xref: /freebsd/sys/dev/re/if_re.c (revision 52ec752989b2e6d4e9a59a8ff25d8ff596d85e62)
1 /*
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  * 	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7.5K, so the max MTU possible with this
108  * driver is 7500 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/ethernet.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <net/bpf.h>
128 
129 #include <machine/bus_pio.h>
130 #include <machine/bus_memio.h>
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 
142 MODULE_DEPEND(re, pci, 1, 1, 1);
143 MODULE_DEPEND(re, ether, 1, 1, 1);
144 MODULE_DEPEND(re, miibus, 1, 1, 1);
145 
146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
147 #include "miibus_if.h"
148 
149 /*
150  * Default to using PIO access for this driver.
151  */
152 #define RE_USEIOSPACE
153 
154 #include <pci/if_rlreg.h>
155 
156 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static struct rl_type re_devs[] = {
162 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163 		"RealTek 8139C+ 10/100BaseTX" },
164 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165 		"RealTek 8169 Gigabit Ethernet" },
166 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167 		"RealTek 8169S Single-chip Gigabit Ethernet" },
168 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169 		"RealTek 8110S Single-chip Gigabit Ethernet" },
170 	{ 0, 0, 0, NULL }
171 };
172 
173 static struct rl_hwrev re_hwrevs[] = {
174 	{ RL_HWREV_8139, RL_8139,  "" },
175 	{ RL_HWREV_8139A, RL_8139, "A" },
176 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177 	{ RL_HWREV_8139B, RL_8139, "B" },
178 	{ RL_HWREV_8130, RL_8139, "8130" },
179 	{ RL_HWREV_8139C, RL_8139, "C" },
180 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182 	{ RL_HWREV_8169, RL_8169, "8169"},
183 	{ RL_HWREV_8169S, RL_8169, "8169S"},
184 	{ RL_HWREV_8110S, RL_8169, "8110S"},
185 	{ RL_HWREV_8100, RL_8139, "8100"},
186 	{ RL_HWREV_8101, RL_8139, "8101"},
187 	{ 0, 0, NULL }
188 };
189 
190 static int re_probe		(device_t);
191 static int re_attach		(device_t);
192 static int re_detach		(device_t);
193 
194 static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195 
196 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198 				    bus_size_t, int);
199 static int re_allocmem		(device_t, struct rl_softc *);
200 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201 static int re_rx_list_init	(struct rl_softc *);
202 static int re_tx_list_init	(struct rl_softc *);
203 static void re_rxeof		(struct rl_softc *);
204 static void re_txeof		(struct rl_softc *);
205 static void re_intr		(void *);
206 static void re_tick		(void *);
207 static void re_start		(struct ifnet *);
208 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209 static void re_init		(void *);
210 static void re_stop		(struct rl_softc *);
211 static void re_watchdog		(struct ifnet *);
212 static int re_suspend		(device_t);
213 static int re_resume		(device_t);
214 static void re_shutdown		(device_t);
215 static int re_ifmedia_upd	(struct ifnet *);
216 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217 
218 static void re_eeprom_putbyte	(struct rl_softc *, int);
219 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221 static int re_gmii_readreg	(device_t, int, int);
222 static int re_gmii_writereg	(device_t, int, int, int);
223 
224 static int re_miibus_readreg	(device_t, int, int);
225 static int re_miibus_writereg	(device_t, int, int, int);
226 static void re_miibus_statchg	(device_t);
227 
228 static uint32_t re_mchash	(const uint8_t *);
229 static void re_setmulti		(struct rl_softc *);
230 static void re_reset		(struct rl_softc *);
231 
232 static int re_diag		(struct rl_softc *);
233 
234 #ifdef RE_USEIOSPACE
235 #define RL_RES			SYS_RES_IOPORT
236 #define RL_RID			RL_PCI_LOIO
237 #else
238 #define RL_RES			SYS_RES_MEMORY
239 #define RL_RID			RL_PCI_LOMEM
240 #endif
241 
242 static device_method_t re_methods[] = {
243 	/* Device interface */
244 	DEVMETHOD(device_probe,		re_probe),
245 	DEVMETHOD(device_attach,	re_attach),
246 	DEVMETHOD(device_detach,	re_detach),
247 	DEVMETHOD(device_suspend,	re_suspend),
248 	DEVMETHOD(device_resume,	re_resume),
249 	DEVMETHOD(device_shutdown,	re_shutdown),
250 
251 	/* bus interface */
252 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254 
255 	/* MII interface */
256 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t re_driver = {
264 	"re",
265 	re_methods,
266 	sizeof(struct rl_softc)
267 };
268 
269 static devclass_t re_devclass;
270 
271 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
273 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
274 
275 #define EE_SET(x)					\
276 	CSR_WRITE_1(sc, RL_EECMD,			\
277 		CSR_READ_1(sc, RL_EECMD) | x)
278 
279 #define EE_CLR(x)					\
280 	CSR_WRITE_1(sc, RL_EECMD,			\
281 		CSR_READ_1(sc, RL_EECMD) & ~x)
282 
283 /*
284  * Send a read command and address to the EEPROM, check for ACK.
285  */
286 static void
287 re_eeprom_putbyte(sc, addr)
288 	struct rl_softc		*sc;
289 	int			addr;
290 {
291 	register int		d, i;
292 
293 	d = addr | sc->rl_eecmd_read;
294 
295 	/*
296 	 * Feed in each bit and strobe the clock.
297 	 */
298 	for (i = 0x400; i; i >>= 1) {
299 		if (d & i) {
300 			EE_SET(RL_EE_DATAIN);
301 		} else {
302 			EE_CLR(RL_EE_DATAIN);
303 		}
304 		DELAY(100);
305 		EE_SET(RL_EE_CLK);
306 		DELAY(150);
307 		EE_CLR(RL_EE_CLK);
308 		DELAY(100);
309 	}
310 
311 	return;
312 }
313 
314 /*
315  * Read a word of data stored in the EEPROM at address 'addr.'
316  */
317 static void
318 re_eeprom_getword(sc, addr, dest)
319 	struct rl_softc		*sc;
320 	int			addr;
321 	u_int16_t		*dest;
322 {
323 	register int		i;
324 	u_int16_t		word = 0;
325 
326 	/* Enter EEPROM access mode. */
327 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
328 
329 	/*
330 	 * Send address of word we want to read.
331 	 */
332 	re_eeprom_putbyte(sc, addr);
333 
334 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
335 
336 	/*
337 	 * Start reading bits from EEPROM.
338 	 */
339 	for (i = 0x8000; i; i >>= 1) {
340 		EE_SET(RL_EE_CLK);
341 		DELAY(100);
342 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
343 			word |= i;
344 		EE_CLR(RL_EE_CLK);
345 		DELAY(100);
346 	}
347 
348 	/* Turn off EEPROM access mode. */
349 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
350 
351 	*dest = word;
352 
353 	return;
354 }
355 
356 /*
357  * Read a sequence of words from the EEPROM.
358  */
359 static void
360 re_read_eeprom(sc, dest, off, cnt, swap)
361 	struct rl_softc		*sc;
362 	caddr_t			dest;
363 	int			off;
364 	int			cnt;
365 	int			swap;
366 {
367 	int			i;
368 	u_int16_t		word = 0, *ptr;
369 
370 	for (i = 0; i < cnt; i++) {
371 		re_eeprom_getword(sc, off + i, &word);
372 		ptr = (u_int16_t *)(dest + (i * 2));
373 		if (swap)
374 			*ptr = ntohs(word);
375 		else
376 			*ptr = word;
377 	}
378 
379 	return;
380 }
381 
382 static int
383 re_gmii_readreg(dev, phy, reg)
384 	device_t		dev;
385 	int			phy, reg;
386 {
387 	struct rl_softc		*sc;
388 	u_int32_t		rval;
389 	int			i;
390 
391 	if (phy != 1)
392 		return(0);
393 
394 	sc = device_get_softc(dev);
395 
396 	/* Let the rgephy driver read the GMEDIASTAT register */
397 
398 	if (reg == RL_GMEDIASTAT) {
399 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
400 		return(rval);
401 	}
402 
403 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
404 	DELAY(1000);
405 
406 	for (i = 0; i < RL_TIMEOUT; i++) {
407 		rval = CSR_READ_4(sc, RL_PHYAR);
408 		if (rval & RL_PHYAR_BUSY)
409 			break;
410 		DELAY(100);
411 	}
412 
413 	if (i == RL_TIMEOUT) {
414 		printf ("re%d: PHY read failed\n", sc->rl_unit);
415 		return (0);
416 	}
417 
418 	return (rval & RL_PHYAR_PHYDATA);
419 }
420 
421 static int
422 re_gmii_writereg(dev, phy, reg, data)
423 	device_t		dev;
424 	int			phy, reg, data;
425 {
426 	struct rl_softc		*sc;
427 	u_int32_t		rval;
428 	int			i;
429 
430 	sc = device_get_softc(dev);
431 
432 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
433 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
434 	DELAY(1000);
435 
436 	for (i = 0; i < RL_TIMEOUT; i++) {
437 		rval = CSR_READ_4(sc, RL_PHYAR);
438 		if (!(rval & RL_PHYAR_BUSY))
439 			break;
440 		DELAY(100);
441 	}
442 
443 	if (i == RL_TIMEOUT) {
444 		printf ("re%d: PHY write failed\n", sc->rl_unit);
445 		return (0);
446 	}
447 
448 	return (0);
449 }
450 
451 static int
452 re_miibus_readreg(dev, phy, reg)
453 	device_t		dev;
454 	int			phy, reg;
455 {
456 	struct rl_softc		*sc;
457 	u_int16_t		rval = 0;
458 	u_int16_t		re8139_reg = 0;
459 
460 	sc = device_get_softc(dev);
461 	RL_LOCK(sc);
462 
463 	if (sc->rl_type == RL_8169) {
464 		rval = re_gmii_readreg(dev, phy, reg);
465 		RL_UNLOCK(sc);
466 		return (rval);
467 	}
468 
469 	/* Pretend the internal PHY is only at address 0 */
470 	if (phy) {
471 		RL_UNLOCK(sc);
472 		return(0);
473 	}
474 	switch(reg) {
475 	case MII_BMCR:
476 		re8139_reg = RL_BMCR;
477 		break;
478 	case MII_BMSR:
479 		re8139_reg = RL_BMSR;
480 		break;
481 	case MII_ANAR:
482 		re8139_reg = RL_ANAR;
483 		break;
484 	case MII_ANER:
485 		re8139_reg = RL_ANER;
486 		break;
487 	case MII_ANLPAR:
488 		re8139_reg = RL_LPAR;
489 		break;
490 	case MII_PHYIDR1:
491 	case MII_PHYIDR2:
492 		RL_UNLOCK(sc);
493 		return(0);
494 	/*
495 	 * Allow the rlphy driver to read the media status
496 	 * register. If we have a link partner which does not
497 	 * support NWAY, this is the register which will tell
498 	 * us the results of parallel detection.
499 	 */
500 	case RL_MEDIASTAT:
501 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
502 		RL_UNLOCK(sc);
503 		return(rval);
504 	default:
505 		printf("re%d: bad phy register\n", sc->rl_unit);
506 		RL_UNLOCK(sc);
507 		return(0);
508 	}
509 	rval = CSR_READ_2(sc, re8139_reg);
510 	RL_UNLOCK(sc);
511 	return(rval);
512 }
513 
514 static int
515 re_miibus_writereg(dev, phy, reg, data)
516 	device_t		dev;
517 	int			phy, reg, data;
518 {
519 	struct rl_softc		*sc;
520 	u_int16_t		re8139_reg = 0;
521 	int			rval = 0;
522 
523 	sc = device_get_softc(dev);
524 	RL_LOCK(sc);
525 
526 	if (sc->rl_type == RL_8169) {
527 		rval = re_gmii_writereg(dev, phy, reg, data);
528 		RL_UNLOCK(sc);
529 		return (rval);
530 	}
531 
532 	/* Pretend the internal PHY is only at address 0 */
533 	if (phy) {
534 		RL_UNLOCK(sc);
535 		return(0);
536 	}
537 	switch(reg) {
538 	case MII_BMCR:
539 		re8139_reg = RL_BMCR;
540 		break;
541 	case MII_BMSR:
542 		re8139_reg = RL_BMSR;
543 		break;
544 	case MII_ANAR:
545 		re8139_reg = RL_ANAR;
546 		break;
547 	case MII_ANER:
548 		re8139_reg = RL_ANER;
549 		break;
550 	case MII_ANLPAR:
551 		re8139_reg = RL_LPAR;
552 		break;
553 	case MII_PHYIDR1:
554 	case MII_PHYIDR2:
555 		RL_UNLOCK(sc);
556 		return(0);
557 		break;
558 	default:
559 		printf("re%d: bad phy register\n", sc->rl_unit);
560 		RL_UNLOCK(sc);
561 		return(0);
562 	}
563 	CSR_WRITE_2(sc, re8139_reg, data);
564 	RL_UNLOCK(sc);
565 	return(0);
566 }
567 
568 static void
569 re_miibus_statchg(dev)
570 	device_t		dev;
571 {
572 	return;
573 }
574 
575 /*
576  * Calculate CRC of a multicast group address, return the upper 6 bits.
577  */
578 static uint32_t
579 re_mchash(addr)
580 	const uint8_t *addr;
581 {
582 	uint32_t crc, carry;
583 	int idx, bit;
584 	uint8_t data;
585 
586 	/* Compute CRC for the address value. */
587 	crc = 0xFFFFFFFF; /* initial value */
588 
589 	for (idx = 0; idx < 6; idx++) {
590 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
591 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
592 			crc <<= 1;
593 			if (carry)
594 				crc = (crc ^ 0x04c11db6) | carry;
595 		}
596 	}
597 
598 	/* return the filter bit position */
599 	return(crc >> 26);
600 }
601 
602 /*
603  * Program the 64-bit multicast hash filter.
604  */
605 static void
606 re_setmulti(sc)
607 	struct rl_softc		*sc;
608 {
609 	struct ifnet		*ifp;
610 	int			h = 0;
611 	u_int32_t		hashes[2] = { 0, 0 };
612 	struct ifmultiaddr	*ifma;
613 	u_int32_t		rxfilt;
614 	int			mcnt = 0;
615 
616 	ifp = &sc->arpcom.ac_if;
617 
618 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
619 
620 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
621 		rxfilt |= RL_RXCFG_RX_MULTI;
622 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
623 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
624 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
625 		return;
626 	}
627 
628 	/* first, zot all the existing hash bits */
629 	CSR_WRITE_4(sc, RL_MAR0, 0);
630 	CSR_WRITE_4(sc, RL_MAR4, 0);
631 
632 	/* now program new ones */
633 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
634 		if (ifma->ifma_addr->sa_family != AF_LINK)
635 			continue;
636 		h = re_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
637 		if (h < 32)
638 			hashes[0] |= (1 << h);
639 		else
640 			hashes[1] |= (1 << (h - 32));
641 		mcnt++;
642 	}
643 
644 	if (mcnt)
645 		rxfilt |= RL_RXCFG_RX_MULTI;
646 	else
647 		rxfilt &= ~RL_RXCFG_RX_MULTI;
648 
649 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
650 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
651 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
652 
653 	return;
654 }
655 
656 static void
657 re_reset(sc)
658 	struct rl_softc		*sc;
659 {
660 	register int		i;
661 
662 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
663 
664 	for (i = 0; i < RL_TIMEOUT; i++) {
665 		DELAY(10);
666 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
667 			break;
668 	}
669 	if (i == RL_TIMEOUT)
670 		printf("re%d: reset never completed!\n", sc->rl_unit);
671 
672 	CSR_WRITE_1(sc, 0x82, 1);
673 
674 	return;
675 }
676 
677 /*
678  * The following routine is designed to test for a defect on some
679  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
680  * lines connected to the bus, however for a 32-bit only card, they
681  * should be pulled high. The result of this defect is that the
682  * NIC will not work right if you plug it into a 64-bit slot: DMA
683  * operations will be done with 64-bit transfers, which will fail
684  * because the 64-bit data lines aren't connected.
685  *
686  * There's no way to work around this (short of talking a soldering
687  * iron to the board), however we can detect it. The method we use
688  * here is to put the NIC into digital loopback mode, set the receiver
689  * to promiscuous mode, and then try to send a frame. We then compare
690  * the frame data we sent to what was received. If the data matches,
691  * then the NIC is working correctly, otherwise we know the user has
692  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
693  * slot. In the latter case, there's no way the NIC can work correctly,
694  * so we print out a message on the console and abort the device attach.
695  */
696 
697 static int
698 re_diag(sc)
699 	struct rl_softc		*sc;
700 {
701 	struct ifnet		*ifp = &sc->arpcom.ac_if;
702 	struct mbuf		*m0;
703 	struct ether_header	*eh;
704 	struct rl_desc		*cur_rx;
705 	u_int16_t		status;
706 	u_int32_t		rxstat;
707 	int			total_len, i, error = 0;
708 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
709 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
710 
711 	/* Allocate a single mbuf */
712 
713 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
714 	if (m0 == NULL)
715 		return(ENOBUFS);
716 
717 	/*
718 	 * Initialize the NIC in test mode. This sets the chip up
719 	 * so that it can send and receive frames, but performs the
720 	 * following special functions:
721 	 * - Puts receiver in promiscuous mode
722 	 * - Enables digital loopback mode
723 	 * - Leaves interrupts turned off
724 	 */
725 
726 	ifp->if_flags |= IFF_PROMISC;
727 	sc->rl_testmode = 1;
728 	re_init(sc);
729 	re_stop(sc);
730 	DELAY(100000);
731 	re_init(sc);
732 
733 	/* Put some data in the mbuf */
734 
735 	eh = mtod(m0, struct ether_header *);
736 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
737 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
738 	eh->ether_type = htons(ETHERTYPE_IP);
739 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
740 
741 	/*
742 	 * Queue the packet, start transmission.
743 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
744 	 */
745 
746 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
747 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
748 	m0 = NULL;
749 
750 	/* Wait for it to propagate through the chip */
751 
752 	DELAY(100000);
753 	for (i = 0; i < RL_TIMEOUT; i++) {
754 		status = CSR_READ_2(sc, RL_ISR);
755 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
756 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
757 			break;
758 		DELAY(10);
759 	}
760 
761 	if (i == RL_TIMEOUT) {
762 		printf("re%d: diagnostic failed, failed to receive packet "
763 		    "in loopback mode\n", sc->rl_unit);
764 		error = EIO;
765 		goto done;
766 	}
767 
768 	/*
769 	 * The packet should have been dumped into the first
770 	 * entry in the RX DMA ring. Grab it from there.
771 	 */
772 
773 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
774 	    sc->rl_ldata.rl_rx_list_map,
775 	    BUS_DMASYNC_POSTREAD);
776 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
777 	    sc->rl_ldata.rl_rx_dmamap[0],
778 	    BUS_DMASYNC_POSTWRITE);
779 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
780 	    sc->rl_ldata.rl_rx_dmamap[0]);
781 
782 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
783 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
784 	eh = mtod(m0, struct ether_header *);
785 
786 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
787 	total_len = RL_RXBYTES(cur_rx);
788 	rxstat = le32toh(cur_rx->rl_cmdstat);
789 
790 	if (total_len != ETHER_MIN_LEN) {
791 		printf("re%d: diagnostic failed, received short packet\n",
792 		    sc->rl_unit);
793 		error = EIO;
794 		goto done;
795 	}
796 
797 	/* Test that the received packet data matches what we sent. */
798 
799 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
800 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
801 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
802 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
803 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
804 		    dst, ":", src, ":", ETHERTYPE_IP);
805 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
806 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
807 		    ntohs(eh->ether_type));
808 		printf("re%d: You may have a defective 32-bit NIC plugged "
809 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
810 		printf("re%d: Please re-install the NIC in a 32-bit slot "
811 		    "for proper operation.\n", sc->rl_unit);
812 		printf("re%d: Read the re(4) man page for more details.\n",
813 		    sc->rl_unit);
814 		error = EIO;
815 	}
816 
817 done:
818 	/* Turn interface off, release resources */
819 
820 	sc->rl_testmode = 0;
821 	ifp->if_flags &= ~IFF_PROMISC;
822 	re_stop(sc);
823 	if (m0 != NULL)
824 		m_freem(m0);
825 
826 	return (error);
827 }
828 
829 /*
830  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
831  * IDs against our list and return a device name if we find a match.
832  */
833 static int
834 re_probe(dev)
835 	device_t		dev;
836 {
837 	struct rl_type		*t;
838 	struct rl_softc		*sc;
839 	int			rid;
840 	u_int32_t		hwrev;
841 
842 	t = re_devs;
843 	sc = device_get_softc(dev);
844 
845 	while(t->rl_name != NULL) {
846 		if ((pci_get_vendor(dev) == t->rl_vid) &&
847 		    (pci_get_device(dev) == t->rl_did)) {
848 
849 			/*
850 			 * Temporarily map the I/O space
851 			 * so we can read the chip ID register.
852 			 */
853 			rid = RL_RID;
854 			sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
855 			    0, ~0, 1, RF_ACTIVE);
856 			if (sc->rl_res == NULL) {
857 				device_printf(dev,
858 				    "couldn't map ports/memory\n");
859 				return(ENXIO);
860 			}
861 			sc->rl_btag = rman_get_bustag(sc->rl_res);
862 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
863 			mtx_init(&sc->rl_mtx,
864 			    device_get_nameunit(dev),
865 			    MTX_NETWORK_LOCK, MTX_DEF);
866 			RL_LOCK(sc);
867 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
868 			bus_release_resource(dev, RL_RES,
869 			    RL_RID, sc->rl_res);
870 			RL_UNLOCK(sc);
871 			mtx_destroy(&sc->rl_mtx);
872 			if (t->rl_basetype == hwrev) {
873 				device_set_desc(dev, t->rl_name);
874 				return(0);
875 			}
876 		}
877 		t++;
878 	}
879 
880 	return(ENXIO);
881 }
882 
883 /*
884  * This routine takes the segment list provided as the result of
885  * a bus_dma_map_load() operation and assigns the addresses/lengths
886  * to RealTek DMA descriptors. This can be called either by the RX
887  * code or the TX code. In the RX case, we'll probably wind up mapping
888  * at most one segment. For the TX case, there could be any number of
889  * segments since TX packets may span multiple mbufs. In either case,
890  * if the number of segments is larger than the rl_maxsegs limit
891  * specified by the caller, we abort the mapping operation. Sadly,
892  * whoever designed the buffer mapping API did not provide a way to
893  * return an error from here, so we have to fake it a bit.
894  */
895 
896 static void
897 re_dma_map_desc(arg, segs, nseg, mapsize, error)
898 	void			*arg;
899 	bus_dma_segment_t	*segs;
900 	int			nseg;
901 	bus_size_t		mapsize;
902 	int			error;
903 {
904 	struct rl_dmaload_arg	*ctx;
905 	struct rl_desc		*d = NULL;
906 	int			i = 0, idx;
907 
908 	if (error)
909 		return;
910 
911 	ctx = arg;
912 
913 	/* Signal error to caller if there's too many segments */
914 	if (nseg > ctx->rl_maxsegs) {
915 		ctx->rl_maxsegs = 0;
916 		return;
917 	}
918 
919 	/*
920 	 * Map the segment array into descriptors. Note that we set the
921 	 * start-of-frame and end-of-frame markers for either TX or RX, but
922 	 * they really only have meaning in the TX case. (In the RX case,
923 	 * it's the chip that tells us where packets begin and end.)
924 	 * We also keep track of the end of the ring and set the
925 	 * end-of-ring bits as needed, and we set the ownership bits
926 	 * in all except the very first descriptor. (The caller will
927 	 * set this descriptor later when it start transmission or
928 	 * reception.)
929 	 */
930 	idx = ctx->rl_idx;
931 	while(1) {
932 		u_int32_t		cmdstat;
933 		d = &ctx->rl_ring[idx];
934 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
935 			ctx->rl_maxsegs = 0;
936 			return;
937 		}
938 		cmdstat = segs[i].ds_len;
939 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
940 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
941 		if (i == 0)
942 			cmdstat |= RL_TDESC_CMD_SOF;
943 		else
944 			cmdstat |= RL_TDESC_CMD_OWN;
945 		if (idx == (RL_RX_DESC_CNT - 1))
946 			cmdstat |= RL_TDESC_CMD_EOR;
947 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
948 		i++;
949 		if (i == nseg)
950 			break;
951 		RL_DESC_INC(idx);
952 	}
953 
954 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
955 	ctx->rl_maxsegs = nseg;
956 	ctx->rl_idx = idx;
957 
958 	return;
959 }
960 
961 /*
962  * Map a single buffer address.
963  */
964 
965 static void
966 re_dma_map_addr(arg, segs, nseg, error)
967 	void			*arg;
968 	bus_dma_segment_t	*segs;
969 	int			nseg;
970 	int			error;
971 {
972 	u_int32_t		*addr;
973 
974 	if (error)
975 		return;
976 
977 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
978 	addr = arg;
979 	*addr = segs->ds_addr;
980 
981 	return;
982 }
983 
984 static int
985 re_allocmem(dev, sc)
986 	device_t		dev;
987 	struct rl_softc		*sc;
988 {
989 	int			error;
990 	int			nseg;
991 	int			i;
992 
993 	/*
994 	 * Allocate map for RX mbufs.
995 	 */
996 	nseg = 32;
997 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
998 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
999 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
1000 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1001 	if (error) {
1002 		device_printf(dev, "could not allocate dma tag\n");
1003 		return (ENOMEM);
1004 	}
1005 
1006 	/*
1007 	 * Allocate map for TX descriptor list.
1008 	 */
1009 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1010 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1011             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1012 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1013 	if (error) {
1014 		device_printf(dev, "could not allocate dma tag\n");
1015 		return (ENOMEM);
1016 	}
1017 
1018 	/* Allocate DMA'able memory for the TX ring */
1019 
1020         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1021 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1022             &sc->rl_ldata.rl_tx_list_map);
1023         if (error)
1024                 return (ENOMEM);
1025 
1026 	/* Load the map for the TX ring. */
1027 
1028 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1029 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1030 	     RL_TX_LIST_SZ, re_dma_map_addr,
1031 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1032 
1033 	/* Create DMA maps for TX buffers */
1034 
1035 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1036 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1037 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1038 		if (error) {
1039 			device_printf(dev, "can't create DMA map for TX\n");
1040 			return(ENOMEM);
1041 		}
1042 	}
1043 
1044 	/*
1045 	 * Allocate map for RX descriptor list.
1046 	 */
1047 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1048 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1049             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1050 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1051 	if (error) {
1052 		device_printf(dev, "could not allocate dma tag\n");
1053 		return (ENOMEM);
1054 	}
1055 
1056 	/* Allocate DMA'able memory for the RX ring */
1057 
1058         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1059 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1060             &sc->rl_ldata.rl_rx_list_map);
1061         if (error)
1062                 return (ENOMEM);
1063 
1064 	/* Load the map for the RX ring. */
1065 
1066 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1067 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1068 	     RL_TX_LIST_SZ, re_dma_map_addr,
1069 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1070 
1071 	/* Create DMA maps for RX buffers */
1072 
1073 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1074 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1075 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1076 		if (error) {
1077 			device_printf(dev, "can't create DMA map for RX\n");
1078 			return(ENOMEM);
1079 		}
1080 	}
1081 
1082 	return(0);
1083 }
1084 
1085 /*
1086  * Attach the interface. Allocate softc structures, do ifmedia
1087  * setup and ethernet/BPF attach.
1088  */
1089 static int
1090 re_attach(dev)
1091 	device_t		dev;
1092 {
1093 	u_char			eaddr[ETHER_ADDR_LEN];
1094 	u_int16_t		as[3];
1095 	struct rl_softc		*sc;
1096 	struct ifnet		*ifp;
1097 	struct rl_hwrev		*hw_rev;
1098 	int			hwrev;
1099 	u_int16_t		re_did = 0;
1100 	int			unit, error = 0, rid, i;
1101 
1102 	sc = device_get_softc(dev);
1103 	unit = device_get_unit(dev);
1104 
1105 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1106 	    MTX_DEF | MTX_RECURSE);
1107 #ifndef BURN_BRIDGES
1108 	/*
1109 	 * Handle power management nonsense.
1110 	 */
1111 
1112 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1113 		u_int32_t		iobase, membase, irq;
1114 
1115 		/* Save important PCI config data. */
1116 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1117 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1118 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1119 
1120 		/* Reset the power state. */
1121 		printf("re%d: chip is is in D%d power mode "
1122 		    "-- setting to D0\n", unit,
1123 		    pci_get_powerstate(dev));
1124 
1125 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1126 
1127 		/* Restore PCI config data. */
1128 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1129 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1130 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1131 	}
1132 #endif
1133 	/*
1134 	 * Map control/status registers.
1135 	 */
1136 	pci_enable_busmaster(dev);
1137 
1138 	rid = RL_RID;
1139 	sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
1140 	    0, ~0, 1, RF_ACTIVE);
1141 
1142 	if (sc->rl_res == NULL) {
1143 		printf ("re%d: couldn't map ports/memory\n", unit);
1144 		error = ENXIO;
1145 		goto fail;
1146 	}
1147 
1148 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1149 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1150 
1151 	/* Allocate interrupt */
1152 	rid = 0;
1153 	sc->rl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1154 	    RF_SHAREABLE | RF_ACTIVE);
1155 
1156 	if (sc->rl_irq == NULL) {
1157 		printf("re%d: couldn't map interrupt\n", unit);
1158 		error = ENXIO;
1159 		goto fail;
1160 	}
1161 
1162 	/* Reset the adapter. */
1163 	re_reset(sc);
1164 
1165 	hw_rev = re_hwrevs;
1166 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1167 	while (hw_rev->rl_desc != NULL) {
1168 		if (hw_rev->rl_rev == hwrev) {
1169 			sc->rl_type = hw_rev->rl_type;
1170 			break;
1171 		}
1172 		hw_rev++;
1173 	}
1174 
1175 	if (sc->rl_type == RL_8169) {
1176 
1177 		/* Set RX length mask */
1178 
1179 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1180 
1181 		/* Force station address autoload from the EEPROM */
1182 
1183 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1184 		for (i = 0; i < RL_TIMEOUT; i++) {
1185 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1186 				break;
1187 			DELAY(100);
1188 		}
1189 		if (i == RL_TIMEOUT)
1190 			printf ("re%d: eeprom autoload timed out\n", unit);
1191 
1192 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1193 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1194 	} else {
1195 
1196 		/* Set RX length mask */
1197 
1198 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1199 
1200 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1201 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1202 		if (re_did != 0x8129)
1203 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1204 
1205 		/*
1206 		 * Get station address from the EEPROM.
1207 		 */
1208 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1209 		for (i = 0; i < 3; i++) {
1210 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1211 			eaddr[(i * 2) + 1] = as[i] >> 8;
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * A RealTek chip was detected. Inform the world.
1217 	 */
1218 	printf("re%d: Ethernet address: %6D\n", unit, eaddr, ":");
1219 
1220 	sc->rl_unit = unit;
1221 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1222 
1223 	/*
1224 	 * Allocate the parent bus DMA tag appropriate for PCI.
1225 	 */
1226 #define RL_NSEG_NEW 32
1227 	error = bus_dma_tag_create(NULL,	/* parent */
1228 			1, 0,			/* alignment, boundary */
1229 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1230 			BUS_SPACE_MAXADDR,	/* highaddr */
1231 			NULL, NULL,		/* filter, filterarg */
1232 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1233 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1234 			BUS_DMA_ALLOCNOW,	/* flags */
1235 			NULL, NULL,		/* lockfunc, lockarg */
1236 			&sc->rl_parent_tag);
1237 	if (error)
1238 		goto fail;
1239 
1240 	error = re_allocmem(dev, sc);
1241 
1242 	if (error)
1243 		goto fail;
1244 
1245 	/* Do MII setup */
1246 	if (mii_phy_probe(dev, &sc->rl_miibus,
1247 	    re_ifmedia_upd, re_ifmedia_sts)) {
1248 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1249 		error = ENXIO;
1250 		goto fail;
1251 	}
1252 
1253 	ifp = &sc->arpcom.ac_if;
1254 	ifp->if_softc = sc;
1255 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1256 	ifp->if_mtu = ETHERMTU;
1257 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1258 	ifp->if_ioctl = re_ioctl;
1259 	ifp->if_output = ether_output;
1260 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1261 	ifp->if_start = re_start;
1262 	ifp->if_hwassist = RE_CSUM_FEATURES;
1263 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1264 	ifp->if_watchdog = re_watchdog;
1265 	ifp->if_init = re_init;
1266 	if (sc->rl_type == RL_8169)
1267 		ifp->if_baudrate = 1000000000;
1268 	else
1269 		ifp->if_baudrate = 100000000;
1270 	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1271 	ifp->if_capenable = ifp->if_capabilities;
1272 
1273 	callout_handle_init(&sc->rl_stat_ch);
1274 
1275 	/*
1276 	 * Call MI attach routine.
1277 	 */
1278 	ether_ifattach(ifp, eaddr);
1279 
1280 	/* Perform hardware diagnostic. */
1281 	error = re_diag(sc);
1282 
1283 	if (error) {
1284 		printf("re%d: attach aborted due to hardware diag failure\n",
1285 		    unit);
1286 		ether_ifdetach(ifp);
1287 		goto fail;
1288 	}
1289 
1290 	/* Hook interrupt last to avoid having to lock softc */
1291 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1292 	    re_intr, sc, &sc->rl_intrhand);
1293 
1294 	if (error) {
1295 		printf("re%d: couldn't set up irq\n", unit);
1296 		ether_ifdetach(ifp);
1297 		goto fail;
1298 	}
1299 
1300 fail:
1301 	if (error)
1302 		re_detach(dev);
1303 
1304 	return (error);
1305 }
1306 
1307 /*
1308  * Shutdown hardware and free up resources. This can be called any
1309  * time after the mutex has been initialized. It is called in both
1310  * the error case in attach and the normal detach case so it needs
1311  * to be careful about only freeing resources that have actually been
1312  * allocated.
1313  */
1314 static int
1315 re_detach(dev)
1316 	device_t		dev;
1317 {
1318 	struct rl_softc		*sc;
1319 	struct ifnet		*ifp;
1320 	int			i;
1321 
1322 	sc = device_get_softc(dev);
1323 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1324 	RL_LOCK(sc);
1325 	ifp = &sc->arpcom.ac_if;
1326 
1327 	/* These should only be active if attach succeeded */
1328 	if (device_is_attached(dev)) {
1329 		re_stop(sc);
1330 		/*
1331 		 * Force off the IFF_UP flag here, in case someone
1332 		 * still had a BPF descriptor attached to this
1333 		 * interface. If they do, ether_ifattach() will cause
1334 		 * the BPF code to try and clear the promisc mode
1335 		 * flag, which will bubble down to re_ioctl(),
1336 		 * which will try to call re_init() again. This will
1337 		 * turn the NIC back on and restart the MII ticker,
1338 		 * which will panic the system when the kernel tries
1339 		 * to invoke the re_tick() function that isn't there
1340 		 * anymore.
1341 		 */
1342 		ifp->if_flags &= ~IFF_UP;
1343 		ether_ifdetach(ifp);
1344 	}
1345 	if (sc->rl_miibus)
1346 		device_delete_child(dev, sc->rl_miibus);
1347 	bus_generic_detach(dev);
1348 
1349 	if (sc->rl_intrhand)
1350 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1351 	if (sc->rl_irq)
1352 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1353 	if (sc->rl_res)
1354 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1355 
1356 
1357 	/* Unload and free the RX DMA ring memory and map */
1358 
1359 	if (sc->rl_ldata.rl_rx_list_tag) {
1360 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1361 		    sc->rl_ldata.rl_rx_list_map);
1362 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1363 		    sc->rl_ldata.rl_rx_list,
1364 		    sc->rl_ldata.rl_rx_list_map);
1365 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1366 	}
1367 
1368 	/* Unload and free the TX DMA ring memory and map */
1369 
1370 	if (sc->rl_ldata.rl_tx_list_tag) {
1371 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1372 		    sc->rl_ldata.rl_tx_list_map);
1373 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1374 		    sc->rl_ldata.rl_tx_list,
1375 		    sc->rl_ldata.rl_tx_list_map);
1376 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1377 	}
1378 
1379 	/* Destroy all the RX and TX buffer maps */
1380 
1381 	if (sc->rl_ldata.rl_mtag) {
1382 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1383 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1384 			    sc->rl_ldata.rl_tx_dmamap[i]);
1385 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1386 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1387 			    sc->rl_ldata.rl_rx_dmamap[i]);
1388 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1389 	}
1390 
1391 	/* Unload and free the stats buffer and map */
1392 
1393 	if (sc->rl_ldata.rl_stag) {
1394 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1395 		    sc->rl_ldata.rl_rx_list_map);
1396 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1397 		    sc->rl_ldata.rl_stats,
1398 		    sc->rl_ldata.rl_smap);
1399 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1400 	}
1401 
1402 	if (sc->rl_parent_tag)
1403 		bus_dma_tag_destroy(sc->rl_parent_tag);
1404 
1405 	RL_UNLOCK(sc);
1406 	mtx_destroy(&sc->rl_mtx);
1407 
1408 	return(0);
1409 }
1410 
1411 static int
1412 re_newbuf(sc, idx, m)
1413 	struct rl_softc		*sc;
1414 	int			idx;
1415 	struct mbuf		*m;
1416 {
1417 	struct rl_dmaload_arg	arg;
1418 	struct mbuf		*n = NULL;
1419 	int			error;
1420 
1421 	if (m == NULL) {
1422 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1423 		if (n == NULL)
1424 			return(ENOBUFS);
1425 		m = n;
1426 	} else
1427 		m->m_data = m->m_ext.ext_buf;
1428 
1429 	/*
1430 	 * Initialize mbuf length fields and fixup
1431 	 * alignment so that the frame payload is
1432 	 * longword aligned.
1433 	 */
1434 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1435 	m_adj(m, ETHER_ALIGN);
1436 
1437 	arg.sc = sc;
1438 	arg.rl_idx = idx;
1439 	arg.rl_maxsegs = 1;
1440 	arg.rl_flags = 0;
1441 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1442 
1443         error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1444 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1445 	    &arg, BUS_DMA_NOWAIT);
1446 	if (error || arg.rl_maxsegs != 1) {
1447 		if (n != NULL)
1448 			m_freem(n);
1449 		return (ENOMEM);
1450 	}
1451 
1452 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1453 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1454 
1455         bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1456 	    sc->rl_ldata.rl_rx_dmamap[idx],
1457 	    BUS_DMASYNC_PREREAD);
1458 
1459 	return(0);
1460 }
1461 
1462 static int
1463 re_tx_list_init(sc)
1464 	struct rl_softc		*sc;
1465 {
1466 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1467 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1468 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1469 
1470 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1471 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1472 	sc->rl_ldata.rl_tx_prodidx = 0;
1473 	sc->rl_ldata.rl_tx_considx = 0;
1474 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1475 
1476 	return(0);
1477 }
1478 
1479 static int
1480 re_rx_list_init(sc)
1481 	struct rl_softc		*sc;
1482 {
1483 	int			i;
1484 
1485 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1486 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1487 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1488 
1489 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1490 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1491 			return(ENOBUFS);
1492 	}
1493 
1494 	/* Flush the RX descriptors */
1495 
1496 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1497 	    sc->rl_ldata.rl_rx_list_map,
1498 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1499 
1500 	sc->rl_ldata.rl_rx_prodidx = 0;
1501 	sc->rl_head = sc->rl_tail = NULL;
1502 
1503 	return(0);
1504 }
1505 
1506 /*
1507  * RX handler for C+ and 8169. For the gigE chips, we support
1508  * the reception of jumbo frames that have been fragmented
1509  * across multiple 2K mbuf cluster buffers.
1510  */
1511 static void
1512 re_rxeof(sc)
1513 	struct rl_softc		*sc;
1514 {
1515 	struct mbuf		*m;
1516 	struct ifnet		*ifp;
1517 	int			i, total_len;
1518 	struct rl_desc		*cur_rx;
1519 	u_int32_t		rxstat, rxvlan;
1520 
1521 	RL_LOCK_ASSERT(sc);
1522 
1523 	ifp = &sc->arpcom.ac_if;
1524 	i = sc->rl_ldata.rl_rx_prodidx;
1525 
1526 	/* Invalidate the descriptor memory */
1527 
1528 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1529 	    sc->rl_ldata.rl_rx_list_map,
1530 	    BUS_DMASYNC_POSTREAD);
1531 
1532 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1533 
1534 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1535 		m = sc->rl_ldata.rl_rx_mbuf[i];
1536 		total_len = RL_RXBYTES(cur_rx);
1537 		rxstat = le32toh(cur_rx->rl_cmdstat);
1538 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1539 
1540 		/* Invalidate the RX mbuf and unload its map */
1541 
1542 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1543 		    sc->rl_ldata.rl_rx_dmamap[i],
1544 		    BUS_DMASYNC_POSTWRITE);
1545 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1546 		    sc->rl_ldata.rl_rx_dmamap[i]);
1547 
1548 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1549 			m->m_len = MCLBYTES - ETHER_ALIGN;
1550 			if (sc->rl_head == NULL)
1551 				sc->rl_head = sc->rl_tail = m;
1552 			else {
1553 				m->m_flags &= ~M_PKTHDR;
1554 				sc->rl_tail->m_next = m;
1555 				sc->rl_tail = m;
1556 			}
1557 			re_newbuf(sc, i, NULL);
1558 			RL_DESC_INC(i);
1559 			continue;
1560 		}
1561 
1562 		/*
1563 		 * NOTE: for the 8139C+, the frame length field
1564 		 * is always 12 bits in size, but for the gigE chips,
1565 		 * it is 13 bits (since the max RX frame length is 16K).
1566 		 * Unfortunately, all 32 bits in the status word
1567 		 * were already used, so to make room for the extra
1568 		 * length bit, RealTek took out the 'frame alignment
1569 		 * error' bit and shifted the other status bits
1570 		 * over one slot. The OWN, EOR, FS and LS bits are
1571 		 * still in the same places. We have already extracted
1572 		 * the frame length and checked the OWN bit, so rather
1573 		 * than using an alternate bit mapping, we shift the
1574 		 * status bits one space to the right so we can evaluate
1575 		 * them using the 8169 status as though it was in the
1576 		 * same format as that of the 8139C+.
1577 		 */
1578 		if (sc->rl_type == RL_8169)
1579 			rxstat >>= 1;
1580 
1581 		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1582 			ifp->if_ierrors++;
1583 			/*
1584 			 * If this is part of a multi-fragment packet,
1585 			 * discard all the pieces.
1586 			 */
1587 			if (sc->rl_head != NULL) {
1588 				m_freem(sc->rl_head);
1589 				sc->rl_head = sc->rl_tail = NULL;
1590 			}
1591 			re_newbuf(sc, i, m);
1592 			RL_DESC_INC(i);
1593 			continue;
1594 		}
1595 
1596 		/*
1597 		 * If allocating a replacement mbuf fails,
1598 		 * reload the current one.
1599 		 */
1600 
1601 		if (re_newbuf(sc, i, NULL)) {
1602 			ifp->if_ierrors++;
1603 			if (sc->rl_head != NULL) {
1604 				m_freem(sc->rl_head);
1605 				sc->rl_head = sc->rl_tail = NULL;
1606 			}
1607 			re_newbuf(sc, i, m);
1608 			RL_DESC_INC(i);
1609 			continue;
1610 		}
1611 
1612 		RL_DESC_INC(i);
1613 
1614 		if (sc->rl_head != NULL) {
1615 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1616 			/*
1617 			 * Special case: if there's 4 bytes or less
1618 			 * in this buffer, the mbuf can be discarded:
1619 			 * the last 4 bytes is the CRC, which we don't
1620 			 * care about anyway.
1621 			 */
1622 			if (m->m_len <= ETHER_CRC_LEN) {
1623 				sc->rl_tail->m_len -=
1624 				    (ETHER_CRC_LEN - m->m_len);
1625 				m_freem(m);
1626 			} else {
1627 				m->m_len -= ETHER_CRC_LEN;
1628 				m->m_flags &= ~M_PKTHDR;
1629 				sc->rl_tail->m_next = m;
1630 			}
1631 			m = sc->rl_head;
1632 			sc->rl_head = sc->rl_tail = NULL;
1633 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1634 		} else
1635 			m->m_pkthdr.len = m->m_len =
1636 			    (total_len - ETHER_CRC_LEN);
1637 
1638 		ifp->if_ipackets++;
1639 		m->m_pkthdr.rcvif = ifp;
1640 
1641 		/* Do RX checksumming if enabled */
1642 
1643 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1644 
1645 			/* Check IP header checksum */
1646 			if (rxstat & RL_RDESC_STAT_PROTOID)
1647 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1648 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1649 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1650 
1651 			/* Check TCP/UDP checksum */
1652 			if ((RL_TCPPKT(rxstat) &&
1653 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1654 			    (RL_UDPPKT(rxstat) &&
1655 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1656 				m->m_pkthdr.csum_flags |=
1657 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1658 				m->m_pkthdr.csum_data = 0xffff;
1659 			}
1660 		}
1661 
1662 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1663 			VLAN_INPUT_TAG(ifp, m,
1664 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1665 		RL_UNLOCK(sc);
1666 		(*ifp->if_input)(ifp, m);
1667 		RL_LOCK(sc);
1668 	}
1669 
1670 	/* Flush the RX DMA ring */
1671 
1672 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1673 	    sc->rl_ldata.rl_rx_list_map,
1674 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1675 
1676 	sc->rl_ldata.rl_rx_prodidx = i;
1677 
1678 	return;
1679 }
1680 
1681 static void
1682 re_txeof(sc)
1683 	struct rl_softc		*sc;
1684 {
1685 	struct ifnet		*ifp;
1686 	u_int32_t		txstat;
1687 	int			idx;
1688 
1689 	ifp = &sc->arpcom.ac_if;
1690 	idx = sc->rl_ldata.rl_tx_considx;
1691 
1692 	/* Invalidate the TX descriptor list */
1693 
1694 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1695 	    sc->rl_ldata.rl_tx_list_map,
1696 	    BUS_DMASYNC_POSTREAD);
1697 
1698 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1699 
1700 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1701 		if (txstat & RL_TDESC_CMD_OWN)
1702 			break;
1703 
1704 		/*
1705 		 * We only stash mbufs in the last descriptor
1706 		 * in a fragment chain, which also happens to
1707 		 * be the only place where the TX status bits
1708 		 * are valid.
1709 		 */
1710 
1711 		if (txstat & RL_TDESC_CMD_EOF) {
1712 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1713 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1714 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1715 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1716 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1717 			    RL_TDESC_STAT_COLCNT))
1718 				ifp->if_collisions++;
1719 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1720 				ifp->if_oerrors++;
1721 			else
1722 				ifp->if_opackets++;
1723 		}
1724 		sc->rl_ldata.rl_tx_free++;
1725 		RL_DESC_INC(idx);
1726 	}
1727 
1728 	/* No changes made to the TX ring, so no flush needed */
1729 
1730 	if (idx != sc->rl_ldata.rl_tx_considx) {
1731 		sc->rl_ldata.rl_tx_considx = idx;
1732 		ifp->if_flags &= ~IFF_OACTIVE;
1733 		ifp->if_timer = 0;
1734 	}
1735 
1736 	/*
1737 	 * If not all descriptors have been released reaped yet,
1738 	 * reload the timer so that we will eventually get another
1739 	 * interrupt that will cause us to re-enter this routine.
1740 	 * This is done in case the transmitter has gone idle.
1741 	 */
1742 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1743                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1744 
1745 	return;
1746 }
1747 
1748 static void
1749 re_tick(xsc)
1750 	void			*xsc;
1751 {
1752 	struct rl_softc		*sc;
1753 	struct mii_data		*mii;
1754 
1755 	sc = xsc;
1756 	RL_LOCK(sc);
1757 	mii = device_get_softc(sc->rl_miibus);
1758 
1759 	mii_tick(mii);
1760 
1761 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1762 	RL_UNLOCK(sc);
1763 
1764 	return;
1765 }
1766 
1767 #ifdef DEVICE_POLLING
1768 static void
1769 re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1770 {
1771 	struct rl_softc *sc = ifp->if_softc;
1772 
1773 	RL_LOCK(sc);
1774 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1775 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1776 		goto done;
1777 	}
1778 
1779 	sc->rxcycles = count;
1780 	re_rxeof(sc);
1781 	re_txeof(sc);
1782 
1783 	if (ifp->if_snd.ifq_head != NULL)
1784 		(*ifp->if_start)(ifp);
1785 
1786 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1787 		u_int16_t       status;
1788 
1789 		status = CSR_READ_2(sc, RL_ISR);
1790 		if (status == 0xffff)
1791 			goto done;
1792 		if (status)
1793 			CSR_WRITE_2(sc, RL_ISR, status);
1794 
1795 		/*
1796 		 * XXX check behaviour on receiver stalls.
1797 		 */
1798 
1799 		if (status & RL_ISR_SYSTEM_ERR) {
1800 			re_reset(sc);
1801 			re_init(sc);
1802 		}
1803 	}
1804 done:
1805 	RL_UNLOCK(sc);
1806 }
1807 #endif /* DEVICE_POLLING */
1808 
1809 static void
1810 re_intr(arg)
1811 	void			*arg;
1812 {
1813 	struct rl_softc		*sc;
1814 	struct ifnet		*ifp;
1815 	u_int16_t		status;
1816 
1817 	sc = arg;
1818 
1819 	if (sc->suspended) {
1820 		return;
1821 	}
1822 
1823 	RL_LOCK(sc);
1824 	ifp = &sc->arpcom.ac_if;
1825 
1826 	if (!(ifp->if_flags & IFF_UP)) {
1827 		RL_UNLOCK(sc);
1828 		return;
1829 	}
1830 
1831 #ifdef DEVICE_POLLING
1832 	if  (ifp->if_flags & IFF_POLLING)
1833 		goto done;
1834 	if (ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1835 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1836 		re_poll(ifp, 0, 1);
1837 		goto done;
1838 	}
1839 #endif /* DEVICE_POLLING */
1840 
1841 	for (;;) {
1842 
1843 		status = CSR_READ_2(sc, RL_ISR);
1844 		/* If the card has gone away the read returns 0xffff. */
1845 		if (status == 0xffff)
1846 			break;
1847 		if (status)
1848 			CSR_WRITE_2(sc, RL_ISR, status);
1849 
1850 		if ((status & RL_INTRS_CPLUS) == 0)
1851 			break;
1852 
1853 		if (status & RL_ISR_RX_OK)
1854 			re_rxeof(sc);
1855 
1856 		if (status & RL_ISR_RX_ERR)
1857 			re_rxeof(sc);
1858 
1859 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1860 		    (status & RL_ISR_TX_ERR) ||
1861 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1862 			re_txeof(sc);
1863 
1864 		if (status & RL_ISR_SYSTEM_ERR) {
1865 			re_reset(sc);
1866 			re_init(sc);
1867 		}
1868 
1869 		if (status & RL_ISR_LINKCHG) {
1870 			untimeout(re_tick, sc, sc->rl_stat_ch);
1871 			re_tick(sc);
1872 		}
1873 	}
1874 
1875 	if (ifp->if_snd.ifq_head != NULL)
1876 		(*ifp->if_start)(ifp);
1877 
1878 #ifdef DEVICE_POLLING
1879 done:
1880 #endif
1881 	RL_UNLOCK(sc);
1882 
1883 	return;
1884 }
1885 
1886 static int
1887 re_encap(sc, m_head, idx)
1888 	struct rl_softc		*sc;
1889 	struct mbuf		*m_head;
1890 	int			*idx;
1891 {
1892 	struct mbuf		*m_new = NULL;
1893 	struct rl_dmaload_arg	arg;
1894 	bus_dmamap_t		map;
1895 	int			error;
1896 	struct m_tag		*mtag;
1897 
1898 	if (sc->rl_ldata.rl_tx_free <= 4)
1899 		return(EFBIG);
1900 
1901 	/*
1902 	 * Set up checksum offload. Note: checksum offload bits must
1903 	 * appear in all descriptors of a multi-descriptor transmit
1904 	 * attempt. (This is according to testing done with an 8169
1905 	 * chip. I'm not sure if this is a requirement or a bug.)
1906 	 */
1907 
1908 	arg.rl_flags = 0;
1909 
1910 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1911 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1912 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1913 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1914 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1915 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1916 
1917 	arg.sc = sc;
1918 	arg.rl_idx = *idx;
1919 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1920 	if (arg.rl_maxsegs > 4)
1921 		arg.rl_maxsegs -= 4;
1922 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1923 
1924 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1925 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1926 	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1927 
1928 	if (error && error != EFBIG) {
1929 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1930 		return(ENOBUFS);
1931 	}
1932 
1933 	/* Too many segments to map, coalesce into a single mbuf */
1934 
1935 	if (error || arg.rl_maxsegs == 0) {
1936 		m_new = m_defrag(m_head, M_DONTWAIT);
1937 		if (m_new == NULL)
1938 			return(1);
1939 		else
1940 			m_head = m_new;
1941 
1942 		arg.sc = sc;
1943 		arg.rl_idx = *idx;
1944 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1945 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1946 
1947 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1948 		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1949 		if (error) {
1950 			printf("re%d: can't map mbuf (error %d)\n",
1951 			    sc->rl_unit, error);
1952 			return(EFBIG);
1953 		}
1954 	}
1955 
1956 	/*
1957 	 * Insure that the map for this transmission
1958 	 * is placed at the array index of the last descriptor
1959 	 * in this chain.
1960 	 */
1961 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1962 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1963 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1964 
1965 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1966 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1967 
1968 	/*
1969 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1970 	 * appear in the first descriptor of a multi-descriptor
1971 	 * transmission attempt.
1972 	 */
1973 
1974 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1975 	if (mtag != NULL)
1976 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1977 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1978 
1979 	/* Transfer ownership of packet to the chip. */
1980 
1981 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1982 	    htole32(RL_TDESC_CMD_OWN);
1983 	if (*idx != arg.rl_idx)
1984 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1985 		    htole32(RL_TDESC_CMD_OWN);
1986 
1987 	RL_DESC_INC(arg.rl_idx);
1988 	*idx = arg.rl_idx;
1989 
1990 	return(0);
1991 }
1992 
1993 /*
1994  * Main transmit routine for C+ and gigE NICs.
1995  */
1996 
1997 static void
1998 re_start(ifp)
1999 	struct ifnet		*ifp;
2000 {
2001 	struct rl_softc		*sc;
2002 	struct mbuf		*m_head = NULL;
2003 	int			idx;
2004 
2005 	sc = ifp->if_softc;
2006 	RL_LOCK(sc);
2007 
2008 	idx = sc->rl_ldata.rl_tx_prodidx;
2009 
2010 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2011 		IF_DEQUEUE(&ifp->if_snd, m_head);
2012 		if (m_head == NULL)
2013 			break;
2014 
2015 		if (re_encap(sc, m_head, &idx)) {
2016 			IF_PREPEND(&ifp->if_snd, m_head);
2017 			ifp->if_flags |= IFF_OACTIVE;
2018 			break;
2019 		}
2020 
2021 		/*
2022 		 * If there's a BPF listener, bounce a copy of this frame
2023 		 * to him.
2024 		 */
2025 		BPF_MTAP(ifp, m_head);
2026 	}
2027 
2028 	/* Flush the TX descriptors */
2029 
2030 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2031 	    sc->rl_ldata.rl_tx_list_map,
2032 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2033 
2034 	sc->rl_ldata.rl_tx_prodidx = idx;
2035 
2036 	/*
2037 	 * RealTek put the TX poll request register in a different
2038 	 * location on the 8169 gigE chip. I don't know why.
2039 	 */
2040 
2041 	if (sc->rl_type == RL_8169)
2042 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2043 	else
2044 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2045 
2046 	/*
2047 	 * Use the countdown timer for interrupt moderation.
2048 	 * 'TX done' interrupts are disabled. Instead, we reset the
2049 	 * countdown timer, which will begin counting until it hits
2050 	 * the value in the TIMERINT register, and then trigger an
2051 	 * interrupt. Each time we write to the TIMERCNT register,
2052 	 * the timer count is reset to 0.
2053 	 */
2054 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2055 
2056 	RL_UNLOCK(sc);
2057 
2058 	/*
2059 	 * Set a timeout in case the chip goes out to lunch.
2060 	 */
2061 	ifp->if_timer = 5;
2062 
2063 	return;
2064 }
2065 
2066 static void
2067 re_init(xsc)
2068 	void			*xsc;
2069 {
2070 	struct rl_softc		*sc = xsc;
2071 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2072 	struct mii_data		*mii;
2073 	u_int32_t		rxcfg = 0;
2074 
2075 	RL_LOCK(sc);
2076 	mii = device_get_softc(sc->rl_miibus);
2077 
2078 	/*
2079 	 * Cancel pending I/O and free all RX/TX buffers.
2080 	 */
2081 	re_stop(sc);
2082 
2083 	/*
2084 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2085 	 * RX checksum offload. We must configure the C+ register
2086 	 * before all others.
2087 	 */
2088 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2089 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2090 	    RL_CPLUSCMD_VLANSTRIP|
2091 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2092 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2093 
2094 	/*
2095 	 * Init our MAC address.  Even though the chipset
2096 	 * documentation doesn't mention it, we need to enter "Config
2097 	 * register write enable" mode to modify the ID registers.
2098 	 */
2099 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2100 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2101 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2102 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2103 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2104 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2105 
2106 	/*
2107 	 * For C+ mode, initialize the RX descriptors and mbufs.
2108 	 */
2109 	re_rx_list_init(sc);
2110 	re_tx_list_init(sc);
2111 
2112 	/*
2113 	 * Enable transmit and receive.
2114 	 */
2115 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2116 
2117 	/*
2118 	 * Set the initial TX and RX configuration.
2119 	 */
2120 	if (sc->rl_testmode) {
2121 		if (sc->rl_type == RL_8169)
2122 			CSR_WRITE_4(sc, RL_TXCFG,
2123 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2124 		else
2125 			CSR_WRITE_4(sc, RL_TXCFG,
2126 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2127 	} else
2128 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2129 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2130 
2131 	/* Set the individual bit to receive frames for this host only. */
2132 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2133 	rxcfg |= RL_RXCFG_RX_INDIV;
2134 
2135 	/* If we want promiscuous mode, set the allframes bit. */
2136 	if (ifp->if_flags & IFF_PROMISC) {
2137 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2138 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2139 	} else {
2140 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2141 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2142 	}
2143 
2144 	/*
2145 	 * Set capture broadcast bit to capture broadcast frames.
2146 	 */
2147 	if (ifp->if_flags & IFF_BROADCAST) {
2148 		rxcfg |= RL_RXCFG_RX_BROAD;
2149 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2150 	} else {
2151 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2152 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2153 	}
2154 
2155 	/*
2156 	 * Program the multicast filter, if necessary.
2157 	 */
2158 	re_setmulti(sc);
2159 
2160 #ifdef DEVICE_POLLING
2161 	/*
2162 	 * Disable interrupts if we are polling.
2163 	 */
2164 	if (ifp->if_flags & IFF_POLLING)
2165 		CSR_WRITE_2(sc, RL_IMR, 0);
2166 	else	/* otherwise ... */
2167 #endif /* DEVICE_POLLING */
2168 	/*
2169 	 * Enable interrupts.
2170 	 */
2171 	if (sc->rl_testmode)
2172 		CSR_WRITE_2(sc, RL_IMR, 0);
2173 	else
2174 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2175 
2176 	/* Set initial TX threshold */
2177 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2178 
2179 	/* Start RX/TX process. */
2180 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2181 #ifdef notdef
2182 	/* Enable receiver and transmitter. */
2183 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2184 #endif
2185 	/*
2186 	 * Load the addresses of the RX and TX lists into the chip.
2187 	 */
2188 
2189 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2190 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2191 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2192 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2193 
2194 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2195 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2196 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2197 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2198 
2199 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2200 
2201 	/*
2202 	 * Initialize the timer interrupt register so that
2203 	 * a timer interrupt will be generated once the timer
2204 	 * reaches a certain number of ticks. The timer is
2205 	 * reloaded on each transmit. This gives us TX interrupt
2206 	 * moderation, which dramatically improves TX frame rate.
2207 	 */
2208 
2209 	if (sc->rl_type == RL_8169)
2210 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2211 	else
2212 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2213 
2214 	/*
2215 	 * For 8169 gigE NICs, set the max allowed RX packet
2216 	 * size so we can receive jumbo frames.
2217 	 */
2218 	if (sc->rl_type == RL_8169)
2219 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2220 
2221 	if (sc->rl_testmode) {
2222 		RL_UNLOCK(sc);
2223 		return;
2224 	}
2225 
2226 	mii_mediachg(mii);
2227 
2228 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2229 
2230 	ifp->if_flags |= IFF_RUNNING;
2231 	ifp->if_flags &= ~IFF_OACTIVE;
2232 
2233 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2234 	RL_UNLOCK(sc);
2235 
2236 	return;
2237 }
2238 
2239 /*
2240  * Set media options.
2241  */
2242 static int
2243 re_ifmedia_upd(ifp)
2244 	struct ifnet		*ifp;
2245 {
2246 	struct rl_softc		*sc;
2247 	struct mii_data		*mii;
2248 
2249 	sc = ifp->if_softc;
2250 	mii = device_get_softc(sc->rl_miibus);
2251 	mii_mediachg(mii);
2252 
2253 	return(0);
2254 }
2255 
2256 /*
2257  * Report current media status.
2258  */
2259 static void
2260 re_ifmedia_sts(ifp, ifmr)
2261 	struct ifnet		*ifp;
2262 	struct ifmediareq	*ifmr;
2263 {
2264 	struct rl_softc		*sc;
2265 	struct mii_data		*mii;
2266 
2267 	sc = ifp->if_softc;
2268 	mii = device_get_softc(sc->rl_miibus);
2269 
2270 	mii_pollstat(mii);
2271 	ifmr->ifm_active = mii->mii_media_active;
2272 	ifmr->ifm_status = mii->mii_media_status;
2273 
2274 	return;
2275 }
2276 
2277 static int
2278 re_ioctl(ifp, command, data)
2279 	struct ifnet		*ifp;
2280 	u_long			command;
2281 	caddr_t			data;
2282 {
2283 	struct rl_softc		*sc = ifp->if_softc;
2284 	struct ifreq		*ifr = (struct ifreq *) data;
2285 	struct mii_data		*mii;
2286 	int			error = 0;
2287 
2288 	RL_LOCK(sc);
2289 
2290 	switch(command) {
2291 	case SIOCSIFMTU:
2292 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2293 			error = EINVAL;
2294 		ifp->if_mtu = ifr->ifr_mtu;
2295 		break;
2296 	case SIOCSIFFLAGS:
2297 		if (ifp->if_flags & IFF_UP) {
2298 			re_init(sc);
2299 		} else {
2300 			if (ifp->if_flags & IFF_RUNNING)
2301 				re_stop(sc);
2302 		}
2303 		error = 0;
2304 		break;
2305 	case SIOCADDMULTI:
2306 	case SIOCDELMULTI:
2307 		re_setmulti(sc);
2308 		error = 0;
2309 		break;
2310 	case SIOCGIFMEDIA:
2311 	case SIOCSIFMEDIA:
2312 		mii = device_get_softc(sc->rl_miibus);
2313 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2314 		break;
2315 	case SIOCSIFCAP:
2316 		ifp->if_capenable = ifr->ifr_reqcap;
2317 		if (ifp->if_capenable & IFCAP_TXCSUM)
2318 			ifp->if_hwassist = RE_CSUM_FEATURES;
2319 		else
2320 			ifp->if_hwassist = 0;
2321 		if (ifp->if_flags & IFF_RUNNING)
2322 			re_init(sc);
2323 		break;
2324 	default:
2325 		error = ether_ioctl(ifp, command, data);
2326 		break;
2327 	}
2328 
2329 	RL_UNLOCK(sc);
2330 
2331 	return(error);
2332 }
2333 
2334 static void
2335 re_watchdog(ifp)
2336 	struct ifnet		*ifp;
2337 {
2338 	struct rl_softc		*sc;
2339 
2340 	sc = ifp->if_softc;
2341 	RL_LOCK(sc);
2342 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2343 	ifp->if_oerrors++;
2344 
2345 	re_txeof(sc);
2346 	re_rxeof(sc);
2347 
2348 	re_init(sc);
2349 
2350 	RL_UNLOCK(sc);
2351 
2352 	return;
2353 }
2354 
2355 /*
2356  * Stop the adapter and free any mbufs allocated to the
2357  * RX and TX lists.
2358  */
2359 static void
2360 re_stop(sc)
2361 	struct rl_softc		*sc;
2362 {
2363 	register int		i;
2364 	struct ifnet		*ifp;
2365 
2366 	RL_LOCK(sc);
2367 	ifp = &sc->arpcom.ac_if;
2368 	ifp->if_timer = 0;
2369 
2370 	untimeout(re_tick, sc, sc->rl_stat_ch);
2371 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2372 #ifdef DEVICE_POLLING
2373 	ether_poll_deregister(ifp);
2374 #endif /* DEVICE_POLLING */
2375 
2376 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2377 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2378 
2379 	if (sc->rl_head != NULL) {
2380 		m_freem(sc->rl_head);
2381 		sc->rl_head = sc->rl_tail = NULL;
2382 	}
2383 
2384 	/* Free the TX list buffers. */
2385 
2386 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2387 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2388 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2389 			    sc->rl_ldata.rl_tx_dmamap[i]);
2390 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2391 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2392 		}
2393 	}
2394 
2395 	/* Free the RX list buffers. */
2396 
2397 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2398 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2399 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2400 			    sc->rl_ldata.rl_rx_dmamap[i]);
2401 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2402 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2403 		}
2404 	}
2405 
2406 	RL_UNLOCK(sc);
2407 	return;
2408 }
2409 
2410 /*
2411  * Device suspend routine.  Stop the interface and save some PCI
2412  * settings in case the BIOS doesn't restore them properly on
2413  * resume.
2414  */
2415 static int
2416 re_suspend(dev)
2417 	device_t		dev;
2418 {
2419 	register int		i;
2420 	struct rl_softc		*sc;
2421 
2422 	sc = device_get_softc(dev);
2423 
2424 	re_stop(sc);
2425 
2426 	for (i = 0; i < 5; i++)
2427 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2428 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2429 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2430 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2431 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2432 
2433 	sc->suspended = 1;
2434 
2435 	return (0);
2436 }
2437 
2438 /*
2439  * Device resume routine.  Restore some PCI settings in case the BIOS
2440  * doesn't, re-enable busmastering, and restart the interface if
2441  * appropriate.
2442  */
2443 static int
2444 re_resume(dev)
2445 	device_t		dev;
2446 {
2447 	register int		i;
2448 	struct rl_softc		*sc;
2449 	struct ifnet		*ifp;
2450 
2451 	sc = device_get_softc(dev);
2452 	ifp = &sc->arpcom.ac_if;
2453 
2454 	/* better way to do this? */
2455 	for (i = 0; i < 5; i++)
2456 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2457 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2458 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2459 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2460 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2461 
2462 	/* reenable busmastering */
2463 	pci_enable_busmaster(dev);
2464 	pci_enable_io(dev, RL_RES);
2465 
2466 	/* reinitialize interface if necessary */
2467 	if (ifp->if_flags & IFF_UP)
2468 		re_init(sc);
2469 
2470 	sc->suspended = 0;
2471 
2472 	return (0);
2473 }
2474 
2475 /*
2476  * Stop all chip I/O so that the kernel's probe routines don't
2477  * get confused by errant DMAs when rebooting.
2478  */
2479 static void
2480 re_shutdown(dev)
2481 	device_t		dev;
2482 {
2483 	struct rl_softc		*sc;
2484 
2485 	sc = device_get_softc(dev);
2486 
2487 	re_stop(sc);
2488 
2489 	return;
2490 }
2491