1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1997, 1998-2003 5 * Bill Paul <wpaul@windriver.com>. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. All advertising materials mentioning features or use of this software 16 * must display the following acknowledgement: 17 * This product includes software developed by Bill Paul. 18 * 4. Neither the name of the author nor the names of any co-contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD 26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 32 * THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 /* 39 * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver 40 * 41 * Written by Bill Paul <wpaul@windriver.com> 42 * Senior Networking Software Engineer 43 * Wind River Systems 44 */ 45 46 /* 47 * This driver is designed to support RealTek's next generation of 48 * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently 49 * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S, 50 * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E. 51 * 52 * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible 53 * with the older 8139 family, however it also supports a special 54 * C+ mode of operation that provides several new performance enhancing 55 * features. These include: 56 * 57 * o Descriptor based DMA mechanism. Each descriptor represents 58 * a single packet fragment. Data buffers may be aligned on 59 * any byte boundary. 60 * 61 * o 64-bit DMA 62 * 63 * o TCP/IP checksum offload for both RX and TX 64 * 65 * o High and normal priority transmit DMA rings 66 * 67 * o VLAN tag insertion and extraction 68 * 69 * o TCP large send (segmentation offload) 70 * 71 * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ 72 * programming API is fairly straightforward. The RX filtering, EEPROM 73 * access and PHY access is the same as it is on the older 8139 series 74 * chips. 75 * 76 * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the 77 * same programming API and feature set as the 8139C+ with the following 78 * differences and additions: 79 * 80 * o 1000Mbps mode 81 * 82 * o Jumbo frames 83 * 84 * o GMII and TBI ports/registers for interfacing with copper 85 * or fiber PHYs 86 * 87 * o RX and TX DMA rings can have up to 1024 descriptors 88 * (the 8139C+ allows a maximum of 64) 89 * 90 * o Slight differences in register layout from the 8139C+ 91 * 92 * The TX start and timer interrupt registers are at different locations 93 * on the 8169 than they are on the 8139C+. Also, the status word in the 94 * RX descriptor has a slightly different bit layout. The 8169 does not 95 * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' 96 * copper gigE PHY. 97 * 98 * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs 99 * (the 'S' stands for 'single-chip'). These devices have the same 100 * programming API as the older 8169, but also have some vendor-specific 101 * registers for the on-board PHY. The 8110S is a LAN-on-motherboard 102 * part designed to be pin-compatible with the RealTek 8100 10/100 chip. 103 * 104 * This driver takes advantage of the RX and TX checksum offload and 105 * VLAN tag insertion/extraction features. It also implements TX 106 * interrupt moderation using the timer interrupt registers, which 107 * significantly reduces TX interrupt load. There is also support 108 * for jumbo frames, however the 8169/8169S/8110S can not transmit 109 * jumbo frames larger than 7440, so the max MTU possible with this 110 * driver is 7422 bytes. 111 */ 112 113 #ifdef HAVE_KERNEL_OPTION_HEADERS 114 #include "opt_device_polling.h" 115 #endif 116 117 #include <sys/param.h> 118 #include <sys/endian.h> 119 #include <sys/systm.h> 120 #include <sys/sockio.h> 121 #include <sys/mbuf.h> 122 #include <sys/malloc.h> 123 #include <sys/module.h> 124 #include <sys/kernel.h> 125 #include <sys/socket.h> 126 #include <sys/lock.h> 127 #include <sys/mutex.h> 128 #include <sys/sysctl.h> 129 #include <sys/taskqueue.h> 130 131 #include <net/debugnet.h> 132 #include <net/if.h> 133 #include <net/if_var.h> 134 #include <net/if_arp.h> 135 #include <net/ethernet.h> 136 #include <net/if_dl.h> 137 #include <net/if_media.h> 138 #include <net/if_types.h> 139 #include <net/if_vlan_var.h> 140 141 #include <net/bpf.h> 142 143 #include <machine/bus.h> 144 #include <machine/resource.h> 145 #include <sys/bus.h> 146 #include <sys/rman.h> 147 148 #include <dev/mii/mii.h> 149 #include <dev/mii/miivar.h> 150 151 #include <dev/pci/pcireg.h> 152 #include <dev/pci/pcivar.h> 153 154 #include <dev/rl/if_rlreg.h> 155 156 MODULE_DEPEND(re, pci, 1, 1, 1); 157 MODULE_DEPEND(re, ether, 1, 1, 1); 158 MODULE_DEPEND(re, miibus, 1, 1, 1); 159 160 /* "device miibus" required. See GENERIC if you get errors here. */ 161 #include "miibus_if.h" 162 163 /* Tunables. */ 164 static int intr_filter = 0; 165 TUNABLE_INT("hw.re.intr_filter", &intr_filter); 166 static int msi_disable = 0; 167 TUNABLE_INT("hw.re.msi_disable", &msi_disable); 168 static int msix_disable = 0; 169 TUNABLE_INT("hw.re.msix_disable", &msix_disable); 170 static int prefer_iomap = 0; 171 TUNABLE_INT("hw.re.prefer_iomap", &prefer_iomap); 172 173 #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) 174 175 /* 176 * Various supported device vendors/types and their names. 177 */ 178 static const struct rl_type re_devs[] = { 179 { DLINK_VENDORID, DLINK_DEVICEID_528T, 0, 180 "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, 181 { DLINK_VENDORID, DLINK_DEVICEID_530T_REVC, 0, 182 "D-Link DGE-530(T) Gigabit Ethernet Adapter" }, 183 { RT_VENDORID, RT_DEVICEID_8139, 0, 184 "RealTek 8139C+ 10/100BaseTX" }, 185 { RT_VENDORID, RT_DEVICEID_8101E, 0, 186 "RealTek 810xE PCIe 10/100baseTX" }, 187 { RT_VENDORID, RT_DEVICEID_8168, 0, 188 "RealTek 8168/8111 B/C/CP/D/DP/E/F/G PCIe Gigabit Ethernet" }, 189 { RT_VENDORID, RT_DEVICEID_8161, 0, 190 "RealTek 8168 Gigabit Ethernet" }, 191 { NCUBE_VENDORID, RT_DEVICEID_8168, 0, 192 "TP-Link TG-3468 v2 (RTL8168) Gigabit Ethernet" }, 193 { RT_VENDORID, RT_DEVICEID_8169, 0, 194 "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" }, 195 { RT_VENDORID, RT_DEVICEID_8169SC, 0, 196 "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" }, 197 { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0, 198 "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, 199 { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0, 200 "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, 201 { USR_VENDORID, USR_DEVICEID_997902, 0, 202 "US Robotics 997902 (RTL8169S) Gigabit Ethernet" } 203 }; 204 205 static const struct rl_hwrev re_hwrevs[] = { 206 { RL_HWREV_8139, RL_8139, "", RL_MTU }, 207 { RL_HWREV_8139A, RL_8139, "A", RL_MTU }, 208 { RL_HWREV_8139AG, RL_8139, "A-G", RL_MTU }, 209 { RL_HWREV_8139B, RL_8139, "B", RL_MTU }, 210 { RL_HWREV_8130, RL_8139, "8130", RL_MTU }, 211 { RL_HWREV_8139C, RL_8139, "C", RL_MTU }, 212 { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C", RL_MTU }, 213 { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+", RL_MTU }, 214 { RL_HWREV_8168B_SPIN1, RL_8169, "8168", RL_JUMBO_MTU }, 215 { RL_HWREV_8169, RL_8169, "8169", RL_JUMBO_MTU }, 216 { RL_HWREV_8169S, RL_8169, "8169S", RL_JUMBO_MTU }, 217 { RL_HWREV_8110S, RL_8169, "8110S", RL_JUMBO_MTU }, 218 { RL_HWREV_8169_8110SB, RL_8169, "8169SB/8110SB", RL_JUMBO_MTU }, 219 { RL_HWREV_8169_8110SC, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU }, 220 { RL_HWREV_8169_8110SBL, RL_8169, "8169SBL/8110SBL", RL_JUMBO_MTU }, 221 { RL_HWREV_8169_8110SCE, RL_8169, "8169SC/8110SC", RL_JUMBO_MTU }, 222 { RL_HWREV_8100, RL_8139, "8100", RL_MTU }, 223 { RL_HWREV_8101, RL_8139, "8101", RL_MTU }, 224 { RL_HWREV_8100E, RL_8169, "8100E", RL_MTU }, 225 { RL_HWREV_8101E, RL_8169, "8101E", RL_MTU }, 226 { RL_HWREV_8102E, RL_8169, "8102E", RL_MTU }, 227 { RL_HWREV_8102EL, RL_8169, "8102EL", RL_MTU }, 228 { RL_HWREV_8102EL_SPIN1, RL_8169, "8102EL", RL_MTU }, 229 { RL_HWREV_8103E, RL_8169, "8103E", RL_MTU }, 230 { RL_HWREV_8401E, RL_8169, "8401E", RL_MTU }, 231 { RL_HWREV_8402, RL_8169, "8402", RL_MTU }, 232 { RL_HWREV_8105E, RL_8169, "8105E", RL_MTU }, 233 { RL_HWREV_8105E_SPIN1, RL_8169, "8105E", RL_MTU }, 234 { RL_HWREV_8106E, RL_8169, "8106E", RL_MTU }, 235 { RL_HWREV_8168B_SPIN2, RL_8169, "8168", RL_JUMBO_MTU }, 236 { RL_HWREV_8168B_SPIN3, RL_8169, "8168", RL_JUMBO_MTU }, 237 { RL_HWREV_8168C, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K }, 238 { RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C", RL_JUMBO_MTU_6K }, 239 { RL_HWREV_8168CP, RL_8169, "8168CP/8111CP", RL_JUMBO_MTU_6K }, 240 { RL_HWREV_8168D, RL_8169, "8168D/8111D", RL_JUMBO_MTU_9K }, 241 { RL_HWREV_8168DP, RL_8169, "8168DP/8111DP", RL_JUMBO_MTU_9K }, 242 { RL_HWREV_8168E, RL_8169, "8168E/8111E", RL_JUMBO_MTU_9K}, 243 { RL_HWREV_8168E_VL, RL_8169, "8168E/8111E-VL", RL_JUMBO_MTU_6K}, 244 { RL_HWREV_8168EP, RL_8169, "8168EP/8111EP", RL_JUMBO_MTU_9K}, 245 { RL_HWREV_8168F, RL_8169, "8168F/8111F", RL_JUMBO_MTU_9K}, 246 { RL_HWREV_8168G, RL_8169, "8168G/8111G", RL_JUMBO_MTU_9K}, 247 { RL_HWREV_8168GU, RL_8169, "8168GU/8111GU", RL_JUMBO_MTU_9K}, 248 { RL_HWREV_8168H, RL_8169, "8168H/8111H", RL_JUMBO_MTU_9K}, 249 { RL_HWREV_8411, RL_8169, "8411", RL_JUMBO_MTU_9K}, 250 { RL_HWREV_8411B, RL_8169, "8411B", RL_JUMBO_MTU_9K}, 251 { 0, 0, NULL, 0 } 252 }; 253 254 static int re_probe (device_t); 255 static int re_attach (device_t); 256 static int re_detach (device_t); 257 258 static int re_encap (struct rl_softc *, struct mbuf **); 259 260 static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); 261 static int re_allocmem (device_t, struct rl_softc *); 262 static __inline void re_discard_rxbuf 263 (struct rl_softc *, int); 264 static int re_newbuf (struct rl_softc *, int); 265 static int re_jumbo_newbuf (struct rl_softc *, int); 266 static int re_rx_list_init (struct rl_softc *); 267 static int re_jrx_list_init (struct rl_softc *); 268 static int re_tx_list_init (struct rl_softc *); 269 #ifdef RE_FIXUP_RX 270 static __inline void re_fixup_rx 271 (struct mbuf *); 272 #endif 273 static int re_rxeof (struct rl_softc *, int *); 274 static void re_txeof (struct rl_softc *); 275 #ifdef DEVICE_POLLING 276 static int re_poll (if_t, enum poll_cmd, int); 277 static int re_poll_locked (if_t, enum poll_cmd, int); 278 #endif 279 static int re_intr (void *); 280 static void re_intr_msi (void *); 281 static void re_tick (void *); 282 static void re_int_task (void *, int); 283 static void re_start (if_t); 284 static void re_start_locked (if_t); 285 static void re_start_tx (struct rl_softc *); 286 static int re_ioctl (if_t, u_long, caddr_t); 287 static void re_init (void *); 288 static void re_init_locked (struct rl_softc *); 289 static void re_stop (struct rl_softc *); 290 static void re_watchdog (struct rl_softc *); 291 static int re_suspend (device_t); 292 static int re_resume (device_t); 293 static int re_shutdown (device_t); 294 static int re_ifmedia_upd (if_t); 295 static void re_ifmedia_sts (if_t, struct ifmediareq *); 296 297 static void re_eeprom_putbyte (struct rl_softc *, int); 298 static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); 299 static void re_read_eeprom (struct rl_softc *, caddr_t, int, int); 300 static int re_gmii_readreg (device_t, int, int); 301 static int re_gmii_writereg (device_t, int, int, int); 302 303 static int re_miibus_readreg (device_t, int, int); 304 static int re_miibus_writereg (device_t, int, int, int); 305 static void re_miibus_statchg (device_t); 306 307 static void re_set_jumbo (struct rl_softc *, int); 308 static void re_set_rxmode (struct rl_softc *); 309 static void re_reset (struct rl_softc *); 310 static void re_setwol (struct rl_softc *); 311 static void re_clrwol (struct rl_softc *); 312 static void re_set_linkspeed (struct rl_softc *); 313 314 DEBUGNET_DEFINE(re); 315 316 #ifdef DEV_NETMAP /* see ixgbe.c for details */ 317 #include <dev/netmap/if_re_netmap.h> 318 MODULE_DEPEND(re, netmap, 1, 1, 1); 319 #endif /* !DEV_NETMAP */ 320 321 #ifdef RE_DIAG 322 static int re_diag (struct rl_softc *); 323 #endif 324 325 static void re_add_sysctls (struct rl_softc *); 326 static int re_sysctl_stats (SYSCTL_HANDLER_ARGS); 327 static int sysctl_int_range (SYSCTL_HANDLER_ARGS, int, int); 328 static int sysctl_hw_re_int_mod (SYSCTL_HANDLER_ARGS); 329 330 static device_method_t re_methods[] = { 331 /* Device interface */ 332 DEVMETHOD(device_probe, re_probe), 333 DEVMETHOD(device_attach, re_attach), 334 DEVMETHOD(device_detach, re_detach), 335 DEVMETHOD(device_suspend, re_suspend), 336 DEVMETHOD(device_resume, re_resume), 337 DEVMETHOD(device_shutdown, re_shutdown), 338 339 /* MII interface */ 340 DEVMETHOD(miibus_readreg, re_miibus_readreg), 341 DEVMETHOD(miibus_writereg, re_miibus_writereg), 342 DEVMETHOD(miibus_statchg, re_miibus_statchg), 343 344 DEVMETHOD_END 345 }; 346 347 static driver_t re_driver = { 348 "re", 349 re_methods, 350 sizeof(struct rl_softc) 351 }; 352 353 DRIVER_MODULE(re, pci, re_driver, 0, 0); 354 DRIVER_MODULE(miibus, re, miibus_driver, 0, 0); 355 356 #define EE_SET(x) \ 357 CSR_WRITE_1(sc, RL_EECMD, \ 358 CSR_READ_1(sc, RL_EECMD) | x) 359 360 #define EE_CLR(x) \ 361 CSR_WRITE_1(sc, RL_EECMD, \ 362 CSR_READ_1(sc, RL_EECMD) & ~x) 363 364 /* 365 * Send a read command and address to the EEPROM, check for ACK. 366 */ 367 static void 368 re_eeprom_putbyte(struct rl_softc *sc, int addr) 369 { 370 int d, i; 371 372 d = addr | (RL_9346_READ << sc->rl_eewidth); 373 374 /* 375 * Feed in each bit and strobe the clock. 376 */ 377 378 for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) { 379 if (d & i) { 380 EE_SET(RL_EE_DATAIN); 381 } else { 382 EE_CLR(RL_EE_DATAIN); 383 } 384 DELAY(100); 385 EE_SET(RL_EE_CLK); 386 DELAY(150); 387 EE_CLR(RL_EE_CLK); 388 DELAY(100); 389 } 390 } 391 392 /* 393 * Read a word of data stored in the EEPROM at address 'addr.' 394 */ 395 static void 396 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest) 397 { 398 int i; 399 u_int16_t word = 0; 400 401 /* 402 * Send address of word we want to read. 403 */ 404 re_eeprom_putbyte(sc, addr); 405 406 /* 407 * Start reading bits from EEPROM. 408 */ 409 for (i = 0x8000; i; i >>= 1) { 410 EE_SET(RL_EE_CLK); 411 DELAY(100); 412 if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) 413 word |= i; 414 EE_CLR(RL_EE_CLK); 415 DELAY(100); 416 } 417 418 *dest = word; 419 } 420 421 /* 422 * Read a sequence of words from the EEPROM. 423 */ 424 static void 425 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt) 426 { 427 int i; 428 u_int16_t word = 0, *ptr; 429 430 CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 431 432 DELAY(100); 433 434 for (i = 0; i < cnt; i++) { 435 CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL); 436 re_eeprom_getword(sc, off + i, &word); 437 CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL); 438 ptr = (u_int16_t *)(dest + (i * 2)); 439 *ptr = word; 440 } 441 442 CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM); 443 } 444 445 static int 446 re_gmii_readreg(device_t dev, int phy, int reg) 447 { 448 struct rl_softc *sc; 449 u_int32_t rval; 450 int i; 451 452 sc = device_get_softc(dev); 453 454 /* Let the rgephy driver read the GMEDIASTAT register */ 455 456 if (reg == RL_GMEDIASTAT) { 457 rval = CSR_READ_1(sc, RL_GMEDIASTAT); 458 return (rval); 459 } 460 461 CSR_WRITE_4(sc, RL_PHYAR, reg << 16); 462 463 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 464 rval = CSR_READ_4(sc, RL_PHYAR); 465 if (rval & RL_PHYAR_BUSY) 466 break; 467 DELAY(25); 468 } 469 470 if (i == RL_PHY_TIMEOUT) { 471 device_printf(sc->rl_dev, "PHY read failed\n"); 472 return (0); 473 } 474 475 /* 476 * Controller requires a 20us delay to process next MDIO request. 477 */ 478 DELAY(20); 479 480 return (rval & RL_PHYAR_PHYDATA); 481 } 482 483 static int 484 re_gmii_writereg(device_t dev, int phy, int reg, int data) 485 { 486 struct rl_softc *sc; 487 u_int32_t rval; 488 int i; 489 490 sc = device_get_softc(dev); 491 492 CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | 493 (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); 494 495 for (i = 0; i < RL_PHY_TIMEOUT; i++) { 496 rval = CSR_READ_4(sc, RL_PHYAR); 497 if (!(rval & RL_PHYAR_BUSY)) 498 break; 499 DELAY(25); 500 } 501 502 if (i == RL_PHY_TIMEOUT) { 503 device_printf(sc->rl_dev, "PHY write failed\n"); 504 return (0); 505 } 506 507 /* 508 * Controller requires a 20us delay to process next MDIO request. 509 */ 510 DELAY(20); 511 512 return (0); 513 } 514 515 static int 516 re_miibus_readreg(device_t dev, int phy, int reg) 517 { 518 struct rl_softc *sc; 519 u_int16_t rval = 0; 520 u_int16_t re8139_reg = 0; 521 522 sc = device_get_softc(dev); 523 524 if (sc->rl_type == RL_8169) { 525 rval = re_gmii_readreg(dev, phy, reg); 526 return (rval); 527 } 528 529 switch (reg) { 530 case MII_BMCR: 531 re8139_reg = RL_BMCR; 532 break; 533 case MII_BMSR: 534 re8139_reg = RL_BMSR; 535 break; 536 case MII_ANAR: 537 re8139_reg = RL_ANAR; 538 break; 539 case MII_ANER: 540 re8139_reg = RL_ANER; 541 break; 542 case MII_ANLPAR: 543 re8139_reg = RL_LPAR; 544 break; 545 case MII_PHYIDR1: 546 case MII_PHYIDR2: 547 return (0); 548 /* 549 * Allow the rlphy driver to read the media status 550 * register. If we have a link partner which does not 551 * support NWAY, this is the register which will tell 552 * us the results of parallel detection. 553 */ 554 case RL_MEDIASTAT: 555 rval = CSR_READ_1(sc, RL_MEDIASTAT); 556 return (rval); 557 default: 558 device_printf(sc->rl_dev, "bad phy register\n"); 559 return (0); 560 } 561 rval = CSR_READ_2(sc, re8139_reg); 562 if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) { 563 /* 8139C+ has different bit layout. */ 564 rval &= ~(BMCR_LOOP | BMCR_ISO); 565 } 566 return (rval); 567 } 568 569 static int 570 re_miibus_writereg(device_t dev, int phy, int reg, int data) 571 { 572 struct rl_softc *sc; 573 u_int16_t re8139_reg = 0; 574 int rval = 0; 575 576 sc = device_get_softc(dev); 577 578 if (sc->rl_type == RL_8169) { 579 rval = re_gmii_writereg(dev, phy, reg, data); 580 return (rval); 581 } 582 583 switch (reg) { 584 case MII_BMCR: 585 re8139_reg = RL_BMCR; 586 if (sc->rl_type == RL_8139CPLUS) { 587 /* 8139C+ has different bit layout. */ 588 data &= ~(BMCR_LOOP | BMCR_ISO); 589 } 590 break; 591 case MII_BMSR: 592 re8139_reg = RL_BMSR; 593 break; 594 case MII_ANAR: 595 re8139_reg = RL_ANAR; 596 break; 597 case MII_ANER: 598 re8139_reg = RL_ANER; 599 break; 600 case MII_ANLPAR: 601 re8139_reg = RL_LPAR; 602 break; 603 case MII_PHYIDR1: 604 case MII_PHYIDR2: 605 return (0); 606 break; 607 default: 608 device_printf(sc->rl_dev, "bad phy register\n"); 609 return (0); 610 } 611 CSR_WRITE_2(sc, re8139_reg, data); 612 return (0); 613 } 614 615 static void 616 re_miibus_statchg(device_t dev) 617 { 618 struct rl_softc *sc; 619 if_t ifp; 620 struct mii_data *mii; 621 622 sc = device_get_softc(dev); 623 mii = device_get_softc(sc->rl_miibus); 624 ifp = sc->rl_ifp; 625 if (mii == NULL || ifp == NULL || 626 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 627 return; 628 629 sc->rl_flags &= ~RL_FLAG_LINK; 630 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 631 (IFM_ACTIVE | IFM_AVALID)) { 632 switch (IFM_SUBTYPE(mii->mii_media_active)) { 633 case IFM_10_T: 634 case IFM_100_TX: 635 sc->rl_flags |= RL_FLAG_LINK; 636 break; 637 case IFM_1000_T: 638 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 639 break; 640 sc->rl_flags |= RL_FLAG_LINK; 641 break; 642 default: 643 break; 644 } 645 } 646 /* 647 * RealTek controllers do not provide any interface to the RX/TX 648 * MACs for resolved speed, duplex and flow-control parameters. 649 */ 650 } 651 652 static u_int 653 re_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 654 { 655 uint32_t h, *hashes = arg; 656 657 h = ether_crc32_be(LLADDR(sdl), ETHER_ADDR_LEN) >> 26; 658 if (h < 32) 659 hashes[0] |= (1 << h); 660 else 661 hashes[1] |= (1 << (h - 32)); 662 663 return (1); 664 } 665 666 /* 667 * Set the RX configuration and 64-bit multicast hash filter. 668 */ 669 static void 670 re_set_rxmode(struct rl_softc *sc) 671 { 672 if_t ifp; 673 uint32_t h, hashes[2] = { 0, 0 }; 674 uint32_t rxfilt; 675 676 RL_LOCK_ASSERT(sc); 677 678 ifp = sc->rl_ifp; 679 680 rxfilt = RL_RXCFG_CONFIG | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_BROAD; 681 if ((sc->rl_flags & RL_FLAG_EARLYOFF) != 0) 682 rxfilt |= RL_RXCFG_EARLYOFF; 683 else if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) 684 rxfilt |= RL_RXCFG_EARLYOFFV2; 685 686 if (if_getflags(ifp) & (IFF_ALLMULTI | IFF_PROMISC)) { 687 if (if_getflags(ifp) & IFF_PROMISC) 688 rxfilt |= RL_RXCFG_RX_ALLPHYS; 689 /* 690 * Unlike other hardwares, we have to explicitly set 691 * RL_RXCFG_RX_MULTI to receive multicast frames in 692 * promiscuous mode. 693 */ 694 rxfilt |= RL_RXCFG_RX_MULTI; 695 hashes[0] = hashes[1] = 0xffffffff; 696 goto done; 697 } 698 699 if_foreach_llmaddr(ifp, re_hash_maddr, hashes); 700 701 if (hashes[0] != 0 || hashes[1] != 0) { 702 /* 703 * For some unfathomable reason, RealTek decided to 704 * reverse the order of the multicast hash registers 705 * in the PCI Express parts. This means we have to 706 * write the hash pattern in reverse order for those 707 * devices. 708 */ 709 if ((sc->rl_flags & RL_FLAG_PCIE) != 0) { 710 h = bswap32(hashes[0]); 711 hashes[0] = bswap32(hashes[1]); 712 hashes[1] = h; 713 } 714 rxfilt |= RL_RXCFG_RX_MULTI; 715 } 716 717 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168F) { 718 /* Disable multicast filtering due to silicon bug. */ 719 hashes[0] = 0xffffffff; 720 hashes[1] = 0xffffffff; 721 } 722 723 done: 724 CSR_WRITE_4(sc, RL_MAR0, hashes[0]); 725 CSR_WRITE_4(sc, RL_MAR4, hashes[1]); 726 CSR_WRITE_4(sc, RL_RXCFG, rxfilt); 727 } 728 729 static void 730 re_reset(struct rl_softc *sc) 731 { 732 int i; 733 734 RL_LOCK_ASSERT(sc); 735 736 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); 737 738 for (i = 0; i < RL_TIMEOUT; i++) { 739 DELAY(10); 740 if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) 741 break; 742 } 743 if (i == RL_TIMEOUT) 744 device_printf(sc->rl_dev, "reset never completed!\n"); 745 746 if ((sc->rl_flags & RL_FLAG_MACRESET) != 0) 747 CSR_WRITE_1(sc, 0x82, 1); 748 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169S) 749 re_gmii_writereg(sc->rl_dev, 1, 0x0b, 0); 750 } 751 752 #ifdef RE_DIAG 753 754 /* 755 * The following routine is designed to test for a defect on some 756 * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# 757 * lines connected to the bus, however for a 32-bit only card, they 758 * should be pulled high. The result of this defect is that the 759 * NIC will not work right if you plug it into a 64-bit slot: DMA 760 * operations will be done with 64-bit transfers, which will fail 761 * because the 64-bit data lines aren't connected. 762 * 763 * There's no way to work around this (short of talking a soldering 764 * iron to the board), however we can detect it. The method we use 765 * here is to put the NIC into digital loopback mode, set the receiver 766 * to promiscuous mode, and then try to send a frame. We then compare 767 * the frame data we sent to what was received. If the data matches, 768 * then the NIC is working correctly, otherwise we know the user has 769 * a defective NIC which has been mistakenly plugged into a 64-bit PCI 770 * slot. In the latter case, there's no way the NIC can work correctly, 771 * so we print out a message on the console and abort the device attach. 772 */ 773 774 static int 775 re_diag(struct rl_softc *sc) 776 { 777 if_t ifp = sc->rl_ifp; 778 struct mbuf *m0; 779 struct ether_header *eh; 780 struct rl_desc *cur_rx; 781 u_int16_t status; 782 u_int32_t rxstat; 783 int total_len, i, error = 0, phyaddr; 784 u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; 785 u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; 786 787 /* Allocate a single mbuf */ 788 MGETHDR(m0, M_NOWAIT, MT_DATA); 789 if (m0 == NULL) 790 return (ENOBUFS); 791 792 RL_LOCK(sc); 793 794 /* 795 * Initialize the NIC in test mode. This sets the chip up 796 * so that it can send and receive frames, but performs the 797 * following special functions: 798 * - Puts receiver in promiscuous mode 799 * - Enables digital loopback mode 800 * - Leaves interrupts turned off 801 */ 802 803 if_setflagbit(ifp, IFF_PROMISC, 0); 804 sc->rl_testmode = 1; 805 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 806 re_init_locked(sc); 807 sc->rl_flags |= RL_FLAG_LINK; 808 if (sc->rl_type == RL_8169) 809 phyaddr = 1; 810 else 811 phyaddr = 0; 812 813 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET); 814 for (i = 0; i < RL_TIMEOUT; i++) { 815 status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR); 816 if (!(status & BMCR_RESET)) 817 break; 818 } 819 820 re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP); 821 CSR_WRITE_2(sc, RL_ISR, RL_INTRS); 822 823 DELAY(100000); 824 825 /* Put some data in the mbuf */ 826 827 eh = mtod(m0, struct ether_header *); 828 bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); 829 bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); 830 eh->ether_type = htons(ETHERTYPE_IP); 831 m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; 832 833 /* 834 * Queue the packet, start transmission. 835 * Note: IF_HANDOFF() ultimately calls re_start() for us. 836 */ 837 838 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 839 RL_UNLOCK(sc); 840 /* XXX: re_diag must not be called when in ALTQ mode */ 841 if_handoff(ifp, m0, ifp); 842 RL_LOCK(sc); 843 m0 = NULL; 844 845 /* Wait for it to propagate through the chip */ 846 847 DELAY(100000); 848 for (i = 0; i < RL_TIMEOUT; i++) { 849 status = CSR_READ_2(sc, RL_ISR); 850 CSR_WRITE_2(sc, RL_ISR, status); 851 if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == 852 (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) 853 break; 854 DELAY(10); 855 } 856 857 if (i == RL_TIMEOUT) { 858 device_printf(sc->rl_dev, 859 "diagnostic failed, failed to receive packet in" 860 " loopback mode\n"); 861 error = EIO; 862 goto done; 863 } 864 865 /* 866 * The packet should have been dumped into the first 867 * entry in the RX DMA ring. Grab it from there. 868 */ 869 870 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 871 sc->rl_ldata.rl_rx_list_map, 872 BUS_DMASYNC_POSTREAD); 873 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 874 sc->rl_ldata.rl_rx_desc[0].rx_dmamap, 875 BUS_DMASYNC_POSTREAD); 876 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 877 sc->rl_ldata.rl_rx_desc[0].rx_dmamap); 878 879 m0 = sc->rl_ldata.rl_rx_desc[0].rx_m; 880 sc->rl_ldata.rl_rx_desc[0].rx_m = NULL; 881 eh = mtod(m0, struct ether_header *); 882 883 cur_rx = &sc->rl_ldata.rl_rx_list[0]; 884 total_len = RL_RXBYTES(cur_rx); 885 rxstat = le32toh(cur_rx->rl_cmdstat); 886 887 if (total_len != ETHER_MIN_LEN) { 888 device_printf(sc->rl_dev, 889 "diagnostic failed, received short packet\n"); 890 error = EIO; 891 goto done; 892 } 893 894 /* Test that the received packet data matches what we sent. */ 895 896 if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || 897 bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || 898 ntohs(eh->ether_type) != ETHERTYPE_IP) { 899 device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n"); 900 device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n", 901 dst, ":", src, ":", ETHERTYPE_IP); 902 device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n", 903 eh->ether_dhost, ":", eh->ether_shost, ":", 904 ntohs(eh->ether_type)); 905 device_printf(sc->rl_dev, "You may have a defective 32-bit " 906 "NIC plugged into a 64-bit PCI slot.\n"); 907 device_printf(sc->rl_dev, "Please re-install the NIC in a " 908 "32-bit slot for proper operation.\n"); 909 device_printf(sc->rl_dev, "Read the re(4) man page for more " 910 "details.\n"); 911 error = EIO; 912 } 913 914 done: 915 /* Turn interface off, release resources */ 916 917 sc->rl_testmode = 0; 918 sc->rl_flags &= ~RL_FLAG_LINK; 919 if_setflagbit(ifp, 0, IFF_PROMISC); 920 re_stop(sc); 921 if (m0 != NULL) 922 m_freem(m0); 923 924 RL_UNLOCK(sc); 925 926 return (error); 927 } 928 929 #endif 930 931 /* 932 * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device 933 * IDs against our list and return a device name if we find a match. 934 */ 935 static int 936 re_probe(device_t dev) 937 { 938 const struct rl_type *t; 939 uint16_t devid, vendor; 940 uint16_t revid, sdevid; 941 int i; 942 943 vendor = pci_get_vendor(dev); 944 devid = pci_get_device(dev); 945 revid = pci_get_revid(dev); 946 sdevid = pci_get_subdevice(dev); 947 948 if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) { 949 if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) { 950 /* 951 * Only attach to rev. 3 of the Linksys EG1032 adapter. 952 * Rev. 2 is supported by sk(4). 953 */ 954 return (ENXIO); 955 } 956 } 957 958 if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) { 959 if (revid != 0x20) { 960 /* 8139, let rl(4) take care of this device. */ 961 return (ENXIO); 962 } 963 } 964 965 t = re_devs; 966 for (i = 0; i < nitems(re_devs); i++, t++) { 967 if (vendor == t->rl_vid && devid == t->rl_did) { 968 device_set_desc(dev, t->rl_name); 969 return (BUS_PROBE_DEFAULT); 970 } 971 } 972 973 return (ENXIO); 974 } 975 976 /* 977 * Map a single buffer address. 978 */ 979 980 static void 981 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 982 { 983 bus_addr_t *addr; 984 985 if (error) 986 return; 987 988 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 989 addr = arg; 990 *addr = segs->ds_addr; 991 } 992 993 static int 994 re_allocmem(device_t dev, struct rl_softc *sc) 995 { 996 bus_addr_t lowaddr; 997 bus_size_t rx_list_size, tx_list_size; 998 int error; 999 int i; 1000 1001 rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc); 1002 tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc); 1003 1004 /* 1005 * Allocate the parent bus DMA tag appropriate for PCI. 1006 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD 1007 * register should be set. However some RealTek chips are known 1008 * to be buggy on DAC handling, therefore disable DAC by limiting 1009 * DMA address space to 32bit. PCIe variants of RealTek chips 1010 * may not have the limitation. 1011 */ 1012 lowaddr = BUS_SPACE_MAXADDR; 1013 if ((sc->rl_flags & RL_FLAG_PCIE) == 0) 1014 lowaddr = BUS_SPACE_MAXADDR_32BIT; 1015 error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0, 1016 lowaddr, BUS_SPACE_MAXADDR, NULL, NULL, 1017 BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0, 1018 NULL, NULL, &sc->rl_parent_tag); 1019 if (error) { 1020 device_printf(dev, "could not allocate parent DMA tag\n"); 1021 return (error); 1022 } 1023 1024 /* 1025 * Allocate map for TX mbufs. 1026 */ 1027 error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0, 1028 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, 1029 NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0, 1030 NULL, NULL, &sc->rl_ldata.rl_tx_mtag); 1031 if (error) { 1032 device_printf(dev, "could not allocate TX DMA tag\n"); 1033 return (error); 1034 } 1035 1036 /* 1037 * Allocate map for RX mbufs. 1038 */ 1039 1040 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 1041 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 1042 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1043 MJUM9BYTES, 1, MJUM9BYTES, 0, NULL, NULL, 1044 &sc->rl_ldata.rl_jrx_mtag); 1045 if (error) { 1046 device_printf(dev, 1047 "could not allocate jumbo RX DMA tag\n"); 1048 return (error); 1049 } 1050 } 1051 error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0, 1052 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1053 MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag); 1054 if (error) { 1055 device_printf(dev, "could not allocate RX DMA tag\n"); 1056 return (error); 1057 } 1058 1059 /* 1060 * Allocate map for TX descriptor list. 1061 */ 1062 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1063 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1064 NULL, tx_list_size, 1, tx_list_size, 0, 1065 NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); 1066 if (error) { 1067 device_printf(dev, "could not allocate TX DMA ring tag\n"); 1068 return (error); 1069 } 1070 1071 /* Allocate DMA'able memory for the TX ring */ 1072 1073 error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, 1074 (void **)&sc->rl_ldata.rl_tx_list, 1075 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1076 &sc->rl_ldata.rl_tx_list_map); 1077 if (error) { 1078 device_printf(dev, "could not allocate TX DMA ring\n"); 1079 return (error); 1080 } 1081 1082 /* Load the map for the TX ring. */ 1083 1084 sc->rl_ldata.rl_tx_list_addr = 0; 1085 error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, 1086 sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, 1087 tx_list_size, re_dma_map_addr, 1088 &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); 1089 if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) { 1090 device_printf(dev, "could not load TX DMA ring\n"); 1091 return (ENOMEM); 1092 } 1093 1094 /* Create DMA maps for TX buffers */ 1095 1096 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1097 error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0, 1098 &sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1099 if (error) { 1100 device_printf(dev, "could not create DMA map for TX\n"); 1101 return (error); 1102 } 1103 } 1104 1105 /* 1106 * Allocate map for RX descriptor list. 1107 */ 1108 error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 1109 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, 1110 NULL, rx_list_size, 1, rx_list_size, 0, 1111 NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); 1112 if (error) { 1113 device_printf(dev, "could not create RX DMA ring tag\n"); 1114 return (error); 1115 } 1116 1117 /* Allocate DMA'able memory for the RX ring */ 1118 1119 error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, 1120 (void **)&sc->rl_ldata.rl_rx_list, 1121 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1122 &sc->rl_ldata.rl_rx_list_map); 1123 if (error) { 1124 device_printf(dev, "could not allocate RX DMA ring\n"); 1125 return (error); 1126 } 1127 1128 /* Load the map for the RX ring. */ 1129 1130 sc->rl_ldata.rl_rx_list_addr = 0; 1131 error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, 1132 sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, 1133 rx_list_size, re_dma_map_addr, 1134 &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); 1135 if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) { 1136 device_printf(dev, "could not load RX DMA ring\n"); 1137 return (ENOMEM); 1138 } 1139 1140 /* Create DMA maps for RX buffers */ 1141 1142 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 1143 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0, 1144 &sc->rl_ldata.rl_jrx_sparemap); 1145 if (error) { 1146 device_printf(dev, 1147 "could not create spare DMA map for jumbo RX\n"); 1148 return (error); 1149 } 1150 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1151 error = bus_dmamap_create(sc->rl_ldata.rl_jrx_mtag, 0, 1152 &sc->rl_ldata.rl_jrx_desc[i].rx_dmamap); 1153 if (error) { 1154 device_printf(dev, 1155 "could not create DMA map for jumbo RX\n"); 1156 return (error); 1157 } 1158 } 1159 } 1160 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1161 &sc->rl_ldata.rl_rx_sparemap); 1162 if (error) { 1163 device_printf(dev, "could not create spare DMA map for RX\n"); 1164 return (error); 1165 } 1166 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1167 error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0, 1168 &sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1169 if (error) { 1170 device_printf(dev, "could not create DMA map for RX\n"); 1171 return (error); 1172 } 1173 } 1174 1175 /* Create DMA map for statistics. */ 1176 error = bus_dma_tag_create(sc->rl_parent_tag, RL_DUMP_ALIGN, 0, 1177 BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, 1178 sizeof(struct rl_stats), 1, sizeof(struct rl_stats), 0, NULL, NULL, 1179 &sc->rl_ldata.rl_stag); 1180 if (error) { 1181 device_printf(dev, "could not create statistics DMA tag\n"); 1182 return (error); 1183 } 1184 /* Allocate DMA'able memory for statistics. */ 1185 error = bus_dmamem_alloc(sc->rl_ldata.rl_stag, 1186 (void **)&sc->rl_ldata.rl_stats, 1187 BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, 1188 &sc->rl_ldata.rl_smap); 1189 if (error) { 1190 device_printf(dev, 1191 "could not allocate statistics DMA memory\n"); 1192 return (error); 1193 } 1194 /* Load the map for statistics. */ 1195 sc->rl_ldata.rl_stats_addr = 0; 1196 error = bus_dmamap_load(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_smap, 1197 sc->rl_ldata.rl_stats, sizeof(struct rl_stats), re_dma_map_addr, 1198 &sc->rl_ldata.rl_stats_addr, BUS_DMA_NOWAIT); 1199 if (error != 0 || sc->rl_ldata.rl_stats_addr == 0) { 1200 device_printf(dev, "could not load statistics DMA memory\n"); 1201 return (ENOMEM); 1202 } 1203 1204 return (0); 1205 } 1206 1207 /* 1208 * Attach the interface. Allocate softc structures, do ifmedia 1209 * setup and ethernet/BPF attach. 1210 */ 1211 static int 1212 re_attach(device_t dev) 1213 { 1214 u_char eaddr[ETHER_ADDR_LEN]; 1215 u_int16_t as[ETHER_ADDR_LEN / 2]; 1216 struct rl_softc *sc; 1217 if_t ifp; 1218 const struct rl_hwrev *hw_rev; 1219 int capmask, error = 0, hwrev, i, msic, msixc, 1220 phy, reg, rid; 1221 u_int32_t cap, ctl; 1222 u_int16_t devid, re_did = 0; 1223 uint8_t cfg; 1224 1225 sc = device_get_softc(dev); 1226 sc->rl_dev = dev; 1227 1228 mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 1229 MTX_DEF); 1230 callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); 1231 1232 /* 1233 * Map control/status registers. 1234 */ 1235 pci_enable_busmaster(dev); 1236 1237 devid = pci_get_device(dev); 1238 /* 1239 * Prefer memory space register mapping over IO space. 1240 * Because RTL8169SC does not seem to work when memory mapping 1241 * is used always activate io mapping. 1242 */ 1243 if (devid == RT_DEVICEID_8169SC) 1244 prefer_iomap = 1; 1245 if (prefer_iomap == 0) { 1246 sc->rl_res_id = PCIR_BAR(1); 1247 sc->rl_res_type = SYS_RES_MEMORY; 1248 /* RTL8168/8101E seems to use different BARs. */ 1249 if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E) 1250 sc->rl_res_id = PCIR_BAR(2); 1251 } else { 1252 sc->rl_res_id = PCIR_BAR(0); 1253 sc->rl_res_type = SYS_RES_IOPORT; 1254 } 1255 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1256 &sc->rl_res_id, RF_ACTIVE); 1257 if (sc->rl_res == NULL && prefer_iomap == 0) { 1258 sc->rl_res_id = PCIR_BAR(0); 1259 sc->rl_res_type = SYS_RES_IOPORT; 1260 sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type, 1261 &sc->rl_res_id, RF_ACTIVE); 1262 } 1263 if (sc->rl_res == NULL) { 1264 device_printf(dev, "couldn't map ports/memory\n"); 1265 error = ENXIO; 1266 goto fail; 1267 } 1268 1269 sc->rl_btag = rman_get_bustag(sc->rl_res); 1270 sc->rl_bhandle = rman_get_bushandle(sc->rl_res); 1271 1272 msic = pci_msi_count(dev); 1273 msixc = pci_msix_count(dev); 1274 if (pci_find_cap(dev, PCIY_EXPRESS, ®) == 0) { 1275 sc->rl_flags |= RL_FLAG_PCIE; 1276 sc->rl_expcap = reg; 1277 } 1278 if (bootverbose) { 1279 device_printf(dev, "MSI count : %d\n", msic); 1280 device_printf(dev, "MSI-X count : %d\n", msixc); 1281 } 1282 if (msix_disable > 0) 1283 msixc = 0; 1284 if (msi_disable > 0) 1285 msic = 0; 1286 /* Prefer MSI-X to MSI. */ 1287 if (msixc > 0) { 1288 msixc = RL_MSI_MESSAGES; 1289 rid = PCIR_BAR(4); 1290 sc->rl_res_pba = bus_alloc_resource_any(dev, SYS_RES_MEMORY, 1291 &rid, RF_ACTIVE); 1292 if (sc->rl_res_pba == NULL) { 1293 device_printf(sc->rl_dev, 1294 "could not allocate MSI-X PBA resource\n"); 1295 } 1296 if (sc->rl_res_pba != NULL && 1297 pci_alloc_msix(dev, &msixc) == 0) { 1298 if (msixc == RL_MSI_MESSAGES) { 1299 device_printf(dev, "Using %d MSI-X message\n", 1300 msixc); 1301 sc->rl_flags |= RL_FLAG_MSIX; 1302 } else 1303 pci_release_msi(dev); 1304 } 1305 if ((sc->rl_flags & RL_FLAG_MSIX) == 0) { 1306 if (sc->rl_res_pba != NULL) 1307 bus_release_resource(dev, SYS_RES_MEMORY, rid, 1308 sc->rl_res_pba); 1309 sc->rl_res_pba = NULL; 1310 msixc = 0; 1311 } 1312 } 1313 /* Prefer MSI to INTx. */ 1314 if (msixc == 0 && msic > 0) { 1315 msic = RL_MSI_MESSAGES; 1316 if (pci_alloc_msi(dev, &msic) == 0) { 1317 if (msic == RL_MSI_MESSAGES) { 1318 device_printf(dev, "Using %d MSI message\n", 1319 msic); 1320 sc->rl_flags |= RL_FLAG_MSI; 1321 /* Explicitly set MSI enable bit. */ 1322 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1323 cfg = CSR_READ_1(sc, RL_CFG2); 1324 cfg |= RL_CFG2_MSI; 1325 CSR_WRITE_1(sc, RL_CFG2, cfg); 1326 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1327 } else 1328 pci_release_msi(dev); 1329 } 1330 if ((sc->rl_flags & RL_FLAG_MSI) == 0) 1331 msic = 0; 1332 } 1333 1334 /* Allocate interrupt */ 1335 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) { 1336 rid = 0; 1337 sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, 1338 RF_SHAREABLE | RF_ACTIVE); 1339 if (sc->rl_irq[0] == NULL) { 1340 device_printf(dev, "couldn't allocate IRQ resources\n"); 1341 error = ENXIO; 1342 goto fail; 1343 } 1344 } else { 1345 for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) { 1346 sc->rl_irq[i] = bus_alloc_resource_any(dev, 1347 SYS_RES_IRQ, &rid, RF_ACTIVE); 1348 if (sc->rl_irq[i] == NULL) { 1349 device_printf(dev, 1350 "couldn't allocate IRQ resources for " 1351 "message %d\n", rid); 1352 error = ENXIO; 1353 goto fail; 1354 } 1355 } 1356 } 1357 1358 if ((sc->rl_flags & RL_FLAG_MSI) == 0) { 1359 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1360 cfg = CSR_READ_1(sc, RL_CFG2); 1361 if ((cfg & RL_CFG2_MSI) != 0) { 1362 device_printf(dev, "turning off MSI enable bit.\n"); 1363 cfg &= ~RL_CFG2_MSI; 1364 CSR_WRITE_1(sc, RL_CFG2, cfg); 1365 } 1366 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1367 } 1368 1369 /* Disable ASPM L0S/L1 and CLKREQ. */ 1370 if (sc->rl_expcap != 0) { 1371 cap = pci_read_config(dev, sc->rl_expcap + 1372 PCIER_LINK_CAP, 2); 1373 if ((cap & PCIEM_LINK_CAP_ASPM) != 0) { 1374 ctl = pci_read_config(dev, sc->rl_expcap + 1375 PCIER_LINK_CTL, 2); 1376 if ((ctl & (PCIEM_LINK_CTL_ECPM | 1377 PCIEM_LINK_CTL_ASPMC))!= 0) { 1378 ctl &= ~(PCIEM_LINK_CTL_ECPM | 1379 PCIEM_LINK_CTL_ASPMC); 1380 pci_write_config(dev, sc->rl_expcap + 1381 PCIER_LINK_CTL, ctl, 2); 1382 device_printf(dev, "ASPM disabled\n"); 1383 } 1384 } else 1385 device_printf(dev, "no ASPM capability\n"); 1386 } 1387 1388 hw_rev = re_hwrevs; 1389 hwrev = CSR_READ_4(sc, RL_TXCFG); 1390 switch (hwrev & 0x70000000) { 1391 case 0x00000000: 1392 case 0x10000000: 1393 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0xfc800000); 1394 hwrev &= (RL_TXCFG_HWREV | 0x80000000); 1395 break; 1396 default: 1397 device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000); 1398 sc->rl_macrev = hwrev & 0x00700000; 1399 hwrev &= RL_TXCFG_HWREV; 1400 break; 1401 } 1402 device_printf(dev, "MAC rev. 0x%08x\n", sc->rl_macrev); 1403 while (hw_rev->rl_desc != NULL) { 1404 if (hw_rev->rl_rev == hwrev) { 1405 sc->rl_type = hw_rev->rl_type; 1406 sc->rl_hwrev = hw_rev; 1407 break; 1408 } 1409 hw_rev++; 1410 } 1411 if (hw_rev->rl_desc == NULL) { 1412 device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev); 1413 error = ENXIO; 1414 goto fail; 1415 } 1416 1417 switch (hw_rev->rl_rev) { 1418 case RL_HWREV_8139CPLUS: 1419 sc->rl_flags |= RL_FLAG_FASTETHER | RL_FLAG_AUTOPAD; 1420 break; 1421 case RL_HWREV_8100E: 1422 case RL_HWREV_8101E: 1423 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_FASTETHER; 1424 break; 1425 case RL_HWREV_8102E: 1426 case RL_HWREV_8102EL: 1427 case RL_HWREV_8102EL_SPIN1: 1428 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | 1429 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | 1430 RL_FLAG_AUTOPAD; 1431 break; 1432 case RL_HWREV_8103E: 1433 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 | 1434 RL_FLAG_MACSTAT | RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | 1435 RL_FLAG_AUTOPAD | RL_FLAG_MACSLEEP; 1436 break; 1437 case RL_HWREV_8401E: 1438 case RL_HWREV_8105E: 1439 case RL_HWREV_8105E_SPIN1: 1440 case RL_HWREV_8106E: 1441 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1442 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1443 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD; 1444 break; 1445 case RL_HWREV_8402: 1446 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1447 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1448 RL_FLAG_FASTETHER | RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | 1449 RL_FLAG_CMDSTOP_WAIT_TXQ; 1450 break; 1451 case RL_HWREV_8168B_SPIN1: 1452 case RL_HWREV_8168B_SPIN2: 1453 sc->rl_flags |= RL_FLAG_WOLRXENB; 1454 /* FALLTHROUGH */ 1455 case RL_HWREV_8168B_SPIN3: 1456 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_MACSTAT; 1457 break; 1458 case RL_HWREV_8168C_SPIN2: 1459 sc->rl_flags |= RL_FLAG_MACSLEEP; 1460 /* FALLTHROUGH */ 1461 case RL_HWREV_8168C: 1462 if (sc->rl_macrev == 0x00200000) 1463 sc->rl_flags |= RL_FLAG_MACSLEEP; 1464 /* FALLTHROUGH */ 1465 case RL_HWREV_8168CP: 1466 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1467 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1468 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK; 1469 break; 1470 case RL_HWREV_8168D: 1471 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1472 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1473 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1474 RL_FLAG_WOL_MANLINK; 1475 break; 1476 case RL_HWREV_8168DP: 1477 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1478 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_AUTOPAD | 1479 RL_FLAG_JUMBOV2 | RL_FLAG_WAIT_TXPOLL | RL_FLAG_WOL_MANLINK; 1480 break; 1481 case RL_HWREV_8168E: 1482 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PHYWAKE_PM | 1483 RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | 1484 RL_FLAG_CMDSTOP | RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1485 RL_FLAG_WOL_MANLINK; 1486 break; 1487 case RL_HWREV_8168E_VL: 1488 case RL_HWREV_8168F: 1489 sc->rl_flags |= RL_FLAG_EARLYOFF; 1490 /* FALLTHROUGH */ 1491 case RL_HWREV_8411: 1492 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1493 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1494 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1495 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK; 1496 break; 1497 case RL_HWREV_8168EP: 1498 case RL_HWREV_8168G: 1499 case RL_HWREV_8411B: 1500 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1501 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1502 RL_FLAG_AUTOPAD | RL_FLAG_JUMBOV2 | 1503 RL_FLAG_CMDSTOP_WAIT_TXQ | RL_FLAG_WOL_MANLINK | 1504 RL_FLAG_8168G_PLUS; 1505 break; 1506 case RL_HWREV_8168GU: 1507 case RL_HWREV_8168H: 1508 if (pci_get_device(dev) == RT_DEVICEID_8101E) { 1509 /* RTL8106E(US), RTL8107E */ 1510 sc->rl_flags |= RL_FLAG_FASTETHER; 1511 } else 1512 sc->rl_flags |= RL_FLAG_JUMBOV2 | RL_FLAG_WOL_MANLINK; 1513 1514 sc->rl_flags |= RL_FLAG_PHYWAKE | RL_FLAG_PAR | 1515 RL_FLAG_DESCV2 | RL_FLAG_MACSTAT | RL_FLAG_CMDSTOP | 1516 RL_FLAG_AUTOPAD | RL_FLAG_CMDSTOP_WAIT_TXQ | 1517 RL_FLAG_8168G_PLUS; 1518 break; 1519 case RL_HWREV_8169_8110SB: 1520 case RL_HWREV_8169_8110SBL: 1521 case RL_HWREV_8169_8110SC: 1522 case RL_HWREV_8169_8110SCE: 1523 sc->rl_flags |= RL_FLAG_PHYWAKE; 1524 /* FALLTHROUGH */ 1525 case RL_HWREV_8169: 1526 case RL_HWREV_8169S: 1527 case RL_HWREV_8110S: 1528 sc->rl_flags |= RL_FLAG_MACRESET; 1529 break; 1530 default: 1531 break; 1532 } 1533 1534 if (sc->rl_hwrev->rl_rev == RL_HWREV_8139CPLUS) { 1535 sc->rl_cfg0 = RL_8139_CFG0; 1536 sc->rl_cfg1 = RL_8139_CFG1; 1537 sc->rl_cfg2 = 0; 1538 sc->rl_cfg3 = RL_8139_CFG3; 1539 sc->rl_cfg4 = RL_8139_CFG4; 1540 sc->rl_cfg5 = RL_8139_CFG5; 1541 } else { 1542 sc->rl_cfg0 = RL_CFG0; 1543 sc->rl_cfg1 = RL_CFG1; 1544 sc->rl_cfg2 = RL_CFG2; 1545 sc->rl_cfg3 = RL_CFG3; 1546 sc->rl_cfg4 = RL_CFG4; 1547 sc->rl_cfg5 = RL_CFG5; 1548 } 1549 1550 /* Reset the adapter. */ 1551 RL_LOCK(sc); 1552 re_reset(sc); 1553 RL_UNLOCK(sc); 1554 1555 /* Enable PME. */ 1556 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 1557 cfg = CSR_READ_1(sc, sc->rl_cfg1); 1558 cfg |= RL_CFG1_PME; 1559 CSR_WRITE_1(sc, sc->rl_cfg1, cfg); 1560 cfg = CSR_READ_1(sc, sc->rl_cfg5); 1561 cfg &= RL_CFG5_PME_STS; 1562 CSR_WRITE_1(sc, sc->rl_cfg5, cfg); 1563 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 1564 1565 if ((sc->rl_flags & RL_FLAG_PAR) != 0) { 1566 /* 1567 * XXX Should have a better way to extract station 1568 * address from EEPROM. 1569 */ 1570 for (i = 0; i < ETHER_ADDR_LEN; i++) 1571 eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); 1572 } else { 1573 sc->rl_eewidth = RL_9356_ADDR_LEN; 1574 re_read_eeprom(sc, (caddr_t)&re_did, 0, 1); 1575 if (re_did != 0x8129) 1576 sc->rl_eewidth = RL_9346_ADDR_LEN; 1577 1578 /* 1579 * Get station address from the EEPROM. 1580 */ 1581 re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3); 1582 for (i = 0; i < ETHER_ADDR_LEN / 2; i++) 1583 as[i] = le16toh(as[i]); 1584 bcopy(as, eaddr, ETHER_ADDR_LEN); 1585 } 1586 1587 if (sc->rl_type == RL_8169) { 1588 /* Set RX length mask and number of descriptors. */ 1589 sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; 1590 sc->rl_txstart = RL_GTXSTART; 1591 sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT; 1592 sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT; 1593 } else { 1594 /* Set RX length mask and number of descriptors. */ 1595 sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; 1596 sc->rl_txstart = RL_TXSTART; 1597 sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT; 1598 sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT; 1599 } 1600 1601 error = re_allocmem(dev, sc); 1602 if (error) 1603 goto fail; 1604 re_add_sysctls(sc); 1605 1606 ifp = sc->rl_ifp = if_alloc(IFT_ETHER); 1607 if (ifp == NULL) { 1608 device_printf(dev, "can not if_alloc()\n"); 1609 error = ENOSPC; 1610 goto fail; 1611 } 1612 1613 /* Take controller out of deep sleep mode. */ 1614 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 1615 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 1616 CSR_WRITE_1(sc, RL_GPIO, 1617 CSR_READ_1(sc, RL_GPIO) | 0x01); 1618 else 1619 CSR_WRITE_1(sc, RL_GPIO, 1620 CSR_READ_1(sc, RL_GPIO) & ~0x01); 1621 } 1622 1623 /* Take PHY out of power down mode. */ 1624 if ((sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) { 1625 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) | 0x80); 1626 if (hw_rev->rl_rev == RL_HWREV_8401E) 1627 CSR_WRITE_1(sc, 0xD1, CSR_READ_1(sc, 0xD1) & ~0x08); 1628 } 1629 if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) { 1630 re_gmii_writereg(dev, 1, 0x1f, 0); 1631 re_gmii_writereg(dev, 1, 0x0e, 0); 1632 } 1633 1634 if_setsoftc(ifp, sc); 1635 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1636 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 1637 if_setioctlfn(ifp, re_ioctl); 1638 if_setstartfn(ifp, re_start); 1639 /* 1640 * RTL8168/8111C generates wrong IP checksummed frame if the 1641 * packet has IP options so disable TX checksum offloading. 1642 */ 1643 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168C || 1644 sc->rl_hwrev->rl_rev == RL_HWREV_8168C_SPIN2 || 1645 sc->rl_hwrev->rl_rev == RL_HWREV_8168CP) { 1646 if_sethwassist(ifp, 0); 1647 if_setcapabilities(ifp, IFCAP_RXCSUM | IFCAP_TSO4); 1648 } else { 1649 if_sethwassist(ifp, CSUM_IP | CSUM_TCP | CSUM_UDP); 1650 if_setcapabilities(ifp, IFCAP_HWCSUM | IFCAP_TSO4); 1651 } 1652 if_sethwassistbits(ifp, CSUM_TSO, 0); 1653 if_setcapenable(ifp, if_getcapabilities(ifp)); 1654 if_setinitfn(ifp, re_init); 1655 if_setsendqlen(ifp, RL_IFQ_MAXLEN); 1656 if_setsendqready(ifp); 1657 1658 NET_TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc); 1659 1660 #define RE_PHYAD_INTERNAL 0 1661 1662 /* Do MII setup. */ 1663 phy = RE_PHYAD_INTERNAL; 1664 if (sc->rl_type == RL_8169) 1665 phy = 1; 1666 capmask = BMSR_DEFCAPMASK; 1667 if ((sc->rl_flags & RL_FLAG_FASTETHER) != 0) 1668 capmask &= ~BMSR_EXTSTAT; 1669 error = mii_attach(dev, &sc->rl_miibus, ifp, re_ifmedia_upd, 1670 re_ifmedia_sts, capmask, phy, MII_OFFSET_ANY, MIIF_DOPAUSE); 1671 if (error != 0) { 1672 device_printf(dev, "attaching PHYs failed\n"); 1673 goto fail; 1674 } 1675 1676 /* If address was not found, create one based on the hostid and name. */ 1677 if (ETHER_IS_ZERO(eaddr)) { 1678 ether_gen_addr(ifp, (struct ether_addr *)eaddr); 1679 } 1680 1681 /* 1682 * Call MI attach routine. 1683 */ 1684 ether_ifattach(ifp, eaddr); 1685 1686 /* VLAN capability setup */ 1687 if_setcapabilitiesbit(ifp, IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING, 0); 1688 if (if_getcapabilities(ifp) & IFCAP_HWCSUM) 1689 if_setcapabilitiesbit(ifp, IFCAP_VLAN_HWCSUM, 0); 1690 /* Enable WOL if PM is supported. */ 1691 if (pci_find_cap(sc->rl_dev, PCIY_PMG, ®) == 0) 1692 if_setcapabilitiesbit(ifp, IFCAP_WOL, 0); 1693 if_setcapenable(ifp, if_getcapabilities(ifp)); 1694 if_setcapenablebit(ifp, 0, (IFCAP_WOL_UCAST | IFCAP_WOL_MCAST)); 1695 /* 1696 * Don't enable TSO by default. It is known to generate 1697 * corrupted TCP segments(bad TCP options) under certain 1698 * circumstances. 1699 */ 1700 if_sethwassistbits(ifp, 0, CSUM_TSO); 1701 if_setcapenablebit(ifp, 0, (IFCAP_TSO4 | IFCAP_VLAN_HWTSO)); 1702 #ifdef DEVICE_POLLING 1703 if_setcapabilitiesbit(ifp, IFCAP_POLLING, 0); 1704 #endif 1705 /* 1706 * Tell the upper layer(s) we support long frames. 1707 * Must appear after the call to ether_ifattach() because 1708 * ether_ifattach() sets ifi_hdrlen to the default value. 1709 */ 1710 if_setifheaderlen(ifp, sizeof(struct ether_vlan_header)); 1711 1712 #ifdef DEV_NETMAP 1713 re_netmap_attach(sc); 1714 #endif /* DEV_NETMAP */ 1715 1716 #ifdef RE_DIAG 1717 /* 1718 * Perform hardware diagnostic on the original RTL8169. 1719 * Some 32-bit cards were incorrectly wired and would 1720 * malfunction if plugged into a 64-bit slot. 1721 */ 1722 if (hwrev == RL_HWREV_8169) { 1723 error = re_diag(sc); 1724 if (error) { 1725 device_printf(dev, 1726 "attach aborted due to hardware diag failure\n"); 1727 ether_ifdetach(ifp); 1728 goto fail; 1729 } 1730 } 1731 #endif 1732 1733 #ifdef RE_TX_MODERATION 1734 intr_filter = 1; 1735 #endif 1736 /* Hook interrupt last to avoid having to lock softc */ 1737 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 && 1738 intr_filter == 0) { 1739 error = bus_setup_intr(dev, sc->rl_irq[0], 1740 INTR_TYPE_NET | INTR_MPSAFE, NULL, re_intr_msi, sc, 1741 &sc->rl_intrhand[0]); 1742 } else { 1743 error = bus_setup_intr(dev, sc->rl_irq[0], 1744 INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc, 1745 &sc->rl_intrhand[0]); 1746 } 1747 if (error) { 1748 device_printf(dev, "couldn't set up irq\n"); 1749 ether_ifdetach(ifp); 1750 goto fail; 1751 } 1752 1753 DEBUGNET_SET(ifp, re); 1754 1755 fail: 1756 if (error) 1757 re_detach(dev); 1758 1759 return (error); 1760 } 1761 1762 /* 1763 * Shutdown hardware and free up resources. This can be called any 1764 * time after the mutex has been initialized. It is called in both 1765 * the error case in attach and the normal detach case so it needs 1766 * to be careful about only freeing resources that have actually been 1767 * allocated. 1768 */ 1769 static int 1770 re_detach(device_t dev) 1771 { 1772 struct rl_softc *sc; 1773 if_t ifp; 1774 int i, rid; 1775 1776 sc = device_get_softc(dev); 1777 ifp = sc->rl_ifp; 1778 KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); 1779 1780 /* These should only be active if attach succeeded */ 1781 if (device_is_attached(dev)) { 1782 #ifdef DEVICE_POLLING 1783 if (if_getcapenable(ifp) & IFCAP_POLLING) 1784 ether_poll_deregister(ifp); 1785 #endif 1786 RL_LOCK(sc); 1787 #if 0 1788 sc->suspended = 1; 1789 #endif 1790 re_stop(sc); 1791 RL_UNLOCK(sc); 1792 callout_drain(&sc->rl_stat_callout); 1793 taskqueue_drain(taskqueue_fast, &sc->rl_inttask); 1794 /* 1795 * Force off the IFF_UP flag here, in case someone 1796 * still had a BPF descriptor attached to this 1797 * interface. If they do, ether_ifdetach() will cause 1798 * the BPF code to try and clear the promisc mode 1799 * flag, which will bubble down to re_ioctl(), 1800 * which will try to call re_init() again. This will 1801 * turn the NIC back on and restart the MII ticker, 1802 * which will panic the system when the kernel tries 1803 * to invoke the re_tick() function that isn't there 1804 * anymore. 1805 */ 1806 if_setflagbits(ifp, 0, IFF_UP); 1807 ether_ifdetach(ifp); 1808 } 1809 if (sc->rl_miibus) 1810 device_delete_child(dev, sc->rl_miibus); 1811 bus_generic_detach(dev); 1812 1813 /* 1814 * The rest is resource deallocation, so we should already be 1815 * stopped here. 1816 */ 1817 1818 if (sc->rl_intrhand[0] != NULL) { 1819 bus_teardown_intr(dev, sc->rl_irq[0], sc->rl_intrhand[0]); 1820 sc->rl_intrhand[0] = NULL; 1821 } 1822 if (ifp != NULL) { 1823 #ifdef DEV_NETMAP 1824 netmap_detach(ifp); 1825 #endif /* DEV_NETMAP */ 1826 if_free(ifp); 1827 } 1828 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) 1829 rid = 0; 1830 else 1831 rid = 1; 1832 if (sc->rl_irq[0] != NULL) { 1833 bus_release_resource(dev, SYS_RES_IRQ, rid, sc->rl_irq[0]); 1834 sc->rl_irq[0] = NULL; 1835 } 1836 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0) 1837 pci_release_msi(dev); 1838 if (sc->rl_res_pba) { 1839 rid = PCIR_BAR(4); 1840 bus_release_resource(dev, SYS_RES_MEMORY, rid, sc->rl_res_pba); 1841 } 1842 if (sc->rl_res) 1843 bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id, 1844 sc->rl_res); 1845 1846 /* Unload and free the RX DMA ring memory and map */ 1847 1848 if (sc->rl_ldata.rl_rx_list_tag) { 1849 if (sc->rl_ldata.rl_rx_list_addr) 1850 bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, 1851 sc->rl_ldata.rl_rx_list_map); 1852 if (sc->rl_ldata.rl_rx_list) 1853 bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, 1854 sc->rl_ldata.rl_rx_list, 1855 sc->rl_ldata.rl_rx_list_map); 1856 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); 1857 } 1858 1859 /* Unload and free the TX DMA ring memory and map */ 1860 1861 if (sc->rl_ldata.rl_tx_list_tag) { 1862 if (sc->rl_ldata.rl_tx_list_addr) 1863 bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, 1864 sc->rl_ldata.rl_tx_list_map); 1865 if (sc->rl_ldata.rl_tx_list) 1866 bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, 1867 sc->rl_ldata.rl_tx_list, 1868 sc->rl_ldata.rl_tx_list_map); 1869 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); 1870 } 1871 1872 /* Destroy all the RX and TX buffer maps */ 1873 1874 if (sc->rl_ldata.rl_tx_mtag) { 1875 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 1876 if (sc->rl_ldata.rl_tx_desc[i].tx_dmamap) 1877 bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag, 1878 sc->rl_ldata.rl_tx_desc[i].tx_dmamap); 1879 } 1880 bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag); 1881 } 1882 if (sc->rl_ldata.rl_rx_mtag) { 1883 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1884 if (sc->rl_ldata.rl_rx_desc[i].rx_dmamap) 1885 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1886 sc->rl_ldata.rl_rx_desc[i].rx_dmamap); 1887 } 1888 if (sc->rl_ldata.rl_rx_sparemap) 1889 bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag, 1890 sc->rl_ldata.rl_rx_sparemap); 1891 bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag); 1892 } 1893 if (sc->rl_ldata.rl_jrx_mtag) { 1894 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 1895 if (sc->rl_ldata.rl_jrx_desc[i].rx_dmamap) 1896 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag, 1897 sc->rl_ldata.rl_jrx_desc[i].rx_dmamap); 1898 } 1899 if (sc->rl_ldata.rl_jrx_sparemap) 1900 bus_dmamap_destroy(sc->rl_ldata.rl_jrx_mtag, 1901 sc->rl_ldata.rl_jrx_sparemap); 1902 bus_dma_tag_destroy(sc->rl_ldata.rl_jrx_mtag); 1903 } 1904 /* Unload and free the stats buffer and map */ 1905 1906 if (sc->rl_ldata.rl_stag) { 1907 if (sc->rl_ldata.rl_stats_addr) 1908 bus_dmamap_unload(sc->rl_ldata.rl_stag, 1909 sc->rl_ldata.rl_smap); 1910 if (sc->rl_ldata.rl_stats) 1911 bus_dmamem_free(sc->rl_ldata.rl_stag, 1912 sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap); 1913 bus_dma_tag_destroy(sc->rl_ldata.rl_stag); 1914 } 1915 1916 if (sc->rl_parent_tag) 1917 bus_dma_tag_destroy(sc->rl_parent_tag); 1918 1919 mtx_destroy(&sc->rl_mtx); 1920 1921 return (0); 1922 } 1923 1924 static __inline void 1925 re_discard_rxbuf(struct rl_softc *sc, int idx) 1926 { 1927 struct rl_desc *desc; 1928 struct rl_rxdesc *rxd; 1929 uint32_t cmdstat; 1930 1931 if (if_getmtu(sc->rl_ifp) > RL_MTU && 1932 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) 1933 rxd = &sc->rl_ldata.rl_jrx_desc[idx]; 1934 else 1935 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1936 desc = &sc->rl_ldata.rl_rx_list[idx]; 1937 desc->rl_vlanctl = 0; 1938 cmdstat = rxd->rx_size; 1939 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 1940 cmdstat |= RL_RDESC_CMD_EOR; 1941 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 1942 } 1943 1944 static int 1945 re_newbuf(struct rl_softc *sc, int idx) 1946 { 1947 struct mbuf *m; 1948 struct rl_rxdesc *rxd; 1949 bus_dma_segment_t segs[1]; 1950 bus_dmamap_t map; 1951 struct rl_desc *desc; 1952 uint32_t cmdstat; 1953 int error, nsegs; 1954 1955 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1956 if (m == NULL) 1957 return (ENOBUFS); 1958 1959 m->m_len = m->m_pkthdr.len = MCLBYTES; 1960 #ifdef RE_FIXUP_RX 1961 /* 1962 * This is part of an evil trick to deal with non-x86 platforms. 1963 * The RealTek chip requires RX buffers to be aligned on 64-bit 1964 * boundaries, but that will hose non-x86 machines. To get around 1965 * this, we leave some empty space at the start of each buffer 1966 * and for non-x86 hosts, we copy the buffer back six bytes 1967 * to achieve word alignment. This is slightly more efficient 1968 * than allocating a new buffer, copying the contents, and 1969 * discarding the old buffer. 1970 */ 1971 m_adj(m, RE_ETHER_ALIGN); 1972 #endif 1973 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag, 1974 sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 1975 if (error != 0) { 1976 m_freem(m); 1977 return (ENOBUFS); 1978 } 1979 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 1980 1981 rxd = &sc->rl_ldata.rl_rx_desc[idx]; 1982 if (rxd->rx_m != NULL) { 1983 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1984 BUS_DMASYNC_POSTREAD); 1985 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap); 1986 } 1987 1988 rxd->rx_m = m; 1989 map = rxd->rx_dmamap; 1990 rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap; 1991 rxd->rx_size = segs[0].ds_len; 1992 sc->rl_ldata.rl_rx_sparemap = map; 1993 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap, 1994 BUS_DMASYNC_PREREAD); 1995 1996 desc = &sc->rl_ldata.rl_rx_list[idx]; 1997 desc->rl_vlanctl = 0; 1998 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 1999 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 2000 cmdstat = segs[0].ds_len; 2001 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 2002 cmdstat |= RL_RDESC_CMD_EOR; 2003 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 2004 2005 return (0); 2006 } 2007 2008 static int 2009 re_jumbo_newbuf(struct rl_softc *sc, int idx) 2010 { 2011 struct mbuf *m; 2012 struct rl_rxdesc *rxd; 2013 bus_dma_segment_t segs[1]; 2014 bus_dmamap_t map; 2015 struct rl_desc *desc; 2016 uint32_t cmdstat; 2017 int error, nsegs; 2018 2019 m = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, MJUM9BYTES); 2020 if (m == NULL) 2021 return (ENOBUFS); 2022 m->m_len = m->m_pkthdr.len = MJUM9BYTES; 2023 #ifdef RE_FIXUP_RX 2024 m_adj(m, RE_ETHER_ALIGN); 2025 #endif 2026 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_jrx_mtag, 2027 sc->rl_ldata.rl_jrx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT); 2028 if (error != 0) { 2029 m_freem(m); 2030 return (ENOBUFS); 2031 } 2032 KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs)); 2033 2034 rxd = &sc->rl_ldata.rl_jrx_desc[idx]; 2035 if (rxd->rx_m != NULL) { 2036 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap, 2037 BUS_DMASYNC_POSTREAD); 2038 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap); 2039 } 2040 2041 rxd->rx_m = m; 2042 map = rxd->rx_dmamap; 2043 rxd->rx_dmamap = sc->rl_ldata.rl_jrx_sparemap; 2044 rxd->rx_size = segs[0].ds_len; 2045 sc->rl_ldata.rl_jrx_sparemap = map; 2046 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, rxd->rx_dmamap, 2047 BUS_DMASYNC_PREREAD); 2048 2049 desc = &sc->rl_ldata.rl_rx_list[idx]; 2050 desc->rl_vlanctl = 0; 2051 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr)); 2052 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr)); 2053 cmdstat = segs[0].ds_len; 2054 if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1) 2055 cmdstat |= RL_RDESC_CMD_EOR; 2056 desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN); 2057 2058 return (0); 2059 } 2060 2061 #ifdef RE_FIXUP_RX 2062 static __inline void 2063 re_fixup_rx(struct mbuf *m) 2064 { 2065 int i; 2066 uint16_t *src, *dst; 2067 2068 src = mtod(m, uint16_t *); 2069 dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; 2070 2071 for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) 2072 *dst++ = *src++; 2073 2074 m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; 2075 } 2076 #endif 2077 2078 static int 2079 re_tx_list_init(struct rl_softc *sc) 2080 { 2081 struct rl_desc *desc; 2082 int i; 2083 2084 RL_LOCK_ASSERT(sc); 2085 2086 bzero(sc->rl_ldata.rl_tx_list, 2087 sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc)); 2088 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) 2089 sc->rl_ldata.rl_tx_desc[i].tx_m = NULL; 2090 #ifdef DEV_NETMAP 2091 re_netmap_tx_init(sc); 2092 #endif /* DEV_NETMAP */ 2093 /* Set EOR. */ 2094 desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1]; 2095 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR); 2096 2097 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2098 sc->rl_ldata.rl_tx_list_map, 2099 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); 2100 2101 sc->rl_ldata.rl_tx_prodidx = 0; 2102 sc->rl_ldata.rl_tx_considx = 0; 2103 sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt; 2104 2105 return (0); 2106 } 2107 2108 static int 2109 re_rx_list_init(struct rl_softc *sc) 2110 { 2111 int error, i; 2112 2113 bzero(sc->rl_ldata.rl_rx_list, 2114 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 2115 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 2116 sc->rl_ldata.rl_rx_desc[i].rx_m = NULL; 2117 if ((error = re_newbuf(sc, i)) != 0) 2118 return (error); 2119 } 2120 #ifdef DEV_NETMAP 2121 re_netmap_rx_init(sc); 2122 #endif /* DEV_NETMAP */ 2123 2124 /* Flush the RX descriptors */ 2125 2126 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2127 sc->rl_ldata.rl_rx_list_map, 2128 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2129 2130 sc->rl_ldata.rl_rx_prodidx = 0; 2131 sc->rl_head = sc->rl_tail = NULL; 2132 sc->rl_int_rx_act = 0; 2133 2134 return (0); 2135 } 2136 2137 static int 2138 re_jrx_list_init(struct rl_softc *sc) 2139 { 2140 int error, i; 2141 2142 bzero(sc->rl_ldata.rl_rx_list, 2143 sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc)); 2144 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 2145 sc->rl_ldata.rl_jrx_desc[i].rx_m = NULL; 2146 if ((error = re_jumbo_newbuf(sc, i)) != 0) 2147 return (error); 2148 } 2149 2150 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2151 sc->rl_ldata.rl_rx_list_map, 2152 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); 2153 2154 sc->rl_ldata.rl_rx_prodidx = 0; 2155 sc->rl_head = sc->rl_tail = NULL; 2156 sc->rl_int_rx_act = 0; 2157 2158 return (0); 2159 } 2160 2161 /* 2162 * RX handler for C+ and 8169. For the gigE chips, we support 2163 * the reception of jumbo frames that have been fragmented 2164 * across multiple 2K mbuf cluster buffers. 2165 */ 2166 static int 2167 re_rxeof(struct rl_softc *sc, int *rx_npktsp) 2168 { 2169 struct mbuf *m; 2170 if_t ifp; 2171 int i, rxerr, total_len; 2172 struct rl_desc *cur_rx; 2173 u_int32_t rxstat, rxvlan; 2174 int jumbo, maxpkt = 16, rx_npkts = 0; 2175 2176 RL_LOCK_ASSERT(sc); 2177 2178 ifp = sc->rl_ifp; 2179 #ifdef DEV_NETMAP 2180 if (netmap_rx_irq(ifp, 0, &rx_npkts)) 2181 return 0; 2182 #endif /* DEV_NETMAP */ 2183 if (if_getmtu(ifp) > RL_MTU && (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) 2184 jumbo = 1; 2185 else 2186 jumbo = 0; 2187 2188 /* Invalidate the descriptor memory */ 2189 2190 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2191 sc->rl_ldata.rl_rx_list_map, 2192 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2193 2194 for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0; 2195 i = RL_RX_DESC_NXT(sc, i)) { 2196 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) 2197 break; 2198 cur_rx = &sc->rl_ldata.rl_rx_list[i]; 2199 rxstat = le32toh(cur_rx->rl_cmdstat); 2200 if ((rxstat & RL_RDESC_STAT_OWN) != 0) 2201 break; 2202 total_len = rxstat & sc->rl_rxlenmask; 2203 rxvlan = le32toh(cur_rx->rl_vlanctl); 2204 if (jumbo != 0) 2205 m = sc->rl_ldata.rl_jrx_desc[i].rx_m; 2206 else 2207 m = sc->rl_ldata.rl_rx_desc[i].rx_m; 2208 2209 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 2210 (rxstat & (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) != 2211 (RL_RDESC_STAT_SOF | RL_RDESC_STAT_EOF)) { 2212 /* 2213 * RTL8168C or later controllers do not 2214 * support multi-fragment packet. 2215 */ 2216 re_discard_rxbuf(sc, i); 2217 continue; 2218 } else if ((rxstat & RL_RDESC_STAT_EOF) == 0) { 2219 if (re_newbuf(sc, i) != 0) { 2220 /* 2221 * If this is part of a multi-fragment packet, 2222 * discard all the pieces. 2223 */ 2224 if (sc->rl_head != NULL) { 2225 m_freem(sc->rl_head); 2226 sc->rl_head = sc->rl_tail = NULL; 2227 } 2228 re_discard_rxbuf(sc, i); 2229 continue; 2230 } 2231 m->m_len = RE_RX_DESC_BUFLEN; 2232 if (sc->rl_head == NULL) 2233 sc->rl_head = sc->rl_tail = m; 2234 else { 2235 m->m_flags &= ~M_PKTHDR; 2236 sc->rl_tail->m_next = m; 2237 sc->rl_tail = m; 2238 } 2239 continue; 2240 } 2241 2242 /* 2243 * NOTE: for the 8139C+, the frame length field 2244 * is always 12 bits in size, but for the gigE chips, 2245 * it is 13 bits (since the max RX frame length is 16K). 2246 * Unfortunately, all 32 bits in the status word 2247 * were already used, so to make room for the extra 2248 * length bit, RealTek took out the 'frame alignment 2249 * error' bit and shifted the other status bits 2250 * over one slot. The OWN, EOR, FS and LS bits are 2251 * still in the same places. We have already extracted 2252 * the frame length and checked the OWN bit, so rather 2253 * than using an alternate bit mapping, we shift the 2254 * status bits one space to the right so we can evaluate 2255 * them using the 8169 status as though it was in the 2256 * same format as that of the 8139C+. 2257 */ 2258 if (sc->rl_type == RL_8169) 2259 rxstat >>= 1; 2260 2261 /* 2262 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be 2263 * set, but if CRC is clear, it will still be a valid frame. 2264 */ 2265 if ((rxstat & RL_RDESC_STAT_RXERRSUM) != 0) { 2266 rxerr = 1; 2267 if ((sc->rl_flags & RL_FLAG_JUMBOV2) == 0 && 2268 total_len > 8191 && 2269 (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT) 2270 rxerr = 0; 2271 if (rxerr != 0) { 2272 if_inc_counter(ifp, IFCOUNTER_IERRORS, 1); 2273 /* 2274 * If this is part of a multi-fragment packet, 2275 * discard all the pieces. 2276 */ 2277 if (sc->rl_head != NULL) { 2278 m_freem(sc->rl_head); 2279 sc->rl_head = sc->rl_tail = NULL; 2280 } 2281 re_discard_rxbuf(sc, i); 2282 continue; 2283 } 2284 } 2285 2286 /* 2287 * If allocating a replacement mbuf fails, 2288 * reload the current one. 2289 */ 2290 if (jumbo != 0) 2291 rxerr = re_jumbo_newbuf(sc, i); 2292 else 2293 rxerr = re_newbuf(sc, i); 2294 if (rxerr != 0) { 2295 if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1); 2296 if (sc->rl_head != NULL) { 2297 m_freem(sc->rl_head); 2298 sc->rl_head = sc->rl_tail = NULL; 2299 } 2300 re_discard_rxbuf(sc, i); 2301 continue; 2302 } 2303 2304 if (sc->rl_head != NULL) { 2305 if (jumbo != 0) 2306 m->m_len = total_len; 2307 else { 2308 m->m_len = total_len % RE_RX_DESC_BUFLEN; 2309 if (m->m_len == 0) 2310 m->m_len = RE_RX_DESC_BUFLEN; 2311 } 2312 /* 2313 * Special case: if there's 4 bytes or less 2314 * in this buffer, the mbuf can be discarded: 2315 * the last 4 bytes is the CRC, which we don't 2316 * care about anyway. 2317 */ 2318 if (m->m_len <= ETHER_CRC_LEN) { 2319 sc->rl_tail->m_len -= 2320 (ETHER_CRC_LEN - m->m_len); 2321 m_freem(m); 2322 } else { 2323 m->m_len -= ETHER_CRC_LEN; 2324 m->m_flags &= ~M_PKTHDR; 2325 sc->rl_tail->m_next = m; 2326 } 2327 m = sc->rl_head; 2328 sc->rl_head = sc->rl_tail = NULL; 2329 m->m_pkthdr.len = total_len - ETHER_CRC_LEN; 2330 } else 2331 m->m_pkthdr.len = m->m_len = 2332 (total_len - ETHER_CRC_LEN); 2333 2334 #ifdef RE_FIXUP_RX 2335 re_fixup_rx(m); 2336 #endif 2337 if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1); 2338 m->m_pkthdr.rcvif = ifp; 2339 2340 /* Do RX checksumming if enabled */ 2341 2342 if (if_getcapenable(ifp) & IFCAP_RXCSUM) { 2343 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2344 /* Check IP header checksum */ 2345 if (rxstat & RL_RDESC_STAT_PROTOID) 2346 m->m_pkthdr.csum_flags |= 2347 CSUM_IP_CHECKED; 2348 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) 2349 m->m_pkthdr.csum_flags |= 2350 CSUM_IP_VALID; 2351 2352 /* Check TCP/UDP checksum */ 2353 if ((RL_TCPPKT(rxstat) && 2354 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2355 (RL_UDPPKT(rxstat) && 2356 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2357 m->m_pkthdr.csum_flags |= 2358 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2359 m->m_pkthdr.csum_data = 0xffff; 2360 } 2361 } else { 2362 /* 2363 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP 2364 */ 2365 if ((rxstat & RL_RDESC_STAT_PROTOID) && 2366 (rxvlan & RL_RDESC_IPV4)) 2367 m->m_pkthdr.csum_flags |= 2368 CSUM_IP_CHECKED; 2369 if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) && 2370 (rxvlan & RL_RDESC_IPV4)) 2371 m->m_pkthdr.csum_flags |= 2372 CSUM_IP_VALID; 2373 if (((rxstat & RL_RDESC_STAT_TCP) && 2374 !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || 2375 ((rxstat & RL_RDESC_STAT_UDP) && 2376 !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { 2377 m->m_pkthdr.csum_flags |= 2378 CSUM_DATA_VALID|CSUM_PSEUDO_HDR; 2379 m->m_pkthdr.csum_data = 0xffff; 2380 } 2381 } 2382 } 2383 maxpkt--; 2384 if (rxvlan & RL_RDESC_VLANCTL_TAG) { 2385 m->m_pkthdr.ether_vtag = 2386 bswap16((rxvlan & RL_RDESC_VLANCTL_DATA)); 2387 m->m_flags |= M_VLANTAG; 2388 } 2389 RL_UNLOCK(sc); 2390 if_input(ifp, m); 2391 RL_LOCK(sc); 2392 rx_npkts++; 2393 } 2394 2395 /* Flush the RX DMA ring */ 2396 2397 bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, 2398 sc->rl_ldata.rl_rx_list_map, 2399 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 2400 2401 sc->rl_ldata.rl_rx_prodidx = i; 2402 2403 if (rx_npktsp != NULL) 2404 *rx_npktsp = rx_npkts; 2405 if (maxpkt) 2406 return (EAGAIN); 2407 2408 return (0); 2409 } 2410 2411 static void 2412 re_txeof(struct rl_softc *sc) 2413 { 2414 if_t ifp; 2415 struct rl_txdesc *txd; 2416 u_int32_t txstat; 2417 int cons; 2418 2419 cons = sc->rl_ldata.rl_tx_considx; 2420 if (cons == sc->rl_ldata.rl_tx_prodidx) 2421 return; 2422 2423 ifp = sc->rl_ifp; 2424 #ifdef DEV_NETMAP 2425 if (netmap_tx_irq(ifp, 0)) 2426 return; 2427 #endif /* DEV_NETMAP */ 2428 /* Invalidate the TX descriptor list */ 2429 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 2430 sc->rl_ldata.rl_tx_list_map, 2431 BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); 2432 2433 for (; cons != sc->rl_ldata.rl_tx_prodidx; 2434 cons = RL_TX_DESC_NXT(sc, cons)) { 2435 txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat); 2436 if (txstat & RL_TDESC_STAT_OWN) 2437 break; 2438 /* 2439 * We only stash mbufs in the last descriptor 2440 * in a fragment chain, which also happens to 2441 * be the only place where the TX status bits 2442 * are valid. 2443 */ 2444 if (txstat & RL_TDESC_CMD_EOF) { 2445 txd = &sc->rl_ldata.rl_tx_desc[cons]; 2446 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 2447 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 2448 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 2449 txd->tx_dmamap); 2450 KASSERT(txd->tx_m != NULL, 2451 ("%s: freeing NULL mbufs!", __func__)); 2452 m_freem(txd->tx_m); 2453 txd->tx_m = NULL; 2454 if (txstat & (RL_TDESC_STAT_EXCESSCOL| 2455 RL_TDESC_STAT_COLCNT)) 2456 if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1); 2457 if (txstat & RL_TDESC_STAT_TXERRSUM) 2458 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 2459 else 2460 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 2461 } 2462 sc->rl_ldata.rl_tx_free++; 2463 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 2464 } 2465 sc->rl_ldata.rl_tx_considx = cons; 2466 2467 /* No changes made to the TX ring, so no flush needed */ 2468 2469 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) { 2470 #ifdef RE_TX_MODERATION 2471 /* 2472 * If not all descriptors have been reaped yet, reload 2473 * the timer so that we will eventually get another 2474 * interrupt that will cause us to re-enter this routine. 2475 * This is done in case the transmitter has gone idle. 2476 */ 2477 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2478 #endif 2479 } else 2480 sc->rl_watchdog_timer = 0; 2481 } 2482 2483 static void 2484 re_tick(void *xsc) 2485 { 2486 struct rl_softc *sc; 2487 struct mii_data *mii; 2488 2489 sc = xsc; 2490 2491 RL_LOCK_ASSERT(sc); 2492 2493 mii = device_get_softc(sc->rl_miibus); 2494 mii_tick(mii); 2495 if ((sc->rl_flags & RL_FLAG_LINK) == 0) 2496 re_miibus_statchg(sc->rl_dev); 2497 /* 2498 * Reclaim transmitted frames here. Technically it is not 2499 * necessary to do here but it ensures periodic reclamation 2500 * regardless of Tx completion interrupt which seems to be 2501 * lost on PCIe based controllers under certain situations. 2502 */ 2503 re_txeof(sc); 2504 re_watchdog(sc); 2505 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 2506 } 2507 2508 #ifdef DEVICE_POLLING 2509 static int 2510 re_poll(if_t ifp, enum poll_cmd cmd, int count) 2511 { 2512 struct rl_softc *sc = if_getsoftc(ifp); 2513 int rx_npkts = 0; 2514 2515 RL_LOCK(sc); 2516 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2517 rx_npkts = re_poll_locked(ifp, cmd, count); 2518 RL_UNLOCK(sc); 2519 return (rx_npkts); 2520 } 2521 2522 static int 2523 re_poll_locked(if_t ifp, enum poll_cmd cmd, int count) 2524 { 2525 struct rl_softc *sc = if_getsoftc(ifp); 2526 int rx_npkts; 2527 2528 RL_LOCK_ASSERT(sc); 2529 2530 sc->rxcycles = count; 2531 re_rxeof(sc, &rx_npkts); 2532 re_txeof(sc); 2533 2534 if (!if_sendq_empty(ifp)) 2535 re_start_locked(ifp); 2536 2537 if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ 2538 u_int16_t status; 2539 2540 status = CSR_READ_2(sc, RL_ISR); 2541 if (status == 0xffff) 2542 return (rx_npkts); 2543 if (status) 2544 CSR_WRITE_2(sc, RL_ISR, status); 2545 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2546 (sc->rl_flags & RL_FLAG_PCIE)) 2547 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2548 2549 /* 2550 * XXX check behaviour on receiver stalls. 2551 */ 2552 2553 if (status & RL_ISR_SYSTEM_ERR) { 2554 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2555 re_init_locked(sc); 2556 } 2557 } 2558 return (rx_npkts); 2559 } 2560 #endif /* DEVICE_POLLING */ 2561 2562 static int 2563 re_intr(void *arg) 2564 { 2565 struct rl_softc *sc; 2566 uint16_t status; 2567 2568 sc = arg; 2569 2570 status = CSR_READ_2(sc, RL_ISR); 2571 if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0) 2572 return (FILTER_STRAY); 2573 CSR_WRITE_2(sc, RL_IMR, 0); 2574 2575 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask); 2576 2577 return (FILTER_HANDLED); 2578 } 2579 2580 static void 2581 re_int_task(void *arg, int npending) 2582 { 2583 struct rl_softc *sc; 2584 if_t ifp; 2585 u_int16_t status; 2586 int rval = 0; 2587 2588 sc = arg; 2589 ifp = sc->rl_ifp; 2590 2591 RL_LOCK(sc); 2592 2593 status = CSR_READ_2(sc, RL_ISR); 2594 CSR_WRITE_2(sc, RL_ISR, status); 2595 2596 if (sc->suspended || 2597 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 2598 RL_UNLOCK(sc); 2599 return; 2600 } 2601 2602 #ifdef DEVICE_POLLING 2603 if (if_getcapenable(ifp) & IFCAP_POLLING) { 2604 RL_UNLOCK(sc); 2605 return; 2606 } 2607 #endif 2608 2609 if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW)) 2610 rval = re_rxeof(sc, NULL); 2611 2612 /* 2613 * Some chips will ignore a second TX request issued 2614 * while an existing transmission is in progress. If 2615 * the transmitter goes idle but there are still 2616 * packets waiting to be sent, we need to restart the 2617 * channel here to flush them out. This only seems to 2618 * be required with the PCIe devices. 2619 */ 2620 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2621 (sc->rl_flags & RL_FLAG_PCIE)) 2622 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2623 if (status & ( 2624 #ifdef RE_TX_MODERATION 2625 RL_ISR_TIMEOUT_EXPIRED| 2626 #else 2627 RL_ISR_TX_OK| 2628 #endif 2629 RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL)) 2630 re_txeof(sc); 2631 2632 if (status & RL_ISR_SYSTEM_ERR) { 2633 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2634 re_init_locked(sc); 2635 } 2636 2637 if (!if_sendq_empty(ifp)) 2638 re_start_locked(ifp); 2639 2640 RL_UNLOCK(sc); 2641 2642 if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) { 2643 taskqueue_enqueue(taskqueue_fast, &sc->rl_inttask); 2644 return; 2645 } 2646 2647 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 2648 } 2649 2650 static void 2651 re_intr_msi(void *xsc) 2652 { 2653 struct rl_softc *sc; 2654 if_t ifp; 2655 uint16_t intrs, status; 2656 2657 sc = xsc; 2658 RL_LOCK(sc); 2659 2660 ifp = sc->rl_ifp; 2661 #ifdef DEVICE_POLLING 2662 if (if_getcapenable(ifp) & IFCAP_POLLING) { 2663 RL_UNLOCK(sc); 2664 return; 2665 } 2666 #endif 2667 /* Disable interrupts. */ 2668 CSR_WRITE_2(sc, RL_IMR, 0); 2669 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) { 2670 RL_UNLOCK(sc); 2671 return; 2672 } 2673 2674 intrs = RL_INTRS_CPLUS; 2675 status = CSR_READ_2(sc, RL_ISR); 2676 CSR_WRITE_2(sc, RL_ISR, status); 2677 if (sc->rl_int_rx_act > 0) { 2678 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW | 2679 RL_ISR_RX_OVERRUN); 2680 status &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | RL_ISR_FIFO_OFLOW | 2681 RL_ISR_RX_OVERRUN); 2682 } 2683 2684 if (status & (RL_ISR_TIMEOUT_EXPIRED | RL_ISR_RX_OK | RL_ISR_RX_ERR | 2685 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) { 2686 re_rxeof(sc, NULL); 2687 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2688 if (sc->rl_int_rx_mod != 0 && 2689 (status & (RL_ISR_RX_OK | RL_ISR_RX_ERR | 2690 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN)) != 0) { 2691 /* Rearm one-shot timer. */ 2692 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2693 intrs &= ~(RL_ISR_RX_OK | RL_ISR_RX_ERR | 2694 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN); 2695 sc->rl_int_rx_act = 1; 2696 } else { 2697 intrs |= RL_ISR_RX_OK | RL_ISR_RX_ERR | 2698 RL_ISR_FIFO_OFLOW | RL_ISR_RX_OVERRUN; 2699 sc->rl_int_rx_act = 0; 2700 } 2701 } 2702 } 2703 2704 /* 2705 * Some chips will ignore a second TX request issued 2706 * while an existing transmission is in progress. If 2707 * the transmitter goes idle but there are still 2708 * packets waiting to be sent, we need to restart the 2709 * channel here to flush them out. This only seems to 2710 * be required with the PCIe devices. 2711 */ 2712 if ((status & (RL_ISR_TX_OK | RL_ISR_TX_DESC_UNAVAIL)) && 2713 (sc->rl_flags & RL_FLAG_PCIE)) 2714 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2715 if (status & (RL_ISR_TX_OK | RL_ISR_TX_ERR | RL_ISR_TX_DESC_UNAVAIL)) 2716 re_txeof(sc); 2717 2718 if (status & RL_ISR_SYSTEM_ERR) { 2719 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 2720 re_init_locked(sc); 2721 } 2722 2723 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 2724 if (!if_sendq_empty(ifp)) 2725 re_start_locked(ifp); 2726 CSR_WRITE_2(sc, RL_IMR, intrs); 2727 } 2728 RL_UNLOCK(sc); 2729 } 2730 2731 static int 2732 re_encap(struct rl_softc *sc, struct mbuf **m_head) 2733 { 2734 struct rl_txdesc *txd, *txd_last; 2735 bus_dma_segment_t segs[RL_NTXSEGS]; 2736 bus_dmamap_t map; 2737 struct mbuf *m_new; 2738 struct rl_desc *desc; 2739 int nsegs, prod; 2740 int i, error, ei, si; 2741 int padlen; 2742 uint32_t cmdstat, csum_flags, vlanctl; 2743 2744 RL_LOCK_ASSERT(sc); 2745 M_ASSERTPKTHDR((*m_head)); 2746 2747 /* 2748 * With some of the RealTek chips, using the checksum offload 2749 * support in conjunction with the autopadding feature results 2750 * in the transmission of corrupt frames. For example, if we 2751 * need to send a really small IP fragment that's less than 60 2752 * bytes in size, and IP header checksumming is enabled, the 2753 * resulting ethernet frame that appears on the wire will 2754 * have garbled payload. To work around this, if TX IP checksum 2755 * offload is enabled, we always manually pad short frames out 2756 * to the minimum ethernet frame size. 2757 */ 2758 if ((sc->rl_flags & RL_FLAG_AUTOPAD) == 0 && 2759 (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN && 2760 ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) { 2761 padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len; 2762 if (M_WRITABLE(*m_head) == 0) { 2763 /* Get a writable copy. */ 2764 m_new = m_dup(*m_head, M_NOWAIT); 2765 m_freem(*m_head); 2766 if (m_new == NULL) { 2767 *m_head = NULL; 2768 return (ENOBUFS); 2769 } 2770 *m_head = m_new; 2771 } 2772 if ((*m_head)->m_next != NULL || 2773 M_TRAILINGSPACE(*m_head) < padlen) { 2774 m_new = m_defrag(*m_head, M_NOWAIT); 2775 if (m_new == NULL) { 2776 m_freem(*m_head); 2777 *m_head = NULL; 2778 return (ENOBUFS); 2779 } 2780 } else 2781 m_new = *m_head; 2782 2783 /* 2784 * Manually pad short frames, and zero the pad space 2785 * to avoid leaking data. 2786 */ 2787 bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen); 2788 m_new->m_pkthdr.len += padlen; 2789 m_new->m_len = m_new->m_pkthdr.len; 2790 *m_head = m_new; 2791 } 2792 2793 prod = sc->rl_ldata.rl_tx_prodidx; 2794 txd = &sc->rl_ldata.rl_tx_desc[prod]; 2795 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2796 *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2797 if (error == EFBIG) { 2798 m_new = m_collapse(*m_head, M_NOWAIT, RL_NTXSEGS); 2799 if (m_new == NULL) { 2800 m_freem(*m_head); 2801 *m_head = NULL; 2802 return (ENOBUFS); 2803 } 2804 *m_head = m_new; 2805 error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, 2806 txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT); 2807 if (error != 0) { 2808 m_freem(*m_head); 2809 *m_head = NULL; 2810 return (error); 2811 } 2812 } else if (error != 0) 2813 return (error); 2814 if (nsegs == 0) { 2815 m_freem(*m_head); 2816 *m_head = NULL; 2817 return (EIO); 2818 } 2819 2820 /* Check for number of available descriptors. */ 2821 if (sc->rl_ldata.rl_tx_free - nsegs <= 1) { 2822 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap); 2823 return (ENOBUFS); 2824 } 2825 2826 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap, 2827 BUS_DMASYNC_PREWRITE); 2828 2829 /* 2830 * Set up checksum offload. Note: checksum offload bits must 2831 * appear in all descriptors of a multi-descriptor transmit 2832 * attempt. This is according to testing done with an 8169 2833 * chip. This is a requirement. 2834 */ 2835 vlanctl = 0; 2836 csum_flags = 0; 2837 if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0) { 2838 if ((sc->rl_flags & RL_FLAG_DESCV2) != 0) { 2839 csum_flags |= RL_TDESC_CMD_LGSEND; 2840 vlanctl |= ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2841 RL_TDESC_CMD_MSSVALV2_SHIFT); 2842 } else { 2843 csum_flags |= RL_TDESC_CMD_LGSEND | 2844 ((uint32_t)(*m_head)->m_pkthdr.tso_segsz << 2845 RL_TDESC_CMD_MSSVAL_SHIFT); 2846 } 2847 } else { 2848 /* 2849 * Unconditionally enable IP checksum if TCP or UDP 2850 * checksum is required. Otherwise, TCP/UDP checksum 2851 * doesn't make effects. 2852 */ 2853 if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) { 2854 if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) { 2855 csum_flags |= RL_TDESC_CMD_IPCSUM; 2856 if (((*m_head)->m_pkthdr.csum_flags & 2857 CSUM_TCP) != 0) 2858 csum_flags |= RL_TDESC_CMD_TCPCSUM; 2859 if (((*m_head)->m_pkthdr.csum_flags & 2860 CSUM_UDP) != 0) 2861 csum_flags |= RL_TDESC_CMD_UDPCSUM; 2862 } else { 2863 vlanctl |= RL_TDESC_CMD_IPCSUMV2; 2864 if (((*m_head)->m_pkthdr.csum_flags & 2865 CSUM_TCP) != 0) 2866 vlanctl |= RL_TDESC_CMD_TCPCSUMV2; 2867 if (((*m_head)->m_pkthdr.csum_flags & 2868 CSUM_UDP) != 0) 2869 vlanctl |= RL_TDESC_CMD_UDPCSUMV2; 2870 } 2871 } 2872 } 2873 2874 /* 2875 * Set up hardware VLAN tagging. Note: vlan tag info must 2876 * appear in all descriptors of a multi-descriptor 2877 * transmission attempt. 2878 */ 2879 if ((*m_head)->m_flags & M_VLANTAG) 2880 vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) | 2881 RL_TDESC_VLANCTL_TAG; 2882 2883 si = prod; 2884 for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) { 2885 desc = &sc->rl_ldata.rl_tx_list[prod]; 2886 desc->rl_vlanctl = htole32(vlanctl); 2887 desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); 2888 desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); 2889 cmdstat = segs[i].ds_len; 2890 if (i != 0) 2891 cmdstat |= RL_TDESC_CMD_OWN; 2892 if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1) 2893 cmdstat |= RL_TDESC_CMD_EOR; 2894 desc->rl_cmdstat = htole32(cmdstat | csum_flags); 2895 sc->rl_ldata.rl_tx_free--; 2896 } 2897 /* Update producer index. */ 2898 sc->rl_ldata.rl_tx_prodidx = prod; 2899 2900 /* Set EOF on the last descriptor. */ 2901 ei = RL_TX_DESC_PRV(sc, prod); 2902 desc = &sc->rl_ldata.rl_tx_list[ei]; 2903 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); 2904 2905 desc = &sc->rl_ldata.rl_tx_list[si]; 2906 /* Set SOF and transfer ownership of packet to the chip. */ 2907 desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF); 2908 2909 /* 2910 * Insure that the map for this transmission 2911 * is placed at the array index of the last descriptor 2912 * in this chain. (Swap last and first dmamaps.) 2913 */ 2914 txd_last = &sc->rl_ldata.rl_tx_desc[ei]; 2915 map = txd->tx_dmamap; 2916 txd->tx_dmamap = txd_last->tx_dmamap; 2917 txd_last->tx_dmamap = map; 2918 txd_last->tx_m = *m_head; 2919 2920 return (0); 2921 } 2922 2923 static void 2924 re_start(if_t ifp) 2925 { 2926 struct rl_softc *sc; 2927 2928 sc = if_getsoftc(ifp); 2929 RL_LOCK(sc); 2930 re_start_locked(ifp); 2931 RL_UNLOCK(sc); 2932 } 2933 2934 /* 2935 * Main transmit routine for C+ and gigE NICs. 2936 */ 2937 static void 2938 re_start_locked(if_t ifp) 2939 { 2940 struct rl_softc *sc; 2941 struct mbuf *m_head; 2942 int queued; 2943 2944 sc = if_getsoftc(ifp); 2945 2946 #ifdef DEV_NETMAP 2947 /* XXX is this necessary ? */ 2948 if (if_getcapenable(ifp) & IFCAP_NETMAP) { 2949 struct netmap_kring *kring = NA(ifp)->tx_rings[0]; 2950 if (sc->rl_ldata.rl_tx_prodidx != kring->nr_hwcur) { 2951 /* kick the tx unit */ 2952 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 2953 #ifdef RE_TX_MODERATION 2954 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2955 #endif 2956 sc->rl_watchdog_timer = 5; 2957 } 2958 return; 2959 } 2960 #endif /* DEV_NETMAP */ 2961 2962 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 2963 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) 2964 return; 2965 2966 for (queued = 0; !if_sendq_empty(ifp) && 2967 sc->rl_ldata.rl_tx_free > 1;) { 2968 m_head = if_dequeue(ifp); 2969 if (m_head == NULL) 2970 break; 2971 2972 if (re_encap(sc, &m_head) != 0) { 2973 if (m_head == NULL) 2974 break; 2975 if_sendq_prepend(ifp, m_head); 2976 if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0); 2977 break; 2978 } 2979 2980 /* 2981 * If there's a BPF listener, bounce a copy of this frame 2982 * to him. 2983 */ 2984 ETHER_BPF_MTAP(ifp, m_head); 2985 2986 queued++; 2987 } 2988 2989 if (queued == 0) { 2990 #ifdef RE_TX_MODERATION 2991 if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) 2992 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 2993 #endif 2994 return; 2995 } 2996 2997 re_start_tx(sc); 2998 } 2999 3000 static void 3001 re_start_tx(struct rl_softc *sc) 3002 { 3003 3004 /* Flush the TX descriptors */ 3005 bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, 3006 sc->rl_ldata.rl_tx_list_map, 3007 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); 3008 3009 CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START); 3010 3011 #ifdef RE_TX_MODERATION 3012 /* 3013 * Use the countdown timer for interrupt moderation. 3014 * 'TX done' interrupts are disabled. Instead, we reset the 3015 * countdown timer, which will begin counting until it hits 3016 * the value in the TIMERINT register, and then trigger an 3017 * interrupt. Each time we write to the TIMERCNT register, 3018 * the timer count is reset to 0. 3019 */ 3020 CSR_WRITE_4(sc, RL_TIMERCNT, 1); 3021 #endif 3022 3023 /* 3024 * Set a timeout in case the chip goes out to lunch. 3025 */ 3026 sc->rl_watchdog_timer = 5; 3027 } 3028 3029 static void 3030 re_set_jumbo(struct rl_softc *sc, int jumbo) 3031 { 3032 3033 if (sc->rl_hwrev->rl_rev == RL_HWREV_8168E_VL) { 3034 pci_set_max_read_req(sc->rl_dev, 4096); 3035 return; 3036 } 3037 3038 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 3039 if (jumbo != 0) { 3040 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) | 3041 RL_CFG3_JUMBO_EN0); 3042 switch (sc->rl_hwrev->rl_rev) { 3043 case RL_HWREV_8168DP: 3044 break; 3045 case RL_HWREV_8168E: 3046 CSR_WRITE_1(sc, sc->rl_cfg4, 3047 CSR_READ_1(sc, sc->rl_cfg4) | 0x01); 3048 break; 3049 default: 3050 CSR_WRITE_1(sc, sc->rl_cfg4, 3051 CSR_READ_1(sc, sc->rl_cfg4) | RL_CFG4_JUMBO_EN1); 3052 } 3053 } else { 3054 CSR_WRITE_1(sc, sc->rl_cfg3, CSR_READ_1(sc, sc->rl_cfg3) & 3055 ~RL_CFG3_JUMBO_EN0); 3056 switch (sc->rl_hwrev->rl_rev) { 3057 case RL_HWREV_8168DP: 3058 break; 3059 case RL_HWREV_8168E: 3060 CSR_WRITE_1(sc, sc->rl_cfg4, 3061 CSR_READ_1(sc, sc->rl_cfg4) & ~0x01); 3062 break; 3063 default: 3064 CSR_WRITE_1(sc, sc->rl_cfg4, 3065 CSR_READ_1(sc, sc->rl_cfg4) & ~RL_CFG4_JUMBO_EN1); 3066 } 3067 } 3068 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3069 3070 switch (sc->rl_hwrev->rl_rev) { 3071 case RL_HWREV_8168DP: 3072 pci_set_max_read_req(sc->rl_dev, 4096); 3073 break; 3074 default: 3075 if (jumbo != 0) 3076 pci_set_max_read_req(sc->rl_dev, 512); 3077 else 3078 pci_set_max_read_req(sc->rl_dev, 4096); 3079 } 3080 } 3081 3082 static void 3083 re_init(void *xsc) 3084 { 3085 struct rl_softc *sc = xsc; 3086 3087 RL_LOCK(sc); 3088 re_init_locked(sc); 3089 RL_UNLOCK(sc); 3090 } 3091 3092 static void 3093 re_init_locked(struct rl_softc *sc) 3094 { 3095 if_t ifp = sc->rl_ifp; 3096 struct mii_data *mii; 3097 uint32_t reg; 3098 uint16_t cfg; 3099 uint32_t idr[2]; 3100 3101 RL_LOCK_ASSERT(sc); 3102 3103 mii = device_get_softc(sc->rl_miibus); 3104 3105 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 3106 return; 3107 3108 /* 3109 * Cancel pending I/O and free all RX/TX buffers. 3110 */ 3111 re_stop(sc); 3112 3113 /* Put controller into known state. */ 3114 re_reset(sc); 3115 3116 /* 3117 * For C+ mode, initialize the RX descriptors and mbufs. 3118 */ 3119 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3120 if (if_getmtu(ifp) > RL_MTU) { 3121 if (re_jrx_list_init(sc) != 0) { 3122 device_printf(sc->rl_dev, 3123 "no memory for jumbo RX buffers\n"); 3124 re_stop(sc); 3125 return; 3126 } 3127 /* Disable checksum offloading for jumbo frames. */ 3128 if_setcapenablebit(ifp, 0, (IFCAP_HWCSUM | IFCAP_TSO4)); 3129 if_sethwassistbits(ifp, 0, (RE_CSUM_FEATURES | CSUM_TSO)); 3130 } else { 3131 if (re_rx_list_init(sc) != 0) { 3132 device_printf(sc->rl_dev, 3133 "no memory for RX buffers\n"); 3134 re_stop(sc); 3135 return; 3136 } 3137 } 3138 re_set_jumbo(sc, if_getmtu(ifp) > RL_MTU); 3139 } else { 3140 if (re_rx_list_init(sc) != 0) { 3141 device_printf(sc->rl_dev, "no memory for RX buffers\n"); 3142 re_stop(sc); 3143 return; 3144 } 3145 if ((sc->rl_flags & RL_FLAG_PCIE) != 0 && 3146 pci_get_device(sc->rl_dev) != RT_DEVICEID_8101E) { 3147 if (if_getmtu(ifp) > RL_MTU) 3148 pci_set_max_read_req(sc->rl_dev, 512); 3149 else 3150 pci_set_max_read_req(sc->rl_dev, 4096); 3151 } 3152 } 3153 re_tx_list_init(sc); 3154 3155 /* 3156 * Enable C+ RX and TX mode, as well as VLAN stripping and 3157 * RX checksum offload. We must configure the C+ register 3158 * before all others. 3159 */ 3160 cfg = RL_CPLUSCMD_PCI_MRW; 3161 if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0) 3162 cfg |= RL_CPLUSCMD_RXCSUM_ENB; 3163 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) != 0) 3164 cfg |= RL_CPLUSCMD_VLANSTRIP; 3165 if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) { 3166 cfg |= RL_CPLUSCMD_MACSTAT_DIS; 3167 /* XXX magic. */ 3168 cfg |= 0x0001; 3169 } else 3170 cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB; 3171 CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg); 3172 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SC || 3173 sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) { 3174 reg = 0x000fff00; 3175 if ((CSR_READ_1(sc, sc->rl_cfg2) & RL_CFG2_PCI66MHZ) != 0) 3176 reg |= 0x000000ff; 3177 if (sc->rl_hwrev->rl_rev == RL_HWREV_8169_8110SCE) 3178 reg |= 0x00f00000; 3179 CSR_WRITE_4(sc, 0x7c, reg); 3180 /* Disable interrupt mitigation. */ 3181 CSR_WRITE_2(sc, 0xe2, 0); 3182 } 3183 /* 3184 * Disable TSO if interface MTU size is greater than MSS 3185 * allowed in controller. 3186 */ 3187 if (if_getmtu(ifp) > RL_TSO_MTU && (if_getcapenable(ifp) & IFCAP_TSO4) != 0) { 3188 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3189 if_sethwassistbits(ifp, 0, CSUM_TSO); 3190 } 3191 3192 /* 3193 * Init our MAC address. Even though the chipset 3194 * documentation doesn't mention it, we need to enter "Config 3195 * register write enable" mode to modify the ID registers. 3196 */ 3197 /* Copy MAC address on stack to align. */ 3198 bzero(idr, sizeof(idr)); 3199 bcopy(if_getlladdr(ifp), idr, ETHER_ADDR_LEN); 3200 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); 3201 CSR_WRITE_4(sc, RL_IDR0, htole32(idr[0])); 3202 CSR_WRITE_4(sc, RL_IDR4, htole32(idr[1])); 3203 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3204 3205 /* 3206 * Load the addresses of the RX and TX lists into the chip. 3207 */ 3208 3209 CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, 3210 RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); 3211 CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, 3212 RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); 3213 3214 CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, 3215 RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); 3216 CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, 3217 RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); 3218 3219 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3220 /* Disable RXDV gate. */ 3221 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) & 3222 ~0x00080000); 3223 } 3224 3225 /* 3226 * Enable transmit and receive for pre-RTL8168G controllers. 3227 * RX/TX MACs should be enabled before RX/TX configuration. 3228 */ 3229 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) == 0) 3230 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB); 3231 3232 /* 3233 * Set the initial TX configuration. 3234 */ 3235 if (sc->rl_testmode) { 3236 if (sc->rl_type == RL_8169) 3237 CSR_WRITE_4(sc, RL_TXCFG, 3238 RL_TXCFG_CONFIG|RL_LOOPTEST_ON); 3239 else 3240 CSR_WRITE_4(sc, RL_TXCFG, 3241 RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); 3242 } else 3243 CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); 3244 3245 CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); 3246 3247 /* 3248 * Set the initial RX configuration. 3249 */ 3250 re_set_rxmode(sc); 3251 3252 /* Configure interrupt moderation. */ 3253 if (sc->rl_type == RL_8169) { 3254 /* Magic from vendor. */ 3255 CSR_WRITE_2(sc, RL_INTRMOD, 0x5100); 3256 } 3257 3258 /* 3259 * Enable transmit and receive for RTL8168G and later controllers. 3260 * RX/TX MACs should be enabled after RX/TX configuration. 3261 */ 3262 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) 3263 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB | RL_CMD_RX_ENB); 3264 3265 #ifdef DEVICE_POLLING 3266 /* 3267 * Disable interrupts if we are polling. 3268 */ 3269 if (if_getcapenable(ifp) & IFCAP_POLLING) 3270 CSR_WRITE_2(sc, RL_IMR, 0); 3271 else /* otherwise ... */ 3272 #endif 3273 3274 /* 3275 * Enable interrupts. 3276 */ 3277 if (sc->rl_testmode) 3278 CSR_WRITE_2(sc, RL_IMR, 0); 3279 else 3280 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 3281 CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS); 3282 3283 /* Set initial TX threshold */ 3284 sc->rl_txthresh = RL_TX_THRESH_INIT; 3285 3286 /* Start RX/TX process. */ 3287 CSR_WRITE_4(sc, RL_MISSEDPKT, 0); 3288 3289 /* 3290 * Initialize the timer interrupt register so that 3291 * a timer interrupt will be generated once the timer 3292 * reaches a certain number of ticks. The timer is 3293 * reloaded on each transmit. 3294 */ 3295 #ifdef RE_TX_MODERATION 3296 /* 3297 * Use timer interrupt register to moderate TX interrupt 3298 * moderation, which dramatically improves TX frame rate. 3299 */ 3300 if (sc->rl_type == RL_8169) 3301 CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); 3302 else 3303 CSR_WRITE_4(sc, RL_TIMERINT, 0x400); 3304 #else 3305 /* 3306 * Use timer interrupt register to moderate RX interrupt 3307 * moderation. 3308 */ 3309 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) != 0 && 3310 intr_filter == 0) { 3311 if (sc->rl_type == RL_8169) 3312 CSR_WRITE_4(sc, RL_TIMERINT_8169, 3313 RL_USECS(sc->rl_int_rx_mod)); 3314 } else { 3315 if (sc->rl_type == RL_8169) 3316 CSR_WRITE_4(sc, RL_TIMERINT_8169, RL_USECS(0)); 3317 } 3318 #endif 3319 3320 /* 3321 * For 8169 gigE NICs, set the max allowed RX packet 3322 * size so we can receive jumbo frames. 3323 */ 3324 if (sc->rl_type == RL_8169) { 3325 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3326 /* 3327 * For controllers that use new jumbo frame scheme, 3328 * set maximum size of jumbo frame depending on 3329 * controller revisions. 3330 */ 3331 if (if_getmtu(ifp) > RL_MTU) 3332 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 3333 sc->rl_hwrev->rl_max_mtu + 3334 ETHER_VLAN_ENCAP_LEN + ETHER_HDR_LEN + 3335 ETHER_CRC_LEN); 3336 else 3337 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 3338 RE_RX_DESC_BUFLEN); 3339 } else if ((sc->rl_flags & RL_FLAG_PCIE) != 0 && 3340 sc->rl_hwrev->rl_max_mtu == RL_MTU) { 3341 /* RTL810x has no jumbo frame support. */ 3342 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, RE_RX_DESC_BUFLEN); 3343 } else 3344 CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); 3345 } 3346 3347 if (sc->rl_testmode) 3348 return; 3349 3350 CSR_WRITE_1(sc, sc->rl_cfg1, CSR_READ_1(sc, sc->rl_cfg1) | 3351 RL_CFG1_DRVLOAD); 3352 3353 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 3354 if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE); 3355 3356 sc->rl_flags &= ~RL_FLAG_LINK; 3357 mii_mediachg(mii); 3358 3359 sc->rl_watchdog_timer = 0; 3360 callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); 3361 3362 #ifdef DEV_NETMAP 3363 netmap_enable_all_rings(ifp); 3364 #endif /* DEV_NETMAP */ 3365 } 3366 3367 /* 3368 * Set media options. 3369 */ 3370 static int 3371 re_ifmedia_upd(if_t ifp) 3372 { 3373 struct rl_softc *sc; 3374 struct mii_data *mii; 3375 int error; 3376 3377 sc = if_getsoftc(ifp); 3378 mii = device_get_softc(sc->rl_miibus); 3379 RL_LOCK(sc); 3380 error = mii_mediachg(mii); 3381 RL_UNLOCK(sc); 3382 3383 return (error); 3384 } 3385 3386 /* 3387 * Report current media status. 3388 */ 3389 static void 3390 re_ifmedia_sts(if_t ifp, struct ifmediareq *ifmr) 3391 { 3392 struct rl_softc *sc; 3393 struct mii_data *mii; 3394 3395 sc = if_getsoftc(ifp); 3396 mii = device_get_softc(sc->rl_miibus); 3397 3398 RL_LOCK(sc); 3399 mii_pollstat(mii); 3400 ifmr->ifm_active = mii->mii_media_active; 3401 ifmr->ifm_status = mii->mii_media_status; 3402 RL_UNLOCK(sc); 3403 } 3404 3405 static int 3406 re_ioctl(if_t ifp, u_long command, caddr_t data) 3407 { 3408 struct rl_softc *sc = if_getsoftc(ifp); 3409 struct ifreq *ifr = (struct ifreq *) data; 3410 struct mii_data *mii; 3411 int error = 0; 3412 3413 switch (command) { 3414 case SIOCSIFMTU: 3415 if (ifr->ifr_mtu < ETHERMIN || 3416 ifr->ifr_mtu > sc->rl_hwrev->rl_max_mtu || 3417 ((sc->rl_flags & RL_FLAG_FASTETHER) != 0 && 3418 ifr->ifr_mtu > RL_MTU)) { 3419 error = EINVAL; 3420 break; 3421 } 3422 RL_LOCK(sc); 3423 if (if_getmtu(ifp) != ifr->ifr_mtu) { 3424 if_setmtu(ifp, ifr->ifr_mtu); 3425 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 3426 (if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 3427 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 3428 re_init_locked(sc); 3429 } 3430 if (if_getmtu(ifp) > RL_TSO_MTU && 3431 (if_getcapenable(ifp) & IFCAP_TSO4) != 0) { 3432 if_setcapenablebit(ifp, 0, 3433 IFCAP_TSO4 | IFCAP_VLAN_HWTSO); 3434 if_sethwassistbits(ifp, 0, CSUM_TSO); 3435 } 3436 VLAN_CAPABILITIES(ifp); 3437 } 3438 RL_UNLOCK(sc); 3439 break; 3440 case SIOCSIFFLAGS: 3441 RL_LOCK(sc); 3442 if ((if_getflags(ifp) & IFF_UP) != 0) { 3443 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) { 3444 if (((if_getflags(ifp) ^ sc->rl_if_flags) 3445 & (IFF_PROMISC | IFF_ALLMULTI)) != 0) 3446 re_set_rxmode(sc); 3447 } else 3448 re_init_locked(sc); 3449 } else { 3450 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 3451 re_stop(sc); 3452 } 3453 sc->rl_if_flags = if_getflags(ifp); 3454 RL_UNLOCK(sc); 3455 break; 3456 case SIOCADDMULTI: 3457 case SIOCDELMULTI: 3458 RL_LOCK(sc); 3459 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) 3460 re_set_rxmode(sc); 3461 RL_UNLOCK(sc); 3462 break; 3463 case SIOCGIFMEDIA: 3464 case SIOCSIFMEDIA: 3465 mii = device_get_softc(sc->rl_miibus); 3466 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); 3467 break; 3468 case SIOCSIFCAP: 3469 { 3470 int mask, reinit; 3471 3472 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 3473 reinit = 0; 3474 #ifdef DEVICE_POLLING 3475 if (mask & IFCAP_POLLING) { 3476 if (ifr->ifr_reqcap & IFCAP_POLLING) { 3477 error = ether_poll_register(re_poll, ifp); 3478 if (error) 3479 return (error); 3480 RL_LOCK(sc); 3481 /* Disable interrupts */ 3482 CSR_WRITE_2(sc, RL_IMR, 0x0000); 3483 if_setcapenablebit(ifp, IFCAP_POLLING, 0); 3484 RL_UNLOCK(sc); 3485 } else { 3486 error = ether_poll_deregister(ifp); 3487 /* Enable interrupts. */ 3488 RL_LOCK(sc); 3489 CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); 3490 if_setcapenablebit(ifp, 0, IFCAP_POLLING); 3491 RL_UNLOCK(sc); 3492 } 3493 } 3494 #endif /* DEVICE_POLLING */ 3495 RL_LOCK(sc); 3496 if ((mask & IFCAP_TXCSUM) != 0 && 3497 (if_getcapabilities(ifp) & IFCAP_TXCSUM) != 0) { 3498 if_togglecapenable(ifp, IFCAP_TXCSUM); 3499 if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0) 3500 if_sethwassistbits(ifp, RE_CSUM_FEATURES, 0); 3501 else 3502 if_sethwassistbits(ifp, 0, RE_CSUM_FEATURES); 3503 reinit = 1; 3504 } 3505 if ((mask & IFCAP_RXCSUM) != 0 && 3506 (if_getcapabilities(ifp) & IFCAP_RXCSUM) != 0) { 3507 if_togglecapenable(ifp, IFCAP_RXCSUM); 3508 reinit = 1; 3509 } 3510 if ((mask & IFCAP_TSO4) != 0 && 3511 (if_getcapabilities(ifp) & IFCAP_TSO4) != 0) { 3512 if_togglecapenable(ifp, IFCAP_TSO4); 3513 if ((IFCAP_TSO4 & if_getcapenable(ifp)) != 0) 3514 if_sethwassistbits(ifp, CSUM_TSO, 0); 3515 else 3516 if_sethwassistbits(ifp, 0, CSUM_TSO); 3517 if (if_getmtu(ifp) > RL_TSO_MTU && 3518 (if_getcapenable(ifp) & IFCAP_TSO4) != 0) { 3519 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3520 if_sethwassistbits(ifp, 0, CSUM_TSO); 3521 } 3522 } 3523 if ((mask & IFCAP_VLAN_HWTSO) != 0 && 3524 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTSO) != 0) 3525 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3526 if ((mask & IFCAP_VLAN_HWTAGGING) != 0 && 3527 (if_getcapabilities(ifp) & IFCAP_VLAN_HWTAGGING) != 0) { 3528 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3529 /* TSO over VLAN requires VLAN hardware tagging. */ 3530 if ((if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING) == 0) 3531 if_setcapenablebit(ifp, 0, IFCAP_VLAN_HWTSO); 3532 reinit = 1; 3533 } 3534 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0 && 3535 (mask & (IFCAP_HWCSUM | IFCAP_TSO4 | 3536 IFCAP_VLAN_HWTSO)) != 0) 3537 reinit = 1; 3538 if ((mask & IFCAP_WOL) != 0 && 3539 (if_getcapabilities(ifp) & IFCAP_WOL) != 0) { 3540 if ((mask & IFCAP_WOL_UCAST) != 0) 3541 if_togglecapenable(ifp, IFCAP_WOL_UCAST); 3542 if ((mask & IFCAP_WOL_MCAST) != 0) 3543 if_togglecapenable(ifp, IFCAP_WOL_MCAST); 3544 if ((mask & IFCAP_WOL_MAGIC) != 0) 3545 if_togglecapenable(ifp, IFCAP_WOL_MAGIC); 3546 } 3547 if (reinit && if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3548 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 3549 re_init_locked(sc); 3550 } 3551 RL_UNLOCK(sc); 3552 VLAN_CAPABILITIES(ifp); 3553 } 3554 break; 3555 default: 3556 error = ether_ioctl(ifp, command, data); 3557 break; 3558 } 3559 3560 return (error); 3561 } 3562 3563 static void 3564 re_watchdog(struct rl_softc *sc) 3565 { 3566 if_t ifp; 3567 3568 RL_LOCK_ASSERT(sc); 3569 3570 if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0) 3571 return; 3572 3573 ifp = sc->rl_ifp; 3574 re_txeof(sc); 3575 if (sc->rl_ldata.rl_tx_free == sc->rl_ldata.rl_tx_desc_cnt) { 3576 if_printf(ifp, "watchdog timeout (missed Tx interrupts) " 3577 "-- recovering\n"); 3578 if (!if_sendq_empty(ifp)) 3579 re_start_locked(ifp); 3580 return; 3581 } 3582 3583 if_printf(ifp, "watchdog timeout\n"); 3584 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3585 3586 re_rxeof(sc, NULL); 3587 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 3588 re_init_locked(sc); 3589 if (!if_sendq_empty(ifp)) 3590 re_start_locked(ifp); 3591 } 3592 3593 /* 3594 * Stop the adapter and free any mbufs allocated to the 3595 * RX and TX lists. 3596 */ 3597 static void 3598 re_stop(struct rl_softc *sc) 3599 { 3600 int i; 3601 if_t ifp; 3602 struct rl_txdesc *txd; 3603 struct rl_rxdesc *rxd; 3604 3605 RL_LOCK_ASSERT(sc); 3606 3607 ifp = sc->rl_ifp; 3608 3609 sc->rl_watchdog_timer = 0; 3610 callout_stop(&sc->rl_stat_callout); 3611 if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)); 3612 3613 #ifdef DEV_NETMAP 3614 netmap_disable_all_rings(ifp); 3615 #endif /* DEV_NETMAP */ 3616 3617 /* 3618 * Disable accepting frames to put RX MAC into idle state. 3619 * Otherwise it's possible to get frames while stop command 3620 * execution is in progress and controller can DMA the frame 3621 * to already freed RX buffer during that period. 3622 */ 3623 CSR_WRITE_4(sc, RL_RXCFG, CSR_READ_4(sc, RL_RXCFG) & 3624 ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_INDIV | RL_RXCFG_RX_MULTI | 3625 RL_RXCFG_RX_BROAD)); 3626 3627 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3628 /* Enable RXDV gate. */ 3629 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) | 3630 0x00080000); 3631 } 3632 3633 if ((sc->rl_flags & RL_FLAG_WAIT_TXPOLL) != 0) { 3634 for (i = RL_TIMEOUT; i > 0; i--) { 3635 if ((CSR_READ_1(sc, sc->rl_txstart) & 3636 RL_TXSTART_START) == 0) 3637 break; 3638 DELAY(20); 3639 } 3640 if (i == 0) 3641 device_printf(sc->rl_dev, 3642 "stopping TX poll timed out!\n"); 3643 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 3644 } else if ((sc->rl_flags & RL_FLAG_CMDSTOP) != 0) { 3645 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_STOPREQ | RL_CMD_TX_ENB | 3646 RL_CMD_RX_ENB); 3647 if ((sc->rl_flags & RL_FLAG_CMDSTOP_WAIT_TXQ) != 0) { 3648 for (i = RL_TIMEOUT; i > 0; i--) { 3649 if ((CSR_READ_4(sc, RL_TXCFG) & 3650 RL_TXCFG_QUEUE_EMPTY) != 0) 3651 break; 3652 DELAY(100); 3653 } 3654 if (i == 0) 3655 device_printf(sc->rl_dev, 3656 "stopping TXQ timed out!\n"); 3657 } 3658 } else 3659 CSR_WRITE_1(sc, RL_COMMAND, 0x00); 3660 DELAY(1000); 3661 CSR_WRITE_2(sc, RL_IMR, 0x0000); 3662 CSR_WRITE_2(sc, RL_ISR, 0xFFFF); 3663 3664 if (sc->rl_head != NULL) { 3665 m_freem(sc->rl_head); 3666 sc->rl_head = sc->rl_tail = NULL; 3667 } 3668 3669 /* Free the TX list buffers. */ 3670 for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) { 3671 txd = &sc->rl_ldata.rl_tx_desc[i]; 3672 if (txd->tx_m != NULL) { 3673 bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, 3674 txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); 3675 bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, 3676 txd->tx_dmamap); 3677 m_freem(txd->tx_m); 3678 txd->tx_m = NULL; 3679 } 3680 } 3681 3682 /* Free the RX list buffers. */ 3683 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 3684 rxd = &sc->rl_ldata.rl_rx_desc[i]; 3685 if (rxd->rx_m != NULL) { 3686 bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, 3687 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3688 bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, 3689 rxd->rx_dmamap); 3690 m_freem(rxd->rx_m); 3691 rxd->rx_m = NULL; 3692 } 3693 } 3694 3695 if ((sc->rl_flags & RL_FLAG_JUMBOV2) != 0) { 3696 for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) { 3697 rxd = &sc->rl_ldata.rl_jrx_desc[i]; 3698 if (rxd->rx_m != NULL) { 3699 bus_dmamap_sync(sc->rl_ldata.rl_jrx_mtag, 3700 rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); 3701 bus_dmamap_unload(sc->rl_ldata.rl_jrx_mtag, 3702 rxd->rx_dmamap); 3703 m_freem(rxd->rx_m); 3704 rxd->rx_m = NULL; 3705 } 3706 } 3707 } 3708 } 3709 3710 /* 3711 * Device suspend routine. Stop the interface and save some PCI 3712 * settings in case the BIOS doesn't restore them properly on 3713 * resume. 3714 */ 3715 static int 3716 re_suspend(device_t dev) 3717 { 3718 struct rl_softc *sc; 3719 3720 sc = device_get_softc(dev); 3721 3722 RL_LOCK(sc); 3723 re_stop(sc); 3724 re_setwol(sc); 3725 sc->suspended = 1; 3726 RL_UNLOCK(sc); 3727 3728 return (0); 3729 } 3730 3731 /* 3732 * Device resume routine. Restore some PCI settings in case the BIOS 3733 * doesn't, re-enable busmastering, and restart the interface if 3734 * appropriate. 3735 */ 3736 static int 3737 re_resume(device_t dev) 3738 { 3739 struct rl_softc *sc; 3740 if_t ifp; 3741 3742 sc = device_get_softc(dev); 3743 3744 RL_LOCK(sc); 3745 3746 ifp = sc->rl_ifp; 3747 /* Take controller out of sleep mode. */ 3748 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3749 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3750 CSR_WRITE_1(sc, RL_GPIO, 3751 CSR_READ_1(sc, RL_GPIO) | 0x01); 3752 } 3753 3754 /* 3755 * Clear WOL matching such that normal Rx filtering 3756 * wouldn't interfere with WOL patterns. 3757 */ 3758 re_clrwol(sc); 3759 3760 /* reinitialize interface if necessary */ 3761 if (if_getflags(ifp) & IFF_UP) 3762 re_init_locked(sc); 3763 3764 sc->suspended = 0; 3765 RL_UNLOCK(sc); 3766 3767 return (0); 3768 } 3769 3770 /* 3771 * Stop all chip I/O so that the kernel's probe routines don't 3772 * get confused by errant DMAs when rebooting. 3773 */ 3774 static int 3775 re_shutdown(device_t dev) 3776 { 3777 struct rl_softc *sc; 3778 3779 sc = device_get_softc(dev); 3780 3781 RL_LOCK(sc); 3782 re_stop(sc); 3783 /* 3784 * Mark interface as down since otherwise we will panic if 3785 * interrupt comes in later on, which can happen in some 3786 * cases. 3787 */ 3788 if_setflagbits(sc->rl_ifp, 0, IFF_UP); 3789 re_setwol(sc); 3790 RL_UNLOCK(sc); 3791 3792 return (0); 3793 } 3794 3795 static void 3796 re_set_linkspeed(struct rl_softc *sc) 3797 { 3798 struct mii_softc *miisc; 3799 struct mii_data *mii; 3800 int aneg, i, phyno; 3801 3802 RL_LOCK_ASSERT(sc); 3803 3804 mii = device_get_softc(sc->rl_miibus); 3805 mii_pollstat(mii); 3806 aneg = 0; 3807 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) == 3808 (IFM_ACTIVE | IFM_AVALID)) { 3809 switch IFM_SUBTYPE(mii->mii_media_active) { 3810 case IFM_10_T: 3811 case IFM_100_TX: 3812 return; 3813 case IFM_1000_T: 3814 aneg++; 3815 break; 3816 default: 3817 break; 3818 } 3819 } 3820 miisc = LIST_FIRST(&mii->mii_phys); 3821 phyno = miisc->mii_phy; 3822 LIST_FOREACH(miisc, &mii->mii_phys, mii_list) 3823 PHY_RESET(miisc); 3824 re_miibus_writereg(sc->rl_dev, phyno, MII_100T2CR, 0); 3825 re_miibus_writereg(sc->rl_dev, phyno, 3826 MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA); 3827 re_miibus_writereg(sc->rl_dev, phyno, 3828 MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG); 3829 DELAY(1000); 3830 if (aneg != 0) { 3831 /* 3832 * Poll link state until re(4) get a 10/100Mbps link. 3833 */ 3834 for (i = 0; i < MII_ANEGTICKS_GIGE; i++) { 3835 mii_pollstat(mii); 3836 if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) 3837 == (IFM_ACTIVE | IFM_AVALID)) { 3838 switch (IFM_SUBTYPE(mii->mii_media_active)) { 3839 case IFM_10_T: 3840 case IFM_100_TX: 3841 return; 3842 default: 3843 break; 3844 } 3845 } 3846 RL_UNLOCK(sc); 3847 pause("relnk", hz); 3848 RL_LOCK(sc); 3849 } 3850 if (i == MII_ANEGTICKS_GIGE) 3851 device_printf(sc->rl_dev, 3852 "establishing a link failed, WOL may not work!"); 3853 } 3854 /* 3855 * No link, force MAC to have 100Mbps, full-duplex link. 3856 * MAC does not require reprogramming on resolved speed/duplex, 3857 * so this is just for completeness. 3858 */ 3859 mii->mii_media_status = IFM_AVALID | IFM_ACTIVE; 3860 mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX; 3861 } 3862 3863 static void 3864 re_setwol(struct rl_softc *sc) 3865 { 3866 if_t ifp; 3867 int pmc; 3868 uint16_t pmstat; 3869 uint8_t v; 3870 3871 RL_LOCK_ASSERT(sc); 3872 3873 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3874 return; 3875 3876 ifp = sc->rl_ifp; 3877 /* Put controller into sleep mode. */ 3878 if ((sc->rl_flags & RL_FLAG_MACSLEEP) != 0) { 3879 if ((CSR_READ_1(sc, RL_MACDBG) & 0x80) == 0x80) 3880 CSR_WRITE_1(sc, RL_GPIO, 3881 CSR_READ_1(sc, RL_GPIO) & ~0x01); 3882 } 3883 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) { 3884 if ((sc->rl_flags & RL_FLAG_8168G_PLUS) != 0) { 3885 /* Disable RXDV gate. */ 3886 CSR_WRITE_4(sc, RL_MISC, CSR_READ_4(sc, RL_MISC) & 3887 ~0x00080000); 3888 } 3889 re_set_rxmode(sc); 3890 if ((sc->rl_flags & RL_FLAG_WOL_MANLINK) != 0) 3891 re_set_linkspeed(sc); 3892 if ((sc->rl_flags & RL_FLAG_WOLRXENB) != 0) 3893 CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RX_ENB); 3894 } 3895 /* Enable config register write. */ 3896 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3897 3898 /* Enable PME. */ 3899 v = CSR_READ_1(sc, sc->rl_cfg1); 3900 v &= ~RL_CFG1_PME; 3901 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 3902 v |= RL_CFG1_PME; 3903 CSR_WRITE_1(sc, sc->rl_cfg1, v); 3904 3905 v = CSR_READ_1(sc, sc->rl_cfg3); 3906 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3907 if ((if_getcapenable(ifp) & IFCAP_WOL_MAGIC) != 0) 3908 v |= RL_CFG3_WOL_MAGIC; 3909 CSR_WRITE_1(sc, sc->rl_cfg3, v); 3910 3911 v = CSR_READ_1(sc, sc->rl_cfg5); 3912 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST | 3913 RL_CFG5_WOL_LANWAKE); 3914 if ((if_getcapenable(ifp) & IFCAP_WOL_UCAST) != 0) 3915 v |= RL_CFG5_WOL_UCAST; 3916 if ((if_getcapenable(ifp) & IFCAP_WOL_MCAST) != 0) 3917 v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST; 3918 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 3919 v |= RL_CFG5_WOL_LANWAKE; 3920 CSR_WRITE_1(sc, sc->rl_cfg5, v); 3921 3922 /* Config register write done. */ 3923 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3924 3925 if ((if_getcapenable(ifp) & IFCAP_WOL) == 0 && 3926 (sc->rl_flags & RL_FLAG_PHYWAKE_PM) != 0) 3927 CSR_WRITE_1(sc, RL_PMCH, CSR_READ_1(sc, RL_PMCH) & ~0x80); 3928 /* 3929 * It seems that hardware resets its link speed to 100Mbps in 3930 * power down mode so switching to 100Mbps in driver is not 3931 * needed. 3932 */ 3933 3934 /* Request PME if WOL is requested. */ 3935 pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2); 3936 pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE); 3937 if ((if_getcapenable(ifp) & IFCAP_WOL) != 0) 3938 pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE; 3939 pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2); 3940 } 3941 3942 static void 3943 re_clrwol(struct rl_softc *sc) 3944 { 3945 int pmc; 3946 uint8_t v; 3947 3948 RL_LOCK_ASSERT(sc); 3949 3950 if (pci_find_cap(sc->rl_dev, PCIY_PMG, &pmc) != 0) 3951 return; 3952 3953 /* Enable config register write. */ 3954 CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE); 3955 3956 v = CSR_READ_1(sc, sc->rl_cfg3); 3957 v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC); 3958 CSR_WRITE_1(sc, sc->rl_cfg3, v); 3959 3960 /* Config register write done. */ 3961 CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); 3962 3963 v = CSR_READ_1(sc, sc->rl_cfg5); 3964 v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST); 3965 v &= ~RL_CFG5_WOL_LANWAKE; 3966 CSR_WRITE_1(sc, sc->rl_cfg5, v); 3967 } 3968 3969 static void 3970 re_add_sysctls(struct rl_softc *sc) 3971 { 3972 struct sysctl_ctx_list *ctx; 3973 struct sysctl_oid_list *children; 3974 int error; 3975 3976 ctx = device_get_sysctl_ctx(sc->rl_dev); 3977 children = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->rl_dev)); 3978 3979 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "stats", 3980 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, sc, 0, 3981 re_sysctl_stats, "I", "Statistics Information"); 3982 if ((sc->rl_flags & (RL_FLAG_MSI | RL_FLAG_MSIX)) == 0) 3983 return; 3984 3985 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "int_rx_mod", 3986 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 3987 &sc->rl_int_rx_mod, 0, sysctl_hw_re_int_mod, "I", 3988 "re RX interrupt moderation"); 3989 /* Pull in device tunables. */ 3990 sc->rl_int_rx_mod = RL_TIMER_DEFAULT; 3991 error = resource_int_value(device_get_name(sc->rl_dev), 3992 device_get_unit(sc->rl_dev), "int_rx_mod", &sc->rl_int_rx_mod); 3993 if (error == 0) { 3994 if (sc->rl_int_rx_mod < RL_TIMER_MIN || 3995 sc->rl_int_rx_mod > RL_TIMER_MAX) { 3996 device_printf(sc->rl_dev, "int_rx_mod value out of " 3997 "range; using default: %d\n", 3998 RL_TIMER_DEFAULT); 3999 sc->rl_int_rx_mod = RL_TIMER_DEFAULT; 4000 } 4001 } 4002 } 4003 4004 static int 4005 re_sysctl_stats(SYSCTL_HANDLER_ARGS) 4006 { 4007 struct rl_softc *sc; 4008 struct rl_stats *stats; 4009 int error, i, result; 4010 4011 result = -1; 4012 error = sysctl_handle_int(oidp, &result, 0, req); 4013 if (error || req->newptr == NULL) 4014 return (error); 4015 4016 if (result == 1) { 4017 sc = (struct rl_softc *)arg1; 4018 RL_LOCK(sc); 4019 if ((if_getdrvflags(sc->rl_ifp) & IFF_DRV_RUNNING) == 0) { 4020 RL_UNLOCK(sc); 4021 goto done; 4022 } 4023 bus_dmamap_sync(sc->rl_ldata.rl_stag, 4024 sc->rl_ldata.rl_smap, BUS_DMASYNC_PREREAD); 4025 CSR_WRITE_4(sc, RL_DUMPSTATS_HI, 4026 RL_ADDR_HI(sc->rl_ldata.rl_stats_addr)); 4027 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 4028 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr)); 4029 CSR_WRITE_4(sc, RL_DUMPSTATS_LO, 4030 RL_ADDR_LO(sc->rl_ldata.rl_stats_addr | 4031 RL_DUMPSTATS_START)); 4032 for (i = RL_TIMEOUT; i > 0; i--) { 4033 if ((CSR_READ_4(sc, RL_DUMPSTATS_LO) & 4034 RL_DUMPSTATS_START) == 0) 4035 break; 4036 DELAY(1000); 4037 } 4038 bus_dmamap_sync(sc->rl_ldata.rl_stag, 4039 sc->rl_ldata.rl_smap, BUS_DMASYNC_POSTREAD); 4040 RL_UNLOCK(sc); 4041 if (i == 0) { 4042 device_printf(sc->rl_dev, 4043 "DUMP statistics request timed out\n"); 4044 return (ETIMEDOUT); 4045 } 4046 done: 4047 stats = sc->rl_ldata.rl_stats; 4048 printf("%s statistics:\n", device_get_nameunit(sc->rl_dev)); 4049 printf("Tx frames : %ju\n", 4050 (uintmax_t)le64toh(stats->rl_tx_pkts)); 4051 printf("Rx frames : %ju\n", 4052 (uintmax_t)le64toh(stats->rl_rx_pkts)); 4053 printf("Tx errors : %ju\n", 4054 (uintmax_t)le64toh(stats->rl_tx_errs)); 4055 printf("Rx errors : %u\n", 4056 le32toh(stats->rl_rx_errs)); 4057 printf("Rx missed frames : %u\n", 4058 (uint32_t)le16toh(stats->rl_missed_pkts)); 4059 printf("Rx frame alignment errs : %u\n", 4060 (uint32_t)le16toh(stats->rl_rx_framealign_errs)); 4061 printf("Tx single collisions : %u\n", 4062 le32toh(stats->rl_tx_onecoll)); 4063 printf("Tx multiple collisions : %u\n", 4064 le32toh(stats->rl_tx_multicolls)); 4065 printf("Rx unicast frames : %ju\n", 4066 (uintmax_t)le64toh(stats->rl_rx_ucasts)); 4067 printf("Rx broadcast frames : %ju\n", 4068 (uintmax_t)le64toh(stats->rl_rx_bcasts)); 4069 printf("Rx multicast frames : %u\n", 4070 le32toh(stats->rl_rx_mcasts)); 4071 printf("Tx aborts : %u\n", 4072 (uint32_t)le16toh(stats->rl_tx_aborts)); 4073 printf("Tx underruns : %u\n", 4074 (uint32_t)le16toh(stats->rl_rx_underruns)); 4075 } 4076 4077 return (error); 4078 } 4079 4080 static int 4081 sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high) 4082 { 4083 int error, value; 4084 4085 if (arg1 == NULL) 4086 return (EINVAL); 4087 value = *(int *)arg1; 4088 error = sysctl_handle_int(oidp, &value, 0, req); 4089 if (error || req->newptr == NULL) 4090 return (error); 4091 if (value < low || value > high) 4092 return (EINVAL); 4093 *(int *)arg1 = value; 4094 4095 return (0); 4096 } 4097 4098 static int 4099 sysctl_hw_re_int_mod(SYSCTL_HANDLER_ARGS) 4100 { 4101 4102 return (sysctl_int_range(oidp, arg1, arg2, req, RL_TIMER_MIN, 4103 RL_TIMER_MAX)); 4104 } 4105 4106 #ifdef DEBUGNET 4107 static void 4108 re_debugnet_init(if_t ifp, int *nrxr, int *ncl, int *clsize) 4109 { 4110 struct rl_softc *sc; 4111 4112 sc = if_getsoftc(ifp); 4113 RL_LOCK(sc); 4114 *nrxr = sc->rl_ldata.rl_rx_desc_cnt; 4115 *ncl = DEBUGNET_MAX_IN_FLIGHT; 4116 *clsize = (if_getmtu(ifp) > RL_MTU && 4117 (sc->rl_flags & RL_FLAG_JUMBOV2) != 0) ? MJUM9BYTES : MCLBYTES; 4118 RL_UNLOCK(sc); 4119 } 4120 4121 static void 4122 re_debugnet_event(if_t ifp __unused, enum debugnet_ev event __unused) 4123 { 4124 } 4125 4126 static int 4127 re_debugnet_transmit(if_t ifp, struct mbuf *m) 4128 { 4129 struct rl_softc *sc; 4130 int error; 4131 4132 sc = if_getsoftc(ifp); 4133 if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != 4134 IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) 4135 return (EBUSY); 4136 4137 error = re_encap(sc, &m); 4138 if (error == 0) 4139 re_start_tx(sc); 4140 return (error); 4141 } 4142 4143 static int 4144 re_debugnet_poll(if_t ifp, int count) 4145 { 4146 struct rl_softc *sc; 4147 int error; 4148 4149 sc = if_getsoftc(ifp); 4150 if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0 || 4151 (sc->rl_flags & RL_FLAG_LINK) == 0) 4152 return (EBUSY); 4153 4154 re_txeof(sc); 4155 error = re_rxeof(sc, NULL); 4156 if (error != 0 && error != EAGAIN) 4157 return (error); 4158 return (0); 4159 } 4160 #endif /* DEBUGNET */ 4161