xref: /freebsd/sys/dev/re/if_re.c (revision 5c52a79884070364bfc920fb8e492cfac61ec72f)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/taskqueue.h>
127 
128 #include <net/if.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/if_vlan_var.h>
135 
136 #include <net/bpf.h>
137 
138 #include <machine/bus.h>
139 #include <machine/resource.h>
140 #include <sys/bus.h>
141 #include <sys/rman.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 
149 #include <pci/if_rlreg.h>
150 
151 MODULE_DEPEND(re, pci, 1, 1, 1);
152 MODULE_DEPEND(re, ether, 1, 1, 1);
153 MODULE_DEPEND(re, miibus, 1, 1, 1);
154 
155 /* "device miibus" required.  See GENERIC if you get errors here. */
156 #include "miibus_if.h"
157 
158 /* Tunables. */
159 static int msi_disable = 1;
160 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
161 
162 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
163 
164 /*
165  * Various supported device vendors/types and their names.
166  */
167 static struct rl_type re_devs[] = {
168 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, 0,
169 	    "D-Link DGE-528(T) Gigabit Ethernet Adapter" },
170 	{ RT_VENDORID, RT_DEVICEID_8139, 0,
171 	    "RealTek 8139C+ 10/100BaseTX" },
172 	{ RT_VENDORID, RT_DEVICEID_8101E, 0,
173 	    "RealTek 8101E/8102E/8102EL PCIe 10/100baseTX" },
174 	{ RT_VENDORID, RT_DEVICEID_8168, 0,
175 	    "RealTek 8168/8168B/8168C/8168CP/8168D/8111B/8111C/8111CP PCIe "
176 	    "Gigabit Ethernet" },
177 	{ RT_VENDORID, RT_DEVICEID_8169, 0,
178 	    "RealTek 8169/8169S/8169SB(L)/8110S/8110SB(L) Gigabit Ethernet" },
179 	{ RT_VENDORID, RT_DEVICEID_8169SC, 0,
180 	    "RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
181 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, 0,
182 	    "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
183 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, 0,
184 	    "Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
185 	{ USR_VENDORID, USR_DEVICEID_997902, 0,
186 	    "US Robotics 997902 (RTL8169S) Gigabit Ethernet" }
187 };
188 
189 static struct rl_hwrev re_hwrevs[] = {
190 	{ RL_HWREV_8139, RL_8139,  "" },
191 	{ RL_HWREV_8139A, RL_8139, "A" },
192 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
193 	{ RL_HWREV_8139B, RL_8139, "B" },
194 	{ RL_HWREV_8130, RL_8139, "8130" },
195 	{ RL_HWREV_8139C, RL_8139, "C" },
196 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
197 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
198 	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
199 	{ RL_HWREV_8169, RL_8169, "8169"},
200 	{ RL_HWREV_8169S, RL_8169, "8169S"},
201 	{ RL_HWREV_8110S, RL_8169, "8110S"},
202 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
203 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
204 	{ RL_HWREV_8169_8110SBL, RL_8169, "8169SBL"},
205 	{ RL_HWREV_8100, RL_8139, "8100"},
206 	{ RL_HWREV_8101, RL_8139, "8101"},
207 	{ RL_HWREV_8100E, RL_8169, "8100E"},
208 	{ RL_HWREV_8101E, RL_8169, "8101E"},
209 	{ RL_HWREV_8102E, RL_8169, "8102E"},
210 	{ RL_HWREV_8102EL, RL_8169, "8102EL"},
211 	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
212 	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
213 	{ RL_HWREV_8168C, RL_8169, "8168C/8111C"},
214 	{ RL_HWREV_8168C_SPIN2, RL_8169, "8168C/8111C"},
215 	{ RL_HWREV_8168CP, RL_8169, "8168CP/8111CP"},
216 	{ RL_HWREV_8168D, RL_8169, "8168D"},
217 	{ 0, 0, NULL }
218 };
219 
220 static int re_probe		(device_t);
221 static int re_attach		(device_t);
222 static int re_detach		(device_t);
223 
224 static int re_encap		(struct rl_softc *, struct mbuf **);
225 
226 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
227 static int re_allocmem		(device_t, struct rl_softc *);
228 static __inline void re_discard_rxbuf
229 				(struct rl_softc *, int);
230 static int re_newbuf		(struct rl_softc *, int);
231 static int re_rx_list_init	(struct rl_softc *);
232 static int re_tx_list_init	(struct rl_softc *);
233 #ifdef RE_FIXUP_RX
234 static __inline void re_fixup_rx
235 				(struct mbuf *);
236 #endif
237 static int re_rxeof		(struct rl_softc *);
238 static void re_txeof		(struct rl_softc *);
239 #ifdef DEVICE_POLLING
240 static void re_poll		(struct ifnet *, enum poll_cmd, int);
241 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
242 #endif
243 static int re_intr		(void *);
244 static void re_tick		(void *);
245 static void re_tx_task		(void *, int);
246 static void re_int_task		(void *, int);
247 static void re_start		(struct ifnet *);
248 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
249 static void re_init		(void *);
250 static void re_init_locked	(struct rl_softc *);
251 static void re_stop		(struct rl_softc *);
252 static void re_watchdog		(struct rl_softc *);
253 static int re_suspend		(device_t);
254 static int re_resume		(device_t);
255 static int re_shutdown		(device_t);
256 static int re_ifmedia_upd	(struct ifnet *);
257 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
258 
259 static void re_eeprom_putbyte	(struct rl_softc *, int);
260 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
261 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
262 static int re_gmii_readreg	(device_t, int, int);
263 static int re_gmii_writereg	(device_t, int, int, int);
264 
265 static int re_miibus_readreg	(device_t, int, int);
266 static int re_miibus_writereg	(device_t, int, int, int);
267 static void re_miibus_statchg	(device_t);
268 
269 static void re_setmulti		(struct rl_softc *);
270 static void re_reset		(struct rl_softc *);
271 static void re_setwol		(struct rl_softc *);
272 static void re_clrwol		(struct rl_softc *);
273 
274 #ifdef RE_DIAG
275 static int re_diag		(struct rl_softc *);
276 #endif
277 
278 static device_method_t re_methods[] = {
279 	/* Device interface */
280 	DEVMETHOD(device_probe,		re_probe),
281 	DEVMETHOD(device_attach,	re_attach),
282 	DEVMETHOD(device_detach,	re_detach),
283 	DEVMETHOD(device_suspend,	re_suspend),
284 	DEVMETHOD(device_resume,	re_resume),
285 	DEVMETHOD(device_shutdown,	re_shutdown),
286 
287 	/* bus interface */
288 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
289 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
290 
291 	/* MII interface */
292 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
293 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
294 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
295 
296 	{ 0, 0 }
297 };
298 
299 static driver_t re_driver = {
300 	"re",
301 	re_methods,
302 	sizeof(struct rl_softc)
303 };
304 
305 static devclass_t re_devclass;
306 
307 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
308 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
309 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
310 
311 #define EE_SET(x)					\
312 	CSR_WRITE_1(sc, RL_EECMD,			\
313 		CSR_READ_1(sc, RL_EECMD) | x)
314 
315 #define EE_CLR(x)					\
316 	CSR_WRITE_1(sc, RL_EECMD,			\
317 		CSR_READ_1(sc, RL_EECMD) & ~x)
318 
319 /*
320  * Send a read command and address to the EEPROM, check for ACK.
321  */
322 static void
323 re_eeprom_putbyte(struct rl_softc *sc, int addr)
324 {
325 	int			d, i;
326 
327 	d = addr | (RL_9346_READ << sc->rl_eewidth);
328 
329 	/*
330 	 * Feed in each bit and strobe the clock.
331 	 */
332 
333 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
334 		if (d & i) {
335 			EE_SET(RL_EE_DATAIN);
336 		} else {
337 			EE_CLR(RL_EE_DATAIN);
338 		}
339 		DELAY(100);
340 		EE_SET(RL_EE_CLK);
341 		DELAY(150);
342 		EE_CLR(RL_EE_CLK);
343 		DELAY(100);
344 	}
345 }
346 
347 /*
348  * Read a word of data stored in the EEPROM at address 'addr.'
349  */
350 static void
351 re_eeprom_getword(struct rl_softc *sc, int addr, u_int16_t *dest)
352 {
353 	int			i;
354 	u_int16_t		word = 0;
355 
356 	/*
357 	 * Send address of word we want to read.
358 	 */
359 	re_eeprom_putbyte(sc, addr);
360 
361 	/*
362 	 * Start reading bits from EEPROM.
363 	 */
364 	for (i = 0x8000; i; i >>= 1) {
365 		EE_SET(RL_EE_CLK);
366 		DELAY(100);
367 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
368 			word |= i;
369 		EE_CLR(RL_EE_CLK);
370 		DELAY(100);
371 	}
372 
373 	*dest = word;
374 }
375 
376 /*
377  * Read a sequence of words from the EEPROM.
378  */
379 static void
380 re_read_eeprom(struct rl_softc *sc, caddr_t dest, int off, int cnt)
381 {
382 	int			i;
383 	u_int16_t		word = 0, *ptr;
384 
385 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
386 
387         DELAY(100);
388 
389 	for (i = 0; i < cnt; i++) {
390 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
391 		re_eeprom_getword(sc, off + i, &word);
392 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
393 		ptr = (u_int16_t *)(dest + (i * 2));
394                 *ptr = word;
395 	}
396 
397 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
398 }
399 
400 static int
401 re_gmii_readreg(device_t dev, int phy, int reg)
402 {
403 	struct rl_softc		*sc;
404 	u_int32_t		rval;
405 	int			i;
406 
407 	if (phy != 1)
408 		return (0);
409 
410 	sc = device_get_softc(dev);
411 
412 	/* Let the rgephy driver read the GMEDIASTAT register */
413 
414 	if (reg == RL_GMEDIASTAT) {
415 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
416 		return (rval);
417 	}
418 
419 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
420 	DELAY(1000);
421 
422 	for (i = 0; i < RL_TIMEOUT; i++) {
423 		rval = CSR_READ_4(sc, RL_PHYAR);
424 		if (rval & RL_PHYAR_BUSY)
425 			break;
426 		DELAY(100);
427 	}
428 
429 	if (i == RL_TIMEOUT) {
430 		device_printf(sc->rl_dev, "PHY read failed\n");
431 		return (0);
432 	}
433 
434 	return (rval & RL_PHYAR_PHYDATA);
435 }
436 
437 static int
438 re_gmii_writereg(device_t dev, int phy, int reg, int data)
439 {
440 	struct rl_softc		*sc;
441 	u_int32_t		rval;
442 	int			i;
443 
444 	sc = device_get_softc(dev);
445 
446 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
447 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
448 	DELAY(1000);
449 
450 	for (i = 0; i < RL_TIMEOUT; i++) {
451 		rval = CSR_READ_4(sc, RL_PHYAR);
452 		if (!(rval & RL_PHYAR_BUSY))
453 			break;
454 		DELAY(100);
455 	}
456 
457 	if (i == RL_TIMEOUT) {
458 		device_printf(sc->rl_dev, "PHY write failed\n");
459 		return (0);
460 	}
461 
462 	return (0);
463 }
464 
465 static int
466 re_miibus_readreg(device_t dev, int phy, int reg)
467 {
468 	struct rl_softc		*sc;
469 	u_int16_t		rval = 0;
470 	u_int16_t		re8139_reg = 0;
471 
472 	sc = device_get_softc(dev);
473 
474 	if (sc->rl_type == RL_8169) {
475 		rval = re_gmii_readreg(dev, phy, reg);
476 		return (rval);
477 	}
478 
479 	/* Pretend the internal PHY is only at address 0 */
480 	if (phy) {
481 		return (0);
482 	}
483 	switch (reg) {
484 	case MII_BMCR:
485 		re8139_reg = RL_BMCR;
486 		break;
487 	case MII_BMSR:
488 		re8139_reg = RL_BMSR;
489 		break;
490 	case MII_ANAR:
491 		re8139_reg = RL_ANAR;
492 		break;
493 	case MII_ANER:
494 		re8139_reg = RL_ANER;
495 		break;
496 	case MII_ANLPAR:
497 		re8139_reg = RL_LPAR;
498 		break;
499 	case MII_PHYIDR1:
500 	case MII_PHYIDR2:
501 		return (0);
502 	/*
503 	 * Allow the rlphy driver to read the media status
504 	 * register. If we have a link partner which does not
505 	 * support NWAY, this is the register which will tell
506 	 * us the results of parallel detection.
507 	 */
508 	case RL_MEDIASTAT:
509 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
510 		return (rval);
511 	default:
512 		device_printf(sc->rl_dev, "bad phy register\n");
513 		return (0);
514 	}
515 	rval = CSR_READ_2(sc, re8139_reg);
516 	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
517 		/* 8139C+ has different bit layout. */
518 		rval &= ~(BMCR_LOOP | BMCR_ISO);
519 	}
520 	return (rval);
521 }
522 
523 static int
524 re_miibus_writereg(device_t dev, int phy, int reg, int data)
525 {
526 	struct rl_softc		*sc;
527 	u_int16_t		re8139_reg = 0;
528 	int			rval = 0;
529 
530 	sc = device_get_softc(dev);
531 
532 	if (sc->rl_type == RL_8169) {
533 		rval = re_gmii_writereg(dev, phy, reg, data);
534 		return (rval);
535 	}
536 
537 	/* Pretend the internal PHY is only at address 0 */
538 	if (phy)
539 		return (0);
540 
541 	switch (reg) {
542 	case MII_BMCR:
543 		re8139_reg = RL_BMCR;
544 		if (sc->rl_type == RL_8139CPLUS) {
545 			/* 8139C+ has different bit layout. */
546 			data &= ~(BMCR_LOOP | BMCR_ISO);
547 		}
548 		break;
549 	case MII_BMSR:
550 		re8139_reg = RL_BMSR;
551 		break;
552 	case MII_ANAR:
553 		re8139_reg = RL_ANAR;
554 		break;
555 	case MII_ANER:
556 		re8139_reg = RL_ANER;
557 		break;
558 	case MII_ANLPAR:
559 		re8139_reg = RL_LPAR;
560 		break;
561 	case MII_PHYIDR1:
562 	case MII_PHYIDR2:
563 		return (0);
564 		break;
565 	default:
566 		device_printf(sc->rl_dev, "bad phy register\n");
567 		return (0);
568 	}
569 	CSR_WRITE_2(sc, re8139_reg, data);
570 	return (0);
571 }
572 
573 static void
574 re_miibus_statchg(device_t dev)
575 {
576 
577 }
578 
579 /*
580  * Program the 64-bit multicast hash filter.
581  */
582 static void
583 re_setmulti(struct rl_softc *sc)
584 {
585 	struct ifnet		*ifp;
586 	int			h = 0;
587 	u_int32_t		hashes[2] = { 0, 0 };
588 	struct ifmultiaddr	*ifma;
589 	u_int32_t		rxfilt;
590 	int			mcnt = 0;
591 
592 	RL_LOCK_ASSERT(sc);
593 
594 	ifp = sc->rl_ifp;
595 
596 
597 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
598 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
599 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
600 		if (ifp->if_flags & IFF_PROMISC)
601 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
602 		/*
603 		 * Unlike other hardwares, we have to explicitly set
604 		 * RL_RXCFG_RX_MULTI to receive multicast frames in
605 		 * promiscuous mode.
606 		 */
607 		rxfilt |= RL_RXCFG_RX_MULTI;
608 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
609 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
610 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
611 		return;
612 	}
613 
614 	/* first, zot all the existing hash bits */
615 	CSR_WRITE_4(sc, RL_MAR0, 0);
616 	CSR_WRITE_4(sc, RL_MAR4, 0);
617 
618 	/* now program new ones */
619 	IF_ADDR_LOCK(ifp);
620 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
621 		if (ifma->ifma_addr->sa_family != AF_LINK)
622 			continue;
623 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
624 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
625 		if (h < 32)
626 			hashes[0] |= (1 << h);
627 		else
628 			hashes[1] |= (1 << (h - 32));
629 		mcnt++;
630 	}
631 	IF_ADDR_UNLOCK(ifp);
632 
633 	if (mcnt)
634 		rxfilt |= RL_RXCFG_RX_MULTI;
635 	else
636 		rxfilt &= ~RL_RXCFG_RX_MULTI;
637 
638 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
639 
640 	/*
641 	 * For some unfathomable reason, RealTek decided to reverse
642 	 * the order of the multicast hash registers in the PCI Express
643 	 * parts. This means we have to write the hash pattern in reverse
644 	 * order for those devices.
645 	 */
646 
647 	if ((sc->rl_flags & RL_FLAG_INVMAR) != 0) {
648 		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
649 		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
650 	} else {
651 		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
652 		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
653 	}
654 }
655 
656 static void
657 re_reset(struct rl_softc *sc)
658 {
659 	int			i;
660 
661 	RL_LOCK_ASSERT(sc);
662 
663 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
664 
665 	for (i = 0; i < RL_TIMEOUT; i++) {
666 		DELAY(10);
667 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
668 			break;
669 	}
670 	if (i == RL_TIMEOUT)
671 		device_printf(sc->rl_dev, "reset never completed!\n");
672 
673 	CSR_WRITE_1(sc, 0x82, 1);
674 }
675 
676 #ifdef RE_DIAG
677 
678 /*
679  * The following routine is designed to test for a defect on some
680  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
681  * lines connected to the bus, however for a 32-bit only card, they
682  * should be pulled high. The result of this defect is that the
683  * NIC will not work right if you plug it into a 64-bit slot: DMA
684  * operations will be done with 64-bit transfers, which will fail
685  * because the 64-bit data lines aren't connected.
686  *
687  * There's no way to work around this (short of talking a soldering
688  * iron to the board), however we can detect it. The method we use
689  * here is to put the NIC into digital loopback mode, set the receiver
690  * to promiscuous mode, and then try to send a frame. We then compare
691  * the frame data we sent to what was received. If the data matches,
692  * then the NIC is working correctly, otherwise we know the user has
693  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
694  * slot. In the latter case, there's no way the NIC can work correctly,
695  * so we print out a message on the console and abort the device attach.
696  */
697 
698 static int
699 re_diag(struct rl_softc *sc)
700 {
701 	struct ifnet		*ifp = sc->rl_ifp;
702 	struct mbuf		*m0;
703 	struct ether_header	*eh;
704 	struct rl_desc		*cur_rx;
705 	u_int16_t		status;
706 	u_int32_t		rxstat;
707 	int			total_len, i, error = 0, phyaddr;
708 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
709 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
710 
711 	/* Allocate a single mbuf */
712 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
713 	if (m0 == NULL)
714 		return (ENOBUFS);
715 
716 	RL_LOCK(sc);
717 
718 	/*
719 	 * Initialize the NIC in test mode. This sets the chip up
720 	 * so that it can send and receive frames, but performs the
721 	 * following special functions:
722 	 * - Puts receiver in promiscuous mode
723 	 * - Enables digital loopback mode
724 	 * - Leaves interrupts turned off
725 	 */
726 
727 	ifp->if_flags |= IFF_PROMISC;
728 	sc->rl_testmode = 1;
729 	re_reset(sc);
730 	re_init_locked(sc);
731 	sc->rl_flags |= RL_FLAG_LINK;
732 	if (sc->rl_type == RL_8169)
733 		phyaddr = 1;
734 	else
735 		phyaddr = 0;
736 
737 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
738 	for (i = 0; i < RL_TIMEOUT; i++) {
739 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
740 		if (!(status & BMCR_RESET))
741 			break;
742 	}
743 
744 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
745 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
746 
747 	DELAY(100000);
748 
749 	/* Put some data in the mbuf */
750 
751 	eh = mtod(m0, struct ether_header *);
752 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
753 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
754 	eh->ether_type = htons(ETHERTYPE_IP);
755 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
756 
757 	/*
758 	 * Queue the packet, start transmission.
759 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
760 	 */
761 
762 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
763 	RL_UNLOCK(sc);
764 	/* XXX: re_diag must not be called when in ALTQ mode */
765 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
766 	RL_LOCK(sc);
767 	m0 = NULL;
768 
769 	/* Wait for it to propagate through the chip */
770 
771 	DELAY(100000);
772 	for (i = 0; i < RL_TIMEOUT; i++) {
773 		status = CSR_READ_2(sc, RL_ISR);
774 		CSR_WRITE_2(sc, RL_ISR, status);
775 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
776 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
777 			break;
778 		DELAY(10);
779 	}
780 
781 	if (i == RL_TIMEOUT) {
782 		device_printf(sc->rl_dev,
783 		    "diagnostic failed, failed to receive packet in"
784 		    " loopback mode\n");
785 		error = EIO;
786 		goto done;
787 	}
788 
789 	/*
790 	 * The packet should have been dumped into the first
791 	 * entry in the RX DMA ring. Grab it from there.
792 	 */
793 
794 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
795 	    sc->rl_ldata.rl_rx_list_map,
796 	    BUS_DMASYNC_POSTREAD);
797 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
798 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
799 	    BUS_DMASYNC_POSTREAD);
800 	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
801 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
802 
803 	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
804 	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
805 	eh = mtod(m0, struct ether_header *);
806 
807 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
808 	total_len = RL_RXBYTES(cur_rx);
809 	rxstat = le32toh(cur_rx->rl_cmdstat);
810 
811 	if (total_len != ETHER_MIN_LEN) {
812 		device_printf(sc->rl_dev,
813 		    "diagnostic failed, received short packet\n");
814 		error = EIO;
815 		goto done;
816 	}
817 
818 	/* Test that the received packet data matches what we sent. */
819 
820 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
821 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
822 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
823 		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
824 		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
825 		    dst, ":", src, ":", ETHERTYPE_IP);
826 		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
827 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
828 		    ntohs(eh->ether_type));
829 		device_printf(sc->rl_dev, "You may have a defective 32-bit "
830 		    "NIC plugged into a 64-bit PCI slot.\n");
831 		device_printf(sc->rl_dev, "Please re-install the NIC in a "
832 		    "32-bit slot for proper operation.\n");
833 		device_printf(sc->rl_dev, "Read the re(4) man page for more "
834 		    "details.\n");
835 		error = EIO;
836 	}
837 
838 done:
839 	/* Turn interface off, release resources */
840 
841 	sc->rl_testmode = 0;
842 	sc->rl_flags &= ~RL_FLAG_LINK;
843 	ifp->if_flags &= ~IFF_PROMISC;
844 	re_stop(sc);
845 	if (m0 != NULL)
846 		m_freem(m0);
847 
848 	RL_UNLOCK(sc);
849 
850 	return (error);
851 }
852 
853 #endif
854 
855 /*
856  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
857  * IDs against our list and return a device name if we find a match.
858  */
859 static int
860 re_probe(device_t dev)
861 {
862 	struct rl_type		*t;
863 	uint16_t		devid, vendor;
864 	uint16_t		revid, sdevid;
865 	int			i;
866 
867 	vendor = pci_get_vendor(dev);
868 	devid = pci_get_device(dev);
869 	revid = pci_get_revid(dev);
870 	sdevid = pci_get_subdevice(dev);
871 
872 	if (vendor == LINKSYS_VENDORID && devid == LINKSYS_DEVICEID_EG1032) {
873 		if (sdevid != LINKSYS_SUBDEVICE_EG1032_REV3) {
874 			/*
875 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
876 			 * Rev. 2 is supported by sk(4).
877 			 */
878 			return (ENXIO);
879 		}
880 	}
881 
882 	if (vendor == RT_VENDORID && devid == RT_DEVICEID_8139) {
883 		if (revid != 0x20) {
884 			/* 8139, let rl(4) take care of this device. */
885 			return (ENXIO);
886 		}
887 	}
888 
889 	t = re_devs;
890 	for (i = 0; i < sizeof(re_devs) / sizeof(re_devs[0]); i++, t++) {
891 		if (vendor == t->rl_vid && devid == t->rl_did) {
892 			device_set_desc(dev, t->rl_name);
893 			return (BUS_PROBE_DEFAULT);
894 		}
895 	}
896 
897 	return (ENXIO);
898 }
899 
900 /*
901  * Map a single buffer address.
902  */
903 
904 static void
905 re_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
906 {
907 	bus_addr_t		*addr;
908 
909 	if (error)
910 		return;
911 
912 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
913 	addr = arg;
914 	*addr = segs->ds_addr;
915 }
916 
917 static int
918 re_allocmem(device_t dev, struct rl_softc *sc)
919 {
920 	bus_size_t		rx_list_size, tx_list_size;
921 	int			error;
922 	int			i;
923 
924 	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
925 	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
926 
927 	/*
928 	 * Allocate the parent bus DMA tag appropriate for PCI.
929 	 * In order to use DAC, RL_CPLUSCMD_PCI_DAC bit of RL_CPLUS_CMD
930 	 * register should be set. However some RealTek chips are known
931 	 * to be buggy on DAC handling, therefore disable DAC by limiting
932 	 * DMA address space to 32bit. PCIe variants of RealTek chips
933 	 * may not have the limitation but I took safer path.
934 	 */
935 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
936 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
937 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
938 	    NULL, NULL, &sc->rl_parent_tag);
939 	if (error) {
940 		device_printf(dev, "could not allocate parent DMA tag\n");
941 		return (error);
942 	}
943 
944 	/*
945 	 * Allocate map for TX mbufs.
946 	 */
947 	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
948 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
949 	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
950 	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
951 	if (error) {
952 		device_printf(dev, "could not allocate TX DMA tag\n");
953 		return (error);
954 	}
955 
956 	/*
957 	 * Allocate map for RX mbufs.
958 	 */
959 
960 	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
961 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
962 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
963 	if (error) {
964 		device_printf(dev, "could not allocate RX DMA tag\n");
965 		return (error);
966 	}
967 
968 	/*
969 	 * Allocate map for TX descriptor list.
970 	 */
971 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
972 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
973 	    NULL, tx_list_size, 1, tx_list_size, 0,
974 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
975 	if (error) {
976 		device_printf(dev, "could not allocate TX DMA ring tag\n");
977 		return (error);
978 	}
979 
980 	/* Allocate DMA'able memory for the TX ring */
981 
982 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
983 	    (void **)&sc->rl_ldata.rl_tx_list,
984 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
985 	    &sc->rl_ldata.rl_tx_list_map);
986 	if (error) {
987 		device_printf(dev, "could not allocate TX DMA ring\n");
988 		return (error);
989 	}
990 
991 	/* Load the map for the TX ring. */
992 
993 	sc->rl_ldata.rl_tx_list_addr = 0;
994 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
995 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
996 	     tx_list_size, re_dma_map_addr,
997 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
998 	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
999 		device_printf(dev, "could not load TX DMA ring\n");
1000 		return (ENOMEM);
1001 	}
1002 
1003 	/* Create DMA maps for TX buffers */
1004 
1005 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1006 		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1007 		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1008 		if (error) {
1009 			device_printf(dev, "could not create DMA map for TX\n");
1010 			return (error);
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Allocate map for RX descriptor list.
1016 	 */
1017 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1018 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1019 	    NULL, rx_list_size, 1, rx_list_size, 0,
1020 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1021 	if (error) {
1022 		device_printf(dev, "could not create RX DMA ring tag\n");
1023 		return (error);
1024 	}
1025 
1026 	/* Allocate DMA'able memory for the RX ring */
1027 
1028 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1029 	    (void **)&sc->rl_ldata.rl_rx_list,
1030 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1031 	    &sc->rl_ldata.rl_rx_list_map);
1032 	if (error) {
1033 		device_printf(dev, "could not allocate RX DMA ring\n");
1034 		return (error);
1035 	}
1036 
1037 	/* Load the map for the RX ring. */
1038 
1039 	sc->rl_ldata.rl_rx_list_addr = 0;
1040 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1041 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1042 	     rx_list_size, re_dma_map_addr,
1043 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1044 	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1045 		device_printf(dev, "could not load RX DMA ring\n");
1046 		return (ENOMEM);
1047 	}
1048 
1049 	/* Create DMA maps for RX buffers */
1050 
1051 	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1052 	    &sc->rl_ldata.rl_rx_sparemap);
1053 	if (error) {
1054 		device_printf(dev, "could not create spare DMA map for RX\n");
1055 		return (error);
1056 	}
1057 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1058 		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1059 		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1060 		if (error) {
1061 			device_printf(dev, "could not create DMA map for RX\n");
1062 			return (error);
1063 		}
1064 	}
1065 
1066 	return (0);
1067 }
1068 
1069 /*
1070  * Attach the interface. Allocate softc structures, do ifmedia
1071  * setup and ethernet/BPF attach.
1072  */
1073 static int
1074 re_attach(device_t dev)
1075 {
1076 	u_char			eaddr[ETHER_ADDR_LEN];
1077 	u_int16_t		as[ETHER_ADDR_LEN / 2];
1078 	struct rl_softc		*sc;
1079 	struct ifnet		*ifp;
1080 	struct rl_hwrev		*hw_rev;
1081 	int			hwrev;
1082 	u_int16_t		devid, re_did = 0;
1083 	int			error = 0, rid, i;
1084 	int			msic, reg;
1085 	uint8_t			cfg;
1086 
1087 	sc = device_get_softc(dev);
1088 	sc->rl_dev = dev;
1089 
1090 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1091 	    MTX_DEF);
1092 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1093 
1094 	/*
1095 	 * Map control/status registers.
1096 	 */
1097 	pci_enable_busmaster(dev);
1098 
1099 	devid = pci_get_device(dev);
1100 	/* Prefer memory space register mapping over IO space. */
1101 	sc->rl_res_id = PCIR_BAR(1);
1102 	sc->rl_res_type = SYS_RES_MEMORY;
1103 	/* RTL8168/8101E seems to use different BARs. */
1104 	if (devid == RT_DEVICEID_8168 || devid == RT_DEVICEID_8101E)
1105 		sc->rl_res_id = PCIR_BAR(2);
1106 	sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1107 	    &sc->rl_res_id, RF_ACTIVE);
1108 
1109 	if (sc->rl_res == NULL) {
1110 		sc->rl_res_id = PCIR_BAR(0);
1111 		sc->rl_res_type = SYS_RES_IOPORT;
1112 		sc->rl_res = bus_alloc_resource_any(dev, sc->rl_res_type,
1113 		    &sc->rl_res_id, RF_ACTIVE);
1114 		if (sc->rl_res == NULL) {
1115 			device_printf(dev, "couldn't map ports/memory\n");
1116 			error = ENXIO;
1117 			goto fail;
1118 		}
1119 	}
1120 
1121 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1122 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1123 
1124 	msic = 0;
1125 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1126 		msic = pci_msi_count(dev);
1127 		if (bootverbose)
1128 			device_printf(dev, "MSI count : %d\n", msic);
1129 	}
1130 	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1131 		if (pci_alloc_msi(dev, &msic) == 0) {
1132 			if (msic == RL_MSI_MESSAGES) {
1133 				device_printf(dev, "Using %d MSI messages\n",
1134 				    msic);
1135 				sc->rl_flags |= RL_FLAG_MSI;
1136 				/* Explicitly set MSI enable bit. */
1137 				CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1138 				cfg = CSR_READ_1(sc, RL_CFG2);
1139 				cfg |= RL_CFG2_MSI;
1140 				CSR_WRITE_1(sc, RL_CFG2, cfg);
1141 				CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1142 			} else
1143 				pci_release_msi(dev);
1144 		}
1145 	}
1146 
1147 	/* Allocate interrupt */
1148 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1149 		rid = 0;
1150 		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1151 		    RF_SHAREABLE | RF_ACTIVE);
1152 		if (sc->rl_irq[0] == NULL) {
1153 			device_printf(dev, "couldn't allocate IRQ resources\n");
1154 			error = ENXIO;
1155 			goto fail;
1156 		}
1157 	} else {
1158 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1159 			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1160 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1161 			if (sc->rl_irq[i] == NULL) {
1162 				device_printf(dev,
1163 				    "couldn't llocate IRQ resources for "
1164 				    "message %d\n", rid);
1165 				error = ENXIO;
1166 				goto fail;
1167 			}
1168 		}
1169 	}
1170 
1171 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1172 		CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1173 		cfg = CSR_READ_1(sc, RL_CFG2);
1174 		if ((cfg & RL_CFG2_MSI) != 0) {
1175 			device_printf(dev, "turning off MSI enable bit.\n");
1176 			cfg &= ~RL_CFG2_MSI;
1177 			CSR_WRITE_1(sc, RL_CFG2, cfg);
1178 		}
1179 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1180 	}
1181 
1182 	/* Reset the adapter. */
1183 	RL_LOCK(sc);
1184 	re_reset(sc);
1185 	RL_UNLOCK(sc);
1186 
1187 	hw_rev = re_hwrevs;
1188 	hwrev = CSR_READ_4(sc, RL_TXCFG);
1189 	device_printf(dev, "Chip rev. 0x%08x\n", hwrev & 0x7c800000);
1190 	device_printf(dev, "MAC rev. 0x%08x\n", hwrev & 0x00700000);
1191 	hwrev &= RL_TXCFG_HWREV;
1192 	while (hw_rev->rl_desc != NULL) {
1193 		if (hw_rev->rl_rev == hwrev) {
1194 			sc->rl_type = hw_rev->rl_type;
1195 			break;
1196 		}
1197 		hw_rev++;
1198 	}
1199 	if (hw_rev->rl_desc == NULL) {
1200 		device_printf(dev, "Unknown H/W revision: 0x%08x\n", hwrev);
1201 		error = ENXIO;
1202 		goto fail;
1203 	}
1204 
1205 	switch (hw_rev->rl_rev) {
1206 	case RL_HWREV_8139CPLUS:
1207 		sc->rl_flags |= RL_FLAG_NOJUMBO;
1208 		break;
1209 	case RL_HWREV_8100E:
1210 	case RL_HWREV_8101E:
1211 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1212 		    RL_FLAG_PHYWAKE;
1213 		break;
1214 	case RL_HWREV_8102E:
1215 	case RL_HWREV_8102EL:
1216 		sc->rl_flags |= RL_FLAG_NOJUMBO | RL_FLAG_INVMAR |
1217 		    RL_FLAG_PHYWAKE | RL_FLAG_PAR | RL_FLAG_DESCV2 |
1218 		    RL_FLAG_MACSTAT;
1219 		break;
1220 	case RL_HWREV_8168_SPIN1:
1221 	case RL_HWREV_8168_SPIN2:
1222 	case RL_HWREV_8168_SPIN3:
1223 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1224 		    RL_FLAG_MACSTAT;
1225 		break;
1226 	case RL_HWREV_8168C:
1227 	case RL_HWREV_8168C_SPIN2:
1228 	case RL_HWREV_8168CP:
1229 	case RL_HWREV_8168D:
1230 		sc->rl_flags |= RL_FLAG_INVMAR | RL_FLAG_PHYWAKE |
1231 		    RL_FLAG_PAR | RL_FLAG_DESCV2 | RL_FLAG_MACSTAT;
1232 		/*
1233 		 * These controllers support jumbo frame but it seems
1234 		 * that enabling it requires touching additional magic
1235 		 * registers. Depending on MAC revisions some
1236 		 * controllers need to disable checksum offload. So
1237 		 * disable jumbo frame until I have better idea what
1238 		 * it really requires to make it support.
1239 		 * RTL8168C/CP : supports up to 6KB jumbo frame.
1240 		 * RTL8111C/CP : supports up to 9KB jumbo frame.
1241 		 */
1242 		sc->rl_flags |= RL_FLAG_NOJUMBO;
1243 		break;
1244 	case RL_HWREV_8169_8110SB:
1245 	case RL_HWREV_8169_8110SC:
1246 	case RL_HWREV_8169_8110SBL:
1247 		sc->rl_flags |= RL_FLAG_PHYWAKE;
1248 		break;
1249 	default:
1250 		break;
1251 	}
1252 
1253 	/* Enable PME. */
1254 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
1255 	cfg = CSR_READ_1(sc, RL_CFG1);
1256 	cfg |= RL_CFG1_PME;
1257 	CSR_WRITE_1(sc, RL_CFG1, cfg);
1258 	cfg = CSR_READ_1(sc, RL_CFG5);
1259 	cfg &= RL_CFG5_PME_STS;
1260 	CSR_WRITE_1(sc, RL_CFG5, cfg);
1261 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
1262 
1263 	if ((sc->rl_flags & RL_FLAG_PAR) != 0) {
1264 		/*
1265 		 * XXX Should have a better way to extract station
1266 		 * address from EEPROM.
1267 		 */
1268 		for (i = 0; i < ETHER_ADDR_LEN; i++)
1269 			eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1270 	} else {
1271 		sc->rl_eewidth = RL_9356_ADDR_LEN;
1272 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1273 		if (re_did != 0x8129)
1274 			sc->rl_eewidth = RL_9346_ADDR_LEN;
1275 
1276 		/*
1277 		 * Get station address from the EEPROM.
1278 		 */
1279 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1280 		for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1281 			as[i] = le16toh(as[i]);
1282 		bcopy(as, eaddr, sizeof(eaddr));
1283 	}
1284 
1285 	if (sc->rl_type == RL_8169) {
1286 		/* Set RX length mask and number of descriptors. */
1287 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1288 		sc->rl_txstart = RL_GTXSTART;
1289 		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1290 		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1291 	} else {
1292 		/* Set RX length mask and number of descriptors. */
1293 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1294 		sc->rl_txstart = RL_TXSTART;
1295 		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1296 		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1297 	}
1298 
1299 	error = re_allocmem(dev, sc);
1300 	if (error)
1301 		goto fail;
1302 
1303 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1304 	if (ifp == NULL) {
1305 		device_printf(dev, "can not if_alloc()\n");
1306 		error = ENOSPC;
1307 		goto fail;
1308 	}
1309 
1310 	/* Take PHY out of power down mode. */
1311 	if ((sc->rl_flags & RL_FLAG_PHYWAKE) != 0) {
1312 		re_gmii_writereg(dev, 1, 0x1f, 0);
1313 		re_gmii_writereg(dev, 1, 0x0e, 0);
1314 	}
1315 
1316 	/* Do MII setup */
1317 	if (mii_phy_probe(dev, &sc->rl_miibus,
1318 	    re_ifmedia_upd, re_ifmedia_sts)) {
1319 		device_printf(dev, "MII without any phy!\n");
1320 		error = ENXIO;
1321 		goto fail;
1322 	}
1323 
1324 	ifp->if_softc = sc;
1325 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1326 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1327 	ifp->if_ioctl = re_ioctl;
1328 	ifp->if_start = re_start;
1329 	ifp->if_hwassist = RE_CSUM_FEATURES;
1330 	ifp->if_capabilities = IFCAP_HWCSUM;
1331 	ifp->if_capenable = ifp->if_capabilities;
1332 	ifp->if_init = re_init;
1333 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1334 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1335 	IFQ_SET_READY(&ifp->if_snd);
1336 
1337 	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1338 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1339 
1340 	/*
1341 	 * XXX
1342 	 * Still have no idea how to make TSO work on 8168C, 8168CP,
1343 	 * 8111C and 8111CP.
1344 	 */
1345 	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1346 		ifp->if_hwassist |= CSUM_TSO;
1347 		ifp->if_capabilities |= IFCAP_TSO4;
1348 	}
1349 
1350 	/*
1351 	 * Call MI attach routine.
1352 	 */
1353 	ether_ifattach(ifp, eaddr);
1354 
1355 	/* VLAN capability setup */
1356 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1357 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1358 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1359 	/* Enable WOL if PM is supported. */
1360 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &reg) == 0)
1361 		ifp->if_capabilities |= IFCAP_WOL;
1362 	ifp->if_capenable = ifp->if_capabilities;
1363 	/*
1364 	 * Don't enable TSO by default. Under certain
1365 	 * circumtances the controller generated corrupted
1366 	 * packets in TSO size.
1367 	 */
1368 	ifp->if_hwassist &= ~CSUM_TSO;
1369 	ifp->if_capenable &= ~IFCAP_TSO4;
1370 #ifdef DEVICE_POLLING
1371 	ifp->if_capabilities |= IFCAP_POLLING;
1372 #endif
1373 	/*
1374 	 * Tell the upper layer(s) we support long frames.
1375 	 * Must appear after the call to ether_ifattach() because
1376 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1377 	 */
1378 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1379 
1380 #ifdef RE_DIAG
1381 	/*
1382 	 * Perform hardware diagnostic on the original RTL8169.
1383 	 * Some 32-bit cards were incorrectly wired and would
1384 	 * malfunction if plugged into a 64-bit slot.
1385 	 */
1386 
1387 	if (hwrev == RL_HWREV_8169) {
1388 		error = re_diag(sc);
1389 		if (error) {
1390 			device_printf(dev,
1391 		    	"attach aborted due to hardware diag failure\n");
1392 			ether_ifdetach(ifp);
1393 			goto fail;
1394 		}
1395 	}
1396 #endif
1397 
1398 	/* Hook interrupt last to avoid having to lock softc */
1399 	if ((sc->rl_flags & RL_FLAG_MSI) == 0)
1400 		error = bus_setup_intr(dev, sc->rl_irq[0],
1401 		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1402 		    &sc->rl_intrhand[0]);
1403 	else {
1404 		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1405 			error = bus_setup_intr(dev, sc->rl_irq[i],
1406 			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1407 		    	    &sc->rl_intrhand[i]);
1408 			if (error != 0)
1409 				break;
1410 		}
1411 	}
1412 	if (error) {
1413 		device_printf(dev, "couldn't set up irq\n");
1414 		ether_ifdetach(ifp);
1415 	}
1416 
1417 fail:
1418 
1419 	if (error)
1420 		re_detach(dev);
1421 
1422 	return (error);
1423 }
1424 
1425 /*
1426  * Shutdown hardware and free up resources. This can be called any
1427  * time after the mutex has been initialized. It is called in both
1428  * the error case in attach and the normal detach case so it needs
1429  * to be careful about only freeing resources that have actually been
1430  * allocated.
1431  */
1432 static int
1433 re_detach(device_t dev)
1434 {
1435 	struct rl_softc		*sc;
1436 	struct ifnet		*ifp;
1437 	int			i, rid;
1438 
1439 	sc = device_get_softc(dev);
1440 	ifp = sc->rl_ifp;
1441 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1442 
1443 	/* These should only be active if attach succeeded */
1444 	if (device_is_attached(dev)) {
1445 #ifdef DEVICE_POLLING
1446 		if (ifp->if_capenable & IFCAP_POLLING)
1447 			ether_poll_deregister(ifp);
1448 #endif
1449 		RL_LOCK(sc);
1450 #if 0
1451 		sc->suspended = 1;
1452 #endif
1453 		re_stop(sc);
1454 		RL_UNLOCK(sc);
1455 		callout_drain(&sc->rl_stat_callout);
1456 		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1457 		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1458 		/*
1459 		 * Force off the IFF_UP flag here, in case someone
1460 		 * still had a BPF descriptor attached to this
1461 		 * interface. If they do, ether_ifdetach() will cause
1462 		 * the BPF code to try and clear the promisc mode
1463 		 * flag, which will bubble down to re_ioctl(),
1464 		 * which will try to call re_init() again. This will
1465 		 * turn the NIC back on and restart the MII ticker,
1466 		 * which will panic the system when the kernel tries
1467 		 * to invoke the re_tick() function that isn't there
1468 		 * anymore.
1469 		 */
1470 		ifp->if_flags &= ~IFF_UP;
1471 		ether_ifdetach(ifp);
1472 	}
1473 	if (sc->rl_miibus)
1474 		device_delete_child(dev, sc->rl_miibus);
1475 	bus_generic_detach(dev);
1476 
1477 	/*
1478 	 * The rest is resource deallocation, so we should already be
1479 	 * stopped here.
1480 	 */
1481 
1482 	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1483 		if (sc->rl_intrhand[i] != NULL) {
1484 			bus_teardown_intr(dev, sc->rl_irq[i],
1485 			    sc->rl_intrhand[i]);
1486 			sc->rl_intrhand[i] = NULL;
1487 		}
1488 	}
1489 	if (ifp != NULL)
1490 		if_free(ifp);
1491 	if ((sc->rl_flags & RL_FLAG_MSI) == 0) {
1492 		if (sc->rl_irq[0] != NULL) {
1493 			bus_release_resource(dev, SYS_RES_IRQ, 0,
1494 			    sc->rl_irq[0]);
1495 			sc->rl_irq[0] = NULL;
1496 		}
1497 	} else {
1498 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1499 			if (sc->rl_irq[i] != NULL) {
1500 				bus_release_resource(dev, SYS_RES_IRQ, rid,
1501 				    sc->rl_irq[i]);
1502 				sc->rl_irq[i] = NULL;
1503 			}
1504 		}
1505 		pci_release_msi(dev);
1506 	}
1507 	if (sc->rl_res)
1508 		bus_release_resource(dev, sc->rl_res_type, sc->rl_res_id,
1509 		    sc->rl_res);
1510 
1511 	/* Unload and free the RX DMA ring memory and map */
1512 
1513 	if (sc->rl_ldata.rl_rx_list_tag) {
1514 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1515 		    sc->rl_ldata.rl_rx_list_map);
1516 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1517 		    sc->rl_ldata.rl_rx_list,
1518 		    sc->rl_ldata.rl_rx_list_map);
1519 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1520 	}
1521 
1522 	/* Unload and free the TX DMA ring memory and map */
1523 
1524 	if (sc->rl_ldata.rl_tx_list_tag) {
1525 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1526 		    sc->rl_ldata.rl_tx_list_map);
1527 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1528 		    sc->rl_ldata.rl_tx_list,
1529 		    sc->rl_ldata.rl_tx_list_map);
1530 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1531 	}
1532 
1533 	/* Destroy all the RX and TX buffer maps */
1534 
1535 	if (sc->rl_ldata.rl_tx_mtag) {
1536 		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1537 			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1538 			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1539 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1540 	}
1541 	if (sc->rl_ldata.rl_rx_mtag) {
1542 		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1543 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1544 			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1545 		if (sc->rl_ldata.rl_rx_sparemap)
1546 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1547 			    sc->rl_ldata.rl_rx_sparemap);
1548 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1549 	}
1550 
1551 	/* Unload and free the stats buffer and map */
1552 
1553 	if (sc->rl_ldata.rl_stag) {
1554 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1555 		    sc->rl_ldata.rl_rx_list_map);
1556 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1557 		    sc->rl_ldata.rl_stats,
1558 		    sc->rl_ldata.rl_smap);
1559 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1560 	}
1561 
1562 	if (sc->rl_parent_tag)
1563 		bus_dma_tag_destroy(sc->rl_parent_tag);
1564 
1565 	mtx_destroy(&sc->rl_mtx);
1566 
1567 	return (0);
1568 }
1569 
1570 static __inline void
1571 re_discard_rxbuf(struct rl_softc *sc, int idx)
1572 {
1573 	struct rl_desc		*desc;
1574 	struct rl_rxdesc	*rxd;
1575 	uint32_t		cmdstat;
1576 
1577 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1578 	desc = &sc->rl_ldata.rl_rx_list[idx];
1579 	desc->rl_vlanctl = 0;
1580 	cmdstat = rxd->rx_size;
1581 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1582 		cmdstat |= RL_RDESC_CMD_EOR;
1583 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1584 }
1585 
1586 static int
1587 re_newbuf(struct rl_softc *sc, int idx)
1588 {
1589 	struct mbuf		*m;
1590 	struct rl_rxdesc	*rxd;
1591 	bus_dma_segment_t	segs[1];
1592 	bus_dmamap_t		map;
1593 	struct rl_desc		*desc;
1594 	uint32_t		cmdstat;
1595 	int			error, nsegs;
1596 
1597 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1598 	if (m == NULL)
1599 		return (ENOBUFS);
1600 
1601 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1602 #ifdef RE_FIXUP_RX
1603 	/*
1604 	 * This is part of an evil trick to deal with non-x86 platforms.
1605 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1606 	 * boundaries, but that will hose non-x86 machines. To get around
1607 	 * this, we leave some empty space at the start of each buffer
1608 	 * and for non-x86 hosts, we copy the buffer back six bytes
1609 	 * to achieve word alignment. This is slightly more efficient
1610 	 * than allocating a new buffer, copying the contents, and
1611 	 * discarding the old buffer.
1612 	 */
1613 	m_adj(m, RE_ETHER_ALIGN);
1614 #endif
1615 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1616 	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1617 	if (error != 0) {
1618 		m_freem(m);
1619 		return (ENOBUFS);
1620 	}
1621 	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1622 
1623 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1624 	if (rxd->rx_m != NULL) {
1625 		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1626 		    BUS_DMASYNC_POSTREAD);
1627 		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1628 	}
1629 
1630 	rxd->rx_m = m;
1631 	map = rxd->rx_dmamap;
1632 	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1633 	rxd->rx_size = segs[0].ds_len;
1634 	sc->rl_ldata.rl_rx_sparemap = map;
1635 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1636 	    BUS_DMASYNC_PREREAD);
1637 
1638 	desc = &sc->rl_ldata.rl_rx_list[idx];
1639 	desc->rl_vlanctl = 0;
1640 	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1641 	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1642 	cmdstat = segs[0].ds_len;
1643 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1644 		cmdstat |= RL_RDESC_CMD_EOR;
1645 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1646 
1647 	return (0);
1648 }
1649 
1650 #ifdef RE_FIXUP_RX
1651 static __inline void
1652 re_fixup_rx(struct mbuf *m)
1653 {
1654 	int                     i;
1655 	uint16_t                *src, *dst;
1656 
1657 	src = mtod(m, uint16_t *);
1658 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1659 
1660 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1661 		*dst++ = *src++;
1662 
1663 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1664 }
1665 #endif
1666 
1667 static int
1668 re_tx_list_init(struct rl_softc *sc)
1669 {
1670 	struct rl_desc		*desc;
1671 	int			i;
1672 
1673 	RL_LOCK_ASSERT(sc);
1674 
1675 	bzero(sc->rl_ldata.rl_tx_list,
1676 	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1677 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1678 		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1679 	/* Set EOR. */
1680 	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1681 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1682 
1683 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1684 	    sc->rl_ldata.rl_tx_list_map,
1685 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1686 
1687 	sc->rl_ldata.rl_tx_prodidx = 0;
1688 	sc->rl_ldata.rl_tx_considx = 0;
1689 	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1690 
1691 	return (0);
1692 }
1693 
1694 static int
1695 re_rx_list_init(struct rl_softc *sc)
1696 {
1697 	int			error, i;
1698 
1699 	bzero(sc->rl_ldata.rl_rx_list,
1700 	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1701 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1702 		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1703 		if ((error = re_newbuf(sc, i)) != 0)
1704 			return (error);
1705 	}
1706 
1707 	/* Flush the RX descriptors */
1708 
1709 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1710 	    sc->rl_ldata.rl_rx_list_map,
1711 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1712 
1713 	sc->rl_ldata.rl_rx_prodidx = 0;
1714 	sc->rl_head = sc->rl_tail = NULL;
1715 
1716 	return (0);
1717 }
1718 
1719 /*
1720  * RX handler for C+ and 8169. For the gigE chips, we support
1721  * the reception of jumbo frames that have been fragmented
1722  * across multiple 2K mbuf cluster buffers.
1723  */
1724 static int
1725 re_rxeof(struct rl_softc *sc)
1726 {
1727 	struct mbuf		*m;
1728 	struct ifnet		*ifp;
1729 	int			i, total_len;
1730 	struct rl_desc		*cur_rx;
1731 	u_int32_t		rxstat, rxvlan;
1732 	int			maxpkt = 16;
1733 
1734 	RL_LOCK_ASSERT(sc);
1735 
1736 	ifp = sc->rl_ifp;
1737 
1738 	/* Invalidate the descriptor memory */
1739 
1740 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1741 	    sc->rl_ldata.rl_rx_list_map,
1742 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1743 
1744 	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1745 	    i = RL_RX_DESC_NXT(sc, i)) {
1746 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1747 		rxstat = le32toh(cur_rx->rl_cmdstat);
1748 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1749 			break;
1750 		total_len = rxstat & sc->rl_rxlenmask;
1751 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1752 		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1753 
1754 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1755 			if (re_newbuf(sc, i) != 0) {
1756 				/*
1757 				 * If this is part of a multi-fragment packet,
1758 				 * discard all the pieces.
1759 				 */
1760 				if (sc->rl_head != NULL) {
1761 					m_freem(sc->rl_head);
1762 					sc->rl_head = sc->rl_tail = NULL;
1763 				}
1764 				re_discard_rxbuf(sc, i);
1765 				continue;
1766 			}
1767 			m->m_len = RE_RX_DESC_BUFLEN;
1768 			if (sc->rl_head == NULL)
1769 				sc->rl_head = sc->rl_tail = m;
1770 			else {
1771 				m->m_flags &= ~M_PKTHDR;
1772 				sc->rl_tail->m_next = m;
1773 				sc->rl_tail = m;
1774 			}
1775 			continue;
1776 		}
1777 
1778 		/*
1779 		 * NOTE: for the 8139C+, the frame length field
1780 		 * is always 12 bits in size, but for the gigE chips,
1781 		 * it is 13 bits (since the max RX frame length is 16K).
1782 		 * Unfortunately, all 32 bits in the status word
1783 		 * were already used, so to make room for the extra
1784 		 * length bit, RealTek took out the 'frame alignment
1785 		 * error' bit and shifted the other status bits
1786 		 * over one slot. The OWN, EOR, FS and LS bits are
1787 		 * still in the same places. We have already extracted
1788 		 * the frame length and checked the OWN bit, so rather
1789 		 * than using an alternate bit mapping, we shift the
1790 		 * status bits one space to the right so we can evaluate
1791 		 * them using the 8169 status as though it was in the
1792 		 * same format as that of the 8139C+.
1793 		 */
1794 		if (sc->rl_type == RL_8169)
1795 			rxstat >>= 1;
1796 
1797 		/*
1798 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1799 		 * set, but if CRC is clear, it will still be a valid frame.
1800 		 */
1801 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1802 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1803 			ifp->if_ierrors++;
1804 			/*
1805 			 * If this is part of a multi-fragment packet,
1806 			 * discard all the pieces.
1807 			 */
1808 			if (sc->rl_head != NULL) {
1809 				m_freem(sc->rl_head);
1810 				sc->rl_head = sc->rl_tail = NULL;
1811 			}
1812 			re_discard_rxbuf(sc, i);
1813 			continue;
1814 		}
1815 
1816 		/*
1817 		 * If allocating a replacement mbuf fails,
1818 		 * reload the current one.
1819 		 */
1820 
1821 		if (re_newbuf(sc, i) != 0) {
1822 			ifp->if_iqdrops++;
1823 			if (sc->rl_head != NULL) {
1824 				m_freem(sc->rl_head);
1825 				sc->rl_head = sc->rl_tail = NULL;
1826 			}
1827 			re_discard_rxbuf(sc, i);
1828 			continue;
1829 		}
1830 
1831 		if (sc->rl_head != NULL) {
1832 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1833 			if (m->m_len == 0)
1834 				m->m_len = RE_RX_DESC_BUFLEN;
1835 			/*
1836 			 * Special case: if there's 4 bytes or less
1837 			 * in this buffer, the mbuf can be discarded:
1838 			 * the last 4 bytes is the CRC, which we don't
1839 			 * care about anyway.
1840 			 */
1841 			if (m->m_len <= ETHER_CRC_LEN) {
1842 				sc->rl_tail->m_len -=
1843 				    (ETHER_CRC_LEN - m->m_len);
1844 				m_freem(m);
1845 			} else {
1846 				m->m_len -= ETHER_CRC_LEN;
1847 				m->m_flags &= ~M_PKTHDR;
1848 				sc->rl_tail->m_next = m;
1849 			}
1850 			m = sc->rl_head;
1851 			sc->rl_head = sc->rl_tail = NULL;
1852 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1853 		} else
1854 			m->m_pkthdr.len = m->m_len =
1855 			    (total_len - ETHER_CRC_LEN);
1856 
1857 #ifdef RE_FIXUP_RX
1858 		re_fixup_rx(m);
1859 #endif
1860 		ifp->if_ipackets++;
1861 		m->m_pkthdr.rcvif = ifp;
1862 
1863 		/* Do RX checksumming if enabled */
1864 
1865 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1866 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
1867 				/* Check IP header checksum */
1868 				if (rxstat & RL_RDESC_STAT_PROTOID)
1869 					m->m_pkthdr.csum_flags |=
1870 					    CSUM_IP_CHECKED;
1871 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1872 					m->m_pkthdr.csum_flags |=
1873 					    CSUM_IP_VALID;
1874 
1875 				/* Check TCP/UDP checksum */
1876 				if ((RL_TCPPKT(rxstat) &&
1877 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1878 				    (RL_UDPPKT(rxstat) &&
1879 				     !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1880 					m->m_pkthdr.csum_flags |=
1881 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1882 					m->m_pkthdr.csum_data = 0xffff;
1883 				}
1884 			} else {
1885 				/*
1886 				 * RTL8168C/RTL816CP/RTL8111C/RTL8111CP
1887 				 */
1888 				if ((rxstat & RL_RDESC_STAT_PROTOID) &&
1889 				    (rxvlan & RL_RDESC_IPV4))
1890 					m->m_pkthdr.csum_flags |=
1891 					    CSUM_IP_CHECKED;
1892 				if (!(rxstat & RL_RDESC_STAT_IPSUMBAD) &&
1893 				    (rxvlan & RL_RDESC_IPV4))
1894 					m->m_pkthdr.csum_flags |=
1895 					    CSUM_IP_VALID;
1896 				if (((rxstat & RL_RDESC_STAT_TCP) &&
1897 				    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1898 				    ((rxstat & RL_RDESC_STAT_UDP) &&
1899 				    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1900 					m->m_pkthdr.csum_flags |=
1901 						CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1902 					m->m_pkthdr.csum_data = 0xffff;
1903 				}
1904 			}
1905 		}
1906 		maxpkt--;
1907 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1908 			m->m_pkthdr.ether_vtag =
1909 			    bswap16((rxvlan & RL_RDESC_VLANCTL_DATA));
1910 			m->m_flags |= M_VLANTAG;
1911 		}
1912 		RL_UNLOCK(sc);
1913 		(*ifp->if_input)(ifp, m);
1914 		RL_LOCK(sc);
1915 	}
1916 
1917 	/* Flush the RX DMA ring */
1918 
1919 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1920 	    sc->rl_ldata.rl_rx_list_map,
1921 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1922 
1923 	sc->rl_ldata.rl_rx_prodidx = i;
1924 
1925 	if (maxpkt)
1926 		return(EAGAIN);
1927 
1928 	return(0);
1929 }
1930 
1931 static void
1932 re_txeof(struct rl_softc *sc)
1933 {
1934 	struct ifnet		*ifp;
1935 	struct rl_txdesc	*txd;
1936 	u_int32_t		txstat;
1937 	int			cons;
1938 
1939 	cons = sc->rl_ldata.rl_tx_considx;
1940 	if (cons == sc->rl_ldata.rl_tx_prodidx)
1941 		return;
1942 
1943 	ifp = sc->rl_ifp;
1944 	/* Invalidate the TX descriptor list */
1945 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1946 	    sc->rl_ldata.rl_tx_list_map,
1947 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1948 
1949 	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1950 	    cons = RL_TX_DESC_NXT(sc, cons)) {
1951 		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1952 		if (txstat & RL_TDESC_STAT_OWN)
1953 			break;
1954 		/*
1955 		 * We only stash mbufs in the last descriptor
1956 		 * in a fragment chain, which also happens to
1957 		 * be the only place where the TX status bits
1958 		 * are valid.
1959 		 */
1960 		if (txstat & RL_TDESC_CMD_EOF) {
1961 			txd = &sc->rl_ldata.rl_tx_desc[cons];
1962 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1963 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1964 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1965 			    txd->tx_dmamap);
1966 			KASSERT(txd->tx_m != NULL,
1967 			    ("%s: freeing NULL mbufs!", __func__));
1968 			m_freem(txd->tx_m);
1969 			txd->tx_m = NULL;
1970 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1971 			    RL_TDESC_STAT_COLCNT))
1972 				ifp->if_collisions++;
1973 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1974 				ifp->if_oerrors++;
1975 			else
1976 				ifp->if_opackets++;
1977 		}
1978 		sc->rl_ldata.rl_tx_free++;
1979 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1980 	}
1981 	sc->rl_ldata.rl_tx_considx = cons;
1982 
1983 	/* No changes made to the TX ring, so no flush needed */
1984 
1985 	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1986 		/*
1987 		 * Some chips will ignore a second TX request issued
1988 		 * while an existing transmission is in progress. If
1989 		 * the transmitter goes idle but there are still
1990 		 * packets waiting to be sent, we need to restart the
1991 		 * channel here to flush them out. This only seems to
1992 		 * be required with the PCIe devices.
1993 		 */
1994 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1995 
1996 #ifdef RE_TX_MODERATION
1997 		/*
1998 		 * If not all descriptors have been reaped yet, reload
1999 		 * the timer so that we will eventually get another
2000 		 * interrupt that will cause us to re-enter this routine.
2001 		 * This is done in case the transmitter has gone idle.
2002 		 */
2003 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2004 #endif
2005 	} else
2006 		sc->rl_watchdog_timer = 0;
2007 }
2008 
2009 static void
2010 re_tick(void *xsc)
2011 {
2012 	struct rl_softc		*sc;
2013 	struct mii_data		*mii;
2014 	struct ifnet		*ifp;
2015 
2016 	sc = xsc;
2017 	ifp = sc->rl_ifp;
2018 
2019 	RL_LOCK_ASSERT(sc);
2020 
2021 	re_watchdog(sc);
2022 
2023 	mii = device_get_softc(sc->rl_miibus);
2024 	mii_tick(mii);
2025 	if ((sc->rl_flags & RL_FLAG_LINK) != 0) {
2026 		if (!(mii->mii_media_status & IFM_ACTIVE))
2027 			sc->rl_flags &= ~RL_FLAG_LINK;
2028 	} else {
2029 		if (mii->mii_media_status & IFM_ACTIVE &&
2030 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
2031 			sc->rl_flags |= RL_FLAG_LINK;
2032 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2033 				taskqueue_enqueue_fast(taskqueue_fast,
2034 				    &sc->rl_txtask);
2035 		}
2036 	}
2037 
2038 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2039 }
2040 
2041 #ifdef DEVICE_POLLING
2042 static void
2043 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2044 {
2045 	struct rl_softc *sc = ifp->if_softc;
2046 
2047 	RL_LOCK(sc);
2048 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2049 		re_poll_locked(ifp, cmd, count);
2050 	RL_UNLOCK(sc);
2051 }
2052 
2053 static void
2054 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2055 {
2056 	struct rl_softc *sc = ifp->if_softc;
2057 
2058 	RL_LOCK_ASSERT(sc);
2059 
2060 	sc->rxcycles = count;
2061 	re_rxeof(sc);
2062 	re_txeof(sc);
2063 
2064 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2065 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2066 
2067 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2068 		u_int16_t       status;
2069 
2070 		status = CSR_READ_2(sc, RL_ISR);
2071 		if (status == 0xffff)
2072 			return;
2073 		if (status)
2074 			CSR_WRITE_2(sc, RL_ISR, status);
2075 
2076 		/*
2077 		 * XXX check behaviour on receiver stalls.
2078 		 */
2079 
2080 		if (status & RL_ISR_SYSTEM_ERR) {
2081 			re_reset(sc);
2082 			re_init_locked(sc);
2083 		}
2084 	}
2085 }
2086 #endif /* DEVICE_POLLING */
2087 
2088 static int
2089 re_intr(void *arg)
2090 {
2091 	struct rl_softc		*sc;
2092 	uint16_t		status;
2093 
2094 	sc = arg;
2095 
2096 	status = CSR_READ_2(sc, RL_ISR);
2097 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2098                 return (FILTER_STRAY);
2099 	CSR_WRITE_2(sc, RL_IMR, 0);
2100 
2101 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2102 
2103 	return (FILTER_HANDLED);
2104 }
2105 
2106 static void
2107 re_int_task(void *arg, int npending)
2108 {
2109 	struct rl_softc		*sc;
2110 	struct ifnet		*ifp;
2111 	u_int16_t		status;
2112 	int			rval = 0;
2113 
2114 	sc = arg;
2115 	ifp = sc->rl_ifp;
2116 
2117 	RL_LOCK(sc);
2118 
2119 	status = CSR_READ_2(sc, RL_ISR);
2120         CSR_WRITE_2(sc, RL_ISR, status);
2121 
2122 	if (sc->suspended ||
2123 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2124 		RL_UNLOCK(sc);
2125 		return;
2126 	}
2127 
2128 #ifdef DEVICE_POLLING
2129 	if  (ifp->if_capenable & IFCAP_POLLING) {
2130 		RL_UNLOCK(sc);
2131 		return;
2132 	}
2133 #endif
2134 
2135 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2136 		rval = re_rxeof(sc);
2137 
2138 	if (status & (
2139 #ifdef RE_TX_MODERATION
2140 	    RL_ISR_TIMEOUT_EXPIRED|
2141 #else
2142 	    RL_ISR_TX_OK|
2143 #endif
2144 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2145 		re_txeof(sc);
2146 
2147 	if (status & RL_ISR_SYSTEM_ERR) {
2148 		re_reset(sc);
2149 		re_init_locked(sc);
2150 	}
2151 
2152 	if (status & RL_ISR_LINKCHG) {
2153 		callout_stop(&sc->rl_stat_callout);
2154 		re_tick(sc);
2155 	}
2156 
2157 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2158 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2159 
2160 	RL_UNLOCK(sc);
2161 
2162         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2163 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2164 		return;
2165 	}
2166 
2167 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2168 }
2169 
2170 static int
2171 re_encap(struct rl_softc *sc, struct mbuf **m_head)
2172 {
2173 	struct rl_txdesc	*txd, *txd_last;
2174 	bus_dma_segment_t	segs[RL_NTXSEGS];
2175 	bus_dmamap_t		map;
2176 	struct mbuf		*m_new;
2177 	struct rl_desc		*desc;
2178 	int			nsegs, prod;
2179 	int			i, error, ei, si;
2180 	int			padlen;
2181 	uint32_t		cmdstat, csum_flags, vlanctl;
2182 
2183 	RL_LOCK_ASSERT(sc);
2184 	M_ASSERTPKTHDR((*m_head));
2185 
2186 	/*
2187 	 * With some of the RealTek chips, using the checksum offload
2188 	 * support in conjunction with the autopadding feature results
2189 	 * in the transmission of corrupt frames. For example, if we
2190 	 * need to send a really small IP fragment that's less than 60
2191 	 * bytes in size, and IP header checksumming is enabled, the
2192 	 * resulting ethernet frame that appears on the wire will
2193 	 * have garbled payload. To work around this, if TX IP checksum
2194 	 * offload is enabled, we always manually pad short frames out
2195 	 * to the minimum ethernet frame size.
2196 	 */
2197 	if ((sc->rl_flags & RL_FLAG_DESCV2) == 0 &&
2198 	    (*m_head)->m_pkthdr.len < RL_IP4CSUMTX_PADLEN &&
2199 	    ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) != 0) {
2200 		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2201 		if (M_WRITABLE(*m_head) == 0) {
2202 			/* Get a writable copy. */
2203 			m_new = m_dup(*m_head, M_DONTWAIT);
2204 			m_freem(*m_head);
2205 			if (m_new == NULL) {
2206 				*m_head = NULL;
2207 				return (ENOBUFS);
2208 			}
2209 			*m_head = m_new;
2210 		}
2211 		if ((*m_head)->m_next != NULL ||
2212 		    M_TRAILINGSPACE(*m_head) < padlen) {
2213 			m_new = m_defrag(*m_head, M_DONTWAIT);
2214 			if (m_new == NULL) {
2215 				m_freem(*m_head);
2216 				*m_head = NULL;
2217 				return (ENOBUFS);
2218 			}
2219 		} else
2220 			m_new = *m_head;
2221 
2222 		/*
2223 		 * Manually pad short frames, and zero the pad space
2224 		 * to avoid leaking data.
2225 		 */
2226 		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2227 		m_new->m_pkthdr.len += padlen;
2228 		m_new->m_len = m_new->m_pkthdr.len;
2229 		*m_head = m_new;
2230 	}
2231 
2232 	prod = sc->rl_ldata.rl_tx_prodidx;
2233 	txd = &sc->rl_ldata.rl_tx_desc[prod];
2234 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2235 	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2236 	if (error == EFBIG) {
2237 		m_new = m_collapse(*m_head, M_DONTWAIT, RL_NTXSEGS);
2238 		if (m_new == NULL) {
2239 			m_freem(*m_head);
2240 			*m_head = NULL;
2241 			return (ENOBUFS);
2242 		}
2243 		*m_head = m_new;
2244 		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2245 		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2246 		if (error != 0) {
2247 			m_freem(*m_head);
2248 			*m_head = NULL;
2249 			return (error);
2250 		}
2251 	} else if (error != 0)
2252 		return (error);
2253 	if (nsegs == 0) {
2254 		m_freem(*m_head);
2255 		*m_head = NULL;
2256 		return (EIO);
2257 	}
2258 
2259 	/* Check for number of available descriptors. */
2260 	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2261 		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2262 		return (ENOBUFS);
2263 	}
2264 
2265 	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2266 	    BUS_DMASYNC_PREWRITE);
2267 
2268 	/*
2269 	 * Set up checksum offload. Note: checksum offload bits must
2270 	 * appear in all descriptors of a multi-descriptor transmit
2271 	 * attempt. This is according to testing done with an 8169
2272 	 * chip. This is a requirement.
2273 	 */
2274 	vlanctl = 0;
2275 	csum_flags = 0;
2276 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2277 		csum_flags = RL_TDESC_CMD_LGSEND |
2278 		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2279 		    RL_TDESC_CMD_MSSVAL_SHIFT);
2280 	else {
2281 		/*
2282 		 * Unconditionally enable IP checksum if TCP or UDP
2283 		 * checksum is required. Otherwise, TCP/UDP checksum
2284 		 * does't make effects.
2285 		 */
2286 		if (((*m_head)->m_pkthdr.csum_flags & RE_CSUM_FEATURES) != 0) {
2287 			if ((sc->rl_flags & RL_FLAG_DESCV2) == 0) {
2288 				csum_flags |= RL_TDESC_CMD_IPCSUM;
2289 				if (((*m_head)->m_pkthdr.csum_flags &
2290 				    CSUM_TCP) != 0)
2291 					csum_flags |= RL_TDESC_CMD_TCPCSUM;
2292 				if (((*m_head)->m_pkthdr.csum_flags &
2293 				    CSUM_UDP) != 0)
2294 					csum_flags |= RL_TDESC_CMD_UDPCSUM;
2295 			} else {
2296 				vlanctl |= RL_TDESC_CMD_IPCSUMV2;
2297 				if (((*m_head)->m_pkthdr.csum_flags &
2298 				    CSUM_TCP) != 0)
2299 					vlanctl |= RL_TDESC_CMD_TCPCSUMV2;
2300 				if (((*m_head)->m_pkthdr.csum_flags &
2301 				    CSUM_UDP) != 0)
2302 					vlanctl |= RL_TDESC_CMD_UDPCSUMV2;
2303 			}
2304 		}
2305 	}
2306 
2307 	/*
2308 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2309 	 * appear in all descriptors of a multi-descriptor
2310 	 * transmission attempt.
2311 	 */
2312 	if ((*m_head)->m_flags & M_VLANTAG)
2313 		vlanctl |= bswap16((*m_head)->m_pkthdr.ether_vtag) |
2314 		    RL_TDESC_VLANCTL_TAG;
2315 
2316 	si = prod;
2317 	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2318 		desc = &sc->rl_ldata.rl_tx_list[prod];
2319 		desc->rl_vlanctl = htole32(vlanctl);
2320 		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2321 		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2322 		cmdstat = segs[i].ds_len;
2323 		if (i != 0)
2324 			cmdstat |= RL_TDESC_CMD_OWN;
2325 		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2326 			cmdstat |= RL_TDESC_CMD_EOR;
2327 		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2328 		sc->rl_ldata.rl_tx_free--;
2329 	}
2330 	/* Update producer index. */
2331 	sc->rl_ldata.rl_tx_prodidx = prod;
2332 
2333 	/* Set EOF on the last descriptor. */
2334 	ei = RL_TX_DESC_PRV(sc, prod);
2335 	desc = &sc->rl_ldata.rl_tx_list[ei];
2336 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2337 
2338 	desc = &sc->rl_ldata.rl_tx_list[si];
2339 	/* Set SOF and transfer ownership of packet to the chip. */
2340 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2341 
2342 	/*
2343 	 * Insure that the map for this transmission
2344 	 * is placed at the array index of the last descriptor
2345 	 * in this chain.  (Swap last and first dmamaps.)
2346 	 */
2347 	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2348 	map = txd->tx_dmamap;
2349 	txd->tx_dmamap = txd_last->tx_dmamap;
2350 	txd_last->tx_dmamap = map;
2351 	txd_last->tx_m = *m_head;
2352 
2353 	return (0);
2354 }
2355 
2356 static void
2357 re_tx_task(void *arg, int npending)
2358 {
2359 	struct ifnet		*ifp;
2360 
2361 	ifp = arg;
2362 	re_start(ifp);
2363 }
2364 
2365 /*
2366  * Main transmit routine for C+ and gigE NICs.
2367  */
2368 static void
2369 re_start(struct ifnet *ifp)
2370 {
2371 	struct rl_softc		*sc;
2372 	struct mbuf		*m_head;
2373 	int			queued;
2374 
2375 	sc = ifp->if_softc;
2376 
2377 	RL_LOCK(sc);
2378 
2379 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2380 	    IFF_DRV_RUNNING || (sc->rl_flags & RL_FLAG_LINK) == 0) {
2381 		RL_UNLOCK(sc);
2382 		return;
2383 	}
2384 
2385 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2386 	    sc->rl_ldata.rl_tx_free > 1;) {
2387 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2388 		if (m_head == NULL)
2389 			break;
2390 
2391 		if (re_encap(sc, &m_head) != 0) {
2392 			if (m_head == NULL)
2393 				break;
2394 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2395 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2396 			break;
2397 		}
2398 
2399 		/*
2400 		 * If there's a BPF listener, bounce a copy of this frame
2401 		 * to him.
2402 		 */
2403 		ETHER_BPF_MTAP(ifp, m_head);
2404 
2405 		queued++;
2406 	}
2407 
2408 	if (queued == 0) {
2409 #ifdef RE_TX_MODERATION
2410 		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2411 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2412 #endif
2413 		RL_UNLOCK(sc);
2414 		return;
2415 	}
2416 
2417 	/* Flush the TX descriptors */
2418 
2419 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2420 	    sc->rl_ldata.rl_tx_list_map,
2421 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2422 
2423 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2424 
2425 #ifdef RE_TX_MODERATION
2426 	/*
2427 	 * Use the countdown timer for interrupt moderation.
2428 	 * 'TX done' interrupts are disabled. Instead, we reset the
2429 	 * countdown timer, which will begin counting until it hits
2430 	 * the value in the TIMERINT register, and then trigger an
2431 	 * interrupt. Each time we write to the TIMERCNT register,
2432 	 * the timer count is reset to 0.
2433 	 */
2434 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2435 #endif
2436 
2437 	/*
2438 	 * Set a timeout in case the chip goes out to lunch.
2439 	 */
2440 	sc->rl_watchdog_timer = 5;
2441 
2442 	RL_UNLOCK(sc);
2443 }
2444 
2445 static void
2446 re_init(void *xsc)
2447 {
2448 	struct rl_softc		*sc = xsc;
2449 
2450 	RL_LOCK(sc);
2451 	re_init_locked(sc);
2452 	RL_UNLOCK(sc);
2453 }
2454 
2455 static void
2456 re_init_locked(struct rl_softc *sc)
2457 {
2458 	struct ifnet		*ifp = sc->rl_ifp;
2459 	struct mii_data		*mii;
2460 	u_int32_t		rxcfg = 0;
2461 	uint16_t		cfg;
2462 	union {
2463 		uint32_t align_dummy;
2464 		u_char eaddr[ETHER_ADDR_LEN];
2465         } eaddr;
2466 
2467 	RL_LOCK_ASSERT(sc);
2468 
2469 	mii = device_get_softc(sc->rl_miibus);
2470 
2471 	/*
2472 	 * Cancel pending I/O and free all RX/TX buffers.
2473 	 */
2474 	re_stop(sc);
2475 
2476 	/*
2477 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2478 	 * RX checksum offload. We must configure the C+ register
2479 	 * before all others.
2480 	 */
2481 	cfg = RL_CPLUSCMD_PCI_MRW;
2482 	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2483 		cfg |= RL_CPLUSCMD_RXCSUM_ENB;
2484 	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
2485 		cfg |= RL_CPLUSCMD_VLANSTRIP;
2486 	if ((sc->rl_flags & RL_FLAG_MACSTAT) != 0) {
2487 		cfg |= RL_CPLUSCMD_MACSTAT_DIS;
2488 		/* XXX magic. */
2489 		cfg |= 0x0001;
2490 	} else
2491 		cfg |= RL_CPLUSCMD_RXENB | RL_CPLUSCMD_TXENB;
2492 	CSR_WRITE_2(sc, RL_CPLUS_CMD, cfg);
2493 	/*
2494 	 * Disable TSO if interface MTU size is greater than MSS
2495 	 * allowed in controller.
2496 	 */
2497 	if (ifp->if_mtu > RL_TSO_MTU && (ifp->if_capenable & IFCAP_TSO4) != 0) {
2498 		ifp->if_capenable &= ~IFCAP_TSO4;
2499 		ifp->if_hwassist &= ~CSUM_TSO;
2500 	}
2501 
2502 	/*
2503 	 * Init our MAC address.  Even though the chipset
2504 	 * documentation doesn't mention it, we need to enter "Config
2505 	 * register write enable" mode to modify the ID registers.
2506 	 */
2507 	/* Copy MAC address on stack to align. */
2508 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2509 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2510 	CSR_WRITE_4(sc, RL_IDR0,
2511 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2512 	CSR_WRITE_4(sc, RL_IDR4,
2513 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2514 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2515 
2516 	/*
2517 	 * For C+ mode, initialize the RX descriptors and mbufs.
2518 	 */
2519 	re_rx_list_init(sc);
2520 	re_tx_list_init(sc);
2521 
2522 	/*
2523 	 * Load the addresses of the RX and TX lists into the chip.
2524 	 */
2525 
2526 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2527 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2528 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2529 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2530 
2531 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2532 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2533 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2534 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2535 
2536 	/*
2537 	 * Enable transmit and receive.
2538 	 */
2539 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2540 
2541 	/*
2542 	 * Set the initial TX and RX configuration.
2543 	 */
2544 	if (sc->rl_testmode) {
2545 		if (sc->rl_type == RL_8169)
2546 			CSR_WRITE_4(sc, RL_TXCFG,
2547 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2548 		else
2549 			CSR_WRITE_4(sc, RL_TXCFG,
2550 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2551 	} else
2552 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2553 
2554 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2555 
2556 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2557 
2558 	/* Set the individual bit to receive frames for this host only. */
2559 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2560 	rxcfg |= RL_RXCFG_RX_INDIV;
2561 
2562 	/* If we want promiscuous mode, set the allframes bit. */
2563 	if (ifp->if_flags & IFF_PROMISC)
2564 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2565 	else
2566 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2567 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2568 
2569 	/*
2570 	 * Set capture broadcast bit to capture broadcast frames.
2571 	 */
2572 	if (ifp->if_flags & IFF_BROADCAST)
2573 		rxcfg |= RL_RXCFG_RX_BROAD;
2574 	else
2575 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2576 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2577 
2578 	/*
2579 	 * Program the multicast filter, if necessary.
2580 	 */
2581 	re_setmulti(sc);
2582 
2583 #ifdef DEVICE_POLLING
2584 	/*
2585 	 * Disable interrupts if we are polling.
2586 	 */
2587 	if (ifp->if_capenable & IFCAP_POLLING)
2588 		CSR_WRITE_2(sc, RL_IMR, 0);
2589 	else	/* otherwise ... */
2590 #endif
2591 
2592 	/*
2593 	 * Enable interrupts.
2594 	 */
2595 	if (sc->rl_testmode)
2596 		CSR_WRITE_2(sc, RL_IMR, 0);
2597 	else
2598 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2599 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2600 
2601 	/* Set initial TX threshold */
2602 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2603 
2604 	/* Start RX/TX process. */
2605 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2606 #ifdef notdef
2607 	/* Enable receiver and transmitter. */
2608 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2609 #endif
2610 
2611 #ifdef RE_TX_MODERATION
2612 	/*
2613 	 * Initialize the timer interrupt register so that
2614 	 * a timer interrupt will be generated once the timer
2615 	 * reaches a certain number of ticks. The timer is
2616 	 * reloaded on each transmit. This gives us TX interrupt
2617 	 * moderation, which dramatically improves TX frame rate.
2618 	 */
2619 	if (sc->rl_type == RL_8169)
2620 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2621 	else
2622 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2623 #endif
2624 
2625 	/*
2626 	 * For 8169 gigE NICs, set the max allowed RX packet
2627 	 * size so we can receive jumbo frames.
2628 	 */
2629 	if (sc->rl_type == RL_8169)
2630 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2631 
2632 	if (sc->rl_testmode)
2633 		return;
2634 
2635 	mii_mediachg(mii);
2636 
2637 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2638 
2639 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2640 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2641 
2642 	sc->rl_flags &= ~RL_FLAG_LINK;
2643 	sc->rl_watchdog_timer = 0;
2644 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2645 }
2646 
2647 /*
2648  * Set media options.
2649  */
2650 static int
2651 re_ifmedia_upd(struct ifnet *ifp)
2652 {
2653 	struct rl_softc		*sc;
2654 	struct mii_data		*mii;
2655 
2656 	sc = ifp->if_softc;
2657 	mii = device_get_softc(sc->rl_miibus);
2658 	RL_LOCK(sc);
2659 	mii_mediachg(mii);
2660 	RL_UNLOCK(sc);
2661 
2662 	return (0);
2663 }
2664 
2665 /*
2666  * Report current media status.
2667  */
2668 static void
2669 re_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
2670 {
2671 	struct rl_softc		*sc;
2672 	struct mii_data		*mii;
2673 
2674 	sc = ifp->if_softc;
2675 	mii = device_get_softc(sc->rl_miibus);
2676 
2677 	RL_LOCK(sc);
2678 	mii_pollstat(mii);
2679 	RL_UNLOCK(sc);
2680 	ifmr->ifm_active = mii->mii_media_active;
2681 	ifmr->ifm_status = mii->mii_media_status;
2682 }
2683 
2684 static int
2685 re_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
2686 {
2687 	struct rl_softc		*sc = ifp->if_softc;
2688 	struct ifreq		*ifr = (struct ifreq *) data;
2689 	struct mii_data		*mii;
2690 	int			error = 0;
2691 
2692 	switch (command) {
2693 	case SIOCSIFMTU:
2694 		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > RL_JUMBO_MTU) {
2695 			error = EINVAL;
2696 			break;
2697 		}
2698 		if ((sc->rl_flags & RL_FLAG_NOJUMBO) != 0 &&
2699 		    ifr->ifr_mtu > RL_MAX_FRAMELEN) {
2700 			error = EINVAL;
2701 			break;
2702 		}
2703 		RL_LOCK(sc);
2704 		if (ifp->if_mtu != ifr->ifr_mtu)
2705 			ifp->if_mtu = ifr->ifr_mtu;
2706 		if (ifp->if_mtu > RL_TSO_MTU &&
2707 		    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2708 			ifp->if_capenable &= ~IFCAP_TSO4;
2709 			ifp->if_hwassist &= ~CSUM_TSO;
2710 		}
2711 		RL_UNLOCK(sc);
2712 		break;
2713 	case SIOCSIFFLAGS:
2714 		RL_LOCK(sc);
2715 		if ((ifp->if_flags & IFF_UP) != 0) {
2716 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2717 				if (((ifp->if_flags ^ sc->rl_if_flags)
2718 				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
2719 					re_setmulti(sc);
2720 			} else
2721 				re_init_locked(sc);
2722 		} else {
2723 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2724 				re_stop(sc);
2725 		}
2726 		sc->rl_if_flags = ifp->if_flags;
2727 		RL_UNLOCK(sc);
2728 		break;
2729 	case SIOCADDMULTI:
2730 	case SIOCDELMULTI:
2731 		RL_LOCK(sc);
2732 		re_setmulti(sc);
2733 		RL_UNLOCK(sc);
2734 		break;
2735 	case SIOCGIFMEDIA:
2736 	case SIOCSIFMEDIA:
2737 		mii = device_get_softc(sc->rl_miibus);
2738 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2739 		break;
2740 	case SIOCSIFCAP:
2741 	    {
2742 		int mask, reinit;
2743 
2744 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2745 		reinit = 0;
2746 #ifdef DEVICE_POLLING
2747 		if (mask & IFCAP_POLLING) {
2748 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2749 				error = ether_poll_register(re_poll, ifp);
2750 				if (error)
2751 					return(error);
2752 				RL_LOCK(sc);
2753 				/* Disable interrupts */
2754 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2755 				ifp->if_capenable |= IFCAP_POLLING;
2756 				RL_UNLOCK(sc);
2757 			} else {
2758 				error = ether_poll_deregister(ifp);
2759 				/* Enable interrupts. */
2760 				RL_LOCK(sc);
2761 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2762 				ifp->if_capenable &= ~IFCAP_POLLING;
2763 				RL_UNLOCK(sc);
2764 			}
2765 		}
2766 #endif /* DEVICE_POLLING */
2767 		if (mask & IFCAP_HWCSUM) {
2768 			ifp->if_capenable ^= IFCAP_HWCSUM;
2769 			if (ifp->if_capenable & IFCAP_TXCSUM)
2770 				ifp->if_hwassist |= RE_CSUM_FEATURES;
2771 			else
2772 				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2773 			reinit = 1;
2774 		}
2775 		if (mask & IFCAP_VLAN_HWTAGGING) {
2776 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2777 			reinit = 1;
2778 		}
2779 		if (mask & IFCAP_TSO4) {
2780 			ifp->if_capenable ^= IFCAP_TSO4;
2781 			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2782 			    (IFCAP_TSO4 & ifp->if_capabilities))
2783 				ifp->if_hwassist |= CSUM_TSO;
2784 			else
2785 				ifp->if_hwassist &= ~CSUM_TSO;
2786 			if (ifp->if_mtu > RL_TSO_MTU &&
2787 			    (ifp->if_capenable & IFCAP_TSO4) != 0) {
2788 				ifp->if_capenable &= ~IFCAP_TSO4;
2789 				ifp->if_hwassist &= ~CSUM_TSO;
2790 			}
2791 		}
2792 		if ((mask & IFCAP_WOL) != 0 &&
2793 		    (ifp->if_capabilities & IFCAP_WOL) != 0) {
2794 			if ((mask & IFCAP_WOL_UCAST) != 0)
2795 				ifp->if_capenable ^= IFCAP_WOL_UCAST;
2796 			if ((mask & IFCAP_WOL_MCAST) != 0)
2797 				ifp->if_capenable ^= IFCAP_WOL_MCAST;
2798 			if ((mask & IFCAP_WOL_MAGIC) != 0)
2799 				ifp->if_capenable ^= IFCAP_WOL_MAGIC;
2800 		}
2801 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2802 			re_init(sc);
2803 		VLAN_CAPABILITIES(ifp);
2804 	    }
2805 		break;
2806 	default:
2807 		error = ether_ioctl(ifp, command, data);
2808 		break;
2809 	}
2810 
2811 	return (error);
2812 }
2813 
2814 static void
2815 re_watchdog(struct rl_softc *sc)
2816 {
2817 
2818 	RL_LOCK_ASSERT(sc);
2819 
2820 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2821 		return;
2822 
2823 	device_printf(sc->rl_dev, "watchdog timeout\n");
2824 	sc->rl_ifp->if_oerrors++;
2825 
2826 	re_txeof(sc);
2827 	re_rxeof(sc);
2828 	re_init_locked(sc);
2829 }
2830 
2831 /*
2832  * Stop the adapter and free any mbufs allocated to the
2833  * RX and TX lists.
2834  */
2835 static void
2836 re_stop(struct rl_softc *sc)
2837 {
2838 	int			i;
2839 	struct ifnet		*ifp;
2840 	struct rl_txdesc	*txd;
2841 	struct rl_rxdesc	*rxd;
2842 
2843 	RL_LOCK_ASSERT(sc);
2844 
2845 	ifp = sc->rl_ifp;
2846 
2847 	sc->rl_watchdog_timer = 0;
2848 	callout_stop(&sc->rl_stat_callout);
2849 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2850 
2851 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2852 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2853 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2854 
2855 	if (sc->rl_head != NULL) {
2856 		m_freem(sc->rl_head);
2857 		sc->rl_head = sc->rl_tail = NULL;
2858 	}
2859 
2860 	/* Free the TX list buffers. */
2861 
2862 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2863 		txd = &sc->rl_ldata.rl_tx_desc[i];
2864 		if (txd->tx_m != NULL) {
2865 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2866 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2867 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2868 			    txd->tx_dmamap);
2869 			m_freem(txd->tx_m);
2870 			txd->tx_m = NULL;
2871 		}
2872 	}
2873 
2874 	/* Free the RX list buffers. */
2875 
2876 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2877 		rxd = &sc->rl_ldata.rl_rx_desc[i];
2878 		if (rxd->rx_m != NULL) {
2879 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2880 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2881 			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2882 			    rxd->rx_dmamap);
2883 			m_freem(rxd->rx_m);
2884 			rxd->rx_m = NULL;
2885 		}
2886 	}
2887 }
2888 
2889 /*
2890  * Device suspend routine.  Stop the interface and save some PCI
2891  * settings in case the BIOS doesn't restore them properly on
2892  * resume.
2893  */
2894 static int
2895 re_suspend(device_t dev)
2896 {
2897 	struct rl_softc		*sc;
2898 
2899 	sc = device_get_softc(dev);
2900 
2901 	RL_LOCK(sc);
2902 	re_stop(sc);
2903 	re_setwol(sc);
2904 	sc->suspended = 1;
2905 	RL_UNLOCK(sc);
2906 
2907 	return (0);
2908 }
2909 
2910 /*
2911  * Device resume routine.  Restore some PCI settings in case the BIOS
2912  * doesn't, re-enable busmastering, and restart the interface if
2913  * appropriate.
2914  */
2915 static int
2916 re_resume(device_t dev)
2917 {
2918 	struct rl_softc		*sc;
2919 	struct ifnet		*ifp;
2920 
2921 	sc = device_get_softc(dev);
2922 
2923 	RL_LOCK(sc);
2924 
2925 	ifp = sc->rl_ifp;
2926 
2927 	/* reinitialize interface if necessary */
2928 	if (ifp->if_flags & IFF_UP)
2929 		re_init_locked(sc);
2930 
2931 	/*
2932 	 * Clear WOL matching such that normal Rx filtering
2933 	 * wouldn't interfere with WOL patterns.
2934 	 */
2935 	re_clrwol(sc);
2936 	sc->suspended = 0;
2937 	RL_UNLOCK(sc);
2938 
2939 	return (0);
2940 }
2941 
2942 /*
2943  * Stop all chip I/O so that the kernel's probe routines don't
2944  * get confused by errant DMAs when rebooting.
2945  */
2946 static int
2947 re_shutdown(device_t dev)
2948 {
2949 	struct rl_softc		*sc;
2950 
2951 	sc = device_get_softc(dev);
2952 
2953 	RL_LOCK(sc);
2954 	re_stop(sc);
2955 	/*
2956 	 * Mark interface as down since otherwise we will panic if
2957 	 * interrupt comes in later on, which can happen in some
2958 	 * cases.
2959 	 */
2960 	sc->rl_ifp->if_flags &= ~IFF_UP;
2961 	re_setwol(sc);
2962 	RL_UNLOCK(sc);
2963 
2964 	return (0);
2965 }
2966 
2967 static void
2968 re_setwol(struct rl_softc *sc)
2969 {
2970 	struct ifnet		*ifp;
2971 	int			pmc;
2972 	uint16_t		pmstat;
2973 	uint8_t			v;
2974 
2975 	RL_LOCK_ASSERT(sc);
2976 
2977 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
2978 		return;
2979 
2980 	ifp = sc->rl_ifp;
2981 	/* Enable config register write. */
2982 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
2983 
2984 	/* Enable PME. */
2985 	v = CSR_READ_1(sc, RL_CFG1);
2986 	v &= ~RL_CFG1_PME;
2987 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
2988 		v |= RL_CFG1_PME;
2989 	CSR_WRITE_1(sc, RL_CFG1, v);
2990 
2991 	v = CSR_READ_1(sc, RL_CFG3);
2992 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
2993 	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
2994 		v |= RL_CFG3_WOL_MAGIC;
2995 	CSR_WRITE_1(sc, RL_CFG3, v);
2996 
2997 	/* Config register write done. */
2998 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2999 
3000 	v = CSR_READ_1(sc, RL_CFG5);
3001 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3002 	v &= ~RL_CFG5_WOL_LANWAKE;
3003 	if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
3004 		v |= RL_CFG5_WOL_UCAST;
3005 	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
3006 		v |= RL_CFG5_WOL_MCAST | RL_CFG5_WOL_BCAST;
3007 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3008 		v |= RL_CFG5_WOL_LANWAKE;
3009 	CSR_WRITE_1(sc, RL_CFG5, v);
3010 
3011 	/*
3012 	 * It seems that hardware resets its link speed to 100Mbps in
3013 	 * power down mode so switching to 100Mbps in driver is not
3014 	 * needed.
3015 	 */
3016 
3017 	/* Request PME if WOL is requested. */
3018 	pmstat = pci_read_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, 2);
3019 	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
3020 	if ((ifp->if_capenable & IFCAP_WOL) != 0)
3021 		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
3022 	pci_write_config(sc->rl_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
3023 }
3024 
3025 static void
3026 re_clrwol(struct rl_softc *sc)
3027 {
3028 	int			pmc;
3029 	uint8_t			v;
3030 
3031 	RL_LOCK_ASSERT(sc);
3032 
3033 	if (pci_find_extcap(sc->rl_dev, PCIY_PMG, &pmc) != 0)
3034 		return;
3035 
3036 	/* Enable config register write. */
3037 	CSR_WRITE_1(sc, RL_EECMD, RL_EE_MODE);
3038 
3039 	v = CSR_READ_1(sc, RL_CFG3);
3040 	v &= ~(RL_CFG3_WOL_LINK | RL_CFG3_WOL_MAGIC);
3041 	CSR_WRITE_1(sc, RL_CFG3, v);
3042 
3043 	/* Config register write done. */
3044 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
3045 
3046 	v = CSR_READ_1(sc, RL_CFG5);
3047 	v &= ~(RL_CFG5_WOL_BCAST | RL_CFG5_WOL_MCAST | RL_CFG5_WOL_UCAST);
3048 	v &= ~RL_CFG5_WOL_LANWAKE;
3049 	CSR_WRITE_1(sc, RL_CFG5, v);
3050 }
3051