return (ENOBUFS);
680 
681 	/*
682 	 * Initialize the NIC in test mode. This sets the chip up
683 	 * so that it can send and receive frames, but performs the
684 	 * following special functions:
685 	 * - Puts receiver in promiscuous mode
686 	 * - Enables digital loopback mode
687 	 * - Leaves interrupts turned off
688 	 */
689 
690 	ifp->if_flags |= IFF_PROMISC;
691 	sc->rl_testmode = 1;
692 	re_init(sc);
693 	re_stop(sc);
694 	DELAY(100000);
695 	re_init(sc);
696 
697 	/* Put some data in the mbuf */
698 
699 	eh = mtod(m0, struct ether_header *);
700 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
701 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
702 	eh->ether_type = htons(ETHERTYPE_IP);
703 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
704 
705 	/*
706 	 * Queue the packet, start transmission.
707 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
708 	 */
709 
710 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
711 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
712 	m0 = NULL;
713 
714 	/* Wait for it to propagate through the chip */
715 
716 	DELAY(100000);
717 	for (i = 0; i < RL_TIMEOUT; i++) {
718 		status = CSR_READ_2(sc, RL_ISR);
719 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
720 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
721 			break;
722 		DELAY(10);
723 	}
724 
725 	if (i == RL_TIMEOUT) {
726 		printf("re%d: diagnostic failed, failed to receive packet "
727 		    "in loopback mode\n", sc->rl_unit);
728 		error = EIO;
729 		goto done;
730 	}
731 
732 	/*
733 	 * The packet should have been dumped into the first
734 	 * entry in the RX DMA ring. Grab it from there.
735 	 */
736 
737 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
738 	    sc->rl_ldata.rl_rx_list_map,
739 	    BUS_DMASYNC_POSTREAD);
740 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
741 	    sc->rl_ldata.rl_rx_dmamap[0],
742 	    BUS_DMASYNC_POSTWRITE);
743 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
744 	    sc->rl_ldata.rl_rx_dmamap[0]);
745 
746 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
747 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
748 	eh = mtod(m0, struct ether_header *);
749 
750 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
751 	total_len = RL_RXBYTES(cur_rx);
752 	rxstat = le32toh(cur_rx->rl_cmdstat);
753 
754 	if (total_len != ETHER_MIN_LEN) {
755 		printf("re%d: diagnostic failed, received short packet\n",
756 		    sc->rl_unit);
757 		error = EIO;
758 		goto done;
759 	}
760 
761 	/* Test that the received packet data matches what we sent. */
762 
763 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
764 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
765 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
766 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
767 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
768 		    dst, ":", src, ":", ETHERTYPE_IP);
769 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
770 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
771 		    ntohs(eh->ether_type));
772 		printf("re%d: You may have a defective 32-bit NIC plugged "
773 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
774 		printf("re%d: Please re-install the NIC in a 32-bit slot "
775 		    "for proper operation.\n", sc->rl_unit);
776 		printf("re%d: Read the re(4) man page for more details.\n",
777 		    sc->rl_unit);
778 		error = EIO;
779 	}
780 
781 done:
782 	/* Turn interface off, release resources */
783 
784 	sc->rl_testmode = 0;
785 	ifp->if_flags &= ~IFF_PROMISC;
786 	re_stop(sc);
787 	if (m0 != NULL)
788 		m_freem(m0);
789 
790 	return (error);
791 }
792 
793 /*
794  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
795  * IDs against our list and return a device name if we find a match.
796  */
797 static int
798 re_probe(dev)
799 	device_t		dev;
800 {
801 	struct rl_type		*t;
802 	struct rl_softc		*sc;
803 	int			rid;
804 	u_int32_t		hwrev;
805 
806 	t = re_devs;
807 	sc = device_get_softc(dev);
808 
809 	while (t->rl_name != NULL) {
810 		if ((pci_get_vendor(dev) == t->rl_vid) &&
811 		    (pci_get_device(dev) == t->rl_did)) {
812 
813 			/*
814 			 * Temporarily map the I/O space
815 			 * so we can read the chip ID register.
816 			 */
817 			rid = RL_RID;
818 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
819 			    RF_ACTIVE);
820 			if (sc->rl_res == NULL) {
821 				device_printf(dev,
822 				    "couldn't map ports/memory\n");
823 				return (ENXIO);
824 			}
825 			sc->rl_btag = rman_get_bustag(sc->rl_res);
826 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
827 			mtx_init(&sc->rl_mtx,
828 			    device_get_nameunit(dev),
829 			    MTX_NETWORK_LOCK, MTX_DEF);
830 			RL_LOCK(sc);
831 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
832 			bus_release_resource(dev, RL_RES,
833 			    RL_RID, sc->rl_res);
834 			RL_UNLOCK(sc);
835 			mtx_destroy(&sc->rl_mtx);
836 			if (t->rl_basetype == hwrev) {
837 				device_set_desc(dev, t->rl_name);
838 				return (0);
839 			}
840 		}
841 		t++;
842 	}
843 
844 	return (ENXIO);
845 }
846 
847 /*
848  * This routine takes the segment list provided as the result of
849  * a bus_dma_map_load() operation and assigns the addresses/lengths
850  * to RealTek DMA descriptors. This can be called either by the RX
851  * code or the TX code. In the RX case, we'll probably wind up mapping
852  * at most one segment. For the TX case, there could be any number of
853  * segments since TX packets may span multiple mbufs. In either case,
854  * if the number of segments is larger than the rl_maxsegs limit
855  * specified by the caller, we abort the mapping operation. Sadly,
856  * whoever designed the buffer mapping API did not provide a way to
857  * return an error from here, so we have to fake it a bit.
858  */
859 
860 static void
861 re_dma_map_desc(arg, segs, nseg, mapsize, error)
862 	void			*arg;
863 	bus_dma_segment_t	*segs;
864 	int			nseg;
865 	bus_size_t		mapsize;
866 	int			error;
867 {
868 	struct rl_dmaload_arg	*ctx;
869 	struct rl_desc		*d = NULL;
870 	int			i = 0, idx;
871 
872 	if (error)
873 		return;
874 
875 	ctx = arg;
876 
877 	/* Signal error to caller if there's too many segments */
878 	if (nseg > ctx->rl_maxsegs) {
879 		ctx->rl_maxsegs = 0;
880 		return;
881 	}
882 
883 	/*
884 	 * Map the segment array into descriptors. Note that we set the
885 	 * start-of-frame and end-of-frame markers for either TX or RX, but
886 	 * they really only have meaning in the TX case. (In the RX case,
887 	 * it's the chip that tells us where packets begin and end.)
888 	 * We also keep track of the end of the ring and set the
889 	 * end-of-ring bits as needed, and we set the ownership bits
890 	 * in all except the very first descriptor. (The caller will
891 	 * set this descriptor later when it start transmission or
892 	 * reception.)
893 	 */
894 	idx = ctx->rl_idx;
895 	for (;;) {
896 		u_int32_t		cmdstat;
897 		d = &ctx->rl_ring[idx];
898 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
899 			ctx->rl_maxsegs = 0;
900 			return;
901 		}
902 		cmdstat = segs[i].ds_len;
903 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
904 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
905 		if (i == 0)
906 			cmdstat |= RL_TDESC_CMD_SOF;
907 		else
908 			cmdstat |= RL_TDESC_CMD_OWN;
909 		if (idx == (RL_RX_DESC_CNT - 1))
910 			cmdstat |= RL_TDESC_CMD_EOR;
911 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
912 		i++;
913 		if (i == nseg)
914 			break;
915 		RL_DESC_INC(idx);
916 	}
917 
918 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
919 	ctx->rl_maxsegs = nseg;
920 	ctx->rl_idx = idx;
921 }
922 
923 /*
924  * Map a single buffer address.
925  */
926 
927 static void
928 re_dma_map_addr(arg, segs, nseg, error)
929 	void			*arg;
930 	bus_dma_segment_t	*segs;
931 	int			nseg;
932 	int			error;
933 {
934 	u_int32_t		*addr;
935 
936 	if (error)
937 		return;
938 
939 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
940 	addr = arg;
941 	*addr = segs->ds_addr;
942 }
943 
944 static int
945 re_allocmem(dev, sc)
946 	device_t		dev;
947 	struct rl_softc		*sc;
948 {
949 	int			error;
950 	int			nseg;
951 	int			i;
952 
953 	/*
954 	 * Allocate map for RX mbufs.
955 	 */
956 	nseg = 32;
957 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
958 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
959 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
960 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
961 	if (error) {
962 		device_printf(dev, "could not allocate dma tag\n");
963 		return (ENOMEM);
964 	}
965 
966 	/*
967 	 * Allocate map for TX descriptor list.
968 	 */
969 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
970 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
971 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
972 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
973 	if (error) {
974 		device_printf(dev, "could not allocate dma tag\n");
975 		return (ENOMEM);
976 	}
977 
978 	/* Allocate DMA'able memory for the TX ring */
979 
980 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
981 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
982 	    &sc->rl_ldata.rl_tx_list_map);
983 	if (error)
984 		return (ENOMEM);
985 
986 	/* Load the map for the TX ring. */
987 
988 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
989 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
990 	     RL_TX_LIST_SZ, re_dma_map_addr,
991 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
992 
993 	/* Create DMA maps for TX buffers */
994 
995 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
996 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
997 			    &sc->rl_ldata.rl_tx_dmamap[i]);
998 		if (error) {
999 			device_printf(dev, "can't create DMA map for TX\n");
1000 			return (ENOMEM);
1001 		}
1002 	}
1003 
1004 	/*
1005 	 * Allocate map for RX descriptor list.
1006 	 */
1007 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1008 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1009 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1010 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1011 	if (error) {
1012 		device_printf(dev, "could not allocate dma tag\n");
1013 		return (ENOMEM);
1014 	}
1015 
1016 	/* Allocate DMA'able memory for the RX ring */
1017 
1018 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1019 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1020 	    &sc->rl_ldata.rl_rx_list_map);
1021 	if (error)
1022 		return (ENOMEM);
1023 
1024 	/* Load the map for the RX ring. */
1025 
1026 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1027 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1028 	     RL_TX_LIST_SZ, re_dma_map_addr,
1029 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1030 
1031 	/* Create DMA maps for RX buffers */
1032 
1033 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1034 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1035 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1036 		if (error) {
1037 			device_printf(dev, "can't create DMA map for RX\n");
1038 			return (ENOMEM);
1039 		}
1040 	}
1041 
1042 	return (0);
1043 }
1044 
1045 /*
1046  * Attach the interface. Allocate softc structures, do ifmedia
1047  * setup and ethernet/BPF attach.
1048  */
1049 static int
1050 re_attach(dev)
1051 	device_t		dev;
1052 {
1053 	u_char			eaddr[ETHER_ADDR_LEN];
1054 	u_int16_t		as[3];
1055 	struct rl_softc		*sc;
1056 	struct ifnet		*ifp;
1057 	struct rl_hwrev		*hw_rev;
1058 	int			hwrev;
1059 	u_int16_t		re_did = 0;
1060 	int			unit, error = 0, rid, i;
1061 
1062 	sc = device_get_softc(dev);
1063 	unit = device_get_unit(dev);
1064 
1065 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1066 	    MTX_DEF | MTX_RECURSE);
1067 	/*
1068 	 * Map control/status registers.
1069 	 */
1070 	pci_enable_busmaster(dev);
1071 
1072 	rid = RL_RID;
1073 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1074 	    RF_ACTIVE);
1075 
1076 	if (sc->rl_res == NULL) {
1077 		printf ("re%d: couldn't map ports/memory\n", unit);
1078 		error = ENXIO;
1079 		goto fail;
1080 	}
1081 
1082 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1083 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1084 
1085 	/* Allocate interrupt */
1086 	rid = 0;
1087 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1088 	    RF_SHAREABLE | RF_ACTIVE);
1089 
1090 	if (sc->rl_irq == NULL) {
1091 		printf("re%d: couldn't map interrupt\n", unit);
1092 		error = ENXIO;
1093 		goto fail;
1094 	}
1095 
1096 	/* Reset the adapter. */
1097 	re_reset(sc);
1098 
1099 	hw_rev = re_hwrevs;
1100 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1101 	while (hw_rev->rl_desc != NULL) {
1102 		if (hw_rev->rl_rev == hwrev) {
1103 			sc->rl_type = hw_rev->rl_type;
1104 			break;
1105 		}
1106 		hw_rev++;
1107 	}
1108 
1109 	if (sc->rl_type == RL_8169) {
1110 
1111 		/* Set RX length mask */
1112 
1113 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1114 
1115 		/* Force station address autoload from the EEPROM */
1116 
1117 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1118 		for (i = 0; i < RL_TIMEOUT; i++) {
1119 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1120 				break;
1121 			DELAY(100);
1122 		}
1123 		if (i == RL_TIMEOUT)
1124 			printf ("re%d: eeprom autoload timed out\n", unit);
1125 
1126 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1127 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1128 	} else {
1129 
1130 		/* Set RX length mask */
1131 
1132 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1133 
1134 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1135 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1136 		if (re_did != 0x8129)
1137 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1138 
1139 		/*
1140 		 * Get station address from the EEPROM.
1141 		 */
1142 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1143 		for (i = 0; i < 3; i++) {
1144 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1145 			eaddr[(i * 2) + 1] = as[i] >> 8;
1146 		}
1147 	}
1148 
1149 	sc->rl_unit = unit;
1150 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1151 
1152 	/*
1153 	 * Allocate the parent bus DMA tag appropriate for PCI.
1154 	 */
1155 #define RL_NSEG_NEW 32
1156 	error = bus_dma_tag_create(NULL,	/* parent */
1157 			1, 0,			/* alignment, boundary */
1158 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1159 			BUS_SPACE_MAXADDR,	/* highaddr */
1160 			NULL, NULL,		/* filter, filterarg */
1161 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1162 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1163 			BUS_DMA_ALLOCNOW,	/* flags */
1164 			NULL, NULL,		/* lockfunc, lockarg */
1165 			&sc->rl_parent_tag);
1166 	if (error)
1167 		goto fail;
1168 
1169 	error = re_allocmem(dev, sc);
1170 
1171 	if (error)
1172 		goto fail;
1173 
1174 	/* Do MII setup */
1175 	if (mii_phy_probe(dev, &sc->rl_miibus,
1176 	    re_ifmedia_upd, re_ifmedia_sts)) {
1177 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1178 		error = ENXIO;
1179 		goto fail;
1180 	}
1181 
1182 	ifp = &sc->arpcom.ac_if;
1183 	ifp->if_softc = sc;
1184 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1185 	ifp->if_mtu = ETHERMTU;
1186 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1187 	ifp->if_ioctl = re_ioctl;
1188 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1189 	ifp->if_start = re_start;
1190 	ifp->if_hwassist = RE_CSUM_FEATURES;
1191 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1192 #ifdef DEVICE_POLLING
1193 	ifp->if_capabilities |= IFCAP_POLLING;
1194 #endif
1195 	ifp->if_watchdog = re_watchdog;
1196 	ifp->if_init = re_init;
1197 	if (sc->rl_type == RL_8169)
1198 		ifp->if_baudrate = 1000000000;
1199 	else
1200 		ifp->if_baudrate = 100000000;
1201 	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1202 	ifp->if_capenable = ifp->if_capabilities;
1203 
1204 	callout_handle_init(&sc->rl_stat_ch);
1205 
1206 	/*
1207 	 * Call MI attach routine.
1208 	 */
1209 	ether_ifattach(ifp, eaddr);
1210 
1211 	/* Perform hardware diagnostic. */
1212 	error = re_diag(sc);
1213 
1214 	if (error) {
1215 		printf("re%d: attach aborted due to hardware diag failure\n",
1216 		    unit);
1217 		ether_ifdetach(ifp);
1218 		goto fail;
1219 	}
1220 
1221 	/* Hook interrupt last to avoid having to lock softc */
1222 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1223 	    re_intr, sc, &sc->rl_intrhand);
1224 
1225 	if (error) {
1226 		printf("re%d: couldn't set up irq\n", unit);
1227 		ether_ifdetach(ifp);
1228 		goto fail;
1229 	}
1230 
1231 fail:
1232 	if (error)
1233 		re_detach(dev);
1234 
1235 	return (error);
1236 }
1237 
1238 /*
1239  * Shutdown hardware and free up resources. This can be called any
1240  * time after the mutex has been initialized. It is called in both
1241  * the error case in attach and the normal detach case so it needs
1242  * to be careful about only freeing resources that have actually been
1243  * allocated.
1244  */
1245 static int
1246 re_detach(dev)
1247 	device_t		dev;
1248 {
1249 	struct rl_softc		*sc;
1250 	struct ifnet		*ifp;
1251 	int			i;
1252 
1253 	sc = device_get_softc(dev);
1254 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1255 	RL_LOCK(sc);
1256 	ifp = &sc->arpcom.ac_if;
1257 
1258 	/* These should only be active if attach succeeded */
1259 	if (device_is_attached(dev)) {
1260 		re_stop(sc);
1261 		/*
1262 		 * Force off the IFF_UP flag here, in case someone
1263 		 * still had a BPF descriptor attached to this
1264 		 * interface. If they do, ether_ifattach() will cause
1265 		 * the BPF code to try and clear the promisc mode
1266 		 * flag, which will bubble down to re_ioctl(),
1267 		 * which will try to call re_init() again. This will
1268 		 * turn the NIC back on and restart the MII ticker,
1269 		 * which will panic the system when the kernel tries
1270 		 * to invoke the re_tick() function that isn't there
1271 		 * anymore.
1272 		 */
1273 		ifp->if_flags &= ~IFF_UP;
1274 		ether_ifdetach(ifp);
1275 	}
1276 	if (sc->rl_miibus)
1277 		device_delete_child(dev, sc->rl_miibus);
1278 	bus_generic_detach(dev);
1279 
1280 	if (sc->rl_intrhand)
1281 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1282 	if (sc->rl_irq)
1283 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1284 	if (sc->rl_res)
1285 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1286 
1287 
1288 	/* Unload and free the RX DMA ring memory and map */
1289 
1290 	if (sc->rl_ldata.rl_rx_list_tag) {
1291 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1292 		    sc->rl_ldata.rl_rx_list_map);
1293 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1294 		    sc->rl_ldata.rl_rx_list,
1295 		    sc->rl_ldata.rl_rx_list_map);
1296 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1297 	}
1298 
1299 	/* Unload and free the TX DMA ring memory and map */
1300 
1301 	if (sc->rl_ldata.rl_tx_list_tag) {
1302 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1303 		    sc->rl_ldata.rl_tx_list_map);
1304 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1305 		    sc->rl_ldata.rl_tx_list,
1306 		    sc->rl_ldata.rl_tx_list_map);
1307 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1308 	}
1309 
1310 	/* Destroy all the RX and TX buffer maps */
1311 
1312 	if (sc->rl_ldata.rl_mtag) {
1313 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1314 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1315 			    sc->rl_ldata.rl_tx_dmamap[i]);
1316 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1317 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1318 			    sc->rl_ldata.rl_rx_dmamap[i]);
1319 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1320 	}
1321 
1322 	/* Unload and free the stats buffer and map */
1323 
1324 	if (sc->rl_ldata.rl_stag) {
1325 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1326 		    sc->rl_ldata.rl_rx_list_map);
1327 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1328 		    sc->rl_ldata.rl_stats,
1329 		    sc->rl_ldata.rl_smap);
1330 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1331 	}
1332 
1333 	if (sc->rl_parent_tag)
1334 		bus_dma_tag_destroy(sc->rl_parent_tag);
1335 
1336 	RL_UNLOCK(sc);
1337 	mtx_destroy(&sc->rl_mtx);
1338 
1339 	return (0);
1340 }
1341 
1342 static int
1343 re_newbuf(sc, idx, m)
1344 	struct rl_softc		*sc;
1345 	int			idx;
1346 	struct mbuf		*m;
1347 {
1348 	struct rl_dmaload_arg	arg;
1349 	struct mbuf		*n = NULL;
1350 	int			error;
1351 
1352 	if (m == NULL) {
1353 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1354 		if (n == NULL)
1355 			return (ENOBUFS);
1356 		m = n;
1357 	} else
1358 		m->m_data = m->m_ext.ext_buf;
1359 
1360 	/*
1361 	 * Initialize mbuf length fields and fixup
1362 	 * alignment so that the frame payload is
1363 	 * longword aligned.
1364 	 */
1365 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1366 	m_adj(m, ETHER_ALIGN);
1367 
1368 	arg.sc = sc;
1369 	arg.rl_idx = idx;
1370 	arg.rl_maxsegs = 1;
1371 	arg.rl_flags = 0;
1372 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1373 
1374 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1375 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1376 	    &arg, BUS_DMA_NOWAIT);
1377 	if (error || arg.rl_maxsegs != 1) {
1378 		if (n != NULL)
1379 			m_freem(n);
1380 		return (ENOMEM);
1381 	}
1382 
1383 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1384 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1385 
1386 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1387 	    sc->rl_ldata.rl_rx_dmamap[idx],
1388 	    BUS_DMASYNC_PREREAD);
1389 
1390 	return (0);
1391 }
1392 
1393 static int
1394 re_tx_list_init(sc)
1395 	struct rl_softc		*sc;
1396 {
1397 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1398 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1399 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1400 
1401 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1402 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1403 	sc->rl_ldata.rl_tx_prodidx = 0;
1404 	sc->rl_ldata.rl_tx_considx = 0;
1405 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1406 
1407 	return (0);
1408 }
1409 
1410 static int
1411 re_rx_list_init(sc)
1412 	struct rl_softc		*sc;
1413 {
1414 	int			i;
1415 
1416 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1417 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1418 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1419 
1420 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1421 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1422 			return (ENOBUFS);
1423 	}
1424 
1425 	/* Flush the RX descriptors */
1426 
1427 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1428 	    sc->rl_ldata.rl_rx_list_map,
1429 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1430 
1431 	sc->rl_ldata.rl_rx_prodidx = 0;
1432 	sc->rl_head = sc->rl_tail = NULL;
1433 
1434 	return (0);
1435 }
1436 
1437 /*
1438  * RX handler for C+ and 8169. For the gigE chips, we support
1439  * the reception of jumbo frames that have been fragmented
1440  * across multiple 2K mbuf cluster buffers.
1441  */
1442 static void
1443 re_rxeof(sc)
1444 	struct rl_softc		*sc;
1445 {
1446 	struct mbuf		*m;
1447 	struct ifnet		*ifp;
1448 	int			i, total_len;
1449 	struct rl_desc		*cur_rx;
1450 	u_int32_t		rxstat, rxvlan;
1451 
1452 	RL_LOCK_ASSERT(sc);
1453 
1454 	ifp = &sc->arpcom.ac_if;
1455 	i = sc->rl_ldata.rl_rx_prodidx;
1456 
1457 	/* Invalidate the descriptor memory */
1458 
1459 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1460 	    sc->rl_ldata.rl_rx_list_map,
1461 	    BUS_DMASYNC_POSTREAD);
1462 
1463 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1464 
1465 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1466 		m = sc->rl_ldata.rl_rx_mbuf[i];
1467 		total_len = RL_RXBYTES(cur_rx);
1468 		rxstat = le32toh(cur_rx->rl_cmdstat);
1469 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1470 
1471 		/* Invalidate the RX mbuf and unload its map */
1472 
1473 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1474 		    sc->rl_ldata.rl_rx_dmamap[i],
1475 		    BUS_DMASYNC_POSTWRITE);
1476 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1477 		    sc->rl_ldata.rl_rx_dmamap[i]);
1478 
1479 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1480 			m->m_len = MCLBYTES - ETHER_ALIGN;
1481 			if (sc->rl_head == NULL)
1482 				sc->rl_head = sc->rl_tail = m;
1483 			else {
1484 				m->m_flags &= ~M_PKTHDR;
1485 				sc->rl_tail->m_next = m;
1486 				sc->rl_tail = m;
1487 			}
1488 			re_newbuf(sc, i, NULL);
1489 			RL_DESC_INC(i);
1490 			continue;
1491 		}
1492 
1493 		/*
1494 		 * NOTE: for the 8139C+, the frame length field
1495 		 * is always 12 bits in size, but for the gigE chips,
1496 		 * it is 13 bits (since the max RX frame length is 16K).
1497 		 * Unfortunately, all 32 bits in the status word
1498 		 * were already used, so to make room for the extra
1499 		 * length bit, RealTek took out the 'frame alignment
1500 		 * error' bit and shifted the other status bits
1501 		 * over one slot. The OWN, EOR, FS and LS bits are
1502 		 * still in the same places. We have already extracted
1503 		 * the frame length and checked the OWN bit, so rather
1504 		 * than using an alternate bit mapping, we shift the
1505 		 * status bits one space to the right so we can evaluate
1506 		 * them using the 8169 status as though it was in the
1507 		 * same format as that of the 8139C+.
1508 		 */
1509 		if (sc->rl_type == RL_8169)
1510 			rxstat >>= 1;
1511 
1512 		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1513 			ifp->if_ierrors++;
1514 			/*
1515 			 * If this is part of a multi-fragment packet,
1516 			 * discard all the pieces.
1517 			 */
1518 			if (sc->rl_head != NULL) {
1519 				m_freem(sc->rl_head);
1520 				sc->rl_head = sc->rl_tail = NULL;
1521 			}
1522 			re_newbuf(sc, i, m);
1523 			RL_DESC_INC(i);
1524 			continue;
1525 		}
1526 
1527 		/*
1528 		 * If allocating a replacement mbuf fails,
1529 		 * reload the current one.
1530 		 */
1531 
1532 		if (re_newbuf(sc, i, NULL)) {
1533 			ifp->if_ierrors++;
1534 			if (sc->rl_head != NULL) {
1535 				m_freem(sc->rl_head);
1536 				sc->rl_head = sc->rl_tail = NULL;
1537 			}
1538 			re_newbuf(sc, i, m);
1539 			RL_DESC_INC(i);
1540 			continue;
1541 		}
1542 
1543 		RL_DESC_INC(i);
1544 
1545 		if (sc->rl_head != NULL) {
1546 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1547 			/*
1548 			 * Special case: if there's 4 bytes or less
1549 			 * in this buffer, the mbuf can be discarded:
1550 			 * the last 4 bytes is the CRC, which we don't
1551 			 * care about anyway.
1552 			 */
1553 			if (m->m_len <= ETHER_CRC_LEN) {
1554 				sc->rl_tail->m_len -=
1555 				    (ETHER_CRC_LEN - m->m_len);
1556 				m_freem(m);
1557 			} else {
1558 				m->m_len -= ETHER_CRC_LEN;
1559 				m->m_flags &= ~M_PKTHDR;
1560 				sc->rl_tail->m_next = m;
1561 			}
1562 			m = sc->rl_head;
1563 			sc->rl_head = sc->rl_tail = NULL;
1564 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1565 		} else
1566 			m->m_pkthdr.len = m->m_len =
1567 			    (total_len - ETHER_CRC_LEN);
1568 
1569 		ifp->if_ipackets++;
1570 		m->m_pkthdr.rcvif = ifp;
1571 
1572 		/* Do RX checksumming if enabled */
1573 
1574 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1575 
1576 			/* Check IP header checksum */
1577 			if (rxstat & RL_RDESC_STAT_PROTOID)
1578 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1579 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1580 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1581 
1582 			/* Check TCP/UDP checksum */
1583 			if ((RL_TCPPKT(rxstat) &&
1584 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1585 			    (RL_UDPPKT(rxstat) &&
1586 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1587 				m->m_pkthdr.csum_flags |=
1588 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1589 				m->m_pkthdr.csum_data = 0xffff;
1590 			}
1591 		}
1592 
1593 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1594 			VLAN_INPUT_TAG(ifp, m,
1595 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1596 		RL_UNLOCK(sc);
1597 		(*ifp->if_input)(ifp, m);
1598 		RL_LOCK(sc);
1599 	}
1600 
1601 	/* Flush the RX DMA ring */
1602 
1603 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1604 	    sc->rl_ldata.rl_rx_list_map,
1605 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1606 
1607 	sc->rl_ldata.rl_rx_prodidx = i;
1608 }
1609 
1610 static void
1611 re_txeof(sc)
1612 	struct rl_softc		*sc;
1613 {
1614 	struct ifnet		*ifp;
1615 	u_int32_t		txstat;
1616 	int			idx;
1617 
1618 	ifp = &sc->arpcom.ac_if;
1619 	idx = sc->rl_ldata.rl_tx_considx;
1620 
1621 	/* Invalidate the TX descriptor list */
1622 
1623 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1624 	    sc->rl_ldata.rl_tx_list_map,
1625 	    BUS_DMASYNC_POSTREAD);
1626 
1627 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1628 
1629 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1630 		if (txstat & RL_TDESC_CMD_OWN)
1631 			break;
1632 
1633 		/*
1634 		 * We only stash mbufs in the last descriptor
1635 		 * in a fragment chain, which also happens to
1636 		 * be the only place where the TX status bits
1637 		 * are valid.
1638 		 */
1639 
1640 		if (txstat & RL_TDESC_CMD_EOF) {
1641 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1642 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1643 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1644 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1645 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1646 			    RL_TDESC_STAT_COLCNT))
1647 				ifp->if_collisions++;
1648 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1649 				ifp->if_oerrors++;
1650 			else
1651 				ifp->if_opackets++;
1652 		}
1653 		sc->rl_ldata.rl_tx_free++;
1654 		RL_DESC_INC(idx);
1655 	}
1656 
1657 	/* No changes made to the TX ring, so no flush needed */
1658 
1659 	if (idx != sc->rl_ldata.rl_tx_considx) {
1660 		sc->rl_ldata.rl_tx_considx = idx;
1661 		ifp->if_flags &= ~IFF_OACTIVE;
1662 		ifp->if_timer = 0;
1663 	}
1664 
1665 	/*
1666 	 * If not all descriptors have been released reaped yet,
1667 	 * reload the timer so that we will eventually get another
1668 	 * interrupt that will cause us to re-enter this routine.
1669 	 * This is done in case the transmitter has gone idle.
1670 	 */
1671 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1672 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1673 }
1674 
1675 static void
1676 re_tick(xsc)
1677 	void			*xsc;
1678 {
1679 	struct rl_softc		*sc;
1680 	struct mii_data		*mii;
1681 
1682 	sc = xsc;
1683 	RL_LOCK(sc);
1684 	mii = device_get_softc(sc->rl_miibus);
1685 
1686 	mii_tick(mii);
1687 
1688 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1689 	RL_UNLOCK(sc);
1690 }
1691 
1692 #ifdef DEVICE_POLLING
1693 static void
1694 re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1695 {
1696 	struct rl_softc *sc = ifp->if_softc;
1697 
1698 	RL_LOCK(sc);
1699 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1700 		ether_poll_deregister(ifp);
1701 		cmd = POLL_DEREGISTER;
1702 	}
1703 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1704 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1705 		goto done;
1706 	}
1707 
1708 	sc->rxcycles = count;
1709 	re_rxeof(sc);
1710 	re_txeof(sc);
1711 
1712 	if (ifp->if_snd.ifq_head != NULL)
1713 		(*ifp->if_start)(ifp);
1714 
1715 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1716 		u_int16_t       status;
1717 
1718 		status = CSR_READ_2(sc, RL_ISR);
1719 		if (status == 0xffff)
1720 			goto done;
1721 		if (status)
1722 			CSR_WRITE_2(sc, RL_ISR, status);
1723 
1724 		/*
1725 		 * XXX check behaviour on receiver stalls.
1726 		 */
1727 
1728 		if (status & RL_ISR_SYSTEM_ERR) {
1729 			re_reset(sc);
1730 			re_init(sc);
1731 		}
1732 	}
1733 done:
1734 	RL_UNLOCK(sc);
1735 }
1736 #endif /* DEVICE_POLLING */
1737 
1738 static void
1739 re_intr(arg)
1740 	void			*arg;
1741 {
1742 	struct rl_softc		*sc;
1743 	struct ifnet		*ifp;
1744 	u_int16_t		status;
1745 
1746 	sc = arg;
1747 
1748 	if (sc->suspended) {
1749 		return;
1750 	}
1751 
1752 	RL_LOCK(sc);
1753 	ifp = &sc->arpcom.ac_if;
1754 
1755 	if (!(ifp->if_flags & IFF_UP)) {
1756 		RL_UNLOCK(sc);
1757 		return;
1758 	}
1759 
1760 #ifdef DEVICE_POLLING
1761 	if  (ifp->if_flags & IFF_POLLING)
1762 		goto done;
1763 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1764 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1765 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1766 		re_poll(ifp, 0, 1);
1767 		goto done;
1768 	}
1769 #endif /* DEVICE_POLLING */
1770 
1771 	for (;;) {
1772 
1773 		status = CSR_READ_2(sc, RL_ISR);
1774 		/* If the card has gone away the read returns 0xffff. */
1775 		if (status == 0xffff)
1776 			break;
1777 		if (status)
1778 			CSR_WRITE_2(sc, RL_ISR, status);
1779 
1780 		if ((status & RL_INTRS_CPLUS) == 0)
1781 			break;
1782 
1783 		if (status & RL_ISR_RX_OK)
1784 			re_rxeof(sc);
1785 
1786 		if (status & RL_ISR_RX_ERR)
1787 			re_rxeof(sc);
1788 
1789 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1790 		    (status & RL_ISR_TX_ERR) ||
1791 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1792 			re_txeof(sc);
1793 
1794 		if (status & RL_ISR_SYSTEM_ERR) {
1795 			re_reset(sc);
1796 			re_init(sc);
1797 		}
1798 
1799 		if (status & RL_ISR_LINKCHG) {
1800 			untimeout(re_tick, sc, sc->rl_stat_ch);
1801 			re_tick(sc);
1802 		}
1803 	}
1804 
1805 	if (ifp->if_snd.ifq_head != NULL)
1806 		(*ifp->if_start)(ifp);
1807 
1808 #ifdef DEVICE_POLLING
1809 done:
1810 #endif
1811 	RL_UNLOCK(sc);
1812 }
1813 
1814 static int
1815 re_encap(sc, m_head, idx)
1816 	struct rl_softc		*sc;
1817 	struct mbuf		*m_head;
1818 	int			*idx;
1819 {
1820 	struct mbuf		*m_new = NULL;
1821 	struct rl_dmaload_arg	arg;
1822 	bus_dmamap_t		map;
1823 	int			error;
1824 	struct m_tag		*mtag;
1825 
1826 	if (sc->rl_ldata.rl_tx_free <= 4)
1827 		return (EFBIG);
1828 
1829 	/*
1830 	 * Set up checksum offload. Note: checksum offload bits must
1831 	 * appear in all descriptors of a multi-descriptor transmit
1832 	 * attempt. (This is according to testing done with an 8169
1833 	 * chip. I'm not sure if this is a requirement or a bug.)
1834 	 */
1835 
1836 	arg.rl_flags = 0;
1837 
1838 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1839 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1840 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1841 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1842 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1843 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1844 
1845 	arg.sc = sc;
1846 	arg.rl_idx = *idx;
1847 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1848 	if (arg.rl_maxsegs > 4)
1849 		arg.rl_maxsegs -= 4;
1850 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1851 
1852 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1853 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1854 	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1855 
1856 	if (error && error != EFBIG) {
1857 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1858 		return (ENOBUFS);
1859 	}
1860 
1861 	/* Too many segments to map, coalesce into a single mbuf */
1862 
1863 	if (error || arg.rl_maxsegs == 0) {
1864 		m_new = m_defrag(m_head, M_DONTWAIT);
1865 		if (m_new == NULL)
1866 			return (1);
1867 		else
1868 			m_head = m_new;
1869 
1870 		arg.sc = sc;
1871 		arg.rl_idx = *idx;
1872 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1873 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1874 
1875 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1876 		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1877 		if (error) {
1878 			printf("re%d: can't map mbuf (error %d)\n",
1879 			    sc->rl_unit, error);
1880 			return (EFBIG);
1881 		}
1882 	}
1883 
1884 	/*
1885 	 * Insure that the map for this transmission
1886 	 * is placed at the array index of the last descriptor
1887 	 * in this chain.
1888 	 */
1889 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1890 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1891 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1892 
1893 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1894 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1895 
1896 	/*
1897 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1898 	 * appear in the first descriptor of a multi-descriptor
1899 	 * transmission attempt.
1900 	 */
1901 
1902 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1903 	if (mtag != NULL)
1904 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1905 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1906 
1907 	/* Transfer ownership of packet to the chip. */
1908 
1909 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1910 	    htole32(RL_TDESC_CMD_OWN);
1911 	if (*idx != arg.rl_idx)
1912 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1913 		    htole32(RL_TDESC_CMD_OWN);
1914 
1915 	RL_DESC_INC(arg.rl_idx);
1916 	*idx = arg.rl_idx;
1917 
1918 	return (0);
1919 }
1920 
1921 /*
1922  * Main transmit routine for C+ and gigE NICs.
1923  */
1924 
1925 static void
1926 re_start(ifp)
1927 	struct ifnet		*ifp;
1928 {
1929 	struct rl_softc		*sc;
1930 	struct mbuf		*m_head = NULL;
1931 	int			idx;
1932 
1933 	sc = ifp->if_softc;
1934 	RL_LOCK(sc);
1935 
1936 	idx = sc->rl_ldata.rl_tx_prodidx;
1937 
1938 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
1939 		IF_DEQUEUE(&ifp->if_snd, m_head);
1940 		if (m_head == NULL)
1941 			break;
1942 
1943 		if (re_encap(sc, m_head, &idx)) {
1944 			IF_PREPEND(&ifp->if_snd, m_head);
1945 			ifp->if_flags |= IFF_OACTIVE;
1946 			break;
1947 		}
1948 
1949 		/*
1950 		 * If there's a BPF listener, bounce a copy of this frame
1951 		 * to him.
1952 		 */
1953 		BPF_MTAP(ifp, m_head);
1954 	}
1955 
1956 	/* Flush the TX descriptors */
1957 
1958 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1959 	    sc->rl_ldata.rl_tx_list_map,
1960 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1961 
1962 	sc->rl_ldata.rl_tx_prodidx = idx;
1963 
1964 	/*
1965 	 * RealTek put the TX poll request register in a different
1966 	 * location on the 8169 gigE chip. I don't know why.
1967 	 */
1968 
1969 	if (sc->rl_type == RL_8169)
1970 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
1971 	else
1972 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
1973 
1974 	/*
1975 	 * Use the countdown timer for interrupt moderation.
1976 	 * 'TX done' interrupts are disabled. Instead, we reset the
1977 	 * countdown timer, which will begin counting until it hits
1978 	 * the value in the TIMERINT register, and then trigger an
1979 	 * interrupt. Each time we write to the TIMERCNT register,
1980 	 * the timer count is reset to 0.
1981 	 */
1982 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1983 
1984 	RL_UNLOCK(sc);
1985 
1986 	/*
1987 	 * Set a timeout in case the chip goes out to lunch.
1988 	 */
1989 	ifp->if_timer = 5;
1990 }
1991 
1992 static void
1993 re_init(xsc)
1994 	void			*xsc;
1995 {
1996 	struct rl_softc		*sc = xsc;
1997 	struct ifnet		*ifp = &sc->arpcom.ac_if;
1998 	struct mii_data		*mii;
1999 	u_int32_t		rxcfg = 0;
2000 
2001 	RL_LOCK(sc);
2002 	mii = device_get_softc(sc->rl_miibus);
2003 
2004 	/*
2005 	 * Cancel pending I/O and free all RX/TX buffers.
2006 	 */
2007 	re_stop(sc);
2008 
2009 	/*
2010 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2011 	 * RX checksum offload. We must configure the C+ register
2012 	 * before all others.
2013 	 */
2014 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2015 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2016 	    RL_CPLUSCMD_VLANSTRIP|
2017 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2018 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2019 
2020 	/*
2021 	 * Init our MAC address.  Even though the chipset
2022 	 * documentation doesn't mention it, we need to enter "Config
2023 	 * register write enable" mode to modify the ID registers.
2024 	 */
2025 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2026 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2027 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2028 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2029 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2030 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2031 
2032 	/*
2033 	 * For C+ mode, initialize the RX descriptors and mbufs.
2034 	 */
2035 	re_rx_list_init(sc);
2036 	re_tx_list_init(sc);
2037 
2038 	/*
2039 	 * Enable transmit and receive.
2040 	 */
2041 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2042 
2043 	/*
2044 	 * Set the initial TX and RX configuration.
2045 	 */
2046 	if (sc->rl_testmode) {
2047 		if (sc->rl_type == RL_8169)
2048 			CSR_WRITE_4(sc, RL_TXCFG,
2049 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2050 		else
2051 			CSR_WRITE_4(sc, RL_TXCFG,
2052 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2053 	} else
2054 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2055 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2056 
2057 	/* Set the individual bit to receive frames for this host only. */
2058 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2059 	rxcfg |= RL_RXCFG_RX_INDIV;
2060 
2061 	/* If we want promiscuous mode, set the allframes bit. */
2062 	if (ifp->if_flags & IFF_PROMISC) {
2063 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2064 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2065 	} else {
2066 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2067 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2068 	}
2069 
2070 	/*
2071 	 * Set capture broadcast bit to capture broadcast frames.
2072 	 */
2073 	if (ifp->if_flags & IFF_BROADCAST) {
2074 		rxcfg |= RL_RXCFG_RX_BROAD;
2075 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2076 	} else {
2077 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2078 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2079 	}
2080 
2081 	/*
2082 	 * Program the multicast filter, if necessary.
2083 	 */
2084 	re_setmulti(sc);
2085 
2086 #ifdef DEVICE_POLLING
2087 	/*
2088 	 * Disable interrupts if we are polling.
2089 	 */
2090 	if (ifp->if_flags & IFF_POLLING)
2091 		CSR_WRITE_2(sc, RL_IMR, 0);
2092 	else	/* otherwise ... */
2093 #endif /* DEVICE_POLLING */
2094 	/*
2095 	 * Enable interrupts.
2096 	 */
2097 	if (sc->rl_testmode)
2098 		CSR_WRITE_2(sc, RL_IMR, 0);
2099 	else
2100 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2101 
2102 	/* Set initial TX threshold */
2103 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2104 
2105 	/* Start RX/TX process. */
2106 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2107 #ifdef notdef
2108 	/* Enable receiver and transmitter. */
2109 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2110 #endif
2111 	/*
2112 	 * Load the addresses of the RX and TX lists into the chip.
2113 	 */
2114 
2115 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2116 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2117 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2118 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2119 
2120 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2121 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2122 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2123 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2124 
2125 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2126 
2127 	/*
2128 	 * Initialize the timer interrupt register so that
2129 	 * a timer interrupt will be generated once the timer
2130 	 * reaches a certain number of ticks. The timer is
2131 	 * reloaded on each transmit. This gives us TX interrupt
2132 	 * moderation, which dramatically improves TX frame rate.
2133 	 */
2134 
2135 	if (sc->rl_type == RL_8169)
2136 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2137 	else
2138 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2139 
2140 	/*
2141 	 * For 8169 gigE NICs, set the max allowed RX packet
2142 	 * size so we can receive jumbo frames.
2143 	 */
2144 	if (sc->rl_type == RL_8169)
2145 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2146 
2147 	if (sc->rl_testmode) {
2148 		RL_UNLOCK(sc);
2149 		return;
2150 	}
2151 
2152 	mii_mediachg(mii);
2153 
2154 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2155 
2156 	ifp->if_flags |= IFF_RUNNING;
2157 	ifp->if_flags &= ~IFF_OACTIVE;
2158 
2159 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2160 	RL_UNLOCK(sc);
2161 }
2162 
2163 /*
2164  * Set media options.
2165  */
2166 static int
2167 re_ifmedia_upd(ifp)
2168 	struct ifnet		*ifp;
2169 {
2170 	struct rl_softc		*sc;
2171 	struct mii_data		*mii;
2172 
2173 	sc = ifp->if_softc;
2174 	mii = device_get_softc(sc->rl_miibus);
2175 	mii_mediachg(mii);
2176 
2177 	return (0);
2178 }
2179 
2180 /*
2181  * Report current media status.
2182  */
2183 static void
2184 re_ifmedia_sts(ifp, ifmr)
2185 	struct ifnet		*ifp;
2186 	struct ifmediareq	*ifmr;
2187 {
2188 	struct rl_softc		*sc;
2189 	struct mii_data		*mii;
2190 
2191 	sc = ifp->if_softc;
2192 	mii = device_get_softc(sc->rl_miibus);
2193 
2194 	mii_pollstat(mii);
2195 	ifmr->ifm_active = mii->mii_media_active;
2196 	ifmr->ifm_status = mii->mii_media_status;
2197 }
2198 
2199 static int
2200 re_ioctl(ifp, command, data)
2201 	struct ifnet		*ifp;
2202 	u_long			command;
2203 	caddr_t			data;
2204 {
2205 	struct rl_softc		*sc = ifp->if_softc;
2206 	struct ifreq		*ifr = (struct ifreq *) data;
2207 	struct mii_data		*mii;
2208 	int			error = 0;
2209 
2210 	RL_LOCK(sc);
2211 
2212 	switch (command) {
2213 	case SIOCSIFMTU:
2214 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2215 			error = EINVAL;
2216 		ifp->if_mtu = ifr->ifr_mtu;
2217 		break;
2218 	case SIOCSIFFLAGS:
2219 		if (ifp->if_flags & IFF_UP) {
2220 			re_init(sc);
2221 		} else {
2222 			if (ifp->if_flags & IFF_RUNNING)
2223 				re_stop(sc);
2224 		}
2225 		error = 0;
2226 		break;
2227 	case SIOCADDMULTI:
2228 	case SIOCDELMULTI:
2229 		re_setmulti(sc);
2230 		error = 0;
2231 		break;
2232 	case SIOCGIFMEDIA:
2233 	case SIOCSIFMEDIA:
2234 		mii = device_get_softc(sc->rl_miibus);
2235 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2236 		break;
2237 	case SIOCSIFCAP:
2238 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2239 		ifp->if_capenable |=
2240 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2241 		if (ifp->if_capenable & IFCAP_TXCSUM)
2242 			ifp->if_hwassist = RE_CSUM_FEATURES;
2243 		else
2244 			ifp->if_hwassist = 0;
2245 		if (ifp->if_flags & IFF_RUNNING)
2246 			re_init(sc);
2247 		break;
2248 	default:
2249 		error = ether_ioctl(ifp, command, data);
2250 		break;
2251 	}
2252 
2253 	RL_UNLOCK(sc);
2254 
2255 	return (error);
2256 }
2257 
2258 static void
2259 re_watchdog(ifp)
2260 	struct ifnet		*ifp;
2261 {
2262 	struct rl_softc		*sc;
2263 
2264 	sc = ifp->if_softc;
2265 	RL_LOCK(sc);
2266 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2267 	ifp->if_oerrors++;
2268 
2269 	re_txeof(sc);
2270 	re_rxeof(sc);
2271 
2272 	re_init(sc);
2273 
2274 	RL_UNLOCK(sc);
2275 }
2276 
2277 /*
2278  * Stop the adapter and free any mbufs allocated to the
2279  * RX and TX lists.
2280  */
2281 static void
2282 re_stop(sc)
2283 	struct rl_softc		*sc;
2284 {
2285 	register int		i;
2286 	struct ifnet		*ifp;
2287 
2288 	RL_LOCK(sc);
2289 	ifp = &sc->arpcom.ac_if;
2290 	ifp->if_timer = 0;
2291 
2292 	untimeout(re_tick, sc, sc->rl_stat_ch);
2293 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2294 #ifdef DEVICE_POLLING
2295 	ether_poll_deregister(ifp);
2296 #endif /* DEVICE_POLLING */
2297 
2298 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2299 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2300 
2301 	if (sc->rl_head != NULL) {
2302 		m_freem(sc->rl_head);
2303 		sc->rl_head = sc->rl_tail = NULL;
2304 	}
2305 
2306 	/* Free the TX list buffers. */
2307 
2308 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2309 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2310 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2311 			    sc->rl_ldata.rl_tx_dmamap[i]);
2312 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2313 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2314 		}
2315 	}
2316 
2317 	/* Free the RX list buffers. */
2318 
2319 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2320 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2321 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2322 			    sc->rl_ldata.rl_rx_dmamap[i]);
2323 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2324 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2325 		}
2326 	}
2327 
2328 	RL_UNLOCK(sc);
2329 }
2330 
2331 /*
2332  * Device suspend routine.  Stop the interface and save some PCI
2333  * settings in case the BIOS doesn't restore them properly on
2334  * resume.
2335  */
2336 static int
2337 re_suspend(dev)
2338 	device_t		dev;
2339 {
2340 	struct rl_softc		*sc;
2341 
2342 	sc = device_get_softc(dev);
2343 
2344 	re_stop(sc);
2345 	sc->suspended = 1;
2346 
2347 	return (0);
2348 }
2349 
2350 /*
2351  * Device resume routine.  Restore some PCI settings in case the BIOS
2352  * doesn't, re-enable busmastering, and restart the interface if
2353  * appropriate.
2354  */
2355 static int
2356 re_resume(dev)
2357 	device_t		dev;
2358 {
2359 	struct rl_softc		*sc;
2360 	struct ifnet		*ifp;
2361 
2362 	sc = device_get_softc(dev);
2363 	ifp = &sc->arpcom.ac_if;
2364 
2365 	/* reinitialize interface if necessary */
2366 	if (ifp->if_flags & IFF_UP)
2367 		re_init(sc);
2368 
2369 	sc->suspended = 0;
2370 
2371 	return (0);
2372 }
2373 
2374 /*
2375  * Stop all chip I/O so that the kernel's probe routines don't
2376  * get confused by errant DMAs when rebooting.
2377  */
2378 static void
2379 re_shutdown(dev)
2380 	device_t		dev;
2381 {
2382 	struct rl_softc		*sc;
2383 
2384 	sc = device_get_softc(dev);
2385 
2386 	re_stop(sc);
2387 }
2388