xref: /freebsd/sys/dev/re/if_re.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/module.h>
118 #include <sys/kernel.h>
119 #include <sys/socket.h>
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/ethernet.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_vlan_var.h>
127 
128 #include <net/bpf.h>
129 
130 #include <machine/bus_pio.h>
131 #include <machine/bus_memio.h>
132 #include <machine/bus.h>
133 #include <machine/resource.h>
134 #include <sys/bus.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 MODULE_DEPEND(re, pci, 1, 1, 1);
144 MODULE_DEPEND(re, ether, 1, 1, 1);
145 MODULE_DEPEND(re, miibus, 1, 1, 1);
146 
147 /* "controller miibus0" required.  See GENERIC if you get errors here. */
148 #include "miibus_if.h"
149 
150 /*
151  * Default to using PIO access for this driver.
152  */
153 #define RE_USEIOSPACE
154 
155 #include <pci/if_rlreg.h>
156 
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158 
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static struct rl_type re_devs[] = {
163 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
164 		"RealTek 8139C+ 10/100BaseTX" },
165 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
166 		"RealTek 8169 Gigabit Ethernet" },
167 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
168 		"RealTek 8169S Single-chip Gigabit Ethernet" },
169 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB,
170 		"RealTek 8169SB Single-chip Gigabit Ethernet" },
171 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
172 		"RealTek 8110S Single-chip Gigabit Ethernet" },
173 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
174 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
175 	{ 0, 0, 0, NULL }
176 };
177 
178 static struct rl_hwrev re_hwrevs[] = {
179 	{ RL_HWREV_8139, RL_8139,  "" },
180 	{ RL_HWREV_8139A, RL_8139, "A" },
181 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
182 	{ RL_HWREV_8139B, RL_8139, "B" },
183 	{ RL_HWREV_8130, RL_8139, "8130" },
184 	{ RL_HWREV_8139C, RL_8139, "C" },
185 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
186 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
187 	{ RL_HWREV_8169, RL_8169, "8169"},
188 	{ RL_HWREV_8169S, RL_8169, "8169S"},
189 	{ RL_HWREV_8169SB, RL_8169, "8169SB"},
190 	{ RL_HWREV_8110S, RL_8169, "8110S"},
191 	{ RL_HWREV_8100, RL_8139, "8100"},
192 	{ RL_HWREV_8101, RL_8139, "8101"},
193 	{ 0, 0, NULL }
194 };
195 
196 static int re_probe		(device_t);
197 static int re_attach		(device_t);
198 static int re_detach		(device_t);
199 
200 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
201 
202 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
203 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
204 				    bus_size_t, int);
205 static int re_allocmem		(device_t, struct rl_softc *);
206 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
207 static int re_rx_list_init	(struct rl_softc *);
208 static int re_tx_list_init	(struct rl_softc *);
209 #ifdef RE_FIXUP_RX
210 static __inline void re_fixup_rx
211 				(struct mbuf *);
212 #endif
213 static void re_rxeof		(struct rl_softc *);
214 static void re_txeof		(struct rl_softc *);
215 #ifdef DEVICE_POLLING
216 static void re_poll		(struct ifnet *, enum poll_cmd, int);
217 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
218 #endif
219 static void re_intr		(void *);
220 static void re_tick		(void *);
221 static void re_tick_locked	(struct rl_softc *);
222 static void re_start		(struct ifnet *);
223 static void re_start_locked	(struct ifnet *);
224 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
225 static void re_init		(void *);
226 static void re_init_locked	(struct rl_softc *);
227 static void re_stop		(struct rl_softc *);
228 static void re_watchdog		(struct ifnet *);
229 static int re_suspend		(device_t);
230 static int re_resume		(device_t);
231 static void re_shutdown		(device_t);
232 static int re_ifmedia_upd	(struct ifnet *);
233 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
234 
235 static void re_eeprom_putbyte	(struct rl_softc *, int);
236 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
237 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
238 static int re_gmii_readreg	(device_t, int, int);
239 static int re_gmii_writereg	(device_t, int, int, int);
240 
241 static int re_miibus_readreg	(device_t, int, int);
242 static int re_miibus_writereg	(device_t, int, int, int);
243 static void re_miibus_statchg	(device_t);
244 
245 static void re_setmulti		(struct rl_softc *);
246 static void re_reset		(struct rl_softc *);
247 
248 static int re_diag		(struct rl_softc *);
249 
250 #ifdef RE_USEIOSPACE
251 #define RL_RES			SYS_RES_IOPORT
252 #define RL_RID			RL_PCI_LOIO
253 #else
254 #define RL_RES			SYS_RES_MEMORY
255 #define RL_RID			RL_PCI_LOMEM
256 #endif
257 
258 static device_method_t re_methods[] = {
259 	/* Device interface */
260 	DEVMETHOD(device_probe,		re_probe),
261 	DEVMETHOD(device_attach,	re_attach),
262 	DEVMETHOD(device_detach,	re_detach),
263 	DEVMETHOD(device_suspend,	re_suspend),
264 	DEVMETHOD(device_resume,	re_resume),
265 	DEVMETHOD(device_shutdown,	re_shutdown),
266 
267 	/* bus interface */
268 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
269 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
270 
271 	/* MII interface */
272 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
273 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
274 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
275 
276 	{ 0, 0 }
277 };
278 
279 static driver_t re_driver = {
280 	"re",
281 	re_methods,
282 	sizeof(struct rl_softc)
283 };
284 
285 static devclass_t re_devclass;
286 
287 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
288 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
289 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
290 
291 #define EE_SET(x)					\
292 	CSR_WRITE_1(sc, RL_EECMD,			\
293 		CSR_READ_1(sc, RL_EECMD) | x)
294 
295 #define EE_CLR(x)					\
296 	CSR_WRITE_1(sc, RL_EECMD,			\
297 		CSR_READ_1(sc, RL_EECMD) & ~x)
298 
299 /*
300  * Send a read command and address to the EEPROM, check for ACK.
301  */
302 static void
303 re_eeprom_putbyte(sc, addr)
304 	struct rl_softc		*sc;
305 	int			addr;
306 {
307 	register int		d, i;
308 
309 	d = addr | sc->rl_eecmd_read;
310 
311 	/*
312 	 * Feed in each bit and strobe the clock.
313 	 */
314 	for (i = 0x400; i; i >>= 1) {
315 		if (d & i) {
316 			EE_SET(RL_EE_DATAIN);
317 		} else {
318 			EE_CLR(RL_EE_DATAIN);
319 		}
320 		DELAY(100);
321 		EE_SET(RL_EE_CLK);
322 		DELAY(150);
323 		EE_CLR(RL_EE_CLK);
324 		DELAY(100);
325 	}
326 }
327 
328 /*
329  * Read a word of data stored in the EEPROM at address 'addr.'
330  */
331 static void
332 re_eeprom_getword(sc, addr, dest)
333 	struct rl_softc		*sc;
334 	int			addr;
335 	u_int16_t		*dest;
336 {
337 	register int		i;
338 	u_int16_t		word = 0;
339 
340 	/* Enter EEPROM access mode. */
341 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
342 
343 	/*
344 	 * Send address of word we want to read.
345 	 */
346 	re_eeprom_putbyte(sc, addr);
347 
348 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
349 
350 	/*
351 	 * Start reading bits from EEPROM.
352 	 */
353 	for (i = 0x8000; i; i >>= 1) {
354 		EE_SET(RL_EE_CLK);
355 		DELAY(100);
356 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
357 			word |= i;
358 		EE_CLR(RL_EE_CLK);
359 		DELAY(100);
360 	}
361 
362 	/* Turn off EEPROM access mode. */
363 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
364 
365 	*dest = word;
366 }
367 
368 /*
369  * Read a sequence of words from the EEPROM.
370  */
371 static void
372 re_read_eeprom(sc, dest, off, cnt, swap)
373 	struct rl_softc		*sc;
374 	caddr_t			dest;
375 	int			off;
376 	int			cnt;
377 	int			swap;
378 {
379 	int			i;
380 	u_int16_t		word = 0, *ptr;
381 
382 	for (i = 0; i < cnt; i++) {
383 		re_eeprom_getword(sc, off + i, &word);
384 		ptr = (u_int16_t *)(dest + (i * 2));
385 		if (swap)
386 			*ptr = ntohs(word);
387 		else
388 			*ptr = word;
389 	}
390 }
391 
392 static int
393 re_gmii_readreg(dev, phy, reg)
394 	device_t		dev;
395 	int			phy, reg;
396 {
397 	struct rl_softc		*sc;
398 	u_int32_t		rval;
399 	int			i;
400 
401 	if (phy != 1)
402 		return (0);
403 
404 	sc = device_get_softc(dev);
405 
406 	/* Let the rgephy driver read the GMEDIASTAT register */
407 
408 	if (reg == RL_GMEDIASTAT) {
409 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
410 		return (rval);
411 	}
412 
413 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
414 	DELAY(1000);
415 
416 	for (i = 0; i < RL_TIMEOUT; i++) {
417 		rval = CSR_READ_4(sc, RL_PHYAR);
418 		if (rval & RL_PHYAR_BUSY)
419 			break;
420 		DELAY(100);
421 	}
422 
423 	if (i == RL_TIMEOUT) {
424 		printf ("re%d: PHY read failed\n", sc->rl_unit);
425 		return (0);
426 	}
427 
428 	return (rval & RL_PHYAR_PHYDATA);
429 }
430 
431 static int
432 re_gmii_writereg(dev, phy, reg, data)
433 	device_t		dev;
434 	int			phy, reg, data;
435 {
436 	struct rl_softc		*sc;
437 	u_int32_t		rval;
438 	int			i;
439 
440 	sc = device_get_softc(dev);
441 
442 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
443 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
444 	DELAY(1000);
445 
446 	for (i = 0; i < RL_TIMEOUT; i++) {
447 		rval = CSR_READ_4(sc, RL_PHYAR);
448 		if (!(rval & RL_PHYAR_BUSY))
449 			break;
450 		DELAY(100);
451 	}
452 
453 	if (i == RL_TIMEOUT) {
454 		printf ("re%d: PHY write failed\n", sc->rl_unit);
455 		return (0);
456 	}
457 
458 	return (0);
459 }
460 
461 static int
462 re_miibus_readreg(dev, phy, reg)
463 	device_t		dev;
464 	int			phy, reg;
465 {
466 	struct rl_softc		*sc;
467 	u_int16_t		rval = 0;
468 	u_int16_t		re8139_reg = 0;
469 
470 	sc = device_get_softc(dev);
471 
472 	if (sc->rl_type == RL_8169) {
473 		rval = re_gmii_readreg(dev, phy, reg);
474 		return (rval);
475 	}
476 
477 	/* Pretend the internal PHY is only at address 0 */
478 	if (phy) {
479 		return (0);
480 	}
481 	switch (reg) {
482 	case MII_BMCR:
483 		re8139_reg = RL_BMCR;
484 		break;
485 	case MII_BMSR:
486 		re8139_reg = RL_BMSR;
487 		break;
488 	case MII_ANAR:
489 		re8139_reg = RL_ANAR;
490 		break;
491 	case MII_ANER:
492 		re8139_reg = RL_ANER;
493 		break;
494 	case MII_ANLPAR:
495 		re8139_reg = RL_LPAR;
496 		break;
497 	case MII_PHYIDR1:
498 	case MII_PHYIDR2:
499 		return (0);
500 	/*
501 	 * Allow the rlphy driver to read the media status
502 	 * register. If we have a link partner which does not
503 	 * support NWAY, this is the register which will tell
504 	 * us the results of parallel detection.
505 	 */
506 	case RL_MEDIASTAT:
507 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
508 		return (rval);
509 	default:
510 		printf("re%d: bad phy register\n", sc->rl_unit);
511 		return (0);
512 	}
513 	rval = CSR_READ_2(sc, re8139_reg);
514 	return (rval);
515 }
516 
517 static int
518 re_miibus_writereg(dev, phy, reg, data)
519 	device_t		dev;
520 	int			phy, reg, data;
521 {
522 	struct rl_softc		*sc;
523 	u_int16_t		re8139_reg = 0;
524 	int			rval = 0;
525 
526 	sc = device_get_softc(dev);
527 
528 	if (sc->rl_type == RL_8169) {
529 		rval = re_gmii_writereg(dev, phy, reg, data);
530 		return (rval);
531 	}
532 
533 	/* Pretend the internal PHY is only at address 0 */
534 	if (phy)
535 		return (0);
536 
537 	switch (reg) {
538 	case MII_BMCR:
539 		re8139_reg = RL_BMCR;
540 		break;
541 	case MII_BMSR:
542 		re8139_reg = RL_BMSR;
543 		break;
544 	case MII_ANAR:
545 		re8139_reg = RL_ANAR;
546 		break;
547 	case MII_ANER:
548 		re8139_reg = RL_ANER;
549 		break;
550 	case MII_ANLPAR:
551 		re8139_reg = RL_LPAR;
552 		break;
553 	case MII_PHYIDR1:
554 	case MII_PHYIDR2:
555 		return (0);
556 		break;
557 	default:
558 		printf("re%d: bad phy register\n", sc->rl_unit);
559 		return (0);
560 	}
561 	CSR_WRITE_2(sc, re8139_reg, data);
562 	return (0);
563 }
564 
565 static void
566 re_miibus_statchg(dev)
567 	device_t		dev;
568 {
569 
570 }
571 
572 /*
573  * Program the 64-bit multicast hash filter.
574  */
575 static void
576 re_setmulti(sc)
577 	struct rl_softc		*sc;
578 {
579 	struct ifnet		*ifp;
580 	int			h = 0;
581 	u_int32_t		hashes[2] = { 0, 0 };
582 	struct ifmultiaddr	*ifma;
583 	u_int32_t		rxfilt;
584 	int			mcnt = 0;
585 
586 	RL_LOCK_ASSERT(sc);
587 
588 	ifp = &sc->arpcom.ac_if;
589 
590 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
591 
592 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
593 		rxfilt |= RL_RXCFG_RX_MULTI;
594 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
595 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
596 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
597 		return;
598 	}
599 
600 	/* first, zot all the existing hash bits */
601 	CSR_WRITE_4(sc, RL_MAR0, 0);
602 	CSR_WRITE_4(sc, RL_MAR4, 0);
603 
604 	/* now program new ones */
605 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
606 		if (ifma->ifma_addr->sa_family != AF_LINK)
607 			continue;
608 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
609 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
610 		if (h < 32)
611 			hashes[0] |= (1 << h);
612 		else
613 			hashes[1] |= (1 << (h - 32));
614 		mcnt++;
615 	}
616 
617 	if (mcnt)
618 		rxfilt |= RL_RXCFG_RX_MULTI;
619 	else
620 		rxfilt &= ~RL_RXCFG_RX_MULTI;
621 
622 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
623 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
624 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
625 }
626 
627 static void
628 re_reset(sc)
629 	struct rl_softc		*sc;
630 {
631 	register int		i;
632 
633 	RL_LOCK_ASSERT(sc);
634 
635 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
636 
637 	for (i = 0; i < RL_TIMEOUT; i++) {
638 		DELAY(10);
639 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
640 			break;
641 	}
642 	if (i == RL_TIMEOUT)
643 		printf("re%d: reset never completed!\n", sc->rl_unit);
644 
645 	CSR_WRITE_1(sc, 0x82, 1);
646 }
647 
648 /*
649  * The following routine is designed to test for a defect on some
650  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
651  * lines connected to the bus, however for a 32-bit only card, they
652  * should be pulled high. The result of this defect is that the
653  * NIC will not work right if you plug it into a 64-bit slot: DMA
654  * operations will be done with 64-bit transfers, which will fail
655  * because the 64-bit data lines aren't connected.
656  *
657  * There's no way to work around this (short of talking a soldering
658  * iron to the board), however we can detect it. The method we use
659  * here is to put the NIC into digital loopback mode, set the receiver
660  * to promiscuous mode, and then try to send a frame. We then compare
661  * the frame data we sent to what was received. If the data matches,
662  * then the NIC is working correctly, otherwise we know the user has
663  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
664  * slot. In the latter case, there's no way the NIC can work correctly,
665  * so we print out a message on the console and abort the device attach.
666  */
667 
668 static int
669 re_diag(sc)
670 	struct rl_softc		*sc;
671 {
672 	struct ifnet		*ifp = &sc->arpcom.ac_if;
673 	struct mbuf		*m0;
674 	struct ether_header	*eh;
675 	struct rl_desc		*cur_rx;
676 	u_int16_t		status;
677 	u_int32_t		rxstat;
678 	int			total_len, i, error = 0;
679 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
680 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
681 
682 	/* Allocate a single mbuf */
683 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
684 	if (m0 == NULL)
685 		return (ENOBUFS);
686 
687 	RL_LOCK(sc);
688 
689 	/*
690 	 * Initialize the NIC in test mode. This sets the chip up
691 	 * so that it can send and receive frames, but performs the
692 	 * following special functions:
693 	 * - Puts receiver in promiscuous mode
694 	 * - Enables digital loopback mode
695 	 * - Leaves interrupts turned off
696 	 */
697 
698 	ifp->if_flags |= IFF_PROMISC;
699 	sc->rl_testmode = 1;
700 	re_init_locked(sc);
701 	re_stop(sc);
702 	DELAY(100000);
703 	re_init_locked(sc);
704 
705 	/* Put some data in the mbuf */
706 
707 	eh = mtod(m0, struct ether_header *);
708 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
709 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
710 	eh->ether_type = htons(ETHERTYPE_IP);
711 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
712 
713 	/*
714 	 * Queue the packet, start transmission.
715 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
716 	 */
717 
718 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
719 	RL_UNLOCK(sc);
720 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
721 	RL_LOCK(sc);
722 	m0 = NULL;
723 
724 	/* Wait for it to propagate through the chip */
725 
726 	DELAY(100000);
727 	for (i = 0; i < RL_TIMEOUT; i++) {
728 		status = CSR_READ_2(sc, RL_ISR);
729 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
730 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
731 			break;
732 		DELAY(10);
733 	}
734 
735 	if (i == RL_TIMEOUT) {
736 		printf("re%d: diagnostic failed, failed to receive packet "
737 		    "in loopback mode\n", sc->rl_unit);
738 		error = EIO;
739 		goto done;
740 	}
741 
742 	/*
743 	 * The packet should have been dumped into the first
744 	 * entry in the RX DMA ring. Grab it from there.
745 	 */
746 
747 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
748 	    sc->rl_ldata.rl_rx_list_map,
749 	    BUS_DMASYNC_POSTREAD);
750 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
751 	    sc->rl_ldata.rl_rx_dmamap[0],
752 	    BUS_DMASYNC_POSTWRITE);
753 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
754 	    sc->rl_ldata.rl_rx_dmamap[0]);
755 
756 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
757 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
758 	eh = mtod(m0, struct ether_header *);
759 
760 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
761 	total_len = RL_RXBYTES(cur_rx);
762 	rxstat = le32toh(cur_rx->rl_cmdstat);
763 
764 	if (total_len != ETHER_MIN_LEN) {
765 		printf("re%d: diagnostic failed, received short packet\n",
766 		    sc->rl_unit);
767 		error = EIO;
768 		goto done;
769 	}
770 
771 	/* Test that the received packet data matches what we sent. */
772 
773 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
774 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
775 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
776 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
777 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
778 		    dst, ":", src, ":", ETHERTYPE_IP);
779 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
780 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
781 		    ntohs(eh->ether_type));
782 		printf("re%d: You may have a defective 32-bit NIC plugged "
783 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
784 		printf("re%d: Please re-install the NIC in a 32-bit slot "
785 		    "for proper operation.\n", sc->rl_unit);
786 		printf("re%d: Read the re(4) man page for more details.\n",
787 		    sc->rl_unit);
788 		error = EIO;
789 	}
790 
791 done:
792 	/* Turn interface off, release resources */
793 
794 	sc->rl_testmode = 0;
795 	ifp->if_flags &= ~IFF_PROMISC;
796 	re_stop(sc);
797 	if (m0 != NULL)
798 		m_freem(m0);
799 
800 	RL_UNLOCK(sc);
801 
802 	return (error);
803 }
804 
805 /*
806  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
807  * IDs against our list and return a device name if we find a match.
808  */
809 static int
810 re_probe(dev)
811 	device_t		dev;
812 {
813 	struct rl_type		*t;
814 	struct rl_softc		*sc;
815 	int			rid;
816 	u_int32_t		hwrev;
817 
818 	t = re_devs;
819 	sc = device_get_softc(dev);
820 
821 	while (t->rl_name != NULL) {
822 		if ((pci_get_vendor(dev) == t->rl_vid) &&
823 		    (pci_get_device(dev) == t->rl_did)) {
824 
825 			/*
826 			 * Temporarily map the I/O space
827 			 * so we can read the chip ID register.
828 			 */
829 			rid = RL_RID;
830 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
831 			    RF_ACTIVE);
832 			if (sc->rl_res == NULL) {
833 				device_printf(dev,
834 				    "couldn't map ports/memory\n");
835 				return (ENXIO);
836 			}
837 			sc->rl_btag = rman_get_bustag(sc->rl_res);
838 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
839 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
840 			bus_release_resource(dev, RL_RES,
841 			    RL_RID, sc->rl_res);
842 			if (t->rl_basetype == hwrev) {
843 				device_set_desc(dev, t->rl_name);
844 				return (0);
845 			}
846 		}
847 		t++;
848 	}
849 
850 	return (ENXIO);
851 }
852 
853 /*
854  * This routine takes the segment list provided as the result of
855  * a bus_dma_map_load() operation and assigns the addresses/lengths
856  * to RealTek DMA descriptors. This can be called either by the RX
857  * code or the TX code. In the RX case, we'll probably wind up mapping
858  * at most one segment. For the TX case, there could be any number of
859  * segments since TX packets may span multiple mbufs. In either case,
860  * if the number of segments is larger than the rl_maxsegs limit
861  * specified by the caller, we abort the mapping operation. Sadly,
862  * whoever designed the buffer mapping API did not provide a way to
863  * return an error from here, so we have to fake it a bit.
864  */
865 
866 static void
867 re_dma_map_desc(arg, segs, nseg, mapsize, error)
868 	void			*arg;
869 	bus_dma_segment_t	*segs;
870 	int			nseg;
871 	bus_size_t		mapsize;
872 	int			error;
873 {
874 	struct rl_dmaload_arg	*ctx;
875 	struct rl_desc		*d = NULL;
876 	int			i = 0, idx;
877 
878 	if (error)
879 		return;
880 
881 	ctx = arg;
882 
883 	/* Signal error to caller if there's too many segments */
884 	if (nseg > ctx->rl_maxsegs) {
885 		ctx->rl_maxsegs = 0;
886 		return;
887 	}
888 
889 	/*
890 	 * Map the segment array into descriptors. Note that we set the
891 	 * start-of-frame and end-of-frame markers for either TX or RX, but
892 	 * they really only have meaning in the TX case. (In the RX case,
893 	 * it's the chip that tells us where packets begin and end.)
894 	 * We also keep track of the end of the ring and set the
895 	 * end-of-ring bits as needed, and we set the ownership bits
896 	 * in all except the very first descriptor. (The caller will
897 	 * set this descriptor later when it start transmission or
898 	 * reception.)
899 	 */
900 	idx = ctx->rl_idx;
901 	for (;;) {
902 		u_int32_t		cmdstat;
903 		d = &ctx->rl_ring[idx];
904 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
905 			ctx->rl_maxsegs = 0;
906 			return;
907 		}
908 		cmdstat = segs[i].ds_len;
909 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
910 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
911 		if (i == 0)
912 			cmdstat |= RL_TDESC_CMD_SOF;
913 		else
914 			cmdstat |= RL_TDESC_CMD_OWN;
915 		if (idx == (RL_RX_DESC_CNT - 1))
916 			cmdstat |= RL_TDESC_CMD_EOR;
917 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
918 		i++;
919 		if (i == nseg)
920 			break;
921 		RL_DESC_INC(idx);
922 	}
923 
924 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
925 	ctx->rl_maxsegs = nseg;
926 	ctx->rl_idx = idx;
927 }
928 
929 /*
930  * Map a single buffer address.
931  */
932 
933 static void
934 re_dma_map_addr(arg, segs, nseg, error)
935 	void			*arg;
936 	bus_dma_segment_t	*segs;
937 	int			nseg;
938 	int			error;
939 {
940 	u_int32_t		*addr;
941 
942 	if (error)
943 		return;
944 
945 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
946 	addr = arg;
947 	*addr = segs->ds_addr;
948 }
949 
950 static int
951 re_allocmem(dev, sc)
952 	device_t		dev;
953 	struct rl_softc		*sc;
954 {
955 	int			error;
956 	int			nseg;
957 	int			i;
958 
959 	/*
960 	 * Allocate map for RX mbufs.
961 	 */
962 	nseg = 32;
963 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
964 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
965 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
966 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
967 	if (error) {
968 		device_printf(dev, "could not allocate dma tag\n");
969 		return (ENOMEM);
970 	}
971 
972 	/*
973 	 * Allocate map for TX descriptor list.
974 	 */
975 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
976 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
977 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
978 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
979 	if (error) {
980 		device_printf(dev, "could not allocate dma tag\n");
981 		return (ENOMEM);
982 	}
983 
984 	/* Allocate DMA'able memory for the TX ring */
985 
986 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
987 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
988 	    &sc->rl_ldata.rl_tx_list_map);
989 	if (error)
990 		return (ENOMEM);
991 
992 	/* Load the map for the TX ring. */
993 
994 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
995 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
996 	     RL_TX_LIST_SZ, re_dma_map_addr,
997 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
998 
999 	/* Create DMA maps for TX buffers */
1000 
1001 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1002 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1003 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1004 		if (error) {
1005 			device_printf(dev, "can't create DMA map for TX\n");
1006 			return (ENOMEM);
1007 		}
1008 	}
1009 
1010 	/*
1011 	 * Allocate map for RX descriptor list.
1012 	 */
1013 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1014 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1015 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1016 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1017 	if (error) {
1018 		device_printf(dev, "could not allocate dma tag\n");
1019 		return (ENOMEM);
1020 	}
1021 
1022 	/* Allocate DMA'able memory for the RX ring */
1023 
1024 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1025 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1026 	    &sc->rl_ldata.rl_rx_list_map);
1027 	if (error)
1028 		return (ENOMEM);
1029 
1030 	/* Load the map for the RX ring. */
1031 
1032 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1033 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1034 	     RL_RX_LIST_SZ, re_dma_map_addr,
1035 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1036 
1037 	/* Create DMA maps for RX buffers */
1038 
1039 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1040 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1041 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1042 		if (error) {
1043 			device_printf(dev, "can't create DMA map for RX\n");
1044 			return (ENOMEM);
1045 		}
1046 	}
1047 
1048 	return (0);
1049 }
1050 
1051 /*
1052  * Attach the interface. Allocate softc structures, do ifmedia
1053  * setup and ethernet/BPF attach.
1054  */
1055 static int
1056 re_attach(dev)
1057 	device_t		dev;
1058 {
1059 	u_char			eaddr[ETHER_ADDR_LEN];
1060 	u_int16_t		as[3];
1061 	struct rl_softc		*sc;
1062 	struct ifnet		*ifp;
1063 	struct rl_hwrev		*hw_rev;
1064 	int			hwrev;
1065 	u_int16_t		re_did = 0;
1066 	int			unit, error = 0, rid, i;
1067 
1068 	sc = device_get_softc(dev);
1069 	unit = device_get_unit(dev);
1070 
1071 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1072 	    MTX_DEF);
1073 	/*
1074 	 * Map control/status registers.
1075 	 */
1076 	pci_enable_busmaster(dev);
1077 
1078 	rid = RL_RID;
1079 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1080 	    RF_ACTIVE);
1081 
1082 	if (sc->rl_res == NULL) {
1083 		printf ("re%d: couldn't map ports/memory\n", unit);
1084 		error = ENXIO;
1085 		goto fail;
1086 	}
1087 
1088 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1089 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1090 
1091 	/* Allocate interrupt */
1092 	rid = 0;
1093 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1094 	    RF_SHAREABLE | RF_ACTIVE);
1095 
1096 	if (sc->rl_irq == NULL) {
1097 		printf("re%d: couldn't map interrupt\n", unit);
1098 		error = ENXIO;
1099 		goto fail;
1100 	}
1101 
1102 	/* Reset the adapter. */
1103 	RL_LOCK(sc);
1104 	re_reset(sc);
1105 	RL_UNLOCK(sc);
1106 
1107 	hw_rev = re_hwrevs;
1108 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1109 	while (hw_rev->rl_desc != NULL) {
1110 		if (hw_rev->rl_rev == hwrev) {
1111 			sc->rl_type = hw_rev->rl_type;
1112 			break;
1113 		}
1114 		hw_rev++;
1115 	}
1116 
1117 	if (sc->rl_type == RL_8169) {
1118 
1119 		/* Set RX length mask */
1120 
1121 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1122 
1123 		/* Force station address autoload from the EEPROM */
1124 
1125 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1126 		for (i = 0; i < RL_TIMEOUT; i++) {
1127 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1128 				break;
1129 			DELAY(100);
1130 		}
1131 		if (i == RL_TIMEOUT)
1132 			printf ("re%d: eeprom autoload timed out\n", unit);
1133 
1134 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1135 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1136 	} else {
1137 
1138 		/* Set RX length mask */
1139 
1140 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1141 
1142 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1143 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1144 		if (re_did != 0x8129)
1145 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1146 
1147 		/*
1148 		 * Get station address from the EEPROM.
1149 		 */
1150 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1151 		for (i = 0; i < 3; i++) {
1152 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1153 			eaddr[(i * 2) + 1] = as[i] >> 8;
1154 		}
1155 	}
1156 
1157 	sc->rl_unit = unit;
1158 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1159 
1160 	/*
1161 	 * Allocate the parent bus DMA tag appropriate for PCI.
1162 	 */
1163 #define RL_NSEG_NEW 32
1164 	error = bus_dma_tag_create(NULL,	/* parent */
1165 			1, 0,			/* alignment, boundary */
1166 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1167 			BUS_SPACE_MAXADDR,	/* highaddr */
1168 			NULL, NULL,		/* filter, filterarg */
1169 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1170 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1171 			BUS_DMA_ALLOCNOW,	/* flags */
1172 			NULL, NULL,		/* lockfunc, lockarg */
1173 			&sc->rl_parent_tag);
1174 	if (error)
1175 		goto fail;
1176 
1177 	error = re_allocmem(dev, sc);
1178 
1179 	if (error)
1180 		goto fail;
1181 
1182 	/* Do MII setup */
1183 	if (mii_phy_probe(dev, &sc->rl_miibus,
1184 	    re_ifmedia_upd, re_ifmedia_sts)) {
1185 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1186 		error = ENXIO;
1187 		goto fail;
1188 	}
1189 
1190 	ifp = &sc->arpcom.ac_if;
1191 	ifp->if_softc = sc;
1192 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1193 	ifp->if_mtu = ETHERMTU;
1194 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1195 	ifp->if_ioctl = re_ioctl;
1196 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1197 	ifp->if_start = re_start;
1198 	ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
1199 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1200 #ifdef DEVICE_POLLING
1201 	ifp->if_capabilities |= IFCAP_POLLING;
1202 #endif
1203 	ifp->if_watchdog = re_watchdog;
1204 	ifp->if_init = re_init;
1205 	if (sc->rl_type == RL_8169)
1206 		ifp->if_baudrate = 1000000000;
1207 	else
1208 		ifp->if_baudrate = 100000000;
1209 	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1210 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1211 
1212 	callout_handle_init(&sc->rl_stat_ch);
1213 
1214 	/*
1215 	 * Call MI attach routine.
1216 	 */
1217 	ether_ifattach(ifp, eaddr);
1218 
1219 	/* Perform hardware diagnostic. */
1220 	error = re_diag(sc);
1221 
1222 	if (error) {
1223 		printf("re%d: attach aborted due to hardware diag failure\n",
1224 		    unit);
1225 		ether_ifdetach(ifp);
1226 		goto fail;
1227 	}
1228 
1229 	/* Hook interrupt last to avoid having to lock softc */
1230 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1231 	    re_intr, sc, &sc->rl_intrhand);
1232 	if (error) {
1233 		printf("re%d: couldn't set up irq\n", unit);
1234 		ether_ifdetach(ifp);
1235 	}
1236 
1237 fail:
1238 	if (error)
1239 		re_detach(dev);
1240 
1241 	return (error);
1242 }
1243 
1244 /*
1245  * Shutdown hardware and free up resources. This can be called any
1246  * time after the mutex has been initialized. It is called in both
1247  * the error case in attach and the normal detach case so it needs
1248  * to be careful about only freeing resources that have actually been
1249  * allocated.
1250  */
1251 static int
1252 re_detach(dev)
1253 	device_t		dev;
1254 {
1255 	struct rl_softc		*sc;
1256 	struct ifnet		*ifp;
1257 	int			i;
1258 	int			attached;
1259 
1260 	sc = device_get_softc(dev);
1261 	ifp = &sc->arpcom.ac_if;
1262 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1263 
1264 	attached = device_is_attached(dev);
1265 	/* These should only be active if attach succeeded */
1266 	if (attached)
1267 		ether_ifdetach(ifp);
1268 
1269 	RL_LOCK(sc);
1270 #if 0
1271 	sc->suspended = 1;
1272 #endif
1273 
1274 	/* These should only be active if attach succeeded */
1275 	if (attached) {
1276 		re_stop(sc);
1277 		/*
1278 		 * Force off the IFF_UP flag here, in case someone
1279 		 * still had a BPF descriptor attached to this
1280 		 * interface. If they do, ether_ifdetach() will cause
1281 		 * the BPF code to try and clear the promisc mode
1282 		 * flag, which will bubble down to re_ioctl(),
1283 		 * which will try to call re_init() again. This will
1284 		 * turn the NIC back on and restart the MII ticker,
1285 		 * which will panic the system when the kernel tries
1286 		 * to invoke the re_tick() function that isn't there
1287 		 * anymore.
1288 		 */
1289 		ifp->if_flags &= ~IFF_UP;
1290 	}
1291 	if (sc->rl_miibus)
1292 		device_delete_child(dev, sc->rl_miibus);
1293 	bus_generic_detach(dev);
1294 
1295 	/*
1296 	 * The rest is resource deallocation, so we should already be
1297 	 * stopped here.
1298 	 */
1299 	RL_UNLOCK(sc);
1300 
1301 	if (sc->rl_intrhand)
1302 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1303 	if (sc->rl_irq)
1304 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1305 	if (sc->rl_res)
1306 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1307 
1308 
1309 	/* Unload and free the RX DMA ring memory and map */
1310 
1311 	if (sc->rl_ldata.rl_rx_list_tag) {
1312 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1313 		    sc->rl_ldata.rl_rx_list_map);
1314 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1315 		    sc->rl_ldata.rl_rx_list,
1316 		    sc->rl_ldata.rl_rx_list_map);
1317 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1318 	}
1319 
1320 	/* Unload and free the TX DMA ring memory and map */
1321 
1322 	if (sc->rl_ldata.rl_tx_list_tag) {
1323 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1324 		    sc->rl_ldata.rl_tx_list_map);
1325 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1326 		    sc->rl_ldata.rl_tx_list,
1327 		    sc->rl_ldata.rl_tx_list_map);
1328 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1329 	}
1330 
1331 	/* Destroy all the RX and TX buffer maps */
1332 
1333 	if (sc->rl_ldata.rl_mtag) {
1334 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1335 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1336 			    sc->rl_ldata.rl_tx_dmamap[i]);
1337 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1338 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1339 			    sc->rl_ldata.rl_rx_dmamap[i]);
1340 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1341 	}
1342 
1343 	/* Unload and free the stats buffer and map */
1344 
1345 	if (sc->rl_ldata.rl_stag) {
1346 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1347 		    sc->rl_ldata.rl_rx_list_map);
1348 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1349 		    sc->rl_ldata.rl_stats,
1350 		    sc->rl_ldata.rl_smap);
1351 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1352 	}
1353 
1354 	if (sc->rl_parent_tag)
1355 		bus_dma_tag_destroy(sc->rl_parent_tag);
1356 
1357 	mtx_destroy(&sc->rl_mtx);
1358 
1359 	return (0);
1360 }
1361 
1362 static int
1363 re_newbuf(sc, idx, m)
1364 	struct rl_softc		*sc;
1365 	int			idx;
1366 	struct mbuf		*m;
1367 {
1368 	struct rl_dmaload_arg	arg;
1369 	struct mbuf		*n = NULL;
1370 	int			error;
1371 
1372 	if (m == NULL) {
1373 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1374 		if (n == NULL)
1375 			return (ENOBUFS);
1376 		m = n;
1377 	} else
1378 		m->m_data = m->m_ext.ext_buf;
1379 
1380 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1381 #ifdef RE_FIXUP_RX
1382 	/*
1383 	 * This is part of an evil trick to deal with non-x86 platforms.
1384 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1385 	 * boundaries, but that will hose non-x86 machines. To get around
1386 	 * this, we leave some empty space at the start of each buffer
1387 	 * and for non-x86 hosts, we copy the buffer back six bytes
1388 	 * to achieve word alignment. This is slightly more efficient
1389 	 * than allocating a new buffer, copying the contents, and
1390 	 * discarding the old buffer.
1391 	 */
1392 	m_adj(m, RE_ETHER_ALIGN);
1393 #endif
1394 	arg.sc = sc;
1395 	arg.rl_idx = idx;
1396 	arg.rl_maxsegs = 1;
1397 	arg.rl_flags = 0;
1398 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1399 
1400 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1401 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1402 	    &arg, BUS_DMA_NOWAIT);
1403 	if (error || arg.rl_maxsegs != 1) {
1404 		if (n != NULL)
1405 			m_freem(n);
1406 		return (ENOMEM);
1407 	}
1408 
1409 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1410 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1411 
1412 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1413 	    sc->rl_ldata.rl_rx_dmamap[idx],
1414 	    BUS_DMASYNC_PREREAD);
1415 
1416 	return (0);
1417 }
1418 
1419 #ifdef RE_FIXUP_RX
1420 static __inline void
1421 re_fixup_rx(m)
1422 	struct mbuf		*m;
1423 {
1424 	int                     i;
1425 	uint16_t                *src, *dst;
1426 
1427 	src = mtod(m, uint16_t *);
1428 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1429 
1430 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1431 		*dst++ = *src++;
1432 
1433 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1434 
1435 	return;
1436 }
1437 #endif
1438 
1439 static int
1440 re_tx_list_init(sc)
1441 	struct rl_softc		*sc;
1442 {
1443 
1444 	RL_LOCK_ASSERT(sc);
1445 
1446 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1447 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1448 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1449 
1450 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1451 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1452 	sc->rl_ldata.rl_tx_prodidx = 0;
1453 	sc->rl_ldata.rl_tx_considx = 0;
1454 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1455 
1456 	return (0);
1457 }
1458 
1459 static int
1460 re_rx_list_init(sc)
1461 	struct rl_softc		*sc;
1462 {
1463 	int			i;
1464 
1465 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1466 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1467 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1468 
1469 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1470 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1471 			return (ENOBUFS);
1472 	}
1473 
1474 	/* Flush the RX descriptors */
1475 
1476 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1477 	    sc->rl_ldata.rl_rx_list_map,
1478 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1479 
1480 	sc->rl_ldata.rl_rx_prodidx = 0;
1481 	sc->rl_head = sc->rl_tail = NULL;
1482 
1483 	return (0);
1484 }
1485 
1486 /*
1487  * RX handler for C+ and 8169. For the gigE chips, we support
1488  * the reception of jumbo frames that have been fragmented
1489  * across multiple 2K mbuf cluster buffers.
1490  */
1491 static void
1492 re_rxeof(sc)
1493 	struct rl_softc		*sc;
1494 {
1495 	struct mbuf		*m;
1496 	struct ifnet		*ifp;
1497 	int			i, total_len;
1498 	struct rl_desc		*cur_rx;
1499 	u_int32_t		rxstat, rxvlan;
1500 
1501 	RL_LOCK_ASSERT(sc);
1502 
1503 	ifp = &sc->arpcom.ac_if;
1504 	i = sc->rl_ldata.rl_rx_prodidx;
1505 
1506 	/* Invalidate the descriptor memory */
1507 
1508 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1509 	    sc->rl_ldata.rl_rx_list_map,
1510 	    BUS_DMASYNC_POSTREAD);
1511 
1512 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1513 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1514 		m = sc->rl_ldata.rl_rx_mbuf[i];
1515 		total_len = RL_RXBYTES(cur_rx);
1516 		rxstat = le32toh(cur_rx->rl_cmdstat);
1517 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1518 
1519 		/* Invalidate the RX mbuf and unload its map */
1520 
1521 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1522 		    sc->rl_ldata.rl_rx_dmamap[i],
1523 		    BUS_DMASYNC_POSTWRITE);
1524 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1525 		    sc->rl_ldata.rl_rx_dmamap[i]);
1526 
1527 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1528 			m->m_len = RE_RX_DESC_BUFLEN;
1529 			if (sc->rl_head == NULL)
1530 				sc->rl_head = sc->rl_tail = m;
1531 			else {
1532 				m->m_flags &= ~M_PKTHDR;
1533 				sc->rl_tail->m_next = m;
1534 				sc->rl_tail = m;
1535 			}
1536 			re_newbuf(sc, i, NULL);
1537 			RL_DESC_INC(i);
1538 			continue;
1539 		}
1540 
1541 		/*
1542 		 * NOTE: for the 8139C+, the frame length field
1543 		 * is always 12 bits in size, but for the gigE chips,
1544 		 * it is 13 bits (since the max RX frame length is 16K).
1545 		 * Unfortunately, all 32 bits in the status word
1546 		 * were already used, so to make room for the extra
1547 		 * length bit, RealTek took out the 'frame alignment
1548 		 * error' bit and shifted the other status bits
1549 		 * over one slot. The OWN, EOR, FS and LS bits are
1550 		 * still in the same places. We have already extracted
1551 		 * the frame length and checked the OWN bit, so rather
1552 		 * than using an alternate bit mapping, we shift the
1553 		 * status bits one space to the right so we can evaluate
1554 		 * them using the 8169 status as though it was in the
1555 		 * same format as that of the 8139C+.
1556 		 */
1557 		if (sc->rl_type == RL_8169)
1558 			rxstat >>= 1;
1559 
1560 		/*
1561 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1562 		 * set, but if CRC is clear, it will still be a valid frame.
1563 		 */
1564 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1565 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1566 			ifp->if_ierrors++;
1567 			/*
1568 			 * If this is part of a multi-fragment packet,
1569 			 * discard all the pieces.
1570 			 */
1571 			if (sc->rl_head != NULL) {
1572 				m_freem(sc->rl_head);
1573 				sc->rl_head = sc->rl_tail = NULL;
1574 			}
1575 			re_newbuf(sc, i, m);
1576 			RL_DESC_INC(i);
1577 			continue;
1578 		}
1579 
1580 		/*
1581 		 * If allocating a replacement mbuf fails,
1582 		 * reload the current one.
1583 		 */
1584 
1585 		if (re_newbuf(sc, i, NULL)) {
1586 			ifp->if_ierrors++;
1587 			if (sc->rl_head != NULL) {
1588 				m_freem(sc->rl_head);
1589 				sc->rl_head = sc->rl_tail = NULL;
1590 			}
1591 			re_newbuf(sc, i, m);
1592 			RL_DESC_INC(i);
1593 			continue;
1594 		}
1595 
1596 		RL_DESC_INC(i);
1597 
1598 		if (sc->rl_head != NULL) {
1599 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1600 			if (m->m_len == 0)
1601 				m->m_len = RE_RX_DESC_BUFLEN;
1602 			/*
1603 			 * Special case: if there's 4 bytes or less
1604 			 * in this buffer, the mbuf can be discarded:
1605 			 * the last 4 bytes is the CRC, which we don't
1606 			 * care about anyway.
1607 			 */
1608 			if (m->m_len <= ETHER_CRC_LEN) {
1609 				sc->rl_tail->m_len -=
1610 				    (ETHER_CRC_LEN - m->m_len);
1611 				m_freem(m);
1612 			} else {
1613 				m->m_len -= ETHER_CRC_LEN;
1614 				m->m_flags &= ~M_PKTHDR;
1615 				sc->rl_tail->m_next = m;
1616 			}
1617 			m = sc->rl_head;
1618 			sc->rl_head = sc->rl_tail = NULL;
1619 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1620 		} else
1621 			m->m_pkthdr.len = m->m_len =
1622 			    (total_len - ETHER_CRC_LEN);
1623 
1624 #ifdef RE_FIXUP_RX
1625 		re_fixup_rx(m);
1626 #endif
1627 		ifp->if_ipackets++;
1628 		m->m_pkthdr.rcvif = ifp;
1629 
1630 		/* Do RX checksumming if enabled */
1631 
1632 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1633 
1634 			/* Check IP header checksum */
1635 			if (rxstat & RL_RDESC_STAT_PROTOID)
1636 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1637 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1638 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1639 
1640 			/* Check TCP/UDP checksum */
1641 			if ((RL_TCPPKT(rxstat) &&
1642 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1643 			    (RL_UDPPKT(rxstat) &&
1644 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1645 				m->m_pkthdr.csum_flags |=
1646 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1647 				m->m_pkthdr.csum_data = 0xffff;
1648 			}
1649 		}
1650 
1651 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1652 			VLAN_INPUT_TAG(ifp, m,
1653 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1654 		RL_UNLOCK(sc);
1655 		(*ifp->if_input)(ifp, m);
1656 		RL_LOCK(sc);
1657 	}
1658 
1659 	/* Flush the RX DMA ring */
1660 
1661 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1662 	    sc->rl_ldata.rl_rx_list_map,
1663 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1664 
1665 	sc->rl_ldata.rl_rx_prodidx = i;
1666 }
1667 
1668 static void
1669 re_txeof(sc)
1670 	struct rl_softc		*sc;
1671 {
1672 	struct ifnet		*ifp;
1673 	u_int32_t		txstat;
1674 	int			idx;
1675 
1676 	ifp = &sc->arpcom.ac_if;
1677 	idx = sc->rl_ldata.rl_tx_considx;
1678 
1679 	/* Invalidate the TX descriptor list */
1680 
1681 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1682 	    sc->rl_ldata.rl_tx_list_map,
1683 	    BUS_DMASYNC_POSTREAD);
1684 
1685 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1686 
1687 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1688 		if (txstat & RL_TDESC_CMD_OWN)
1689 			break;
1690 
1691 		/*
1692 		 * We only stash mbufs in the last descriptor
1693 		 * in a fragment chain, which also happens to
1694 		 * be the only place where the TX status bits
1695 		 * are valid.
1696 		 */
1697 
1698 		if (txstat & RL_TDESC_CMD_EOF) {
1699 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1700 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1701 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1702 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1703 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1704 			    RL_TDESC_STAT_COLCNT))
1705 				ifp->if_collisions++;
1706 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1707 				ifp->if_oerrors++;
1708 			else
1709 				ifp->if_opackets++;
1710 		}
1711 		sc->rl_ldata.rl_tx_free++;
1712 		RL_DESC_INC(idx);
1713 	}
1714 
1715 	/* No changes made to the TX ring, so no flush needed */
1716 
1717 	if (idx != sc->rl_ldata.rl_tx_considx) {
1718 		sc->rl_ldata.rl_tx_considx = idx;
1719 		ifp->if_flags &= ~IFF_OACTIVE;
1720 		ifp->if_timer = 0;
1721 	}
1722 
1723 	/*
1724 	 * If not all descriptors have been released reaped yet,
1725 	 * reload the timer so that we will eventually get another
1726 	 * interrupt that will cause us to re-enter this routine.
1727 	 * This is done in case the transmitter has gone idle.
1728 	 */
1729 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1730 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1731 }
1732 
1733 static void
1734 re_tick(xsc)
1735 	void			*xsc;
1736 {
1737 	struct rl_softc		*sc;
1738 
1739 	sc = xsc;
1740 	RL_LOCK(sc);
1741 	re_tick_locked(sc);
1742 	RL_UNLOCK(sc);
1743 }
1744 
1745 static void
1746 re_tick_locked(sc)
1747 	struct rl_softc		*sc;
1748 {
1749 	struct mii_data		*mii;
1750 
1751 	RL_LOCK_ASSERT(sc);
1752 
1753 	mii = device_get_softc(sc->rl_miibus);
1754 
1755 	mii_tick(mii);
1756 
1757 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1758 }
1759 
1760 #ifdef DEVICE_POLLING
1761 static void
1762 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1763 {
1764 	struct rl_softc *sc = ifp->if_softc;
1765 
1766 	RL_LOCK(sc);
1767 	re_poll_locked(ifp, cmd, count);
1768 	RL_UNLOCK(sc);
1769 }
1770 
1771 static void
1772 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1773 {
1774 	struct rl_softc *sc = ifp->if_softc;
1775 
1776 	RL_LOCK_ASSERT(sc);
1777 
1778 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1779 		ether_poll_deregister(ifp);
1780 		cmd = POLL_DEREGISTER;
1781 	}
1782 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1783 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1784 		return;
1785 	}
1786 
1787 	sc->rxcycles = count;
1788 	re_rxeof(sc);
1789 	re_txeof(sc);
1790 
1791 	if (ifp->if_snd.ifq_head != NULL)
1792 		re_start_locked(ifp);
1793 
1794 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1795 		u_int16_t       status;
1796 
1797 		status = CSR_READ_2(sc, RL_ISR);
1798 		if (status == 0xffff)
1799 			return;
1800 		if (status)
1801 			CSR_WRITE_2(sc, RL_ISR, status);
1802 
1803 		/*
1804 		 * XXX check behaviour on receiver stalls.
1805 		 */
1806 
1807 		if (status & RL_ISR_SYSTEM_ERR) {
1808 			re_reset(sc);
1809 			re_init_locked(sc);
1810 		}
1811 	}
1812 }
1813 #endif /* DEVICE_POLLING */
1814 
1815 static void
1816 re_intr(arg)
1817 	void			*arg;
1818 {
1819 	struct rl_softc		*sc;
1820 	struct ifnet		*ifp;
1821 	u_int16_t		status;
1822 
1823 	sc = arg;
1824 
1825 	RL_LOCK(sc);
1826 
1827 	ifp = &sc->arpcom.ac_if;
1828 
1829 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1830 		goto done_locked;
1831 
1832 #ifdef DEVICE_POLLING
1833 	if  (ifp->if_flags & IFF_POLLING)
1834 		goto done_locked;
1835 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1836 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1837 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1838 		re_poll_locked(ifp, 0, 1);
1839 		goto done_locked;
1840 	}
1841 #endif /* DEVICE_POLLING */
1842 
1843 	for (;;) {
1844 
1845 		status = CSR_READ_2(sc, RL_ISR);
1846 		/* If the card has gone away the read returns 0xffff. */
1847 		if (status == 0xffff)
1848 			break;
1849 		if (status)
1850 			CSR_WRITE_2(sc, RL_ISR, status);
1851 
1852 		if ((status & RL_INTRS_CPLUS) == 0)
1853 			break;
1854 
1855 		if ((status & RL_ISR_RX_OK) ||
1856 		    (status & RL_ISR_RX_ERR))
1857 			re_rxeof(sc);
1858 
1859 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1860 		    (status & RL_ISR_TX_ERR) ||
1861 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1862 			re_txeof(sc);
1863 
1864 		if (status & RL_ISR_SYSTEM_ERR) {
1865 			re_reset(sc);
1866 			re_init_locked(sc);
1867 		}
1868 
1869 		if (status & RL_ISR_LINKCHG) {
1870 			untimeout(re_tick, sc, sc->rl_stat_ch);
1871 			re_tick_locked(sc);
1872 		}
1873 	}
1874 
1875 	if (ifp->if_snd.ifq_head != NULL)
1876 		re_start_locked(ifp);
1877 
1878 done_locked:
1879 	RL_UNLOCK(sc);
1880 }
1881 
1882 static int
1883 re_encap(sc, m_head, idx)
1884 	struct rl_softc		*sc;
1885 	struct mbuf		**m_head;
1886 	int			*idx;
1887 {
1888 	struct mbuf		*m_new = NULL;
1889 	struct rl_dmaload_arg	arg;
1890 	bus_dmamap_t		map;
1891 	int			error;
1892 	struct m_tag		*mtag;
1893 
1894 	RL_LOCK_ASSERT(sc);
1895 
1896 	if (sc->rl_ldata.rl_tx_free <= 4)
1897 		return (EFBIG);
1898 
1899 	/*
1900 	 * Set up checksum offload. Note: checksum offload bits must
1901 	 * appear in all descriptors of a multi-descriptor transmit
1902 	 * attempt. This is according to testing done with an 8169
1903 	 * chip. This is a requirement.
1904 	 */
1905 
1906 	arg.rl_flags = 0;
1907 
1908 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1909 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1910 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1911 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1912 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1913 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1914 
1915 	arg.sc = sc;
1916 	arg.rl_idx = *idx;
1917 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1918 	if (arg.rl_maxsegs > 4)
1919 		arg.rl_maxsegs -= 4;
1920 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1921 
1922 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1923 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1924 	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1925 
1926 	if (error && error != EFBIG) {
1927 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1928 		return (ENOBUFS);
1929 	}
1930 
1931 	/* Too many segments to map, coalesce into a single mbuf */
1932 
1933 	if (error || arg.rl_maxsegs == 0) {
1934 		m_new = m_defrag(*m_head, M_DONTWAIT);
1935 		if (m_new == NULL)
1936 			return (ENOBUFS);
1937 		else
1938 			*m_head = m_new;
1939 
1940 		arg.sc = sc;
1941 		arg.rl_idx = *idx;
1942 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1943 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1944 
1945 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1946 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1947 		if (error) {
1948 			printf("re%d: can't map mbuf (error %d)\n",
1949 			    sc->rl_unit, error);
1950 			return (EFBIG);
1951 		}
1952 	}
1953 
1954 	/*
1955 	 * Insure that the map for this transmission
1956 	 * is placed at the array index of the last descriptor
1957 	 * in this chain.  (Swap last and first dmamaps.)
1958 	 */
1959 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1960 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1961 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1962 
1963 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1964 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1965 
1966 	/*
1967 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1968 	 * appear in the first descriptor of a multi-descriptor
1969 	 * transmission attempt.
1970 	 */
1971 
1972 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, *m_head);
1973 	if (mtag != NULL)
1974 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1975 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1976 
1977 	/* Transfer ownership of packet to the chip. */
1978 
1979 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1980 	    htole32(RL_TDESC_CMD_OWN);
1981 	if (*idx != arg.rl_idx)
1982 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1983 		    htole32(RL_TDESC_CMD_OWN);
1984 
1985 	RL_DESC_INC(arg.rl_idx);
1986 	*idx = arg.rl_idx;
1987 
1988 	return (0);
1989 }
1990 
1991 static void
1992 re_start(ifp)
1993 	struct ifnet		*ifp;
1994 {
1995 	struct rl_softc		*sc;
1996 
1997 	sc = ifp->if_softc;
1998 	RL_LOCK(sc);
1999 	re_start_locked(ifp);
2000 	RL_UNLOCK(sc);
2001 }
2002 
2003 /*
2004  * Main transmit routine for C+ and gigE NICs.
2005  */
2006 static void
2007 re_start_locked(ifp)
2008 	struct ifnet		*ifp;
2009 {
2010 	struct rl_softc		*sc;
2011 	struct mbuf		*m_head = NULL;
2012 	int			idx;
2013 
2014 	sc = ifp->if_softc;
2015 
2016 	RL_LOCK_ASSERT(sc);
2017 
2018 	idx = sc->rl_ldata.rl_tx_prodidx;
2019 
2020 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2021 		IF_DEQUEUE(&ifp->if_snd, m_head);
2022 		if (m_head == NULL)
2023 			break;
2024 
2025 		if (re_encap(sc, &m_head, &idx)) {
2026 			IF_PREPEND(&ifp->if_snd, m_head);
2027 			ifp->if_flags |= IFF_OACTIVE;
2028 			break;
2029 		}
2030 
2031 		/*
2032 		 * If there's a BPF listener, bounce a copy of this frame
2033 		 * to him.
2034 		 */
2035 		BPF_MTAP(ifp, m_head);
2036 	}
2037 
2038 	/* Flush the TX descriptors */
2039 
2040 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2041 	    sc->rl_ldata.rl_tx_list_map,
2042 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2043 
2044 	sc->rl_ldata.rl_tx_prodidx = idx;
2045 
2046 	/*
2047 	 * RealTek put the TX poll request register in a different
2048 	 * location on the 8169 gigE chip. I don't know why.
2049 	 */
2050 
2051 	if (sc->rl_type == RL_8169)
2052 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2053 	else
2054 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2055 
2056 	/*
2057 	 * Use the countdown timer for interrupt moderation.
2058 	 * 'TX done' interrupts are disabled. Instead, we reset the
2059 	 * countdown timer, which will begin counting until it hits
2060 	 * the value in the TIMERINT register, and then trigger an
2061 	 * interrupt. Each time we write to the TIMERCNT register,
2062 	 * the timer count is reset to 0.
2063 	 */
2064 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2065 
2066 	/*
2067 	 * Set a timeout in case the chip goes out to lunch.
2068 	 */
2069 	ifp->if_timer = 5;
2070 }
2071 
2072 static void
2073 re_init(xsc)
2074 	void			*xsc;
2075 {
2076 	struct rl_softc		*sc = xsc;
2077 
2078 	RL_LOCK(sc);
2079 	re_init_locked(sc);
2080 	RL_UNLOCK(sc);
2081 }
2082 
2083 static void
2084 re_init_locked(sc)
2085 	struct rl_softc		*sc;
2086 {
2087 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2088 	struct mii_data		*mii;
2089 	u_int32_t		rxcfg = 0;
2090 
2091 	RL_LOCK_ASSERT(sc);
2092 
2093 	mii = device_get_softc(sc->rl_miibus);
2094 
2095 	/*
2096 	 * Cancel pending I/O and free all RX/TX buffers.
2097 	 */
2098 	re_stop(sc);
2099 
2100 	/*
2101 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2102 	 * RX checksum offload. We must configure the C+ register
2103 	 * before all others.
2104 	 */
2105 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2106 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2107 	    RL_CPLUSCMD_VLANSTRIP|
2108 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2109 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2110 
2111 	/*
2112 	 * Init our MAC address.  Even though the chipset
2113 	 * documentation doesn't mention it, we need to enter "Config
2114 	 * register write enable" mode to modify the ID registers.
2115 	 */
2116 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2117 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2118 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2119 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2120 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2121 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2122 
2123 	/*
2124 	 * For C+ mode, initialize the RX descriptors and mbufs.
2125 	 */
2126 	re_rx_list_init(sc);
2127 	re_tx_list_init(sc);
2128 
2129 	/*
2130 	 * Enable transmit and receive.
2131 	 */
2132 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2133 
2134 	/*
2135 	 * Set the initial TX and RX configuration.
2136 	 */
2137 	if (sc->rl_testmode) {
2138 		if (sc->rl_type == RL_8169)
2139 			CSR_WRITE_4(sc, RL_TXCFG,
2140 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2141 		else
2142 			CSR_WRITE_4(sc, RL_TXCFG,
2143 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2144 	} else
2145 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2146 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2147 
2148 	/* Set the individual bit to receive frames for this host only. */
2149 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2150 	rxcfg |= RL_RXCFG_RX_INDIV;
2151 
2152 	/* If we want promiscuous mode, set the allframes bit. */
2153 	if (ifp->if_flags & IFF_PROMISC)
2154 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2155 	else
2156 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2157 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2158 
2159 	/*
2160 	 * Set capture broadcast bit to capture broadcast frames.
2161 	 */
2162 	if (ifp->if_flags & IFF_BROADCAST)
2163 		rxcfg |= RL_RXCFG_RX_BROAD;
2164 	else
2165 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2166 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2167 
2168 	/*
2169 	 * Program the multicast filter, if necessary.
2170 	 */
2171 	re_setmulti(sc);
2172 
2173 #ifdef DEVICE_POLLING
2174 	/*
2175 	 * Disable interrupts if we are polling.
2176 	 */
2177 	if (ifp->if_flags & IFF_POLLING)
2178 		CSR_WRITE_2(sc, RL_IMR, 0);
2179 	else	/* otherwise ... */
2180 #endif /* DEVICE_POLLING */
2181 	/*
2182 	 * Enable interrupts.
2183 	 */
2184 	if (sc->rl_testmode)
2185 		CSR_WRITE_2(sc, RL_IMR, 0);
2186 	else
2187 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2188 
2189 	/* Set initial TX threshold */
2190 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2191 
2192 	/* Start RX/TX process. */
2193 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2194 #ifdef notdef
2195 	/* Enable receiver and transmitter. */
2196 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2197 #endif
2198 	/*
2199 	 * Load the addresses of the RX and TX lists into the chip.
2200 	 */
2201 
2202 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2203 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2204 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2205 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2206 
2207 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2208 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2209 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2210 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2211 
2212 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2213 
2214 	/*
2215 	 * Initialize the timer interrupt register so that
2216 	 * a timer interrupt will be generated once the timer
2217 	 * reaches a certain number of ticks. The timer is
2218 	 * reloaded on each transmit. This gives us TX interrupt
2219 	 * moderation, which dramatically improves TX frame rate.
2220 	 */
2221 	if (sc->rl_type == RL_8169)
2222 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2223 	else
2224 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2225 
2226 	/*
2227 	 * For 8169 gigE NICs, set the max allowed RX packet
2228 	 * size so we can receive jumbo frames.
2229 	 */
2230 	if (sc->rl_type == RL_8169)
2231 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2232 
2233 	if (sc->rl_testmode)
2234 		return;
2235 
2236 	mii_mediachg(mii);
2237 
2238 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2239 
2240 	ifp->if_flags |= IFF_RUNNING;
2241 	ifp->if_flags &= ~IFF_OACTIVE;
2242 
2243 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2244 }
2245 
2246 /*
2247  * Set media options.
2248  */
2249 static int
2250 re_ifmedia_upd(ifp)
2251 	struct ifnet		*ifp;
2252 {
2253 	struct rl_softc		*sc;
2254 	struct mii_data		*mii;
2255 
2256 	sc = ifp->if_softc;
2257 	mii = device_get_softc(sc->rl_miibus);
2258 	mii_mediachg(mii);
2259 
2260 	return (0);
2261 }
2262 
2263 /*
2264  * Report current media status.
2265  */
2266 static void
2267 re_ifmedia_sts(ifp, ifmr)
2268 	struct ifnet		*ifp;
2269 	struct ifmediareq	*ifmr;
2270 {
2271 	struct rl_softc		*sc;
2272 	struct mii_data		*mii;
2273 
2274 	sc = ifp->if_softc;
2275 	mii = device_get_softc(sc->rl_miibus);
2276 
2277 	mii_pollstat(mii);
2278 	ifmr->ifm_active = mii->mii_media_active;
2279 	ifmr->ifm_status = mii->mii_media_status;
2280 }
2281 
2282 static int
2283 re_ioctl(ifp, command, data)
2284 	struct ifnet		*ifp;
2285 	u_long			command;
2286 	caddr_t			data;
2287 {
2288 	struct rl_softc		*sc = ifp->if_softc;
2289 	struct ifreq		*ifr = (struct ifreq *) data;
2290 	struct mii_data		*mii;
2291 	int			error = 0;
2292 
2293 	switch (command) {
2294 	case SIOCSIFMTU:
2295 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2296 			error = EINVAL;
2297 		ifp->if_mtu = ifr->ifr_mtu;
2298 		break;
2299 	case SIOCSIFFLAGS:
2300 		RL_LOCK(sc);
2301 		if (ifp->if_flags & IFF_UP)
2302 			re_init_locked(sc);
2303 		else if (ifp->if_flags & IFF_RUNNING)
2304 			re_stop(sc);
2305 		RL_UNLOCK(sc);
2306 		error = 0;
2307 		break;
2308 	case SIOCADDMULTI:
2309 	case SIOCDELMULTI:
2310 		RL_LOCK(sc);
2311 		re_setmulti(sc);
2312 		RL_UNLOCK(sc);
2313 		error = 0;
2314 		break;
2315 	case SIOCGIFMEDIA:
2316 	case SIOCSIFMEDIA:
2317 		mii = device_get_softc(sc->rl_miibus);
2318 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2319 		break;
2320 	case SIOCSIFCAP:
2321 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2322 		ifp->if_capenable |=
2323 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2324 		if (ifp->if_capenable & IFCAP_TXCSUM)
2325 			ifp->if_hwassist = RE_CSUM_FEATURES;
2326 		else
2327 			ifp->if_hwassist = 0;
2328 		if (ifp->if_flags & IFF_RUNNING)
2329 			re_init(sc);
2330 		break;
2331 	default:
2332 		error = ether_ioctl(ifp, command, data);
2333 		break;
2334 	}
2335 
2336 	return (error);
2337 }
2338 
2339 static void
2340 re_watchdog(ifp)
2341 	struct ifnet		*ifp;
2342 {
2343 	struct rl_softc		*sc;
2344 
2345 	sc = ifp->if_softc;
2346 	RL_LOCK(sc);
2347 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2348 	ifp->if_oerrors++;
2349 
2350 	re_txeof(sc);
2351 	re_rxeof(sc);
2352 	re_init_locked(sc);
2353 
2354 	RL_UNLOCK(sc);
2355 }
2356 
2357 /*
2358  * Stop the adapter and free any mbufs allocated to the
2359  * RX and TX lists.
2360  */
2361 static void
2362 re_stop(sc)
2363 	struct rl_softc		*sc;
2364 {
2365 	register int		i;
2366 	struct ifnet		*ifp;
2367 
2368 	RL_LOCK_ASSERT(sc);
2369 
2370 	ifp = &sc->arpcom.ac_if;
2371 	ifp->if_timer = 0;
2372 
2373 	untimeout(re_tick, sc, sc->rl_stat_ch);
2374 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2375 #ifdef DEVICE_POLLING
2376 	ether_poll_deregister(ifp);
2377 #endif /* DEVICE_POLLING */
2378 
2379 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2380 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2381 
2382 	if (sc->rl_head != NULL) {
2383 		m_freem(sc->rl_head);
2384 		sc->rl_head = sc->rl_tail = NULL;
2385 	}
2386 
2387 	/* Free the TX list buffers. */
2388 
2389 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2390 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2391 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2392 			    sc->rl_ldata.rl_tx_dmamap[i]);
2393 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2394 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2395 		}
2396 	}
2397 
2398 	/* Free the RX list buffers. */
2399 
2400 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2401 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2402 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2403 			    sc->rl_ldata.rl_rx_dmamap[i]);
2404 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2405 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2406 		}
2407 	}
2408 }
2409 
2410 /*
2411  * Device suspend routine.  Stop the interface and save some PCI
2412  * settings in case the BIOS doesn't restore them properly on
2413  * resume.
2414  */
2415 static int
2416 re_suspend(dev)
2417 	device_t		dev;
2418 {
2419 	struct rl_softc		*sc;
2420 
2421 	sc = device_get_softc(dev);
2422 
2423 	RL_LOCK(sc);
2424 	re_stop(sc);
2425 	sc->suspended = 1;
2426 	RL_UNLOCK(sc);
2427 
2428 	return (0);
2429 }
2430 
2431 /*
2432  * Device resume routine.  Restore some PCI settings in case the BIOS
2433  * doesn't, re-enable busmastering, and restart the interface if
2434  * appropriate.
2435  */
2436 static int
2437 re_resume(dev)
2438 	device_t		dev;
2439 {
2440 	struct rl_softc		*sc;
2441 	struct ifnet		*ifp;
2442 
2443 	sc = device_get_softc(dev);
2444 
2445 	RL_LOCK(sc);
2446 
2447 	ifp = &sc->arpcom.ac_if;
2448 
2449 	/* reinitialize interface if necessary */
2450 	if (ifp->if_flags & IFF_UP)
2451 		re_init_locked(sc);
2452 
2453 	sc->suspended = 0;
2454 	RL_UNLOCK(sc);
2455 
2456 	return (0);
2457 }
2458 
2459 /*
2460  * Stop all chip I/O so that the kernel's probe routines don't
2461  * get confused by errant DMAs when rebooting.
2462  */
2463 static void
2464 re_shutdown(dev)
2465 	device_t		dev;
2466 {
2467 	struct rl_softc		*sc;
2468 
2469 	sc = device_get_softc(dev);
2470 
2471 	RL_LOCK(sc);
2472 	re_stop(sc);
2473 	RL_UNLOCK(sc);
2474 }
2475