xref: /freebsd/sys/dev/re/if_re.c (revision 675be9115aae86ad6b3d877155d4fd7822892105)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/sysctl.h>
127 #include <sys/taskqueue.h>
128 
129 #include <net/if.h>
130 #include <net/if_arp.h>
131 #include <net/ethernet.h>
132 #include <net/if_dl.h>
133 #include <net/if_media.h>
134 #include <net/if_types.h>
135 #include <net/if_vlan_var.h>
136 
137 #include <net/bpf.h>
138 
139 #include <machine/bus.h>
140 #include <machine/resource.h>
141 #include <sys/bus.h>
142 #include <sys/rman.h>
143 
144 #include <dev/mii/mii.h>
145 #include <dev/mii/miivar.h>
146 
147 #include <dev/pci/pcireg.h>
148 #include <dev/pci/pcivar.h>
149 
150 #include <pci/if_rlreg.h>
151 
152 MODULE_DEPEND(re, pci, 1, 1, 1);
153 MODULE_DEPEND(re, ether, 1, 1, 1);
154 MODULE_DEPEND(re, miibus, 1, 1, 1);
155 
156 /* "device miibus" required.  See GENERIC if you get errors here. */
157 #include "miibus_if.h"
158 
159 /* Tunables. */
160 static int intr_filter = 0;
161 TUNABLE_INT("hw.re.intr_filter", &intr_filter);
162 static int msi_disable = 0;
163 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
164 static int msix_disable = 0;
165 TUNABLE_INT("hw.re.msix_disable", &msix_disable);
166 static int prefer_iomap = 0;
167 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap);
168 
169 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
170 
171 /*
172  * Various supported device vendors/types and their names.
173  */
174 static const struct rl_type const re_devs[] = {
175 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
176 	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
177 	{ DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0,
178 	    "D-Link DGE-530(T) Gigabit Ethernet Adapter" },
179 	{ RT_VENDORID, RT_DEVICEID_8139, 0,
180 	    "RealTek 8139C+ 10/100BaseTX" },
181 	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
182 	    "RealTek 810xE PCIe 10/100baseTX" },
183 	{ RT_VENDORID, RT_DEVICEID_8168, 0,
184 	    "RealTek 8168/8111 B/C/CP/D/DP/E/F PCIe Gigabit Ethernet" },
185 	{ RT_VENDORID, RT_DEVICEID_8169, 0,
186 	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
187 	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
188 	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
189 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
190 	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
191 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
192 	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
193 	{ USR_VENDORID, USR_DEVICEID_997902, 0,
194 	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
195 };
196 
197 static const struct rl_hwrev const re_hwrevs[] = {
198 	{ RL_HWREV_8139, RL_8139, "", RL_MTU },
199 	{ RL_HWREV_8139A, RL_8139, "A", RL_MTU },
200 	{ RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU },
201 	{ RL_HWREV_8139B, RL_8139, "B", RL_MTU },
202 	{ RL_HWREV_8130, RL_8139, "8130", RL_MTU },
203 	{ RL_HWREV_8139C, RL_8139, "C", RL_MTU },
204 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU },
205 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU },
206 	{ RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU },
207 	{ RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU },
208 	{ RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU },
209 	{ RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU },
210 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU },
211 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
212 	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU },
213 	{ RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU },
214 	{ RL_HWREV_8100, RL_8139, "8100", RL_MTU },
215 	{ RL_HWREV_8101, RL_8139, "8101", RL_MTU },
216 	{ RL_HWREV_8100E, RL_8169, "8100E", RL_MTU },
217 	{ RL_HWREV_8101E, RL_8169, "8101E", RL_MTU },
218 	{ RL_HWREV_8102E, RL_8169, "8102E", RL_MTU },
219 	{ RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU },
220 	{ RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU },
221 	{ RL_HWREV_8103E, RL_8169, "8103E", RL_MTU },
222 	{ RL_HWREV_8401E, RL_8169, "8401E", RL_MTU },
223 	{ RL_HWREV_8402, RL_8169, "8402", RL_MTU },
224 	{ RL_HWREV_8105E, RL_8169, "8105E", RL_MTU },
225 	{ RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU },
226 	{ RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU },
227 	{ RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU },
228 	{ RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
229 	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K },
230 	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K },
231 	{ RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K },
232 	{ RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K },
233 	{ RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K},
234 	{ RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K},
235 	{ RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K},
236 	{ RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K},
237 	{ 0, 0, NULL, 0 }
238 };
239 
240 static int re_probe		(device_t);
241 static int re_attach		(device_t);
242 static int re_detach		(device_t);
243 
244 static int re_encap		(struct rl_softc *, struct mbuf **);
245 
246 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
247 static int re_allocmem		(device_t, struct rl_softc *);
248 static __inline void re_discard_rxbuf
249 				(struct rl_softc *, int);
250 static int re_newbuf		(struct rl_softc *, int);
251 static int re_jumbo_newbuf	(struct rl_softc *, int);
252 static int re_rx_list_init	(struct rl_softc *);
253 static int re_jrx_list_init	(struct rl_softc *);
254 static int re_tx_list_init	(struct rl_softc *);
255 #ifdef RE_FIXUP_RX
256 static __inline void re_fixup_rx
257 				(struct mbuf *);
258 #endif
259 static int re_rxeof		(struct rl_softc *, int *);
260 static void re_txeof		(struct rl_softc *);
261 #ifdef DEVICE_POLLING
262 static int re_poll		(struct ifnet *, enum poll_cmd, int);
263 static int re_poll_locked	(struct ifnet *, enum poll_cmd, int);
264 #endif
265 static int re_intr		(void *);
266 static void re_intr_msi		(void *);
267 static void re_tick		(void *);
268 static void re_int_task		(void *, int);
269 static void re_start		(struct ifnet *);
270 static void re_start_locked	(struct ifnet *);
271 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
272 static void re_init		(void *);
273 static void re_init_locked	(struct rl_softc *);
274 static void re_stop		(struct rl_softc *);
275 static void re_watchdog		(struct rl_softc *);
276 static int re_suspend		(device_t);
277 static int re_resume		(device_t);
278 static int re_shutdown		(device_t);
279 static int re_ifmedia_upd	(struct ifnet *);
280 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
281 
282 static void re_eeprom_putbyte	(struct rl_softc *, int);
283 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
284 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
285 static int re_gmii_readreg	(device_t, int, int);
286 static int re_gmii_writereg	(device_t, int, int, int);
287 
288 static int re_miibus_readreg	(device_t, int, int);
289 static int re_miibus_writereg	(device_t, int, int, int);
290 static void re_miibus_statchg	(device_t);
291 
292 static void re_set_jumbo	(struct rl_softc *, int);
293 static void re_set_rxmode		(struct rl_softc *);
294 static void re_reset		(struct rl_softc *);
295 static void re_setwol		(struct rl_softc *);
296 static void re_clrwol		(struct rl_softc *);
297 static void re_set_linkspeed	(struct rl_softc *);
298 
299 #ifdef DEV_NETMAP	/* see ixgbe.c for details */
300 #include <dev/netmap/if_re_netmap.h>
301 #endif /* !DEV_NETMAP */
302 
303 #ifdef RE_DIAG
304 static int re_diag		(struct rl_softc *);
305 #endif
306 
307 static void re_add_sysctls	(struct rl_softc *);
308 static int re_sysctl_stats	(SYSCTL_HANDLER_ARGS);
309 static int sysctl_int_range	(SYSCTL_HANDLER_ARGS, int, int);
310 static int sysctl_hw_re_int_mod	(SYSCTL_HANDLER_ARGS);
311 
312 static device_method_t re_methods[] = {
313 	/* Device interface */
314 	DEVMETHOD(device_probe,		re_probe),
315 	DEVMETHOD(device_attach,	re_attach),
316 	DEVMETHOD(device_detach,	re_detach),
317 	DEVMETHOD(device_suspend,	re_suspend),
318 	DEVMETHOD(device_resume,	re_resume),
319 	DEVMETHOD(device_shutdown,	re_shutdown),
320 
321 	/* MII interface */
322 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
323 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
324 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
325 
326 	DEVMETHOD_END
327 };
328 
329 static driver_t re_driver = {
330 	"re",
331 	re_methods,
332 	sizeof(struct rl_softc)
333 };
334 
335 static devclass_t re_devclass;
336 
337 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
338 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
339 
340 #define EE_SET(x)					\
341 	CSR_WRITE_1(sc, RL_EECMD,			\
342 		CSR_READ_1(sc, RL_EECMD) | x)
343 
344 #define EE_CLR(x)					\
345 	CSR_WRITE_1(sc, RL_EECMD,			\
346 		CSR_READ_1(sc, RL_EECMD) & ~x)
347 
348 /*
349  * Send a read command and address to the EEPROM, check for ACK.
350  */
351 static void
352 re_eeprom_putbyte(struct rl_softc *sc, int addr)
353 {
354 	int			d, i;
355 
356 	d = addr | (RL_9346_READ << sc->rl_eewidth);
357 
358 	/*
359 	 * Feed in each bit and strobe the clock.
360 	 */
361 
362 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
363 		if (d & i) {
364 			EE_SET(RL_EE_DATAIN);
365 		} else {
366 			EE_CLR(RL_EE_DATAIN);
367 		}
368 		DELAY(100);
369 		EE_SET(RL_EE_CLK);
370 		DELAY(150);
371 		EE_CLR(RL_EE_CLK);
372 		DELAY(100);
373 	}
374 }
375 
376 /*
377  * Read a word of data stored in the EEPROM at address 'addr.'
378  */
379 static void
380 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
381 {
382 	int			i;
383 	u_int16_t		word = 0;
384 
385 	/*
386 	 * Send address of word we want to read.
387 	 */
388 	re_eeprom_putbyte(sc, addr);
389 
390 	/*
391 	 * Start reading bits from EEPROM.
392 	 */
393 	for (i = 0x8000; i; i >>= 1) {
394 		EE_SET(RL_EE_CLK);
395 		DELAY(100);
396 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
397 			word |= i;
398 		EE_CLR(RL_EE_CLK);
399 		DELAY(100);
400 	}
401 
402 	*dest = word;
403 }
404 
405 /*
406  * Read a sequence of words from the EEPROM.
407  */
408 static void
409 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
410 {
411 	int			i;
412 	u_int16_t		word = 0, *ptr;
413 
414 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
415 
416         DELAY(100);
417 
418 	for (i = 0; i < cnt; i++) {
419 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
420 		re_eeprom_getword(sc, off + i, &word);
421 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
422 		ptr = (u_int16_t *)(dest + (i * 2));
423                 *ptr = word;
424 	}
425 
426 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
427 }
428 
429 static int
430 re_gmii_readreg(device_t dev, int phy, int reg)
431 {
432 	struct rl_softc		*sc;
433 	u_int32_t		rval;
434 	int			i;
435 
436 	sc = device_get_softc(dev);
437 
438 	/* Let the rgephy driver read the GMEDIASTAT register */
439 
440 	if (reg == RL_GMEDIASTAT) {
441 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
442 		return (rval);
443 	}
444 
445 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
446 
447 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
448 		rval = CSR_READ_4(sc, RL_PHYAR);
449 		if (rval & RL_PHYAR_BUSY)
450 			break;
451 		DELAY(25);
452 	}
453 
454 	if (i == RL_PHY_TIMEOUT) {
455 		device_printf(sc->rl_dev, "PHY read failed\n");
456 		return (0);
457 	}
458 
459 	/*
460 	 * Controller requires a 20us delay to process next MDIO request.
461 	 */
462 	DELAY(20);
463 
464 	return (rval & RL_PHYAR_PHYDATA);
465 }
466 
467 static int
468 re_gmii_writereg(device_t dev, int phy, int reg, int data)
469 {
470 	struct rl_softc		*sc;
471 	u_int32_t		rval;
472 	int			i;
473 
474 	sc = device_get_softc(dev);
475 
476 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
477 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
478 
479 	for (i = 0; i < RL_PHY_TIMEOUT; i++) {
480 		rval = CSR_READ_4(sc, RL_PHYAR);
481 		if (!(rval & RL_PHYAR_BUSY))
482 			break;
483 		DELAY(25);
484 	}
485 
486 	if (i == RL_PHY_TIMEOUT) {
487 		device_printf(sc->rl_dev, "PHY write failed\n");
488 		return (0);
489 	}
490 
491 	/*
492 	 * Controller requires a 20us delay to process next MDIO request.
493 	 */
494 	DELAY(20);
495 
496 	return (0);
497 }
498 
499 static int
500 re_miibus_readreg(device_t dev, int phy, int reg)
501 {
502 	struct rl_softc		*sc;
503 	u_int16_t		rval = 0;
504 	u_int16_t		re8139_reg = 0;
505 
506 	sc = device_get_softc(dev);
507 
508 	if (sc->rl_type == RL_8169) {
509 		rval = re_gmii_readreg(dev, phy, reg);
510 		return (rval);
511 	}
512 
513 	switch (reg) {
514 	case MII_BMCR:
515 		re8139_reg = RL_BMCR;
516 		break;
517 	case MII_BMSR:
518 		re8139_reg = RL_BMSR;
519 		break;
520 	case MII_ANAR:
521 		re8139_reg = RL_ANAR;
522 		break;
523 	case MII_ANER:
524 		re8139_reg = RL_ANER;
525 		break;
526 	case MII_ANLPAR:
527 		re8139_reg = RL_LPAR;
528 		break;
529 	case MII_PHYIDR1:
530 	case MII_PHYIDR2:
531 		return (0);
532 	/*
533 	 * Allow the rlphy driver to read the media status
534 	 * register. If we have a link partner which does not
535 	 * support NWAY, this is the register which will tell
536 	 * us the results of parallel detection.
537 	 */
538 	case RL_MEDIASTAT:
539 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
540 		return (rval);
541 	default:
542 		device_printf(sc->rl_dev, "bad phy register\n");
543 		return (0);
544 	}
545 	rval = CSR_READ_2(sc, re8139_reg);
546 	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
547 		/* 8139C+ has different bit layout. */
548 		rval &= ~(BMCR_LOOP | BMCR_ISO);
549 	}
550 	return (rval);
551 }
552 
553 static int
554 re_miibus_writereg(device_t dev, int phy, int reg, int data)
555 {
556 	struct rl_softc		*sc;
557 	u_int16_t		re8139_reg = 0;
558 	int			rval = 0;
559 
560 	sc = device_get_softc(dev);
561 
562 	if (sc->rl_type == RL_8169) {
563 		rval = re_gmii_writereg(dev, phy, reg, data);
564 		return (rval);
565 	}
566 
567 	switch (reg) {
568 	case MII_BMCR:
569 		re8139_reg = RL_BMCR;
570 		if (sc->rl_type == RL_8139CPLUS) {
571 			/* 8139C+ has different bit layout. */
572 			data &= ~(BMCR_LOOP | BMCR_ISO);
573 		}
574 		break;
575 	case MII_BMSR:
576 		re8139_reg = RL_BMSR;
577 		break;
578 	case MII_ANAR:
579 		re8139_reg = RL_ANAR;
580 		break;
581 	case MII_ANER:
582 		re8139_reg = RL_ANER;
583 		break;
584 	case MII_ANLPAR:
585 		re8139_reg = RL_LPAR;
586 		break;
587 	case MII_PHYIDR1:
588 	case MII_PHYIDR2:
589 		return (0);
590 		break;
591 	default:
592 		device_printf(sc->rl_dev, "bad phy register\n");
593 		return (0);
594 	}
595 	CSR_WRITE_2(sc, re8139_reg, data);
596 	return (0);
597 }
598 
599 static void
600 re_miibus_statchg(device_t dev)
601 {
602 	struct rl_softc		*sc;
603 	struct ifnet		*ifp;
604 	struct mii_data		*mii;
605 
606 	sc = device_get_softc(dev);
607 	mii = device_get_softc(sc->rl_miibus);
608 	ifp = sc->rl_ifp;
609 	if (mii == NULL || ifp == NULL ||
610 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
611 		return;
612 
613 	sc->rl_flags &= ~RL_FLAG_LINK;
614 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
615 	    (IFM_ACTIVE | IFM_AVALID)) {
616 		switch (IFM_SUBTYPE(mii->mii_media_active)) {
617 		case IFM_10_T:
618 		case IFM_100_TX:
619 			sc->rl_flags |= RL_FLAG_LINK;
620 			break;
621 		case IFM_1000_T:
622 			if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0)
623 				break;
624 			sc->rl_flags |= RL_FLAG_LINK;
625 			break;
626 		default:
627 			break;
628 		}
629 	}
630 	/*
631 	 * RealTek controllers does not provide any interface to
632 	 * Tx/Rx MACs for resolved speed, duplex and flow-control
633 	 * parameters.
634 	 */
635 }
636 
637 /*
638  * Set the RX configuration and 64-bit multicast hash filter.
639  */
640 static void
641 re_set_rxmode(struct rl_softc *sc)
642 {
643 	struct ifnet		*ifp;
644 	struct ifmultiaddr	*ifma;
645 	uint32_t		hashes[2] = { 0, 0 };
646 	uint32_t		h, rxfilt;
647 
648 	RL_LOCK_ASSERT(sc);
649 
650 	ifp = sc->rl_ifp;
651 
652 	rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD;
653 
654 	if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
655 		if (ifp->if_flags & IFF_PROMISC)
656 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
657 		/*
658 		 * Unlike other hardwares, we have to explicitly set
659 		 * RL_RXCFG_RX_MULTI to receive multicast frames in
660 		 * promiscuous mode.
661 		 */
662 		rxfilt |= RL_RXCFG_RX_MULTI;
663 		hashes[0] = hashes[1] = 0xffffffff;
664 		goto done;
665 	}
666 
667 	if_maddr_rlock(ifp);
668 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
669 		if (ifma->ifma_addr->sa_family != AF_LINK)
670 			continue;
671 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
672 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
673 		if (h < 32)
674 			hashes[0] |= (1 << h);
675 		else
676 			hashes[1] |= (1 << (h - 32));
677 	}
678 	if_maddr_runlock(ifp);
679 
680 	if (hashes[0] != 0 || hashes[1] != 0) {
681 		/*
682 		 * For some unfathomable reason, RealTek decided to
683 		 * reverse the order of the multicast hash registers
684 		 * in the PCI Express parts.  This means we have to
685 		 * write the hash pattern in reverse order for those
686 		 * devices.
687 		 */
688 		if ((sc->rl_flags & RL_FLAG_PCIE) != 0) {
689 			h = bswap32(hashes[0]);
690 			hashes[0] = bswap32(hashes[1]);
691 			hashes[1] = h;
692 		}
693 		rxfilt |= RL_RXCFG_RX_MULTI;
694 	}
695 
696 done:
697 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
698 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
699 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
700 }
701 
702 static void
703 re_reset(struct rl_softc *sc)
704 {
705 	int			i;
706 
707 	RL_LOCK_ASSERT(sc);
708 
709 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
710 
711 	for (i = 0; i < RL_TIMEOUT; i++) {
712 		DELAY(10);
713 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
714 			break;
715 	}
716 	if (i == RL_TIMEOUT)
717 		device_printf(sc->rl_dev, "reset never completed!\n");
718 
719 	if ((sc->rl_flags & RL_FLAG_MACRESET) != 0)
720 		CSR_WRITE_1(sc, 0x82, 1);
721 	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S)
722 		re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0);
723 }
724 
725 #ifdef RE_DIAG
726 
727 /*
728  * The following routine is designed to test for a defect on some
729  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
730  * lines connected to the bus, however for a 32-bit only card, they
731  * should be pulled high. The result of this defect is that the
732  * NIC will not work right if you plug it into a 64-bit slot: DMA
733  * operations will be done with 64-bit transfers, which will fail
734  * because the 64-bit data lines aren't connected.
735  *
736  * There's no way to work around this (short of talking a soldering
737  * iron to the board), however we can detect it. The method we use
738  * here is to put the NIC into digital loopback mode, set the receiver
739  * to promiscuous mode, and then try to send a frame. We then compare
740  * the frame data we sent to what was received. If the data matches,
741  * then the NIC is working correctly, otherwise we know the user has
742  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
743  * slot. In the latter case, there's no way the NIC can work correctly,
744  * so we print out a message on the console and abort the device attach.
745  */
746 
747 static int
748 re_diag(struct rl_softc *sc)
749 {
750 	struct ifnet		*ifp = sc->rl_ifp;
751 	struct mbuf		*m0;
752 	struct ether_header	*eh;
753 	struct rl_desc		*cur_rx;
754 	u_int16_t		status;
755 	u_int32_t		rxstat;
756 	int			total_len, i, error = 0, phyaddr;
757 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
758 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
759 
760 	/* Allocate a single mbuf */
761 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
762 	if (m0 == NULL)
763 		return (ENOBUFS);
764 
765 	RL_LOCK(sc);
766 
767 	/*
768 	 * Initialize the NIC in test mode. This sets the chip up
769 	 * so that it can send and receive frames, but performs the
770 	 * following special functions:
771 	 * - Puts receiver in promiscuous mode
772 	 * - Enables digital loopback mode
773 	 * - Leaves interrupts turned off
774 	 */
775 
776 	ifp->if_flags |= IFF_PROMISC;
777 	sc->rl_testmode = 1;
778 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
779 	re_init_locked(sc);
780 	sc->rl_flags |= RL_FLAG_LINK;
781 	if (sc->rl_type == RL_8169)
782 		phyaddr = 1;
783 	else
784 		phyaddr = 0;
785 
786 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
787 	for (i = 0; i < RL_TIMEOUT; i++) {
788 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
789 		if (!(status & BMCR_RESET))
790 			break;
791 	}
792 
793 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
794 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
795 
796 	DELAY(100000);
797 
798 	/* Put some data in the mbuf */
799 
800 	eh = mtod(m0, struct ether_header *);
801 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
802 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
803 	eh->ether_type = htons(ETHERTYPE_IP);
804 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
805 
806 	/*
807 	 * Queue the packet, start transmission.
808 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
809 	 */
810 
811 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
812 	RL_UNLOCK(sc);
813 	/* XXX: re_diag must not be called when in ALTQ mode */
814 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
815 	RL_LOCK(sc);
816 	m0 = NULL;
817 
818 	/* Wait for it to propagate through the chip */
819 
820 	DELAY(100000);
821 	for (i = 0; i < RL_TIMEOUT; i++) {
822 		status = CSR_READ_2(sc, RL_ISR);
823 		CSR_WRITE_2(sc, RL_ISR, status);
824 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
825 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
826 			break;
827 		DELAY(10);
828 	}
829 
830 	if (i == RL_TIMEOUT) {
831 		device_printf(sc->rl_dev,
832 		    "diagnostic failed, failed to receive packet in"
833 		    " loopback mode\n");
834 		error = EIO;
835 		goto done;
836 	}
837 
838 	/*
839 	 * The packet should have been dumped into the first
840 	 * entry in the RX DMA ring. Grab it from there.
841 	 */
842 
843 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
844 	    sc->rl_ldata.rl_rx_list_map,
845 	    BUS_DMASYNC_POSTREAD);
846 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
847 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
848 	    BUS_DMASYNC_POSTREAD);
849 	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
850 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
851 
852 	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
853 	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
854 	eh = mtod(m0, struct ether_header *);
855 
856 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
857 	total_len = RL_RXBYTES(cur_rx);
858 	rxstat = le32toh(cur_rx->rl_cmdstat);
859 
860 	if (total_len != ETHER_MIN_LEN) {
861 		device_printf(sc->rl_dev,
862 		    "diagnostic failed, received short packet\n");
863 		error = EIO;
864 		goto done;
865 	}
866 
867 	/* Test that the received packet data matches what we sent. */
868 
869 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
870 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
871 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
872 		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
873 		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
874 		    dst, ":", src, ":", ETHERTYPE_IP);
875 		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
876 		    eh->ether_dhost, ":", eh->ether_shost, ":",
877 		    ntohs(eh->ether_type));
878 		device_printf(sc->rl_dev, "You may have a defective 32-bit "
879 		    "NIC plugged into a 64-bit PCI slot.\n");
880 		device_printf(sc->rl_dev, "Please re-install the NIC in a "
881 		    "32-bit slot for proper operation.\n");
882 		device_printf(sc->rl_dev, "Read the re(4) man page for more "
883 		    "details.\n");
884 		error = EIO;
885 	}
886 
887 done:
888 	/* Turn interface off, release resources */
889 
890 	sc->rl_testmode = 0;
891 	sc->rl_flags &= ~RL_FLAG_LINK;
892 	ifp->if_flags &= ~IFF_PROMISC;
893 	re_stop(sc);
894 	if (m0 != NULL)
895 		m_freem(m0);
896 
897 	RL_UNLOCK(sc);
898 
899 	return (error);
900 }
901 
902 #endif
903 
904 /*
905  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
906  * IDs against our list and return a device name if we find a match.
907  */
908 static int
909 re_probe(device_t dev)
910 {
911 	const struct rl_type	*t;
912 	uint16_t		devid, vendor;
913 	uint16_t		revid, sdevid;
914 	int			i;
915 
916 	vendor = pci_get_vendor(dev);
917 	devid = pci_get_device(dev);
918 	revid = pci_get_revid(dev);
919 	sdevid = pci_get_subdevice(dev);
920 
921 	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
922 		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
923 			/*
924 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
925 			 * Rev. 2 is supported by sk(4).
926 			 */
927 			return (ENXIO);
928 		}
929 	}
930 
931 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
932 		if (revid != 0x20) {
933 			/* 8139, let rl(4) take care of this device. */
934 			return (ENXIO);
935 		}
936 	}
937 
938 	t = re_devs;
939 	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
940 		if (vendor == t->rl_vid && devid == t->rl_did) {
941 			device_set_desc(dev, t->rl_name);
942 			return (BUS_PROBE_DEFAULT);
943 		}
944 	}
945 
946 	return (ENXIO);
947 }
948 
949 /*
950  * Map a single buffer address.
951  */
952 
953 static void
954 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
955 {
956 	bus_addr_t		*addr;
957 
958 	if (error)
959 		return;
960 
961 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
962 	addr = arg;
963 	*addr = segs->ds_addr;
964 }
965 
966 static int
967 re_allocmem(device_t dev, struct rl_softc *sc)
968 {
969 	bus_addr_t		lowaddr;
970 	bus_size_t		rx_list_size, tx_list_size;
971 	int			error;
972 	int			i;
973 
974 	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
975 	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
976 
977 	/*
978 	 * Allocate the parent bus DMA tag appropriate for PCI.
979 	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
980 	 * register should be set. However some RealTek chips are known
981 	 * to be buggy on DAC handling, therefore disable DAC by limiting
982 	 * DMA address space to 32bit. PCIe variants of RealTek chips
983 	 * may not have the limitation.
984 	 */
985 	lowaddr = BUS_SPACE_MAXADDR;
986 	if ((sc->rl_flags & RL_FLAG_PCIE) == 0)
987 		lowaddr = BUS_SPACE_MAXADDR_32BIT;
988 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
989 	    lowaddr, BUS_SPACE_MAXADDR, NULL, NULL,
990 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
991 	    NULL, NULL, &sc->rl_parent_tag);
992 	if (error) {
993 		device_printf(dev, "could not allocate parent DMA tag\n");
994 		return (error);
995 	}
996 
997 	/*
998 	 * Allocate map for TX mbufs.
999 	 */
1000 	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1001 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1002 	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1003 	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1004 	if (error) {
1005 		device_printf(dev, "could not allocate TX DMA tag\n");
1006 		return (error);
1007 	}
1008 
1009 	/*
1010 	 * Allocate map for RX mbufs.
1011 	 */
1012 
1013 	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1014 		error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t),
1015 		    0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1016 		    MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL,
1017 		    &sc->rl_ldata.rl_jrx_mtag);
1018 		if (error) {
1019 			device_printf(dev,
1020 			    "could not allocate jumbo RX DMA tag\n");
1021 			return (error);
1022 		}
1023 	}
1024 	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1025 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1026 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1027 	if (error) {
1028 		device_printf(dev, "could not allocate RX DMA tag\n");
1029 		return (error);
1030 	}
1031 
1032 	/*
1033 	 * Allocate map for TX descriptor list.
1034 	 */
1035 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1036 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1037 	    NULL, tx_list_size, 1, tx_list_size, 0,
1038 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1039 	if (error) {
1040 		device_printf(dev, "could not allocate TX DMA ring tag\n");
1041 		return (error);
1042 	}
1043 
1044 	/* Allocate DMA'able memory for the TX ring */
1045 
1046 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1047 	    (void **)&sc->rl_ldata.rl_tx_list,
1048 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1049 	    &sc->rl_ldata.rl_tx_list_map);
1050 	if (error) {
1051 		device_printf(dev, "could not allocate TX DMA ring\n");
1052 		return (error);
1053 	}
1054 
1055 	/* Load the map for the TX ring. */
1056 
1057 	sc->rl_ldata.rl_tx_list_addr = 0;
1058 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1059 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1060 	     tx_list_size, re_dma_map_addr,
1061 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1062 	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1063 		device_printf(dev, "could not load TX DMA ring\n");
1064 		return (ENOMEM);
1065 	}
1066 
1067 	/* Create DMA maps for TX buffers */
1068 
1069 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1070 		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1071 		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1072 		if (error) {
1073 			device_printf(dev, "could not create DMA map for TX\n");
1074 			return (error);
1075 		}
1076 	}
1077 
1078 	/*
1079 	 * Allocate map for RX descriptor list.
1080 	 */
1081 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1082 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1083 	    NULL, rx_list_size, 1, rx_list_size, 0,
1084 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1085 	if (error) {
1086 		device_printf(dev, "could not create RX DMA ring tag\n");
1087 		return (error);
1088 	}
1089 
1090 	/* Allocate DMA'able memory for the RX ring */
1091 
1092 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1093 	    (void **)&sc->rl_ldata.rl_rx_list,
1094 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1095 	    &sc->rl_ldata.rl_rx_list_map);
1096 	if (error) {
1097 		device_printf(dev, "could not allocate RX DMA ring\n");
1098 		return (error);
1099 	}
1100 
1101 	/* Load the map for the RX ring. */
1102 
1103 	sc->rl_ldata.rl_rx_list_addr = 0;
1104 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1105 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1106 	     rx_list_size, re_dma_map_addr,
1107 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1108 	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1109 		device_printf(dev, "could not load RX DMA ring\n");
1110 		return (ENOMEM);
1111 	}
1112 
1113 	/* Create DMA maps for RX buffers */
1114 
1115 	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
1116 		error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1117 		    &sc->rl_ldata.rl_jrx_sparemap);
1118 		if (error) {
1119 			device_printf(dev,
1120 			    "could not create spare DMA map for jumbo RX\n");
1121 			return (error);
1122 		}
1123 		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1124 			error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0,
1125 			    &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1126 			if (error) {
1127 				device_printf(dev,
1128 				    "could not create DMA map for jumbo RX\n");
1129 				return (error);
1130 			}
1131 		}
1132 	}
1133 	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1134 	    &sc->rl_ldata.rl_rx_sparemap);
1135 	if (error) {
1136 		device_printf(dev, "could not create spare DMA map for RX\n");
1137 		return (error);
1138 	}
1139 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1140 		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1141 		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1142 		if (error) {
1143 			device_printf(dev, "could not create DMA map for RX\n");
1144 			return (error);
1145 		}
1146 	}
1147 
1148 	/* Create DMA map for statistics. */
1149 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0,
1150 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1151 	    sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL,
1152 	    &sc->rl_ldata.rl_stag);
1153 	if (error) {
1154 		device_printf(dev, "could not create statistics DMA tag\n");
1155 		return (error);
1156 	}
1157 	/* Allocate DMA'able memory for statistics. */
1158 	error = bus_dmamem_alloc(sc->rl_ldata.rl_stag,
1159 	    (void **)&sc->rl_ldata.rl_stats,
1160 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1161 	    &sc->rl_ldata.rl_smap);
1162 	if (error) {
1163 		device_printf(dev,
1164 		    "could not allocate statistics DMA memory\n");
1165 		return (error);
1166 	}
1167 	/* Load the map for statistics. */
1168 	sc->rl_ldata.rl_stats_addr = 0;
1169 	error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap,
1170 	    sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr,
1171 	     &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT);
1172 	if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) {
1173 		device_printf(dev, "could not load statistics DMA memory\n");
1174 		return (ENOMEM);
1175 	}
1176 
1177 	return (0);
1178 }
1179 
1180 /*
1181  * Attach the interface. Allocate softc structures, do ifmedia
1182  * setup and ethernet/BPF attach.
1183  */
1184 static int
1185 re_attach(device_t dev)
1186 {
1187 	u_char			eaddr[ETHER_ADDR_LEN];
1188 	u_int16_t		as[ETHER_ADDR_LEN / 2];
1189 	struct rl_softc		*sc;
1190 	struct ifnet		*ifp;
1191 	const struct rl_hwrev	*hw_rev;
1192 	u_int32_t		cap, ctl;
1193 	int			hwrev;
1194 	u_int16_t		devid, re_did = 0;
1195 	int			error = 0, i, phy, rid;
1196 	int			msic, msixc, reg;
1197 	uint8_t			cfg;
1198 
1199 	sc = device_get_softc(dev);
1200 	sc->rl_dev = dev;
1201 
1202 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1203 	    MTX_DEF);
1204 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1205 
1206 	/*
1207 	 * Map control/status registers.
1208 	 */
1209 	pci_enable_busmaster(dev);
1210 
1211 	devid = pci_get_device(dev);
1212 	/*
1213 	 * Prefer memory space register mapping over IO space.
1214 	 * Because RTL8169SC does not seem to work when memory mapping
1215 	 * is used always activate io mapping.
1216 	 */
1217 	if (devid == RT_DEVICEID_8169SC)
1218 		prefer_iomap = 1;
1219 	if (prefer_iomap == 0) {
1220 		sc->rl_res_id = PCIR_BAR(1);
1221 		sc->rl_res_type = SYS_RES_MEMORY;
1222 		/* RTL8168/8101E seems to use different BARs. */
1223 		if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1224 			sc->rl_res_id = PCIR_BAR(2);
1225 	} else {
1226 		sc->rl_res_id = PCIR_BAR(0);
1227 		sc->rl_res_type = SYS_RES_IOPORT;
1228 	}
1229 	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1230 	    &sc->rl_res_id, RF_ACTIVE);
1231 	if (sc->rl_res == NULL && prefer_iomap == 0) {
1232 		sc->rl_res_id = PCIR_BAR(0);
1233 		sc->rl_res_type = SYS_RES_IOPORT;
1234 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1235 		    &sc->rl_res_id, RF_ACTIVE);
1236 	}
1237 	if (sc->rl_res == NULL) {
1238 		device_printf(dev, "couldn't map ports/memory\n");
1239 		error = ENXIO;
1240 		goto fail;
1241 	}
1242 
1243 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1244 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1245 
1246 	msic = pci_msi_count(dev);
1247 	msixc = pci_msix_count(dev);
1248 	if (pci_find_cap(dev, PCIY_EXPRESS, &reg) == 0) {
1249 		sc->rl_flags |= RL_FLAG_PCIE;
1250 		sc->rl_expcap = reg;
1251 	}
1252 	if (bootverbose) {
1253 		device_printf(dev, "MSI count : %d\n", msic);
1254 		device_printf(dev, "MSI-X count : %d\n", msixc);
1255 	}
1256 	if (msix_disable > 0)
1257 		msixc = 0;
1258 	if (msi_disable > 0)
1259 		msic = 0;
1260 	/* Prefer MSI-X to MSI. */
1261 	if (msixc > 0) {
1262 		msixc = 1;
1263 		rid = PCIR_BAR(4);
1264 		sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
1265 		    &rid, RF_ACTIVE);
1266 		if (sc->rl_res_pba == NULL) {
1267 			device_printf(sc->rl_dev,
1268 			    "could not allocate MSI-X PBA resource\n");
1269 		}
1270 		if (sc->rl_res_pba != NULL &&
1271 		    pci_alloc_msix(dev, &msixc) == 0) {
1272 			if (msixc == 1) {
1273 				device_printf(dev, "Using %d MSI-X message\n",
1274 				    msixc);
1275 				sc->rl_flags |= RL_FLAG_MSIX;
1276 			} else
1277 				pci_release_msi(dev);
1278 		}
1279 		if ((sc->rl_flags & RL_FLAG_MSIX) == 0) {
1280 			if (sc->rl_res_pba != NULL)
1281 				bus_release_resource(dev, SYS_RES_MEMORY, rid,
1282 				    sc->rl_res_pba);
1283 			sc->rl_res_pba = NULL;
1284 			msixc = 0;
1285 		}
1286 	}
1287 	/* Prefer MSI to INTx. */
1288 	if (msixc == 0 && msic > 0) {
1289 		msic = 1;
1290 		if (pci_alloc_msi(dev, &msic) == 0) {
1291 			if (msic == RL_MSI_MESSAGES) {
1292 				device_printf(dev, "Using %d MSI message\n",
1293 				    msic);
1294 				sc->rl_flags |= RL_FLAG_MSI;
1295 				/* Explicitly set MSI enable bit. */
1296 				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1297 				cfg = CSR_READ_1(sc, RL_CFG2);
1298 				cfg |= RL_CFG2_MSI;
1299 				CSR_WRITE_1(sc, RL_CFG2, cfg);
1300 				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1301 			} else
1302 				pci_release_msi(dev);
1303 		}
1304 		if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1305 			msic = 0;
1306 	}
1307 
1308 	/* Allocate interrupt */
1309 	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) {
1310 		rid = 0;
1311 		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1312 		    RF_SHAREABLE | RF_ACTIVE);
1313 		if (sc->rl_irq[0] == NULL) {
1314 			device_printf(dev, "couldn't allocate IRQ resources\n");
1315 			error = ENXIO;
1316 			goto fail;
1317 		}
1318 	} else {
1319 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1320 			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1321 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1322 			if (sc->rl_irq[i] == NULL) {
1323 				device_printf(dev,
1324 				    "couldn't llocate IRQ resources for "
1325 				    "message %d\n", rid);
1326 				error = ENXIO;
1327 				goto fail;
1328 			}
1329 		}
1330 	}
1331 
1332 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1333 		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1334 		cfg = CSR_READ_1(sc, RL_CFG2);
1335 		if ((cfg & RL_CFG2_MSI) != 0) {
1336 			device_printf(dev, "turning off MSI enable bit.\n");
1337 			cfg &= ~RL_CFG2_MSI;
1338 			CSR_WRITE_1(sc, RL_CFG2, cfg);
1339 		}
1340 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1341 	}
1342 
1343 	/* Disable ASPM L0S/L1. */
1344 	if (sc->rl_expcap != 0) {
1345 		cap = pci_read_config(dev, sc->rl_expcap +
1346 		    PCIR_EXPRESS_LINK_CAP, 2);
1347 		if ((cap & PCIM_LINK_CAP_ASPM) != 0) {
1348 			ctl = pci_read_config(dev, sc->rl_expcap +
1349 			    PCIR_EXPRESS_LINK_CTL, 2);
1350 			if ((ctl & 0x0003) != 0) {
1351 				ctl &= ~0x0003;
1352 				pci_write_config(dev, sc->rl_expcap +
1353 				    PCIR_EXPRESS_LINK_CTL, ctl, 2);
1354 				device_printf(dev, "ASPM disabled\n");
1355 			}
1356 		} else
1357 			device_printf(dev, "no ASPM capability\n");
1358 	}
1359 
1360 	hw_rev = re_hwrevs;
1361 	hwrev = CSR_READ_4(sc, RL_TXCFG);
1362 	switch (hwrev & 0x70000000) {
1363 	case 0x00000000:
1364 	case 0x10000000:
1365 		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000);
1366 		hwrev &= (RL_TXCFG_HWREV | 0x80000000);
1367 		break;
1368 	default:
1369 		device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1370 		hwrev &= RL_TXCFG_HWREV;
1371 		break;
1372 	}
1373 	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1374 	while (hw_rev->rl_desc != NULL) {
1375 		if (hw_rev->rl_rev == hwrev) {
1376 			sc->rl_type = hw_rev->rl_type;
1377 			sc->rl_hwrev = hw_rev;
1378 			break;
1379 		}
1380 		hw_rev++;
1381 	}
1382 	if (hw_rev->rl_desc == NULL) {
1383 		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1384 		error = ENXIO;
1385 		goto fail;
1386 	}
1387 
1388 	switch (hw_rev->rl_rev) {
1389 	case RL_HWREV_8139CPLUS:
1390 		sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD;
1391 		break;
1392 	case RL_HWREV_8100E:
1393 	case RL_HWREV_8101E:
1394 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER;
1395 		break;
1396 	case RL_HWREV_8102E:
1397 	case RL_HWREV_8102EL:
1398 	case RL_HWREV_8102EL_SPIN1:
1399 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1400 		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1401 		    RL_FLAG_AUTOPAD;
1402 		break;
1403 	case RL_HWREV_8103E:
1404 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1405 		    RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP |
1406 		    RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP;
1407 		break;
1408 	case RL_HWREV_8401E:
1409 	case RL_HWREV_8105E:
1410 	case RL_HWREV_8105E_SPIN1:
1411 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1412 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1413 		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD;
1414 		break;
1415 	case RL_HWREV_8402:
1416 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1417 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1418 		    RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD |
1419 		    RL_FLAG_CMDSTOP_WAIT_TXQ;
1420 		break;
1421 	case RL_HWREV_8168B_SPIN1:
1422 	case RL_HWREV_8168B_SPIN2:
1423 		sc->rl_flags |= RL_FLAG_WOLRXENB;
1424 		/* FALLTHROUGH */
1425 	case RL_HWREV_8168B_SPIN3:
1426 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT;
1427 		break;
1428 	case RL_HWREV_8168C_SPIN2:
1429 		sc->rl_flags |= RL_FLAG_MACSLEEP;
1430 		/* FALLTHROUGH */
1431 	case RL_HWREV_8168C:
1432 		if ((hwrev & 0x00700000) == 0x00200000)
1433 			sc->rl_flags |= RL_FLAG_MACSLEEP;
1434 		/* FALLTHROUGH */
1435 	case RL_HWREV_8168CP:
1436 	case RL_HWREV_8168D:
1437 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1438 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1439 		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK;
1440 		break;
1441 	case RL_HWREV_8168DP:
1442 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1443 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD |
1444 		    RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK;
1445 		break;
1446 	case RL_HWREV_8168E:
1447 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM |
1448 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT |
1449 		    RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1450 		    RL_FLAG_WOL_MANLINK;
1451 		break;
1452 	case RL_HWREV_8168E_VL:
1453 	case RL_HWREV_8168F:
1454 	case RL_HWREV_8411:
1455 		sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR |
1456 		    RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP |
1457 		    RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 |
1458 		    RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK;
1459 		break;
1460 	case RL_HWREV_8169_8110SB:
1461 	case RL_HWREV_8169_8110SBL:
1462 	case RL_HWREV_8169_8110SC:
1463 	case RL_HWREV_8169_8110SCE:
1464 		sc->rl_flags |= RL_FLAG_PHYWAKE;
1465 		/* FALLTHROUGH */
1466 	case RL_HWREV_8169:
1467 	case RL_HWREV_8169S:
1468 	case RL_HWREV_8110S:
1469 		sc->rl_flags |= RL_FLAG_MACRESET;
1470 		break;
1471 	default:
1472 		break;
1473 	}
1474 
1475 	/* Reset the adapter. */
1476 	RL_LOCK(sc);
1477 	re_reset(sc);
1478 	RL_UNLOCK(sc);
1479 
1480 	/* Enable PME. */
1481 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1482 	cfg = CSR_READ_1(sc, RL_CFG1);
1483 	cfg |= RL_CFG1_PME;
1484 	CSR_WRITE_1(sc, RL_CFG1, cfg);
1485 	cfg = CSR_READ_1(sc, RL_CFG5);
1486 	cfg &= RL_CFG5_PME_STS;
1487 	CSR_WRITE_1(sc, RL_CFG5, cfg);
1488 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1489 
1490 	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1491 		/*
1492 		 * XXX Should have a better way to extract station
1493 		 * address from EEPROM.
1494 		 */
1495 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1496 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1497 	} else {
1498 		sc->rl_eewidth = RL_9356_ADDR_LEN;
1499 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1500 		if (re_did != 0x8129)
1501 			sc->rl_eewidth = RL_9346_ADDR_LEN;
1502 
1503 		/*
1504 		 * Get station address from the EEPROM.
1505 		 */
1506 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1507 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1508 			as[i] = le16toh(as[i]);
1509 		bcopy(as, eaddr, sizeof(eaddr));
1510 	}
1511 
1512 	if (sc->rl_type == RL_8169) {
1513 		/* Set RX length mask and number of descriptors. */
1514 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1515 		sc->rl_txstart = RL_GTXSTART;
1516 		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1517 		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1518 	} else {
1519 		/* Set RX length mask and number of descriptors. */
1520 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1521 		sc->rl_txstart = RL_TXSTART;
1522 		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1523 		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1524 	}
1525 
1526 	error = re_allocmem(dev, sc);
1527 	if (error)
1528 		goto fail;
1529 	re_add_sysctls(sc);
1530 
1531 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1532 	if (ifp == NULL) {
1533 		device_printf(dev, "can not if_alloc()\n");
1534 		error = ENOSPC;
1535 		goto fail;
1536 	}
1537 
1538 	/* Take controller out of deep sleep mode. */
1539 	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
1540 		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
1541 			CSR_WRITE_1(sc, RL_GPIO,
1542 			    CSR_READ_1(sc, RL_GPIO) | 0x01);
1543 		else
1544 			CSR_WRITE_1(sc, RL_GPIO,
1545 			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
1546 	}
1547 
1548 	/* Take PHY out of power down mode. */
1549 	if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) {
1550 		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80);
1551 		if (hw_rev->rl_rev == RL_HWREV_8401E)
1552 			CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08);
1553 	}
1554 	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1555 		re_gmii_writereg(dev, 1, 0x1f, 0);
1556 		re_gmii_writereg(dev, 1, 0x0e, 0);
1557 	}
1558 
1559 #define	RE_PHYAD_INTERNAL	 0
1560 
1561 	/* Do MII setup. */
1562 	phy = RE_PHYAD_INTERNAL;
1563 	if (sc->rl_type == RL_8169)
1564 		phy = 1;
1565 	error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd,
1566 	    re_ifmedia_sts, BMSR_DEFCAPMASK, phy, MII_OFFSET_ANY, MIIF_DOPAUSE);
1567 	if (error != 0) {
1568 		device_printf(dev, "attaching PHYs failed\n");
1569 		goto fail;
1570 	}
1571 
1572 	ifp->if_softc = sc;
1573 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1574 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1575 	ifp->if_ioctl = re_ioctl;
1576 	ifp->if_start = re_start;
1577 	/*
1578 	 * RTL8168/8111C generates wrong IP checksummed frame if the
1579 	 * packet has IP options so disable TX IP checksum offloading.
1580 	 */
1581 	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C ||
1582 	    sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2)
1583 		ifp->if_hwassist = CSUM_TCP | CSUM_UDP;
1584 	else
1585 		ifp->if_hwassist = CSUM_IP | CSUM_TCP | CSUM_UDP;
1586 	ifp->if_hwassist |= CSUM_TSO;
1587 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1588 	ifp->if_capenable = ifp->if_capabilities;
1589 	ifp->if_init = re_init;
1590 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1591 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1592 	IFQ_SET_READY(&ifp->if_snd);
1593 
1594 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1595 
1596 	/*
1597 	 * Call MI attach routine.
1598 	 */
1599 	ether_ifattach(ifp, eaddr);
1600 
1601 	/* VLAN capability setup */
1602 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1603 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1604 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1605 	/* Enable WOL if PM is supported. */
1606 	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1607 		ifp->if_capabilities |= IFCAP_WOL;
1608 	ifp->if_capenable = ifp->if_capabilities;
1609 	ifp->if_capenable &= ~(IFCAP_WOL_UCAST | IFCAP_WOL_MCAST);
1610 	/*
1611 	 * Don't enable TSO by default.  It is known to generate
1612 	 * corrupted TCP segments(bad TCP options) under certain
1613 	 * circumtances.
1614 	 */
1615 	ifp->if_hwassist &= ~CSUM_TSO;
1616 	ifp->if_capenable &= ~(IFCAP_TSO4 | IFCAP_VLAN_HWTSO);
1617 #ifdef DEVICE_POLLING
1618 	ifp->if_capabilities |= IFCAP_POLLING;
1619 #endif
1620 	/*
1621 	 * Tell the upper layer(s) we support long frames.
1622 	 * Must appear after the call to ether_ifattach() because
1623 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1624 	 */
1625 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1626 
1627 #ifdef DEV_NETMAP
1628 	re_netmap_attach(sc);
1629 #endif /* DEV_NETMAP */
1630 #ifdef RE_DIAG
1631 	/*
1632 	 * Perform hardware diagnostic on the original RTL8169.
1633 	 * Some 32-bit cards were incorrectly wired and would
1634 	 * malfunction if plugged into a 64-bit slot.
1635 	 */
1636 
1637 	if (hwrev == RL_HWREV_8169) {
1638 		error = re_diag(sc);
1639 		if (error) {
1640 			device_printf(dev,
1641 		    	"attach aborted due to hardware diag failure\n");
1642 			ether_ifdetach(ifp);
1643 			goto fail;
1644 		}
1645 	}
1646 #endif
1647 
1648 #ifdef RE_TX_MODERATION
1649 	intr_filter = 1;
1650 #endif
1651 	/* Hook interrupt last to avoid having to lock softc */
1652 	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
1653 	    intr_filter == 0) {
1654 		error = bus_setup_intr(dev, sc->rl_irq[0],
1655 		    INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc,
1656 		    &sc->rl_intrhand[0]);
1657 	} else {
1658 		error = bus_setup_intr(dev, sc->rl_irq[0],
1659 		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1660 		    &sc->rl_intrhand[0]);
1661 	}
1662 	if (error) {
1663 		device_printf(dev, "couldn't set up irq\n");
1664 		ether_ifdetach(ifp);
1665 	}
1666 
1667 fail:
1668 
1669 	if (error)
1670 		re_detach(dev);
1671 
1672 	return (error);
1673 }
1674 
1675 /*
1676  * Shutdown hardware and free up resources. This can be called any
1677  * time after the mutex has been initialized. It is called in both
1678  * the error case in attach and the normal detach case so it needs
1679  * to be careful about only freeing resources that have actually been
1680  * allocated.
1681  */
1682 static int
1683 re_detach(device_t dev)
1684 {
1685 	struct rl_softc		*sc;
1686 	struct ifnet		*ifp;
1687 	int			i, rid;
1688 
1689 	sc = device_get_softc(dev);
1690 	ifp = sc->rl_ifp;
1691 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1692 
1693 	/* These should only be active if attach succeeded */
1694 	if (device_is_attached(dev)) {
1695 #ifdef DEVICE_POLLING
1696 		if (ifp->if_capenable & IFCAP_POLLING)
1697 			ether_poll_deregister(ifp);
1698 #endif
1699 		RL_LOCK(sc);
1700 #if 0
1701 		sc->suspended = 1;
1702 #endif
1703 		re_stop(sc);
1704 		RL_UNLOCK(sc);
1705 		callout_drain(&sc->rl_stat_callout);
1706 		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1707 		/*
1708 		 * Force off the IFF_UP flag here, in case someone
1709 		 * still had a BPF descriptor attached to this
1710 		 * interface. If they do, ether_ifdetach() will cause
1711 		 * the BPF code to try and clear the promisc mode
1712 		 * flag, which will bubble down to re_ioctl(),
1713 		 * which will try to call re_init() again. This will
1714 		 * turn the NIC back on and restart the MII ticker,
1715 		 * which will panic the system when the kernel tries
1716 		 * to invoke the re_tick() function that isn't there
1717 		 * anymore.
1718 		 */
1719 		ifp->if_flags &= ~IFF_UP;
1720 		ether_ifdetach(ifp);
1721 	}
1722 	if (sc->rl_miibus)
1723 		device_delete_child(dev, sc->rl_miibus);
1724 	bus_generic_detach(dev);
1725 
1726 	/*
1727 	 * The rest is resource deallocation, so we should already be
1728 	 * stopped here.
1729 	 */
1730 
1731 	if (sc->rl_intrhand[0] != NULL) {
1732 		bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]);
1733 		sc->rl_intrhand[0] = NULL;
1734 	}
1735 	if (ifp != NULL)
1736 		if_free(ifp);
1737 	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
1738 		rid = 0;
1739 	else
1740 		rid = 1;
1741 	if (sc->rl_irq[0] != NULL) {
1742 		bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]);
1743 		sc->rl_irq[0] = NULL;
1744 	}
1745 	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0)
1746 		pci_release_msi(dev);
1747 	if (sc->rl_res_pba) {
1748 		rid = PCIR_BAR(4);
1749 		bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba);
1750 	}
1751 	if (sc->rl_res)
1752 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1753 		    sc->rl_res);
1754 
1755 	/* Unload and free the RX DMA ring memory and map */
1756 
1757 	if (sc->rl_ldata.rl_rx_list_tag) {
1758 		if (sc->rl_ldata.rl_rx_list_map)
1759 			bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1760 			    sc->rl_ldata.rl_rx_list_map);
1761 		if (sc->rl_ldata.rl_rx_list_map && sc->rl_ldata.rl_rx_list)
1762 			bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1763 			    sc->rl_ldata.rl_rx_list,
1764 			    sc->rl_ldata.rl_rx_list_map);
1765 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1766 	}
1767 
1768 	/* Unload and free the TX DMA ring memory and map */
1769 
1770 	if (sc->rl_ldata.rl_tx_list_tag) {
1771 		if (sc->rl_ldata.rl_tx_list_map)
1772 			bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1773 			    sc->rl_ldata.rl_tx_list_map);
1774 		if (sc->rl_ldata.rl_tx_list_map && sc->rl_ldata.rl_tx_list)
1775 			bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1776 			    sc->rl_ldata.rl_tx_list,
1777 			    sc->rl_ldata.rl_tx_list_map);
1778 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1779 	}
1780 
1781 	/* Destroy all the RX and TX buffer maps */
1782 
1783 	if (sc->rl_ldata.rl_tx_mtag) {
1784 		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1785 			if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap)
1786 				bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1787 				    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1788 		}
1789 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1790 	}
1791 	if (sc->rl_ldata.rl_rx_mtag) {
1792 		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1793 			if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap)
1794 				bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1795 				    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1796 		}
1797 		if (sc->rl_ldata.rl_rx_sparemap)
1798 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1799 			    sc->rl_ldata.rl_rx_sparemap);
1800 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1801 	}
1802 	if (sc->rl_ldata.rl_jrx_mtag) {
1803 		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1804 			if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap)
1805 				bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1806 				    sc->rl_ldata.rl_jrx_desc[i].rx_dmamap);
1807 		}
1808 		if (sc->rl_ldata.rl_jrx_sparemap)
1809 			bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag,
1810 			    sc->rl_ldata.rl_jrx_sparemap);
1811 		bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag);
1812 	}
1813 	/* Unload and free the stats buffer and map */
1814 
1815 	if (sc->rl_ldata.rl_stag) {
1816 		if (sc->rl_ldata.rl_smap)
1817 			bus_dmamap_unload(sc->rl_ldata.rl_stag,
1818 			    sc->rl_ldata.rl_smap);
1819 		if (sc->rl_ldata.rl_smap && sc->rl_ldata.rl_stats)
1820 			bus_dmamem_free(sc->rl_ldata.rl_stag,
1821 			    sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap);
1822 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1823 	}
1824 
1825 #ifdef DEV_NETMAP
1826 	netmap_detach(ifp);
1827 #endif /* DEV_NETMAP */
1828 	if (sc->rl_parent_tag)
1829 		bus_dma_tag_destroy(sc->rl_parent_tag);
1830 
1831 	mtx_destroy(&sc->rl_mtx);
1832 
1833 	return (0);
1834 }
1835 
1836 static __inline void
1837 re_discard_rxbuf(struct rl_softc *sc, int idx)
1838 {
1839 	struct rl_desc		*desc;
1840 	struct rl_rxdesc	*rxd;
1841 	uint32_t		cmdstat;
1842 
1843 	if (sc->rl_ifp->if_mtu > RL_MTU &&
1844 	    (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
1845 		rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1846 	else
1847 		rxd = &sc->rl_ldata.rl_rx_desc[idx];
1848 	desc = &sc->rl_ldata.rl_rx_list[idx];
1849 	desc->rl_vlanctl = 0;
1850 	cmdstat = rxd->rx_size;
1851 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1852 		cmdstat |= RL_RDESC_CMD_EOR;
1853 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1854 }
1855 
1856 static int
1857 re_newbuf(struct rl_softc *sc, int idx)
1858 {
1859 	struct mbuf		*m;
1860 	struct rl_rxdesc	*rxd;
1861 	bus_dma_segment_t	segs[1];
1862 	bus_dmamap_t		map;
1863 	struct rl_desc		*desc;
1864 	uint32_t		cmdstat;
1865 	int			error, nsegs;
1866 
1867 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1868 	if (m == NULL)
1869 		return (ENOBUFS);
1870 
1871 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1872 #ifdef RE_FIXUP_RX
1873 	/*
1874 	 * This is part of an evil trick to deal with non-x86 platforms.
1875 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1876 	 * boundaries, but that will hose non-x86 machines. To get around
1877 	 * this, we leave some empty space at the start of each buffer
1878 	 * and for non-x86 hosts, we copy the buffer back six bytes
1879 	 * to achieve word alignment. This is slightly more efficient
1880 	 * than allocating a new buffer, copying the contents, and
1881 	 * discarding the old buffer.
1882 	 */
1883 	m_adj(m, RE_ETHER_ALIGN);
1884 #endif
1885 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1886 	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1887 	if (error != 0) {
1888 		m_freem(m);
1889 		return (ENOBUFS);
1890 	}
1891 	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1892 
1893 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1894 	if (rxd->rx_m != NULL) {
1895 		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1896 		    BUS_DMASYNC_POSTREAD);
1897 		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1898 	}
1899 
1900 	rxd->rx_m = m;
1901 	map = rxd->rx_dmamap;
1902 	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1903 	rxd->rx_size = segs[0].ds_len;
1904 	sc->rl_ldata.rl_rx_sparemap = map;
1905 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1906 	    BUS_DMASYNC_PREREAD);
1907 
1908 	desc = &sc->rl_ldata.rl_rx_list[idx];
1909 	desc->rl_vlanctl = 0;
1910 	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1911 	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1912 	cmdstat = segs[0].ds_len;
1913 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1914 		cmdstat |= RL_RDESC_CMD_EOR;
1915 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1916 
1917 	return (0);
1918 }
1919 
1920 static int
1921 re_jumbo_newbuf(struct rl_softc *sc, int idx)
1922 {
1923 	struct mbuf		*m;
1924 	struct rl_rxdesc	*rxd;
1925 	bus_dma_segment_t	segs[1];
1926 	bus_dmamap_t		map;
1927 	struct rl_desc		*desc;
1928 	uint32_t		cmdstat;
1929 	int			error, nsegs;
1930 
1931 	m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES);
1932 	if (m == NULL)
1933 		return (ENOBUFS);
1934 	m->m_len = m->m_pkthdr.len = MJUM9BYTES;
1935 #ifdef RE_FIXUP_RX
1936 	m_adj(m, RE_ETHER_ALIGN);
1937 #endif
1938 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag,
1939 	    sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1940 	if (error != 0) {
1941 		m_freem(m);
1942 		return (ENOBUFS);
1943 	}
1944 	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1945 
1946 	rxd = &sc->rl_ldata.rl_jrx_desc[idx];
1947 	if (rxd->rx_m != NULL) {
1948 		bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1949 		    BUS_DMASYNC_POSTREAD);
1950 		bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap);
1951 	}
1952 
1953 	rxd->rx_m = m;
1954 	map = rxd->rx_dmamap;
1955 	rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap;
1956 	rxd->rx_size = segs[0].ds_len;
1957 	sc->rl_ldata.rl_jrx_sparemap = map;
1958 	bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap,
1959 	    BUS_DMASYNC_PREREAD);
1960 
1961 	desc = &sc->rl_ldata.rl_rx_list[idx];
1962 	desc->rl_vlanctl = 0;
1963 	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1964 	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1965 	cmdstat = segs[0].ds_len;
1966 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1967 		cmdstat |= RL_RDESC_CMD_EOR;
1968 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1969 
1970 	return (0);
1971 }
1972 
1973 #ifdef RE_FIXUP_RX
1974 static __inline void
1975 re_fixup_rx(struct mbuf *m)
1976 {
1977 	int                     i;
1978 	uint16_t                *src, *dst;
1979 
1980 	src = mtod(m, uint16_t *);
1981 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1982 
1983 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1984 		*dst++ = *src++;
1985 
1986 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1987 }
1988 #endif
1989 
1990 static int
1991 re_tx_list_init(struct rl_softc *sc)
1992 {
1993 	struct rl_desc		*desc;
1994 	int			i;
1995 
1996 	RL_LOCK_ASSERT(sc);
1997 
1998 	bzero(sc->rl_ldata.rl_tx_list,
1999 	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
2000 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
2001 		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
2002 #ifdef DEV_NETMAP
2003 	re_netmap_tx_init(sc);
2004 #endif /* DEV_NETMAP */
2005 	/* Set EOR. */
2006 	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
2007 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
2008 
2009 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2010 	    sc->rl_ldata.rl_tx_list_map,
2011 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2012 
2013 	sc->rl_ldata.rl_tx_prodidx = 0;
2014 	sc->rl_ldata.rl_tx_considx = 0;
2015 	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
2016 
2017 	return (0);
2018 }
2019 
2020 static int
2021 re_rx_list_init(struct rl_softc *sc)
2022 {
2023 	int			error, i;
2024 
2025 	bzero(sc->rl_ldata.rl_rx_list,
2026 	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2027 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2028 		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
2029 		if ((error = re_newbuf(sc, i)) != 0)
2030 			return (error);
2031 	}
2032 #ifdef DEV_NETMAP
2033 	re_netmap_rx_init(sc);
2034 #endif /* DEV_NETMAP */
2035 
2036 	/* Flush the RX descriptors */
2037 
2038 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2039 	    sc->rl_ldata.rl_rx_list_map,
2040 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2041 
2042 	sc->rl_ldata.rl_rx_prodidx = 0;
2043 	sc->rl_head = sc->rl_tail = NULL;
2044 	sc->rl_int_rx_act = 0;
2045 
2046 	return (0);
2047 }
2048 
2049 static int
2050 re_jrx_list_init(struct rl_softc *sc)
2051 {
2052 	int			error, i;
2053 
2054 	bzero(sc->rl_ldata.rl_rx_list,
2055 	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
2056 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2057 		sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL;
2058 		if ((error = re_jumbo_newbuf(sc, i)) != 0)
2059 			return (error);
2060 	}
2061 
2062 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2063 	    sc->rl_ldata.rl_rx_list_map,
2064 	    BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
2065 
2066 	sc->rl_ldata.rl_rx_prodidx = 0;
2067 	sc->rl_head = sc->rl_tail = NULL;
2068 	sc->rl_int_rx_act = 0;
2069 
2070 	return (0);
2071 }
2072 
2073 /*
2074  * RX handler for C+ and 8169. For the gigE chips, we support
2075  * the reception of jumbo frames that have been fragmented
2076  * across multiple 2K mbuf cluster buffers.
2077  */
2078 static int
2079 re_rxeof(struct rl_softc *sc, int *rx_npktsp)
2080 {
2081 	struct mbuf		*m;
2082 	struct ifnet		*ifp;
2083 	int			i, rxerr, total_len;
2084 	struct rl_desc		*cur_rx;
2085 	u_int32_t		rxstat, rxvlan;
2086 	int			jumbo, maxpkt = 16, rx_npkts = 0;
2087 
2088 	RL_LOCK_ASSERT(sc);
2089 
2090 	ifp = sc->rl_ifp;
2091 #ifdef DEV_NETMAP
2092 	if (ifp->if_capenable & IFCAP_NETMAP) {
2093 		selwakeuppri(&NA(ifp)->rx_rings->si, PI_NET);
2094 		return 0;
2095 	}
2096 #endif /* DEV_NETMAP */
2097 	if (ifp->if_mtu > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0)
2098 		jumbo = 1;
2099 	else
2100 		jumbo = 0;
2101 
2102 	/* Invalidate the descriptor memory */
2103 
2104 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2105 	    sc->rl_ldata.rl_rx_list_map,
2106 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2107 
2108 	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
2109 	    i = RL_RX_DESC_NXT(sc, i)) {
2110 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2111 			break;
2112 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
2113 		rxstat = le32toh(cur_rx->rl_cmdstat);
2114 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
2115 			break;
2116 		total_len = rxstat & sc->rl_rxlenmask;
2117 		rxvlan = le32toh(cur_rx->rl_vlanctl);
2118 		if (jumbo != 0)
2119 			m = sc->rl_ldata.rl_jrx_desc[i].rx_m;
2120 		else
2121 			m = sc->rl_ldata.rl_rx_desc[i].rx_m;
2122 
2123 		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
2124 		    (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) !=
2125 		    (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) {
2126 			/*
2127 			 * RTL8168C or later controllers do not
2128 			 * support multi-fragment packet.
2129 			 */
2130 			re_discard_rxbuf(sc, i);
2131 			continue;
2132 		} else if ((rxstat & RL_RDESC_STAT_EOF) == 0) {
2133 			if (re_newbuf(sc, i) != 0) {
2134 				/*
2135 				 * If this is part of a multi-fragment packet,
2136 				 * discard all the pieces.
2137 				 */
2138 				if (sc->rl_head != NULL) {
2139 					m_freem(sc->rl_head);
2140 					sc->rl_head = sc->rl_tail = NULL;
2141 				}
2142 				re_discard_rxbuf(sc, i);
2143 				continue;
2144 			}
2145 			m->m_len = RE_RX_DESC_BUFLEN;
2146 			if (sc->rl_head == NULL)
2147 				sc->rl_head = sc->rl_tail = m;
2148 			else {
2149 				m->m_flags &= ~M_PKTHDR;
2150 				sc->rl_tail->m_next = m;
2151 				sc->rl_tail = m;
2152 			}
2153 			continue;
2154 		}
2155 
2156 		/*
2157 		 * NOTE: for the 8139C+, the frame length field
2158 		 * is always 12 bits in size, but for the gigE chips,
2159 		 * it is 13 bits (since the max RX frame length is 16K).
2160 		 * Unfortunately, all 32 bits in the status word
2161 		 * were already used, so to make room for the extra
2162 		 * length bit, RealTek took out the 'frame alignment
2163 		 * error' bit and shifted the other status bits
2164 		 * over one slot. The OWN, EOR, FS and LS bits are
2165 		 * still in the same places. We have already extracted
2166 		 * the frame length and checked the OWN bit, so rather
2167 		 * than using an alternate bit mapping, we shift the
2168 		 * status bits one space to the right so we can evaluate
2169 		 * them using the 8169 status as though it was in the
2170 		 * same format as that of the 8139C+.
2171 		 */
2172 		if (sc->rl_type == RL_8169)
2173 			rxstat >>= 1;
2174 
2175 		/*
2176 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
2177 		 * set, but if CRC is clear, it will still be a valid frame.
2178 		 */
2179 		if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) {
2180 			rxerr = 1;
2181 			if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 &&
2182 			    total_len > 8191 &&
2183 			    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)
2184 				rxerr = 0;
2185 			if (rxerr != 0) {
2186 				ifp->if_ierrors++;
2187 				/*
2188 				 * If this is part of a multi-fragment packet,
2189 				 * discard all the pieces.
2190 				 */
2191 				if (sc->rl_head != NULL) {
2192 					m_freem(sc->rl_head);
2193 					sc->rl_head = sc->rl_tail = NULL;
2194 				}
2195 				re_discard_rxbuf(sc, i);
2196 				continue;
2197 			}
2198 		}
2199 
2200 		/*
2201 		 * If allocating a replacement mbuf fails,
2202 		 * reload the current one.
2203 		 */
2204 		if (jumbo != 0)
2205 			rxerr = re_jumbo_newbuf(sc, i);
2206 		else
2207 			rxerr = re_newbuf(sc, i);
2208 		if (rxerr != 0) {
2209 			ifp->if_iqdrops++;
2210 			if (sc->rl_head != NULL) {
2211 				m_freem(sc->rl_head);
2212 				sc->rl_head = sc->rl_tail = NULL;
2213 			}
2214 			re_discard_rxbuf(sc, i);
2215 			continue;
2216 		}
2217 
2218 		if (sc->rl_head != NULL) {
2219 			if (jumbo != 0)
2220 				m->m_len = total_len;
2221 			else {
2222 				m->m_len = total_len % RE_RX_DESC_BUFLEN;
2223 				if (m->m_len == 0)
2224 					m->m_len = RE_RX_DESC_BUFLEN;
2225 			}
2226 			/*
2227 			 * Special case: if there's 4 bytes or less
2228 			 * in this buffer, the mbuf can be discarded:
2229 			 * the last 4 bytes is the CRC, which we don't
2230 			 * care about anyway.
2231 			 */
2232 			if (m->m_len <= ETHER_CRC_LEN) {
2233 				sc->rl_tail->m_len -=
2234 				    (ETHER_CRC_LEN - m->m_len);
2235 				m_freem(m);
2236 			} else {
2237 				m->m_len -= ETHER_CRC_LEN;
2238 				m->m_flags &= ~M_PKTHDR;
2239 				sc->rl_tail->m_next = m;
2240 			}
2241 			m = sc->rl_head;
2242 			sc->rl_head = sc->rl_tail = NULL;
2243 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
2244 		} else
2245 			m->m_pkthdr.len = m->m_len =
2246 			    (total_len - ETHER_CRC_LEN);
2247 
2248 #ifdef RE_FIXUP_RX
2249 		re_fixup_rx(m);
2250 #endif
2251 		ifp->if_ipackets++;
2252 		m->m_pkthdr.rcvif = ifp;
2253 
2254 		/* Do RX checksumming if enabled */
2255 
2256 		if (ifp->if_capenable & IFCAP_RXCSUM) {
2257 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2258 				/* Check IP header checksum */
2259 				if (rxstat & RL_RDESC_STAT_PROTOID)
2260 					m->m_pkthdr.csum_flags |=
2261 					    CSUM_IP_CHECKED;
2262 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
2263 					m->m_pkthdr.csum_flags |=
2264 					    CSUM_IP_VALID;
2265 
2266 				/* Check TCP/UDP checksum */
2267 				if ((RL_TCPPKT(rxstat) &&
2268 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2269 				    (RL_UDPPKT(rxstat) &&
2270 				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2271 					m->m_pkthdr.csum_flags |=
2272 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2273 					m->m_pkthdr.csum_data = 0xffff;
2274 				}
2275 			} else {
2276 				/*
2277 				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
2278 				 */
2279 				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
2280 				    (rxvlan & RL_RDESC_IPV4))
2281 					m->m_pkthdr.csum_flags |=
2282 					    CSUM_IP_CHECKED;
2283 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
2284 				    (rxvlan & RL_RDESC_IPV4))
2285 					m->m_pkthdr.csum_flags |=
2286 					    CSUM_IP_VALID;
2287 				if (((rxstat & RL_RDESC_STAT_TCP) &&
2288 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
2289 				    ((rxstat & RL_RDESC_STAT_UDP) &&
2290 				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
2291 					m->m_pkthdr.csum_flags |=
2292 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
2293 					m->m_pkthdr.csum_data = 0xffff;
2294 				}
2295 			}
2296 		}
2297 		maxpkt--;
2298 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
2299 			m->m_pkthdr.ether_vtag =
2300 			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
2301 			m->m_flags |= M_VLANTAG;
2302 		}
2303 		RL_UNLOCK(sc);
2304 		(*ifp->if_input)(ifp, m);
2305 		RL_LOCK(sc);
2306 		rx_npkts++;
2307 	}
2308 
2309 	/* Flush the RX DMA ring */
2310 
2311 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
2312 	    sc->rl_ldata.rl_rx_list_map,
2313 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2314 
2315 	sc->rl_ldata.rl_rx_prodidx = i;
2316 
2317 	if (rx_npktsp != NULL)
2318 		*rx_npktsp = rx_npkts;
2319 	if (maxpkt)
2320 		return (EAGAIN);
2321 
2322 	return (0);
2323 }
2324 
2325 static void
2326 re_txeof(struct rl_softc *sc)
2327 {
2328 	struct ifnet		*ifp;
2329 	struct rl_txdesc	*txd;
2330 	u_int32_t		txstat;
2331 	int			cons;
2332 
2333 	cons = sc->rl_ldata.rl_tx_considx;
2334 	if (cons == sc->rl_ldata.rl_tx_prodidx)
2335 		return;
2336 
2337 	ifp = sc->rl_ifp;
2338 #ifdef DEV_NETMAP
2339 	if (ifp->if_capenable & IFCAP_NETMAP) {
2340 		selwakeuppri(&NA(ifp)->tx_rings[0].si, PI_NET);
2341 		return;
2342 	}
2343 #endif /* DEV_NETMAP */
2344 	/* Invalidate the TX descriptor list */
2345 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2346 	    sc->rl_ldata.rl_tx_list_map,
2347 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2348 
2349 	for (; cons != sc->rl_ldata.rl_tx_prodidx;
2350 	    cons = RL_TX_DESC_NXT(sc, cons)) {
2351 		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
2352 		if (txstat & RL_TDESC_STAT_OWN)
2353 			break;
2354 		/*
2355 		 * We only stash mbufs in the last descriptor
2356 		 * in a fragment chain, which also happens to
2357 		 * be the only place where the TX status bits
2358 		 * are valid.
2359 		 */
2360 		if (txstat & RL_TDESC_CMD_EOF) {
2361 			txd = &sc->rl_ldata.rl_tx_desc[cons];
2362 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2363 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2364 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2365 			    txd->tx_dmamap);
2366 			KASSERT(txd->tx_m != NULL,
2367 			    ("%s: freeing NULL mbufs!", __func__));
2368 			m_freem(txd->tx_m);
2369 			txd->tx_m = NULL;
2370 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
2371 			    RL_TDESC_STAT_COLCNT))
2372 				ifp->if_collisions++;
2373 			if (txstat & RL_TDESC_STAT_TXERRSUM)
2374 				ifp->if_oerrors++;
2375 			else
2376 				ifp->if_opackets++;
2377 		}
2378 		sc->rl_ldata.rl_tx_free++;
2379 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2380 	}
2381 	sc->rl_ldata.rl_tx_considx = cons;
2382 
2383 	/* No changes made to the TX ring, so no flush needed */
2384 
2385 	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
2386 #ifdef RE_TX_MODERATION
2387 		/*
2388 		 * If not all descriptors have been reaped yet, reload
2389 		 * the timer so that we will eventually get another
2390 		 * interrupt that will cause us to re-enter this routine.
2391 		 * This is done in case the transmitter has gone idle.
2392 		 */
2393 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2394 #endif
2395 	} else
2396 		sc->rl_watchdog_timer = 0;
2397 }
2398 
2399 static void
2400 re_tick(void *xsc)
2401 {
2402 	struct rl_softc		*sc;
2403 	struct mii_data		*mii;
2404 
2405 	sc = xsc;
2406 
2407 	RL_LOCK_ASSERT(sc);
2408 
2409 	mii = device_get_softc(sc->rl_miibus);
2410 	mii_tick(mii);
2411 	if ((sc->rl_flags & RL_FLAG_LINK) == 0)
2412 		re_miibus_statchg(sc->rl_dev);
2413 	/*
2414 	 * Reclaim transmitted frames here. Technically it is not
2415 	 * necessary to do here but it ensures periodic reclamation
2416 	 * regardless of Tx completion interrupt which seems to be
2417 	 * lost on PCIe based controllers under certain situations.
2418 	 */
2419 	re_txeof(sc);
2420 	re_watchdog(sc);
2421 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2422 }
2423 
2424 #ifdef DEVICE_POLLING
2425 static int
2426 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2427 {
2428 	struct rl_softc *sc = ifp->if_softc;
2429 	int rx_npkts = 0;
2430 
2431 	RL_LOCK(sc);
2432 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2433 		rx_npkts = re_poll_locked(ifp, cmd, count);
2434 	RL_UNLOCK(sc);
2435 	return (rx_npkts);
2436 }
2437 
2438 static int
2439 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2440 {
2441 	struct rl_softc *sc = ifp->if_softc;
2442 	int rx_npkts;
2443 
2444 	RL_LOCK_ASSERT(sc);
2445 
2446 	sc->rxcycles = count;
2447 	re_rxeof(sc, &rx_npkts);
2448 	re_txeof(sc);
2449 
2450 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2451 		re_start_locked(ifp);
2452 
2453 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2454 		u_int16_t       status;
2455 
2456 		status = CSR_READ_2(sc, RL_ISR);
2457 		if (status == 0xffff)
2458 			return (rx_npkts);
2459 		if (status)
2460 			CSR_WRITE_2(sc, RL_ISR, status);
2461 		if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2462 		    (sc->rl_flags & RL_FLAG_PCIE))
2463 			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2464 
2465 		/*
2466 		 * XXX check behaviour on receiver stalls.
2467 		 */
2468 
2469 		if (status & RL_ISR_SYSTEM_ERR) {
2470 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2471 			re_init_locked(sc);
2472 		}
2473 	}
2474 	return (rx_npkts);
2475 }
2476 #endif /* DEVICE_POLLING */
2477 
2478 static int
2479 re_intr(void *arg)
2480 {
2481 	struct rl_softc		*sc;
2482 	uint16_t		status;
2483 
2484 	sc = arg;
2485 
2486 	status = CSR_READ_2(sc, RL_ISR);
2487 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2488                 return (FILTER_STRAY);
2489 	CSR_WRITE_2(sc, RL_IMR, 0);
2490 
2491 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2492 
2493 	return (FILTER_HANDLED);
2494 }
2495 
2496 static void
2497 re_int_task(void *arg, int npending)
2498 {
2499 	struct rl_softc		*sc;
2500 	struct ifnet		*ifp;
2501 	u_int16_t		status;
2502 	int			rval = 0;
2503 
2504 	sc = arg;
2505 	ifp = sc->rl_ifp;
2506 
2507 	RL_LOCK(sc);
2508 
2509 	status = CSR_READ_2(sc, RL_ISR);
2510         CSR_WRITE_2(sc, RL_ISR, status);
2511 
2512 	if (sc->suspended ||
2513 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2514 		RL_UNLOCK(sc);
2515 		return;
2516 	}
2517 
2518 #ifdef DEVICE_POLLING
2519 	if  (ifp->if_capenable & IFCAP_POLLING) {
2520 		RL_UNLOCK(sc);
2521 		return;
2522 	}
2523 #endif
2524 
2525 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2526 		rval = re_rxeof(sc, NULL);
2527 
2528 	/*
2529 	 * Some chips will ignore a second TX request issued
2530 	 * while an existing transmission is in progress. If
2531 	 * the transmitter goes idle but there are still
2532 	 * packets waiting to be sent, we need to restart the
2533 	 * channel here to flush them out. This only seems to
2534 	 * be required with the PCIe devices.
2535 	 */
2536 	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2537 	    (sc->rl_flags & RL_FLAG_PCIE))
2538 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2539 	if (status & (
2540 #ifdef RE_TX_MODERATION
2541 	    RL_ISR_TIMEOUT_EXPIRED|
2542 #else
2543 	    RL_ISR_TX_OK|
2544 #endif
2545 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2546 		re_txeof(sc);
2547 
2548 	if (status & RL_ISR_SYSTEM_ERR) {
2549 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2550 		re_init_locked(sc);
2551 	}
2552 
2553 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2554 		re_start_locked(ifp);
2555 
2556 	RL_UNLOCK(sc);
2557 
2558         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2559 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2560 		return;
2561 	}
2562 
2563 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2564 }
2565 
2566 static void
2567 re_intr_msi(void *xsc)
2568 {
2569 	struct rl_softc		*sc;
2570 	struct ifnet		*ifp;
2571 	uint16_t		intrs, status;
2572 
2573 	sc = xsc;
2574 	RL_LOCK(sc);
2575 
2576 	ifp = sc->rl_ifp;
2577 #ifdef DEVICE_POLLING
2578 	if (ifp->if_capenable & IFCAP_POLLING) {
2579 		RL_UNLOCK(sc);
2580 		return;
2581 	}
2582 #endif
2583 	/* Disable interrupts. */
2584 	CSR_WRITE_2(sc, RL_IMR, 0);
2585 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2586 		RL_UNLOCK(sc);
2587 		return;
2588 	}
2589 
2590 	intrs = RL_INTRS_CPLUS;
2591 	status = CSR_READ_2(sc, RL_ISR);
2592         CSR_WRITE_2(sc, RL_ISR, status);
2593 	if (sc->rl_int_rx_act > 0) {
2594 		intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2595 		    RL_ISR_RX_OVERRUN);
2596 		status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW |
2597 		    RL_ISR_RX_OVERRUN);
2598 	}
2599 
2600 	if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR |
2601 	    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) {
2602 		re_rxeof(sc, NULL);
2603 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2604 			if (sc->rl_int_rx_mod != 0 &&
2605 			    (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR |
2606 			    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) {
2607 				/* Rearm one-shot timer. */
2608 				CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2609 				intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR |
2610 				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN);
2611 				sc->rl_int_rx_act = 1;
2612 			} else {
2613 				intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR |
2614 				    RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN;
2615 				sc->rl_int_rx_act = 0;
2616 			}
2617 		}
2618 	}
2619 
2620 	/*
2621 	 * Some chips will ignore a second TX request issued
2622 	 * while an existing transmission is in progress. If
2623 	 * the transmitter goes idle but there are still
2624 	 * packets waiting to be sent, we need to restart the
2625 	 * channel here to flush them out. This only seems to
2626 	 * be required with the PCIe devices.
2627 	 */
2628 	if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) &&
2629 	    (sc->rl_flags & RL_FLAG_PCIE))
2630 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2631 	if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL))
2632 		re_txeof(sc);
2633 
2634 	if (status & RL_ISR_SYSTEM_ERR) {
2635 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2636 		re_init_locked(sc);
2637 	}
2638 
2639 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2640 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2641 			re_start_locked(ifp);
2642 		CSR_WRITE_2(sc, RL_IMR, intrs);
2643 	}
2644 	RL_UNLOCK(sc);
2645 }
2646 
2647 static int
2648 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2649 {
2650 	struct rl_txdesc	*txd, *txd_last;
2651 	bus_dma_segment_t	segs[RL_NTXSEGS];
2652 	bus_dmamap_t		map;
2653 	struct mbuf		*m_new;
2654 	struct rl_desc		*desc;
2655 	int			nsegs, prod;
2656 	int			i, error, ei, si;
2657 	int			padlen;
2658 	uint32_t		cmdstat, csum_flags, vlanctl;
2659 
2660 	RL_LOCK_ASSERT(sc);
2661 	M_ASSERTPKTHDR((*m_head));
2662 
2663 	/*
2664 	 * With some of the RealTek chips, using the checksum offload
2665 	 * support in conjunction with the autopadding feature results
2666 	 * in the transmission of corrupt frames. For example, if we
2667 	 * need to send a really small IP fragment that's less than 60
2668 	 * bytes in size, and IP header checksumming is enabled, the
2669 	 * resulting ethernet frame that appears on the wire will
2670 	 * have garbled payload. To work around this, if TX IP checksum
2671 	 * offload is enabled, we always manually pad short frames out
2672 	 * to the minimum ethernet frame size.
2673 	 */
2674 	if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 &&
2675 	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2676 	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2677 		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2678 		if (M_WRITABLE(*m_head) == 0) {
2679 			/* Get a writable copy. */
2680 			m_new = m_dup(*m_head, M_DONTWAIT);
2681 			m_freem(*m_head);
2682 			if (m_new == NULL) {
2683 				*m_head = NULL;
2684 				return (ENOBUFS);
2685 			}
2686 			*m_head = m_new;
2687 		}
2688 		if ((*m_head)->m_next != NULL ||
2689 		    M_TRAILINGSPACE(*m_head) < padlen) {
2690 			m_new = m_defrag(*m_head, M_DONTWAIT);
2691 			if (m_new == NULL) {
2692 				m_freem(*m_head);
2693 				*m_head = NULL;
2694 				return (ENOBUFS);
2695 			}
2696 		} else
2697 			m_new = *m_head;
2698 
2699 		/*
2700 		 * Manually pad short frames, and zero the pad space
2701 		 * to avoid leaking data.
2702 		 */
2703 		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2704 		m_new->m_pkthdr.len += padlen;
2705 		m_new->m_len = m_new->m_pkthdr.len;
2706 		*m_head = m_new;
2707 	}
2708 
2709 	prod = sc->rl_ldata.rl_tx_prodidx;
2710 	txd = &sc->rl_ldata.rl_tx_desc[prod];
2711 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2712 	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2713 	if (error == EFBIG) {
2714 		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2715 		if (m_new == NULL) {
2716 			m_freem(*m_head);
2717 			*m_head = NULL;
2718 			return (ENOBUFS);
2719 		}
2720 		*m_head = m_new;
2721 		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2722 		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2723 		if (error != 0) {
2724 			m_freem(*m_head);
2725 			*m_head = NULL;
2726 			return (error);
2727 		}
2728 	} else if (error != 0)
2729 		return (error);
2730 	if (nsegs == 0) {
2731 		m_freem(*m_head);
2732 		*m_head = NULL;
2733 		return (EIO);
2734 	}
2735 
2736 	/* Check for number of available descriptors. */
2737 	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2738 		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2739 		return (ENOBUFS);
2740 	}
2741 
2742 	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2743 	    BUS_DMASYNC_PREWRITE);
2744 
2745 	/*
2746 	 * Set up checksum offload. Note: checksum offload bits must
2747 	 * appear in all descriptors of a multi-descriptor transmit
2748 	 * attempt. This is according to testing done with an 8169
2749 	 * chip. This is a requirement.
2750 	 */
2751 	vlanctl = 0;
2752 	csum_flags = 0;
2753 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
2754 		if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) {
2755 			csum_flags |= RL_TDESC_CMD_LGSEND;
2756 			vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2757 			    RL_TDESC_CMD_MSSVALV2_SHIFT);
2758 		} else {
2759 			csum_flags |= RL_TDESC_CMD_LGSEND |
2760 			    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2761 			    RL_TDESC_CMD_MSSVAL_SHIFT);
2762 		}
2763 	} else {
2764 		/*
2765 		 * Unconditionally enable IP checksum if TCP or UDP
2766 		 * checksum is required. Otherwise, TCP/UDP checksum
2767 		 * does't make effects.
2768 		 */
2769 		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2770 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2771 				csum_flags |= RL_TDESC_CMD_IPCSUM;
2772 				if (((*m_head)->m_pkthdr.csum_flags &
2773 				    CSUM_TCP) != 0)
2774 					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2775 				if (((*m_head)->m_pkthdr.csum_flags &
2776 				    CSUM_UDP) != 0)
2777 					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2778 			} else {
2779 				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2780 				if (((*m_head)->m_pkthdr.csum_flags &
2781 				    CSUM_TCP) != 0)
2782 					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2783 				if (((*m_head)->m_pkthdr.csum_flags &
2784 				    CSUM_UDP) != 0)
2785 					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2786 			}
2787 		}
2788 	}
2789 
2790 	/*
2791 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2792 	 * appear in all descriptors of a multi-descriptor
2793 	 * transmission attempt.
2794 	 */
2795 	if ((*m_head)->m_flags & M_VLANTAG)
2796 		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2797 		    RL_TDESC_VLANCTL_TAG;
2798 
2799 	si = prod;
2800 	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2801 		desc = &sc->rl_ldata.rl_tx_list[prod];
2802 		desc->rl_vlanctl = htole32(vlanctl);
2803 		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2804 		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2805 		cmdstat = segs[i].ds_len;
2806 		if (i != 0)
2807 			cmdstat |= RL_TDESC_CMD_OWN;
2808 		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2809 			cmdstat |= RL_TDESC_CMD_EOR;
2810 		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2811 		sc->rl_ldata.rl_tx_free--;
2812 	}
2813 	/* Update producer index. */
2814 	sc->rl_ldata.rl_tx_prodidx = prod;
2815 
2816 	/* Set EOF on the last descriptor. */
2817 	ei = RL_TX_DESC_PRV(sc, prod);
2818 	desc = &sc->rl_ldata.rl_tx_list[ei];
2819 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2820 
2821 	desc = &sc->rl_ldata.rl_tx_list[si];
2822 	/* Set SOF and transfer ownership of packet to the chip. */
2823 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2824 
2825 	/*
2826 	 * Insure that the map for this transmission
2827 	 * is placed at the array index of the last descriptor
2828 	 * in this chain.  (Swap last and first dmamaps.)
2829 	 */
2830 	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2831 	map = txd->tx_dmamap;
2832 	txd->tx_dmamap = txd_last->tx_dmamap;
2833 	txd_last->tx_dmamap = map;
2834 	txd_last->tx_m = *m_head;
2835 
2836 	return (0);
2837 }
2838 
2839 static void
2840 re_start(struct ifnet *ifp)
2841 {
2842 	struct rl_softc		*sc;
2843 
2844 	sc = ifp->if_softc;
2845 	RL_LOCK(sc);
2846 	re_start_locked(ifp);
2847 	RL_UNLOCK(sc);
2848 }
2849 
2850 /*
2851  * Main transmit routine for C+ and gigE NICs.
2852  */
2853 static void
2854 re_start_locked(struct ifnet *ifp)
2855 {
2856 	struct rl_softc		*sc;
2857 	struct mbuf		*m_head;
2858 	int			queued;
2859 
2860 	sc = ifp->if_softc;
2861 
2862 #ifdef DEV_NETMAP
2863 	/* XXX is this necessary ? */
2864 	if (ifp->if_capenable & IFCAP_NETMAP) {
2865 		struct netmap_kring *kring = &NA(ifp)->tx_rings[0];
2866 		if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) {
2867 			/* kick the tx unit */
2868 			CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2869 #ifdef RE_TX_MODERATION
2870 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2871 #endif
2872 			sc->rl_watchdog_timer = 5;
2873 		}
2874 		return;
2875 	}
2876 #endif /* DEV_NETMAP */
2877 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2878 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0)
2879 		return;
2880 
2881 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2882 	    sc->rl_ldata.rl_tx_free > 1;) {
2883 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2884 		if (m_head == NULL)
2885 			break;
2886 
2887 		if (re_encap(sc, &m_head) != 0) {
2888 			if (m_head == NULL)
2889 				break;
2890 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2891 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2892 			break;
2893 		}
2894 
2895 		/*
2896 		 * If there's a BPF listener, bounce a copy of this frame
2897 		 * to him.
2898 		 */
2899 		ETHER_BPF_MTAP(ifp, m_head);
2900 
2901 		queued++;
2902 	}
2903 
2904 	if (queued == 0) {
2905 #ifdef RE_TX_MODERATION
2906 		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2907 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2908 #endif
2909 		return;
2910 	}
2911 
2912 	/* Flush the TX descriptors */
2913 
2914 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2915 	    sc->rl_ldata.rl_tx_list_map,
2916 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2917 
2918 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2919 
2920 #ifdef RE_TX_MODERATION
2921 	/*
2922 	 * Use the countdown timer for interrupt moderation.
2923 	 * 'TX done' interrupts are disabled. Instead, we reset the
2924 	 * countdown timer, which will begin counting until it hits
2925 	 * the value in the TIMERINT register, and then trigger an
2926 	 * interrupt. Each time we write to the TIMERCNT register,
2927 	 * the timer count is reset to 0.
2928 	 */
2929 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2930 #endif
2931 
2932 	/*
2933 	 * Set a timeout in case the chip goes out to lunch.
2934 	 */
2935 	sc->rl_watchdog_timer = 5;
2936 }
2937 
2938 static void
2939 re_set_jumbo(struct rl_softc *sc, int jumbo)
2940 {
2941 
2942 	if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) {
2943 		pci_set_max_read_req(sc->rl_dev, 4096);
2944 		return;
2945 	}
2946 
2947 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2948 	if (jumbo != 0) {
2949 		CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) |
2950 		    RL_CFG3_JUMBO_EN0);
2951 		switch (sc->rl_hwrev->rl_rev) {
2952 		case RL_HWREV_8168DP:
2953 			break;
2954 		case RL_HWREV_8168E:
2955 			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2956 			    0x01);
2957 			break;
2958 		default:
2959 			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) |
2960 			    RL_CFG4_JUMBO_EN1);
2961 		}
2962 	} else {
2963 		CSR_WRITE_1(sc, RL_CFG3, CSR_READ_1(sc, RL_CFG3) &
2964 		    ~RL_CFG3_JUMBO_EN0);
2965 		switch (sc->rl_hwrev->rl_rev) {
2966 		case RL_HWREV_8168DP:
2967 			break;
2968 		case RL_HWREV_8168E:
2969 			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2970 			    ~0x01);
2971 			break;
2972 		default:
2973 			CSR_WRITE_1(sc, RL_CFG4, CSR_READ_1(sc, RL_CFG4) &
2974 			    ~RL_CFG4_JUMBO_EN1);
2975 		}
2976 	}
2977 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2978 
2979 	switch (sc->rl_hwrev->rl_rev) {
2980 	case RL_HWREV_8168DP:
2981 		pci_set_max_read_req(sc->rl_dev, 4096);
2982 		break;
2983 	default:
2984 		if (jumbo != 0)
2985 			pci_set_max_read_req(sc->rl_dev, 512);
2986 		else
2987 			pci_set_max_read_req(sc->rl_dev, 4096);
2988 	}
2989 }
2990 
2991 static void
2992 re_init(void *xsc)
2993 {
2994 	struct rl_softc		*sc = xsc;
2995 
2996 	RL_LOCK(sc);
2997 	re_init_locked(sc);
2998 	RL_UNLOCK(sc);
2999 }
3000 
3001 static void
3002 re_init_locked(struct rl_softc *sc)
3003 {
3004 	struct ifnet		*ifp = sc->rl_ifp;
3005 	struct mii_data		*mii;
3006 	uint32_t		reg;
3007 	uint16_t		cfg;
3008 	union {
3009 		uint32_t align_dummy;
3010 		u_char eaddr[ETHER_ADDR_LEN];
3011         } eaddr;
3012 
3013 	RL_LOCK_ASSERT(sc);
3014 
3015 	mii = device_get_softc(sc->rl_miibus);
3016 
3017 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3018 		return;
3019 
3020 	/*
3021 	 * Cancel pending I/O and free all RX/TX buffers.
3022 	 */
3023 	re_stop(sc);
3024 
3025 	/* Put controller into known state. */
3026 	re_reset(sc);
3027 
3028 	/*
3029 	 * For C+ mode, initialize the RX descriptors and mbufs.
3030 	 */
3031 	if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3032 		if (ifp->if_mtu > RL_MTU) {
3033 			if (re_jrx_list_init(sc) != 0) {
3034 				device_printf(sc->rl_dev,
3035 				    "no memory for jumbo RX buffers\n");
3036 				re_stop(sc);
3037 				return;
3038 			}
3039 			/* Disable checksum offloading for jumbo frames. */
3040 			ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_TSO4);
3041 			ifp->if_hwassist &= ~(RE_CSUM_FEATURES | CSUM_TSO);
3042 		} else {
3043 			if (re_rx_list_init(sc) != 0) {
3044 				device_printf(sc->rl_dev,
3045 				    "no memory for RX buffers\n");
3046 				re_stop(sc);
3047 				return;
3048 			}
3049 		}
3050 		re_set_jumbo(sc, ifp->if_mtu > RL_MTU);
3051 	} else {
3052 		if (re_rx_list_init(sc) != 0) {
3053 			device_printf(sc->rl_dev, "no memory for RX buffers\n");
3054 			re_stop(sc);
3055 			return;
3056 		}
3057 		if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3058 		    pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) {
3059 			if (ifp->if_mtu > RL_MTU)
3060 				pci_set_max_read_req(sc->rl_dev, 512);
3061 			else
3062 				pci_set_max_read_req(sc->rl_dev, 4096);
3063 		}
3064 	}
3065 	re_tx_list_init(sc);
3066 
3067 	/*
3068 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
3069 	 * RX checksum offload. We must configure the C+ register
3070 	 * before all others.
3071 	 */
3072 	cfg = RL_CPLUSCMD_PCI_MRW;
3073 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
3074 		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
3075 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3076 		cfg |= RL_CPLUSCMD_VLANSTRIP;
3077 	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
3078 		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
3079 		/* XXX magic. */
3080 		cfg |= 0x0001;
3081 	} else
3082 		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
3083 	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
3084 	if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC ||
3085 	    sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) {
3086 		reg = 0x000fff00;
3087 		if ((CSR_READ_1(sc, RL_CFG2) & RL_CFG2_PCI66MHZ) != 0)
3088 			reg |= 0x000000ff;
3089 		if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE)
3090 			reg |= 0x00f00000;
3091 		CSR_WRITE_4(sc, 0x7c, reg);
3092 		/* Disable interrupt mitigation. */
3093 		CSR_WRITE_2(sc, 0xe2, 0);
3094 	}
3095 	/*
3096 	 * Disable TSO if interface MTU size is greater than MSS
3097 	 * allowed in controller.
3098 	 */
3099 	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
3100 		ifp->if_capenable &= ~IFCAP_TSO4;
3101 		ifp->if_hwassist &= ~CSUM_TSO;
3102 	}
3103 
3104 	/*
3105 	 * Init our MAC address.  Even though the chipset
3106 	 * documentation doesn't mention it, we need to enter "Config
3107 	 * register write enable" mode to modify the ID registers.
3108 	 */
3109 	/* Copy MAC address on stack to align. */
3110 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
3111 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
3112 	CSR_WRITE_4(sc, RL_IDR0,
3113 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
3114 	CSR_WRITE_4(sc, RL_IDR4,
3115 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
3116 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3117 
3118 	/*
3119 	 * Load the addresses of the RX and TX lists into the chip.
3120 	 */
3121 
3122 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
3123 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
3124 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
3125 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
3126 
3127 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
3128 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
3129 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
3130 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
3131 
3132 	/*
3133 	 * Enable transmit and receive.
3134 	 */
3135 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3136 
3137 	/*
3138 	 * Set the initial TX configuration.
3139 	 */
3140 	if (sc->rl_testmode) {
3141 		if (sc->rl_type == RL_8169)
3142 			CSR_WRITE_4(sc, RL_TXCFG,
3143 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
3144 		else
3145 			CSR_WRITE_4(sc, RL_TXCFG,
3146 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
3147 	} else
3148 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
3149 
3150 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
3151 
3152 	/*
3153 	 * Set the initial RX configuration.
3154 	 */
3155 	re_set_rxmode(sc);
3156 
3157 	/* Configure interrupt moderation. */
3158 	if (sc->rl_type == RL_8169) {
3159 		/* Magic from vendor. */
3160 		CSR_WRITE_2(sc, RL_INTRMOD, 0x5100);
3161 	}
3162 
3163 #ifdef DEVICE_POLLING
3164 	/*
3165 	 * Disable interrupts if we are polling.
3166 	 */
3167 	if (ifp->if_capenable & IFCAP_POLLING)
3168 		CSR_WRITE_2(sc, RL_IMR, 0);
3169 	else	/* otherwise ... */
3170 #endif
3171 
3172 	/*
3173 	 * Enable interrupts.
3174 	 */
3175 	if (sc->rl_testmode)
3176 		CSR_WRITE_2(sc, RL_IMR, 0);
3177 	else
3178 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3179 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
3180 
3181 	/* Set initial TX threshold */
3182 	sc->rl_txthresh = RL_TX_THRESH_INIT;
3183 
3184 	/* Start RX/TX process. */
3185 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
3186 #ifdef notdef
3187 	/* Enable receiver and transmitter. */
3188 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
3189 #endif
3190 
3191 	/*
3192 	 * Initialize the timer interrupt register so that
3193 	 * a timer interrupt will be generated once the timer
3194 	 * reaches a certain number of ticks. The timer is
3195 	 * reloaded on each transmit.
3196 	 */
3197 #ifdef RE_TX_MODERATION
3198 	/*
3199 	 * Use timer interrupt register to moderate TX interrupt
3200 	 * moderation, which dramatically improves TX frame rate.
3201 	 */
3202 	if (sc->rl_type == RL_8169)
3203 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
3204 	else
3205 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
3206 #else
3207 	/*
3208 	 * Use timer interrupt register to moderate RX interrupt
3209 	 * moderation.
3210 	 */
3211 	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 &&
3212 	    intr_filter == 0) {
3213 		if (sc->rl_type == RL_8169)
3214 			CSR_WRITE_4(sc, RL_TIMERINT_8169,
3215 			    RL_USECS(sc->rl_int_rx_mod));
3216 	} else {
3217 		if (sc->rl_type == RL_8169)
3218 			CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0));
3219 	}
3220 #endif
3221 
3222 	/*
3223 	 * For 8169 gigE NICs, set the max allowed RX packet
3224 	 * size so we can receive jumbo frames.
3225 	 */
3226 	if (sc->rl_type == RL_8169) {
3227 		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) {
3228 			/*
3229 			 * For controllers that use new jumbo frame scheme,
3230 			 * set maximum size of jumbo frame depedning on
3231 			 * controller revisions.
3232 			 */
3233 			if (ifp->if_mtu > RL_MTU)
3234 				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3235 				    sc->rl_hwrev->rl_max_mtu +
3236 				    ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN +
3237 				    ETHER_CRC_LEN);
3238 			else
3239 				CSR_WRITE_2(sc, RL_MAXRXPKTLEN,
3240 				    RE_RX_DESC_BUFLEN);
3241 		} else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 &&
3242 		    sc->rl_hwrev->rl_max_mtu == RL_MTU) {
3243 			/* RTL810x has no jumbo frame support. */
3244 			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN);
3245 		} else
3246 			CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
3247 	}
3248 
3249 	if (sc->rl_testmode)
3250 		return;
3251 
3252 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
3253 
3254 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
3255 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3256 
3257 	sc->rl_flags &= ~RL_FLAG_LINK;
3258 	mii_mediachg(mii);
3259 
3260 	sc->rl_watchdog_timer = 0;
3261 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
3262 }
3263 
3264 /*
3265  * Set media options.
3266  */
3267 static int
3268 re_ifmedia_upd(struct ifnet *ifp)
3269 {
3270 	struct rl_softc		*sc;
3271 	struct mii_data		*mii;
3272 	int			error;
3273 
3274 	sc = ifp->if_softc;
3275 	mii = device_get_softc(sc->rl_miibus);
3276 	RL_LOCK(sc);
3277 	error = mii_mediachg(mii);
3278 	RL_UNLOCK(sc);
3279 
3280 	return (error);
3281 }
3282 
3283 /*
3284  * Report current media status.
3285  */
3286 static void
3287 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3288 {
3289 	struct rl_softc		*sc;
3290 	struct mii_data		*mii;
3291 
3292 	sc = ifp->if_softc;
3293 	mii = device_get_softc(sc->rl_miibus);
3294 
3295 	RL_LOCK(sc);
3296 	mii_pollstat(mii);
3297 	ifmr->ifm_active = mii->mii_media_active;
3298 	ifmr->ifm_status = mii->mii_media_status;
3299 	RL_UNLOCK(sc);
3300 }
3301 
3302 static int
3303 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
3304 {
3305 	struct rl_softc		*sc = ifp->if_softc;
3306 	struct ifreq		*ifr = (struct ifreq *) data;
3307 	struct mii_data		*mii;
3308 	uint32_t		rev;
3309 	int			error = 0;
3310 
3311 	switch (command) {
3312 	case SIOCSIFMTU:
3313 		if (ifr->ifr_mtu < ETHERMIN ||
3314 		    ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu) {
3315 			error = EINVAL;
3316 			break;
3317 		}
3318 		RL_LOCK(sc);
3319 		if (ifp->if_mtu != ifr->ifr_mtu) {
3320 			ifp->if_mtu = ifr->ifr_mtu;
3321 			if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3322 			    (ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3323 				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3324 				re_init_locked(sc);
3325 			}
3326 			if (ifp->if_mtu > RL_TSO_MTU &&
3327 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
3328 				ifp->if_capenable &= ~(IFCAP_TSO4 |
3329 				    IFCAP_VLAN_HWTSO);
3330 				ifp->if_hwassist &= ~CSUM_TSO;
3331 			}
3332 			VLAN_CAPABILITIES(ifp);
3333 		}
3334 		RL_UNLOCK(sc);
3335 		break;
3336 	case SIOCSIFFLAGS:
3337 		RL_LOCK(sc);
3338 		if ((ifp->if_flags & IFF_UP) != 0) {
3339 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
3340 				if (((ifp->if_flags ^ sc->rl_if_flags)
3341 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
3342 					re_set_rxmode(sc);
3343 			} else
3344 				re_init_locked(sc);
3345 		} else {
3346 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3347 				re_stop(sc);
3348 		}
3349 		sc->rl_if_flags = ifp->if_flags;
3350 		RL_UNLOCK(sc);
3351 		break;
3352 	case SIOCADDMULTI:
3353 	case SIOCDELMULTI:
3354 		RL_LOCK(sc);
3355 		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
3356 			re_set_rxmode(sc);
3357 		RL_UNLOCK(sc);
3358 		break;
3359 	case SIOCGIFMEDIA:
3360 	case SIOCSIFMEDIA:
3361 		mii = device_get_softc(sc->rl_miibus);
3362 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
3363 		break;
3364 	case SIOCSIFCAP:
3365 	    {
3366 		int mask, reinit;
3367 
3368 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
3369 		reinit = 0;
3370 #ifdef DEVICE_POLLING
3371 		if (mask & IFCAP_POLLING) {
3372 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
3373 				error = ether_poll_register(re_poll, ifp);
3374 				if (error)
3375 					return (error);
3376 				RL_LOCK(sc);
3377 				/* Disable interrupts */
3378 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
3379 				ifp->if_capenable |= IFCAP_POLLING;
3380 				RL_UNLOCK(sc);
3381 			} else {
3382 				error = ether_poll_deregister(ifp);
3383 				/* Enable interrupts. */
3384 				RL_LOCK(sc);
3385 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
3386 				ifp->if_capenable &= ~IFCAP_POLLING;
3387 				RL_UNLOCK(sc);
3388 			}
3389 		}
3390 #endif /* DEVICE_POLLING */
3391 		RL_LOCK(sc);
3392 		if ((mask & IFCAP_TXCSUM) != 0 &&
3393 		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
3394 			ifp->if_capenable ^= IFCAP_TXCSUM;
3395 			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0) {
3396 				rev = sc->rl_hwrev->rl_rev;
3397 				if (rev == RL_HWREV_8168C ||
3398 				    rev == RL_HWREV_8168C_SPIN2)
3399 					ifp->if_hwassist |= CSUM_TCP | CSUM_UDP;
3400 				else
3401 					ifp->if_hwassist |= RE_CSUM_FEATURES;
3402 			} else
3403 				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
3404 			reinit = 1;
3405 		}
3406 		if ((mask & IFCAP_RXCSUM) != 0 &&
3407 		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
3408 			ifp->if_capenable ^= IFCAP_RXCSUM;
3409 			reinit = 1;
3410 		}
3411 		if ((mask & IFCAP_TSO4) != 0 &&
3412 		    (ifp->if_capabilities & IFCAP_TSO) != 0) {
3413 			ifp->if_capenable ^= IFCAP_TSO4;
3414 			if ((IFCAP_TSO4 & ifp->if_capenable) != 0)
3415 				ifp->if_hwassist |= CSUM_TSO;
3416 			else
3417 				ifp->if_hwassist &= ~CSUM_TSO;
3418 			if (ifp->if_mtu > RL_TSO_MTU &&
3419 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
3420 				ifp->if_capenable &= ~IFCAP_TSO4;
3421 				ifp->if_hwassist &= ~CSUM_TSO;
3422 			}
3423 		}
3424 		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
3425 		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
3426 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
3427 		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
3428 		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
3429 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
3430 			/* TSO over VLAN requires VLAN hardware tagging. */
3431 			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
3432 				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
3433 			reinit = 1;
3434 		}
3435 		if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 &&
3436 		    (mask & (IFCAP_HWCSUM | IFCAP_TSO4 |
3437 		    IFCAP_VLAN_HWTSO)) != 0)
3438 				reinit = 1;
3439 		if ((mask & IFCAP_WOL) != 0 &&
3440 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
3441 			if ((mask & IFCAP_WOL_UCAST) != 0)
3442 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
3443 			if ((mask & IFCAP_WOL_MCAST) != 0)
3444 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
3445 			if ((mask & IFCAP_WOL_MAGIC) != 0)
3446 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
3447 		}
3448 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) {
3449 			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3450 			re_init_locked(sc);
3451 		}
3452 		RL_UNLOCK(sc);
3453 		VLAN_CAPABILITIES(ifp);
3454 	    }
3455 		break;
3456 	default:
3457 		error = ether_ioctl(ifp, command, data);
3458 		break;
3459 	}
3460 
3461 	return (error);
3462 }
3463 
3464 static void
3465 re_watchdog(struct rl_softc *sc)
3466 {
3467 	struct ifnet		*ifp;
3468 
3469 	RL_LOCK_ASSERT(sc);
3470 
3471 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
3472 		return;
3473 
3474 	ifp = sc->rl_ifp;
3475 	re_txeof(sc);
3476 	if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) {
3477 		if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
3478 		    "-- recovering\n");
3479 		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3480 			re_start_locked(ifp);
3481 		return;
3482 	}
3483 
3484 	if_printf(ifp, "watchdog timeout\n");
3485 	ifp->if_oerrors++;
3486 
3487 	re_rxeof(sc, NULL);
3488 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
3489 	re_init_locked(sc);
3490 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
3491 		re_start_locked(ifp);
3492 }
3493 
3494 /*
3495  * Stop the adapter and free any mbufs allocated to the
3496  * RX and TX lists.
3497  */
3498 static void
3499 re_stop(struct rl_softc *sc)
3500 {
3501 	int			i;
3502 	struct ifnet		*ifp;
3503 	struct rl_txdesc	*txd;
3504 	struct rl_rxdesc	*rxd;
3505 
3506 	RL_LOCK_ASSERT(sc);
3507 
3508 	ifp = sc->rl_ifp;
3509 
3510 	sc->rl_watchdog_timer = 0;
3511 	callout_stop(&sc->rl_stat_callout);
3512 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
3513 
3514 	/*
3515 	 * Disable accepting frames to put RX MAC into idle state.
3516 	 * Otherwise it's possible to get frames while stop command
3517 	 * execution is in progress and controller can DMA the frame
3518 	 * to already freed RX buffer during that period.
3519 	 */
3520 	CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) &
3521 	    ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI |
3522 	    RL_RXCFG_RX_BROAD));
3523 
3524 	if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) {
3525 		for (i = RL_TIMEOUT; i > 0; i--) {
3526 			if ((CSR_READ_1(sc, sc->rl_txstart) &
3527 			    RL_TXSTART_START) == 0)
3528 				break;
3529 			DELAY(20);
3530 		}
3531 		if (i == 0)
3532 			device_printf(sc->rl_dev,
3533 			    "stopping TX poll timed out!\n");
3534 		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3535 	} else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) {
3536 		CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB |
3537 		    RL_CMD_RX_ENB);
3538 		if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) {
3539 			for (i = RL_TIMEOUT; i > 0; i--) {
3540 				if ((CSR_READ_4(sc, RL_TXCFG) &
3541 				    RL_TXCFG_QUEUE_EMPTY) != 0)
3542 					break;
3543 				DELAY(100);
3544 			}
3545 			if (i == 0)
3546 				device_printf(sc->rl_dev,
3547 				   "stopping TXQ timed out!\n");
3548 		}
3549 	} else
3550 		CSR_WRITE_1(sc, RL_COMMAND, 0x00);
3551 	DELAY(1000);
3552 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
3553 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
3554 
3555 	if (sc->rl_head != NULL) {
3556 		m_freem(sc->rl_head);
3557 		sc->rl_head = sc->rl_tail = NULL;
3558 	}
3559 
3560 	/* Free the TX list buffers. */
3561 
3562 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
3563 		txd = &sc->rl_ldata.rl_tx_desc[i];
3564 		if (txd->tx_m != NULL) {
3565 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3566 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
3567 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
3568 			    txd->tx_dmamap);
3569 			m_freem(txd->tx_m);
3570 			txd->tx_m = NULL;
3571 		}
3572 	}
3573 
3574 	/* Free the RX list buffers. */
3575 
3576 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
3577 		rxd = &sc->rl_ldata.rl_rx_desc[i];
3578 		if (rxd->rx_m != NULL) {
3579 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
3580 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
3581 			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
3582 			    rxd->rx_dmamap);
3583 			m_freem(rxd->rx_m);
3584 			rxd->rx_m = NULL;
3585 		}
3586 	}
3587 }
3588 
3589 /*
3590  * Device suspend routine.  Stop the interface and save some PCI
3591  * settings in case the BIOS doesn't restore them properly on
3592  * resume.
3593  */
3594 static int
3595 re_suspend(device_t dev)
3596 {
3597 	struct rl_softc		*sc;
3598 
3599 	sc = device_get_softc(dev);
3600 
3601 	RL_LOCK(sc);
3602 	re_stop(sc);
3603 	re_setwol(sc);
3604 	sc->suspended = 1;
3605 	RL_UNLOCK(sc);
3606 
3607 	return (0);
3608 }
3609 
3610 /*
3611  * Device resume routine.  Restore some PCI settings in case the BIOS
3612  * doesn't, re-enable busmastering, and restart the interface if
3613  * appropriate.
3614  */
3615 static int
3616 re_resume(device_t dev)
3617 {
3618 	struct rl_softc		*sc;
3619 	struct ifnet		*ifp;
3620 
3621 	sc = device_get_softc(dev);
3622 
3623 	RL_LOCK(sc);
3624 
3625 	ifp = sc->rl_ifp;
3626 	/* Take controller out of sleep mode. */
3627 	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3628 		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3629 			CSR_WRITE_1(sc, RL_GPIO,
3630 			    CSR_READ_1(sc, RL_GPIO) | 0x01);
3631 	}
3632 
3633 	/*
3634 	 * Clear WOL matching such that normal Rx filtering
3635 	 * wouldn't interfere with WOL patterns.
3636 	 */
3637 	re_clrwol(sc);
3638 
3639 	/* reinitialize interface if necessary */
3640 	if (ifp->if_flags & IFF_UP)
3641 		re_init_locked(sc);
3642 
3643 	sc->suspended = 0;
3644 	RL_UNLOCK(sc);
3645 
3646 	return (0);
3647 }
3648 
3649 /*
3650  * Stop all chip I/O so that the kernel's probe routines don't
3651  * get confused by errant DMAs when rebooting.
3652  */
3653 static int
3654 re_shutdown(device_t dev)
3655 {
3656 	struct rl_softc		*sc;
3657 
3658 	sc = device_get_softc(dev);
3659 
3660 	RL_LOCK(sc);
3661 	re_stop(sc);
3662 	/*
3663 	 * Mark interface as down since otherwise we will panic if
3664 	 * interrupt comes in later on, which can happen in some
3665 	 * cases.
3666 	 */
3667 	sc->rl_ifp->if_flags &= ~IFF_UP;
3668 	re_setwol(sc);
3669 	RL_UNLOCK(sc);
3670 
3671 	return (0);
3672 }
3673 
3674 static void
3675 re_set_linkspeed(struct rl_softc *sc)
3676 {
3677 	struct mii_softc *miisc;
3678 	struct mii_data *mii;
3679 	int aneg, i, phyno;
3680 
3681 	RL_LOCK_ASSERT(sc);
3682 
3683 	mii = device_get_softc(sc->rl_miibus);
3684 	mii_pollstat(mii);
3685 	aneg = 0;
3686 	if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
3687 	    (IFM_ACTIVE | IFM_AVALID)) {
3688 		switch IFM_SUBTYPE(mii->mii_media_active) {
3689 		case IFM_10_T:
3690 		case IFM_100_TX:
3691 			return;
3692 		case IFM_1000_T:
3693 			aneg++;
3694 			break;
3695 		default:
3696 			break;
3697 		}
3698 	}
3699 	miisc = LIST_FIRST(&mii->mii_phys);
3700 	phyno = miisc->mii_phy;
3701 	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3702 		PHY_RESET(miisc);
3703 	re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0);
3704 	re_miibus_writereg(sc->rl_dev, phyno,
3705 	    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA);
3706 	re_miibus_writereg(sc->rl_dev, phyno,
3707 	    MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
3708 	DELAY(1000);
3709 	if (aneg != 0) {
3710 		/*
3711 		 * Poll link state until re(4) get a 10/100Mbps link.
3712 		 */
3713 		for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
3714 			mii_pollstat(mii);
3715 			if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID))
3716 			    == (IFM_ACTIVE | IFM_AVALID)) {
3717 				switch (IFM_SUBTYPE(mii->mii_media_active)) {
3718 				case IFM_10_T:
3719 				case IFM_100_TX:
3720 					return;
3721 				default:
3722 					break;
3723 				}
3724 			}
3725 			RL_UNLOCK(sc);
3726 			pause("relnk", hz);
3727 			RL_LOCK(sc);
3728 		}
3729 		if (i == MII_ANEGTICKS_GIGE)
3730 			device_printf(sc->rl_dev,
3731 			    "establishing a link failed, WOL may not work!");
3732 	}
3733 	/*
3734 	 * No link, force MAC to have 100Mbps, full-duplex link.
3735 	 * MAC does not require reprogramming on resolved speed/duplex,
3736 	 * so this is just for completeness.
3737 	 */
3738 	mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
3739 	mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
3740 }
3741 
3742 static void
3743 re_setwol(struct rl_softc *sc)
3744 {
3745 	struct ifnet		*ifp;
3746 	int			pmc;
3747 	uint16_t		pmstat;
3748 	uint8_t			v;
3749 
3750 	RL_LOCK_ASSERT(sc);
3751 
3752 	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3753 		return;
3754 
3755 	ifp = sc->rl_ifp;
3756 	/* Put controller into sleep mode. */
3757 	if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) {
3758 		if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80)
3759 			CSR_WRITE_1(sc, RL_GPIO,
3760 			    CSR_READ_1(sc, RL_GPIO) & ~0x01);
3761 	}
3762 	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
3763 		re_set_rxmode(sc);
3764 		if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0)
3765 			re_set_linkspeed(sc);
3766 		if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0)
3767 			CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB);
3768 	}
3769 	/* Enable config register write. */
3770 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3771 
3772 	/* Enable PME. */
3773 	v = CSR_READ_1(sc, RL_CFG1);
3774 	v &= ~RL_CFG1_PME;
3775 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3776 		v |= RL_CFG1_PME;
3777 	CSR_WRITE_1(sc, RL_CFG1, v);
3778 
3779 	v = CSR_READ_1(sc, RL_CFG3);
3780 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3781 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
3782 		v |= RL_CFG3_WOL_MAGIC;
3783 	CSR_WRITE_1(sc, RL_CFG3, v);
3784 
3785 	v = CSR_READ_1(sc, RL_CFG5);
3786 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST |
3787 	    RL_CFG5_WOL_LANWAKE);
3788 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3789 		v |= RL_CFG5_WOL_UCAST;
3790 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3791 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3792 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3793 		v |= RL_CFG5_WOL_LANWAKE;
3794 	CSR_WRITE_1(sc, RL_CFG5, v);
3795 
3796 	/* Config register write done. */
3797 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3798 
3799 	if ((ifp->if_capenable & IFCAP_WOL) != 0 &&
3800 	    (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0)
3801 		CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80);
3802 	/*
3803 	 * It seems that hardware resets its link speed to 100Mbps in
3804 	 * power down mode so switching to 100Mbps in driver is not
3805 	 * needed.
3806 	 */
3807 
3808 	/* Request PME if WOL is requested. */
3809 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3810 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3811 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3812 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3813 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3814 }
3815 
3816 static void
3817 re_clrwol(struct rl_softc *sc)
3818 {
3819 	int			pmc;
3820 	uint8_t			v;
3821 
3822 	RL_LOCK_ASSERT(sc);
3823 
3824 	if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3825 		return;
3826 
3827 	/* Enable config register write. */
3828 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3829 
3830 	v = CSR_READ_1(sc, RL_CFG3);
3831 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3832 	CSR_WRITE_1(sc, RL_CFG3, v);
3833 
3834 	/* Config register write done. */
3835 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3836 
3837 	v = CSR_READ_1(sc, RL_CFG5);
3838 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3839 	v &= ~RL_CFG5_WOL_LANWAKE;
3840 	CSR_WRITE_1(sc, RL_CFG5, v);
3841 }
3842 
3843 static void
3844 re_add_sysctls(struct rl_softc *sc)
3845 {
3846 	struct sysctl_ctx_list	*ctx;
3847 	struct sysctl_oid_list	*children;
3848 	int			error;
3849 
3850 	ctx = device_get_sysctl_ctx(sc->rl_dev);
3851 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev));
3852 
3853 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats",
3854 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, re_sysctl_stats, "I",
3855 	    "Statistics Information");
3856 	if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0)
3857 		return;
3858 
3859 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod",
3860 	    CTLTYPE_INT | CTLFLAG_RW, &sc->rl_int_rx_mod, 0,
3861 	    sysctl_hw_re_int_mod, "I", "re RX interrupt moderation");
3862 	/* Pull in device tunables. */
3863 	sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3864 	error = resource_int_value(device_get_name(sc->rl_dev),
3865 	    device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod);
3866 	if (error == 0) {
3867 		if (sc->rl_int_rx_mod < RL_TIMER_MIN ||
3868 		    sc->rl_int_rx_mod > RL_TIMER_MAX) {
3869 			device_printf(sc->rl_dev, "int_rx_mod value out of "
3870 			    "range; using default: %d\n",
3871 			    RL_TIMER_DEFAULT);
3872 			sc->rl_int_rx_mod = RL_TIMER_DEFAULT;
3873 		}
3874 	}
3875 
3876 }
3877 
3878 static int
3879 re_sysctl_stats(SYSCTL_HANDLER_ARGS)
3880 {
3881 	struct rl_softc		*sc;
3882 	struct rl_stats		*stats;
3883 	int			error, i, result;
3884 
3885 	result = -1;
3886 	error = sysctl_handle_int(oidp, &result, 0, req);
3887 	if (error || req->newptr == NULL)
3888 		return (error);
3889 
3890 	if (result == 1) {
3891 		sc = (struct rl_softc *)arg1;
3892 		RL_LOCK(sc);
3893 		if ((sc->rl_ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
3894 			RL_UNLOCK(sc);
3895 			goto done;
3896 		}
3897 		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3898 		    sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD);
3899 		CSR_WRITE_4(sc, RL_DUMPSTATS_HI,
3900 		    RL_ADDR_HI(sc->rl_ldata.rl_stats_addr));
3901 		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3902 		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr));
3903 		CSR_WRITE_4(sc, RL_DUMPSTATS_LO,
3904 		    RL_ADDR_LO(sc->rl_ldata.rl_stats_addr |
3905 		    RL_DUMPSTATS_START));
3906 		for (i = RL_TIMEOUT; i > 0; i--) {
3907 			if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) &
3908 			    RL_DUMPSTATS_START) == 0)
3909 				break;
3910 			DELAY(1000);
3911 		}
3912 		bus_dmamap_sync(sc->rl_ldata.rl_stag,
3913 		    sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD);
3914 		RL_UNLOCK(sc);
3915 		if (i == 0) {
3916 			device_printf(sc->rl_dev,
3917 			    "DUMP statistics request timedout\n");
3918 			return (ETIMEDOUT);
3919 		}
3920 done:
3921 		stats = sc->rl_ldata.rl_stats;
3922 		printf("%s statistics:\n", device_get_nameunit(sc->rl_dev));
3923 		printf("Tx frames : %ju\n",
3924 		    (uintmax_t)le64toh(stats->rl_tx_pkts));
3925 		printf("Rx frames : %ju\n",
3926 		    (uintmax_t)le64toh(stats->rl_rx_pkts));
3927 		printf("Tx errors : %ju\n",
3928 		    (uintmax_t)le64toh(stats->rl_tx_errs));
3929 		printf("Rx errors : %u\n",
3930 		    le32toh(stats->rl_rx_errs));
3931 		printf("Rx missed frames : %u\n",
3932 		    (uint32_t)le16toh(stats->rl_missed_pkts));
3933 		printf("Rx frame alignment errs : %u\n",
3934 		    (uint32_t)le16toh(stats->rl_rx_framealign_errs));
3935 		printf("Tx single collisions : %u\n",
3936 		    le32toh(stats->rl_tx_onecoll));
3937 		printf("Tx multiple collisions : %u\n",
3938 		    le32toh(stats->rl_tx_multicolls));
3939 		printf("Rx unicast frames : %ju\n",
3940 		    (uintmax_t)le64toh(stats->rl_rx_ucasts));
3941 		printf("Rx broadcast frames : %ju\n",
3942 		    (uintmax_t)le64toh(stats->rl_rx_bcasts));
3943 		printf("Rx multicast frames : %u\n",
3944 		    le32toh(stats->rl_rx_mcasts));
3945 		printf("Tx aborts : %u\n",
3946 		    (uint32_t)le16toh(stats->rl_tx_aborts));
3947 		printf("Tx underruns : %u\n",
3948 		    (uint32_t)le16toh(stats->rl_rx_underruns));
3949 	}
3950 
3951 	return (error);
3952 }
3953 
3954 static int
3955 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3956 {
3957 	int error, value;
3958 
3959 	if (arg1 == NULL)
3960 		return (EINVAL);
3961 	value = *(int *)arg1;
3962 	error = sysctl_handle_int(oidp, &value, 0, req);
3963 	if (error || req->newptr == NULL)
3964 		return (error);
3965 	if (value < low || value > high)
3966 		return (EINVAL);
3967 	*(int *)arg1 = value;
3968 
3969 	return (0);
3970 }
3971 
3972 static int
3973 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS)
3974 {
3975 
3976 	return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN,
3977 	    RL_TIMER_MAX));
3978 }
3979