xref: /freebsd/sys/dev/re/if_re.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/module.h>
118 #include <sys/kernel.h>
119 #include <sys/socket.h>
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/ethernet.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_types.h>
127 #include <net/if_vlan_var.h>
128 
129 #include <net/bpf.h>
130 
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 
142 MODULE_DEPEND(re, pci, 1, 1, 1);
143 MODULE_DEPEND(re, ether, 1, 1, 1);
144 MODULE_DEPEND(re, miibus, 1, 1, 1);
145 
146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
147 #include "miibus_if.h"
148 
149 /*
150  * Default to using PIO access for this driver.
151  */
152 #define RE_USEIOSPACE
153 
154 #include <pci/if_rlreg.h>
155 
156 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static struct rl_type re_devs[] = {
162 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
163 		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
164 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
165 		"RealTek 8139C+ 10/100BaseTX" },
166 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
167 		"RealTek 8169 Gigabit Ethernet" },
168 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
169 		"RealTek 8169S Single-chip Gigabit Ethernet" },
170 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB,
171 		"RealTek 8169SB Single-chip Gigabit Ethernet" },
172 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
173 		"RealTek 8110S Single-chip Gigabit Ethernet" },
174 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
175 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
176 	{ 0, 0, 0, NULL }
177 };
178 
179 static struct rl_hwrev re_hwrevs[] = {
180 	{ RL_HWREV_8139, RL_8139,  "" },
181 	{ RL_HWREV_8139A, RL_8139, "A" },
182 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
183 	{ RL_HWREV_8139B, RL_8139, "B" },
184 	{ RL_HWREV_8130, RL_8139, "8130" },
185 	{ RL_HWREV_8139C, RL_8139, "C" },
186 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
187 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
188 	{ RL_HWREV_8169, RL_8169, "8169"},
189 	{ RL_HWREV_8169S, RL_8169, "8169S"},
190 	{ RL_HWREV_8169SB, RL_8169, "8169SB"},
191 	{ RL_HWREV_8110S, RL_8169, "8110S"},
192 	{ RL_HWREV_8100, RL_8139, "8100"},
193 	{ RL_HWREV_8101, RL_8139, "8101"},
194 	{ 0, 0, NULL }
195 };
196 
197 static int re_probe		(device_t);
198 static int re_attach		(device_t);
199 static int re_detach		(device_t);
200 
201 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
202 
203 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
204 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
205 				    bus_size_t, int);
206 static int re_allocmem		(device_t, struct rl_softc *);
207 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
208 static int re_rx_list_init	(struct rl_softc *);
209 static int re_tx_list_init	(struct rl_softc *);
210 #ifdef RE_FIXUP_RX
211 static __inline void re_fixup_rx
212 				(struct mbuf *);
213 #endif
214 static void re_rxeof		(struct rl_softc *);
215 static void re_txeof		(struct rl_softc *);
216 #ifdef DEVICE_POLLING
217 static void re_poll		(struct ifnet *, enum poll_cmd, int);
218 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
219 #endif
220 static void re_intr		(void *);
221 static void re_tick		(void *);
222 static void re_tick_locked	(struct rl_softc *);
223 static void re_start		(struct ifnet *);
224 static void re_start_locked	(struct ifnet *);
225 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
226 static void re_init		(void *);
227 static void re_init_locked	(struct rl_softc *);
228 static void re_stop		(struct rl_softc *);
229 static void re_watchdog		(struct ifnet *);
230 static int re_suspend		(device_t);
231 static int re_resume		(device_t);
232 static void re_shutdown		(device_t);
233 static int re_ifmedia_upd	(struct ifnet *);
234 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
235 
236 static void re_eeprom_putbyte	(struct rl_softc *, int);
237 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
238 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
239 static int re_gmii_readreg	(device_t, int, int);
240 static int re_gmii_writereg	(device_t, int, int, int);
241 
242 static int re_miibus_readreg	(device_t, int, int);
243 static int re_miibus_writereg	(device_t, int, int, int);
244 static void re_miibus_statchg	(device_t);
245 
246 static void re_setmulti		(struct rl_softc *);
247 static void re_reset		(struct rl_softc *);
248 
249 static int re_diag		(struct rl_softc *);
250 
251 #ifdef RE_USEIOSPACE
252 #define RL_RES			SYS_RES_IOPORT
253 #define RL_RID			RL_PCI_LOIO
254 #else
255 #define RL_RES			SYS_RES_MEMORY
256 #define RL_RID			RL_PCI_LOMEM
257 #endif
258 
259 static device_method_t re_methods[] = {
260 	/* Device interface */
261 	DEVMETHOD(device_probe,		re_probe),
262 	DEVMETHOD(device_attach,	re_attach),
263 	DEVMETHOD(device_detach,	re_detach),
264 	DEVMETHOD(device_suspend,	re_suspend),
265 	DEVMETHOD(device_resume,	re_resume),
266 	DEVMETHOD(device_shutdown,	re_shutdown),
267 
268 	/* bus interface */
269 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
270 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
271 
272 	/* MII interface */
273 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
274 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
275 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
276 
277 	{ 0, 0 }
278 };
279 
280 static driver_t re_driver = {
281 	"re",
282 	re_methods,
283 	sizeof(struct rl_softc)
284 };
285 
286 static devclass_t re_devclass;
287 
288 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
289 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
290 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
291 
292 #define EE_SET(x)					\
293 	CSR_WRITE_1(sc, RL_EECMD,			\
294 		CSR_READ_1(sc, RL_EECMD) | x)
295 
296 #define EE_CLR(x)					\
297 	CSR_WRITE_1(sc, RL_EECMD,			\
298 		CSR_READ_1(sc, RL_EECMD) & ~x)
299 
300 /*
301  * Send a read command and address to the EEPROM, check for ACK.
302  */
303 static void
304 re_eeprom_putbyte(sc, addr)
305 	struct rl_softc		*sc;
306 	int			addr;
307 {
308 	register int		d, i;
309 
310 	d = addr | sc->rl_eecmd_read;
311 
312 	/*
313 	 * Feed in each bit and strobe the clock.
314 	 */
315 	for (i = 0x400; i; i >>= 1) {
316 		if (d & i) {
317 			EE_SET(RL_EE_DATAIN);
318 		} else {
319 			EE_CLR(RL_EE_DATAIN);
320 		}
321 		DELAY(100);
322 		EE_SET(RL_EE_CLK);
323 		DELAY(150);
324 		EE_CLR(RL_EE_CLK);
325 		DELAY(100);
326 	}
327 }
328 
329 /*
330  * Read a word of data stored in the EEPROM at address 'addr.'
331  */
332 static void
333 re_eeprom_getword(sc, addr, dest)
334 	struct rl_softc		*sc;
335 	int			addr;
336 	u_int16_t		*dest;
337 {
338 	register int		i;
339 	u_int16_t		word = 0;
340 
341 	/* Enter EEPROM access mode. */
342 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
343 
344 	/*
345 	 * Send address of word we want to read.
346 	 */
347 	re_eeprom_putbyte(sc, addr);
348 
349 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
350 
351 	/*
352 	 * Start reading bits from EEPROM.
353 	 */
354 	for (i = 0x8000; i; i >>= 1) {
355 		EE_SET(RL_EE_CLK);
356 		DELAY(100);
357 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
358 			word |= i;
359 		EE_CLR(RL_EE_CLK);
360 		DELAY(100);
361 	}
362 
363 	/* Turn off EEPROM access mode. */
364 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
365 
366 	*dest = word;
367 }
368 
369 /*
370  * Read a sequence of words from the EEPROM.
371  */
372 static void
373 re_read_eeprom(sc, dest, off, cnt, swap)
374 	struct rl_softc		*sc;
375 	caddr_t			dest;
376 	int			off;
377 	int			cnt;
378 	int			swap;
379 {
380 	int			i;
381 	u_int16_t		word = 0, *ptr;
382 
383 	for (i = 0; i < cnt; i++) {
384 		re_eeprom_getword(sc, off + i, &word);
385 		ptr = (u_int16_t *)(dest + (i * 2));
386 		if (swap)
387 			*ptr = ntohs(word);
388 		else
389 			*ptr = word;
390 	}
391 }
392 
393 static int
394 re_gmii_readreg(dev, phy, reg)
395 	device_t		dev;
396 	int			phy, reg;
397 {
398 	struct rl_softc		*sc;
399 	u_int32_t		rval;
400 	int			i;
401 
402 	if (phy != 1)
403 		return (0);
404 
405 	sc = device_get_softc(dev);
406 
407 	/* Let the rgephy driver read the GMEDIASTAT register */
408 
409 	if (reg == RL_GMEDIASTAT) {
410 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
411 		return (rval);
412 	}
413 
414 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
415 	DELAY(1000);
416 
417 	for (i = 0; i < RL_TIMEOUT; i++) {
418 		rval = CSR_READ_4(sc, RL_PHYAR);
419 		if (rval & RL_PHYAR_BUSY)
420 			break;
421 		DELAY(100);
422 	}
423 
424 	if (i == RL_TIMEOUT) {
425 		printf ("re%d: PHY read failed\n", sc->rl_unit);
426 		return (0);
427 	}
428 
429 	return (rval & RL_PHYAR_PHYDATA);
430 }
431 
432 static int
433 re_gmii_writereg(dev, phy, reg, data)
434 	device_t		dev;
435 	int			phy, reg, data;
436 {
437 	struct rl_softc		*sc;
438 	u_int32_t		rval;
439 	int			i;
440 
441 	sc = device_get_softc(dev);
442 
443 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
444 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
445 	DELAY(1000);
446 
447 	for (i = 0; i < RL_TIMEOUT; i++) {
448 		rval = CSR_READ_4(sc, RL_PHYAR);
449 		if (!(rval & RL_PHYAR_BUSY))
450 			break;
451 		DELAY(100);
452 	}
453 
454 	if (i == RL_TIMEOUT) {
455 		printf ("re%d: PHY write failed\n", sc->rl_unit);
456 		return (0);
457 	}
458 
459 	return (0);
460 }
461 
462 static int
463 re_miibus_readreg(dev, phy, reg)
464 	device_t		dev;
465 	int			phy, reg;
466 {
467 	struct rl_softc		*sc;
468 	u_int16_t		rval = 0;
469 	u_int16_t		re8139_reg = 0;
470 
471 	sc = device_get_softc(dev);
472 
473 	if (sc->rl_type == RL_8169) {
474 		rval = re_gmii_readreg(dev, phy, reg);
475 		return (rval);
476 	}
477 
478 	/* Pretend the internal PHY is only at address 0 */
479 	if (phy) {
480 		return (0);
481 	}
482 	switch (reg) {
483 	case MII_BMCR:
484 		re8139_reg = RL_BMCR;
485 		break;
486 	case MII_BMSR:
487 		re8139_reg = RL_BMSR;
488 		break;
489 	case MII_ANAR:
490 		re8139_reg = RL_ANAR;
491 		break;
492 	case MII_ANER:
493 		re8139_reg = RL_ANER;
494 		break;
495 	case MII_ANLPAR:
496 		re8139_reg = RL_LPAR;
497 		break;
498 	case MII_PHYIDR1:
499 	case MII_PHYIDR2:
500 		return (0);
501 	/*
502 	 * Allow the rlphy driver to read the media status
503 	 * register. If we have a link partner which does not
504 	 * support NWAY, this is the register which will tell
505 	 * us the results of parallel detection.
506 	 */
507 	case RL_MEDIASTAT:
508 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
509 		return (rval);
510 	default:
511 		printf("re%d: bad phy register\n", sc->rl_unit);
512 		return (0);
513 	}
514 	rval = CSR_READ_2(sc, re8139_reg);
515 	return (rval);
516 }
517 
518 static int
519 re_miibus_writereg(dev, phy, reg, data)
520 	device_t		dev;
521 	int			phy, reg, data;
522 {
523 	struct rl_softc		*sc;
524 	u_int16_t		re8139_reg = 0;
525 	int			rval = 0;
526 
527 	sc = device_get_softc(dev);
528 
529 	if (sc->rl_type == RL_8169) {
530 		rval = re_gmii_writereg(dev, phy, reg, data);
531 		return (rval);
532 	}
533 
534 	/* Pretend the internal PHY is only at address 0 */
535 	if (phy)
536 		return (0);
537 
538 	switch (reg) {
539 	case MII_BMCR:
540 		re8139_reg = RL_BMCR;
541 		break;
542 	case MII_BMSR:
543 		re8139_reg = RL_BMSR;
544 		break;
545 	case MII_ANAR:
546 		re8139_reg = RL_ANAR;
547 		break;
548 	case MII_ANER:
549 		re8139_reg = RL_ANER;
550 		break;
551 	case MII_ANLPAR:
552 		re8139_reg = RL_LPAR;
553 		break;
554 	case MII_PHYIDR1:
555 	case MII_PHYIDR2:
556 		return (0);
557 		break;
558 	default:
559 		printf("re%d: bad phy register\n", sc->rl_unit);
560 		return (0);
561 	}
562 	CSR_WRITE_2(sc, re8139_reg, data);
563 	return (0);
564 }
565 
566 static void
567 re_miibus_statchg(dev)
568 	device_t		dev;
569 {
570 
571 }
572 
573 /*
574  * Program the 64-bit multicast hash filter.
575  */
576 static void
577 re_setmulti(sc)
578 	struct rl_softc		*sc;
579 {
580 	struct ifnet		*ifp;
581 	int			h = 0;
582 	u_int32_t		hashes[2] = { 0, 0 };
583 	struct ifmultiaddr	*ifma;
584 	u_int32_t		rxfilt;
585 	int			mcnt = 0;
586 
587 	RL_LOCK_ASSERT(sc);
588 
589 	ifp = sc->rl_ifp;
590 
591 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
592 
593 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
594 		rxfilt |= RL_RXCFG_RX_MULTI;
595 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
596 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
597 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
598 		return;
599 	}
600 
601 	/* first, zot all the existing hash bits */
602 	CSR_WRITE_4(sc, RL_MAR0, 0);
603 	CSR_WRITE_4(sc, RL_MAR4, 0);
604 
605 	/* now program new ones */
606 	IF_ADDR_LOCK(ifp);
607 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
608 		if (ifma->ifma_addr->sa_family != AF_LINK)
609 			continue;
610 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
611 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
612 		if (h < 32)
613 			hashes[0] |= (1 << h);
614 		else
615 			hashes[1] |= (1 << (h - 32));
616 		mcnt++;
617 	}
618 	IF_ADDR_UNLOCK(ifp);
619 
620 	if (mcnt)
621 		rxfilt |= RL_RXCFG_RX_MULTI;
622 	else
623 		rxfilt &= ~RL_RXCFG_RX_MULTI;
624 
625 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
626 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
627 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
628 }
629 
630 static void
631 re_reset(sc)
632 	struct rl_softc		*sc;
633 {
634 	register int		i;
635 
636 	RL_LOCK_ASSERT(sc);
637 
638 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
639 
640 	for (i = 0; i < RL_TIMEOUT; i++) {
641 		DELAY(10);
642 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
643 			break;
644 	}
645 	if (i == RL_TIMEOUT)
646 		printf("re%d: reset never completed!\n", sc->rl_unit);
647 
648 	CSR_WRITE_1(sc, 0x82, 1);
649 }
650 
651 /*
652  * The following routine is designed to test for a defect on some
653  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
654  * lines connected to the bus, however for a 32-bit only card, they
655  * should be pulled high. The result of this defect is that the
656  * NIC will not work right if you plug it into a 64-bit slot: DMA
657  * operations will be done with 64-bit transfers, which will fail
658  * because the 64-bit data lines aren't connected.
659  *
660  * There's no way to work around this (short of talking a soldering
661  * iron to the board), however we can detect it. The method we use
662  * here is to put the NIC into digital loopback mode, set the receiver
663  * to promiscuous mode, and then try to send a frame. We then compare
664  * the frame data we sent to what was received. If the data matches,
665  * then the NIC is working correctly, otherwise we know the user has
666  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
667  * slot. In the latter case, there's no way the NIC can work correctly,
668  * so we print out a message on the console and abort the device attach.
669  */
670 
671 static int
672 re_diag(sc)
673 	struct rl_softc		*sc;
674 {
675 	struct ifnet		*ifp = sc->rl_ifp;
676 	struct mbuf		*m0;
677 	struct ether_header	*eh;
678 	struct rl_desc		*cur_rx;
679 	u_int16_t		status;
680 	u_int32_t		rxstat;
681 	int			total_len, i, error = 0;
682 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
683 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
684 
685 	/* Allocate a single mbuf */
686 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
687 	if (m0 == NULL)
688 		return (ENOBUFS);
689 
690 	RL_LOCK(sc);
691 
692 	/*
693 	 * Initialize the NIC in test mode. This sets the chip up
694 	 * so that it can send and receive frames, but performs the
695 	 * following special functions:
696 	 * - Puts receiver in promiscuous mode
697 	 * - Enables digital loopback mode
698 	 * - Leaves interrupts turned off
699 	 */
700 
701 	ifp->if_flags |= IFF_PROMISC;
702 	sc->rl_testmode = 1;
703 	re_init_locked(sc);
704 	re_stop(sc);
705 	DELAY(100000);
706 	re_init_locked(sc);
707 
708 	/* Put some data in the mbuf */
709 
710 	eh = mtod(m0, struct ether_header *);
711 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
712 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
713 	eh->ether_type = htons(ETHERTYPE_IP);
714 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
715 
716 	/*
717 	 * Queue the packet, start transmission.
718 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
719 	 */
720 
721 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
722 	RL_UNLOCK(sc);
723 	/* XXX: re_diag must not be called when in ALTQ mode */
724 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
725 	RL_LOCK(sc);
726 	m0 = NULL;
727 
728 	/* Wait for it to propagate through the chip */
729 
730 	DELAY(100000);
731 	for (i = 0; i < RL_TIMEOUT; i++) {
732 		status = CSR_READ_2(sc, RL_ISR);
733 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
734 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
735 			break;
736 		DELAY(10);
737 	}
738 
739 	if (i == RL_TIMEOUT) {
740 		printf("re%d: diagnostic failed, failed to receive packet "
741 		    "in loopback mode\n", sc->rl_unit);
742 		error = EIO;
743 		goto done;
744 	}
745 
746 	/*
747 	 * The packet should have been dumped into the first
748 	 * entry in the RX DMA ring. Grab it from there.
749 	 */
750 
751 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
752 	    sc->rl_ldata.rl_rx_list_map,
753 	    BUS_DMASYNC_POSTREAD);
754 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
755 	    sc->rl_ldata.rl_rx_dmamap[0],
756 	    BUS_DMASYNC_POSTWRITE);
757 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
758 	    sc->rl_ldata.rl_rx_dmamap[0]);
759 
760 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
761 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
762 	eh = mtod(m0, struct ether_header *);
763 
764 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
765 	total_len = RL_RXBYTES(cur_rx);
766 	rxstat = le32toh(cur_rx->rl_cmdstat);
767 
768 	if (total_len != ETHER_MIN_LEN) {
769 		printf("re%d: diagnostic failed, received short packet\n",
770 		    sc->rl_unit);
771 		error = EIO;
772 		goto done;
773 	}
774 
775 	/* Test that the received packet data matches what we sent. */
776 
777 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
778 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
779 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
780 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
781 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
782 		    dst, ":", src, ":", ETHERTYPE_IP);
783 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
784 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
785 		    ntohs(eh->ether_type));
786 		printf("re%d: You may have a defective 32-bit NIC plugged "
787 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
788 		printf("re%d: Please re-install the NIC in a 32-bit slot "
789 		    "for proper operation.\n", sc->rl_unit);
790 		printf("re%d: Read the re(4) man page for more details.\n",
791 		    sc->rl_unit);
792 		error = EIO;
793 	}
794 
795 done:
796 	/* Turn interface off, release resources */
797 
798 	sc->rl_testmode = 0;
799 	ifp->if_flags &= ~IFF_PROMISC;
800 	re_stop(sc);
801 	if (m0 != NULL)
802 		m_freem(m0);
803 
804 	RL_UNLOCK(sc);
805 
806 	return (error);
807 }
808 
809 /*
810  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
811  * IDs against our list and return a device name if we find a match.
812  */
813 static int
814 re_probe(dev)
815 	device_t		dev;
816 {
817 	struct rl_type		*t;
818 	struct rl_softc		*sc;
819 	int			rid;
820 	u_int32_t		hwrev;
821 
822 	t = re_devs;
823 	sc = device_get_softc(dev);
824 
825 	while (t->rl_name != NULL) {
826 		if ((pci_get_vendor(dev) == t->rl_vid) &&
827 		    (pci_get_device(dev) == t->rl_did)) {
828 
829 			/*
830 			 * Temporarily map the I/O space
831 			 * so we can read the chip ID register.
832 			 */
833 			rid = RL_RID;
834 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
835 			    RF_ACTIVE);
836 			if (sc->rl_res == NULL) {
837 				device_printf(dev,
838 				    "couldn't map ports/memory\n");
839 				return (ENXIO);
840 			}
841 			sc->rl_btag = rman_get_bustag(sc->rl_res);
842 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
843 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
844 			bus_release_resource(dev, RL_RES,
845 			    RL_RID, sc->rl_res);
846 			if (t->rl_basetype == hwrev) {
847 				device_set_desc(dev, t->rl_name);
848 				return (BUS_PROBE_DEFAULT);
849 			}
850 		}
851 		t++;
852 	}
853 
854 	return (ENXIO);
855 }
856 
857 /*
858  * This routine takes the segment list provided as the result of
859  * a bus_dma_map_load() operation and assigns the addresses/lengths
860  * to RealTek DMA descriptors. This can be called either by the RX
861  * code or the TX code. In the RX case, we'll probably wind up mapping
862  * at most one segment. For the TX case, there could be any number of
863  * segments since TX packets may span multiple mbufs. In either case,
864  * if the number of segments is larger than the rl_maxsegs limit
865  * specified by the caller, we abort the mapping operation. Sadly,
866  * whoever designed the buffer mapping API did not provide a way to
867  * return an error from here, so we have to fake it a bit.
868  */
869 
870 static void
871 re_dma_map_desc(arg, segs, nseg, mapsize, error)
872 	void			*arg;
873 	bus_dma_segment_t	*segs;
874 	int			nseg;
875 	bus_size_t		mapsize;
876 	int			error;
877 {
878 	struct rl_dmaload_arg	*ctx;
879 	struct rl_desc		*d = NULL;
880 	int			i = 0, idx;
881 
882 	if (error)
883 		return;
884 
885 	ctx = arg;
886 
887 	/* Signal error to caller if there's too many segments */
888 	if (nseg > ctx->rl_maxsegs) {
889 		ctx->rl_maxsegs = 0;
890 		return;
891 	}
892 
893 	/*
894 	 * Map the segment array into descriptors. Note that we set the
895 	 * start-of-frame and end-of-frame markers for either TX or RX, but
896 	 * they really only have meaning in the TX case. (In the RX case,
897 	 * it's the chip that tells us where packets begin and end.)
898 	 * We also keep track of the end of the ring and set the
899 	 * end-of-ring bits as needed, and we set the ownership bits
900 	 * in all except the very first descriptor. (The caller will
901 	 * set this descriptor later when it start transmission or
902 	 * reception.)
903 	 */
904 	idx = ctx->rl_idx;
905 	for (;;) {
906 		u_int32_t		cmdstat;
907 		d = &ctx->rl_ring[idx];
908 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
909 			ctx->rl_maxsegs = 0;
910 			return;
911 		}
912 		cmdstat = segs[i].ds_len;
913 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
914 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
915 		if (i == 0)
916 			cmdstat |= RL_TDESC_CMD_SOF;
917 		else
918 			cmdstat |= RL_TDESC_CMD_OWN;
919 		if (idx == (RL_RX_DESC_CNT - 1))
920 			cmdstat |= RL_TDESC_CMD_EOR;
921 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
922 		i++;
923 		if (i == nseg)
924 			break;
925 		RL_DESC_INC(idx);
926 	}
927 
928 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
929 	ctx->rl_maxsegs = nseg;
930 	ctx->rl_idx = idx;
931 }
932 
933 /*
934  * Map a single buffer address.
935  */
936 
937 static void
938 re_dma_map_addr(arg, segs, nseg, error)
939 	void			*arg;
940 	bus_dma_segment_t	*segs;
941 	int			nseg;
942 	int			error;
943 {
944 	bus_addr_t		*addr;
945 
946 	if (error)
947 		return;
948 
949 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
950 	addr = arg;
951 	*addr = segs->ds_addr;
952 }
953 
954 static int
955 re_allocmem(dev, sc)
956 	device_t		dev;
957 	struct rl_softc		*sc;
958 {
959 	int			error;
960 	int			nseg;
961 	int			i;
962 
963 	/*
964 	 * Allocate map for RX mbufs.
965 	 */
966 	nseg = 32;
967 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
968 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
969 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
970 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
971 	if (error) {
972 		device_printf(dev, "could not allocate dma tag\n");
973 		return (ENOMEM);
974 	}
975 
976 	/*
977 	 * Allocate map for TX descriptor list.
978 	 */
979 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
980 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
981 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
982 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
983 	if (error) {
984 		device_printf(dev, "could not allocate dma tag\n");
985 		return (ENOMEM);
986 	}
987 
988 	/* Allocate DMA'able memory for the TX ring */
989 
990 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
991 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
992 	    &sc->rl_ldata.rl_tx_list_map);
993 	if (error)
994 		return (ENOMEM);
995 
996 	/* Load the map for the TX ring. */
997 
998 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
999 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1000 	     RL_TX_LIST_SZ, re_dma_map_addr,
1001 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1002 
1003 	/* Create DMA maps for TX buffers */
1004 
1005 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1006 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1007 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1008 		if (error) {
1009 			device_printf(dev, "can't create DMA map for TX\n");
1010 			return (ENOMEM);
1011 		}
1012 	}
1013 
1014 	/*
1015 	 * Allocate map for RX descriptor list.
1016 	 */
1017 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1018 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1019 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1020 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1021 	if (error) {
1022 		device_printf(dev, "could not allocate dma tag\n");
1023 		return (ENOMEM);
1024 	}
1025 
1026 	/* Allocate DMA'able memory for the RX ring */
1027 
1028 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1029 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1030 	    &sc->rl_ldata.rl_rx_list_map);
1031 	if (error)
1032 		return (ENOMEM);
1033 
1034 	/* Load the map for the RX ring. */
1035 
1036 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1037 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1038 	     RL_RX_LIST_SZ, re_dma_map_addr,
1039 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1040 
1041 	/* Create DMA maps for RX buffers */
1042 
1043 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1044 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1045 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1046 		if (error) {
1047 			device_printf(dev, "can't create DMA map for RX\n");
1048 			return (ENOMEM);
1049 		}
1050 	}
1051 
1052 	return (0);
1053 }
1054 
1055 /*
1056  * Attach the interface. Allocate softc structures, do ifmedia
1057  * setup and ethernet/BPF attach.
1058  */
1059 static int
1060 re_attach(dev)
1061 	device_t		dev;
1062 {
1063 	u_char			eaddr[ETHER_ADDR_LEN];
1064 	u_int16_t		as[3];
1065 	struct rl_softc		*sc;
1066 	struct ifnet		*ifp;
1067 	struct rl_hwrev		*hw_rev;
1068 	int			hwrev;
1069 	u_int16_t		re_did = 0;
1070 	int			unit, error = 0, rid, i;
1071 
1072 	sc = device_get_softc(dev);
1073 	unit = device_get_unit(dev);
1074 
1075 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1076 	    MTX_DEF);
1077 	/*
1078 	 * Map control/status registers.
1079 	 */
1080 	pci_enable_busmaster(dev);
1081 
1082 	rid = RL_RID;
1083 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1084 	    RF_ACTIVE);
1085 
1086 	if (sc->rl_res == NULL) {
1087 		printf ("re%d: couldn't map ports/memory\n", unit);
1088 		error = ENXIO;
1089 		goto fail;
1090 	}
1091 
1092 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1093 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1094 
1095 	/* Allocate interrupt */
1096 	rid = 0;
1097 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1098 	    RF_SHAREABLE | RF_ACTIVE);
1099 
1100 	if (sc->rl_irq == NULL) {
1101 		printf("re%d: couldn't map interrupt\n", unit);
1102 		error = ENXIO;
1103 		goto fail;
1104 	}
1105 
1106 	/* Reset the adapter. */
1107 	RL_LOCK(sc);
1108 	re_reset(sc);
1109 	RL_UNLOCK(sc);
1110 
1111 	hw_rev = re_hwrevs;
1112 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1113 	while (hw_rev->rl_desc != NULL) {
1114 		if (hw_rev->rl_rev == hwrev) {
1115 			sc->rl_type = hw_rev->rl_type;
1116 			break;
1117 		}
1118 		hw_rev++;
1119 	}
1120 
1121 	if (sc->rl_type == RL_8169) {
1122 
1123 		/* Set RX length mask */
1124 
1125 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1126 
1127 		/* Force station address autoload from the EEPROM */
1128 
1129 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1130 		for (i = 0; i < RL_TIMEOUT; i++) {
1131 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1132 				break;
1133 			DELAY(100);
1134 		}
1135 		if (i == RL_TIMEOUT)
1136 			printf ("re%d: eeprom autoload timed out\n", unit);
1137 
1138 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1139 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1140 	} else {
1141 
1142 		/* Set RX length mask */
1143 
1144 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1145 
1146 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1147 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1148 		if (re_did != 0x8129)
1149 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1150 
1151 		/*
1152 		 * Get station address from the EEPROM.
1153 		 */
1154 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1155 		for (i = 0; i < 3; i++) {
1156 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1157 			eaddr[(i * 2) + 1] = as[i] >> 8;
1158 		}
1159 	}
1160 
1161 	sc->rl_unit = unit;
1162 
1163 	/*
1164 	 * Allocate the parent bus DMA tag appropriate for PCI.
1165 	 */
1166 #define RL_NSEG_NEW 32
1167 	error = bus_dma_tag_create(NULL,	/* parent */
1168 			1, 0,			/* alignment, boundary */
1169 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1170 			BUS_SPACE_MAXADDR,	/* highaddr */
1171 			NULL, NULL,		/* filter, filterarg */
1172 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1173 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1174 			BUS_DMA_ALLOCNOW,	/* flags */
1175 			NULL, NULL,		/* lockfunc, lockarg */
1176 			&sc->rl_parent_tag);
1177 	if (error)
1178 		goto fail;
1179 
1180 	error = re_allocmem(dev, sc);
1181 
1182 	if (error)
1183 		goto fail;
1184 
1185 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1186 	if (ifp == NULL) {
1187 		printf("re%d: can not if_alloc()\n", sc->rl_unit);
1188 		error = ENOSPC;
1189 		goto fail;
1190 	}
1191 
1192 	/* Do MII setup */
1193 	if (mii_phy_probe(dev, &sc->rl_miibus,
1194 	    re_ifmedia_upd, re_ifmedia_sts)) {
1195 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1196 		error = ENXIO;
1197 		goto fail;
1198 	}
1199 
1200 	ifp->if_softc = sc;
1201 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1202 	ifp->if_mtu = ETHERMTU;
1203 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1204 	ifp->if_ioctl = re_ioctl;
1205 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1206 	ifp->if_start = re_start;
1207 	ifp->if_hwassist = /*RE_CSUM_FEATURES*/0;
1208 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1209 #ifdef DEVICE_POLLING
1210 	ifp->if_capabilities |= IFCAP_POLLING;
1211 #endif
1212 	ifp->if_watchdog = re_watchdog;
1213 	ifp->if_init = re_init;
1214 	if (sc->rl_type == RL_8169)
1215 		ifp->if_baudrate = 1000000000;
1216 	else
1217 		ifp->if_baudrate = 100000000;
1218 	IFQ_SET_MAXLEN(&ifp->if_snd,  RL_IFQ_MAXLEN);
1219 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1220 	IFQ_SET_READY(&ifp->if_snd);
1221 	ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM;
1222 
1223 	callout_handle_init(&sc->rl_stat_ch);
1224 
1225 	/*
1226 	 * Call MI attach routine.
1227 	 */
1228 	ether_ifattach(ifp, eaddr);
1229 
1230 	/* Perform hardware diagnostic. */
1231 	error = re_diag(sc);
1232 
1233 	if (error) {
1234 		printf("re%d: attach aborted due to hardware diag failure\n",
1235 		    unit);
1236 		ether_ifdetach(ifp);
1237 		goto fail;
1238 	}
1239 
1240 	/* Hook interrupt last to avoid having to lock softc */
1241 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1242 	    re_intr, sc, &sc->rl_intrhand);
1243 	if (error) {
1244 		printf("re%d: couldn't set up irq\n", unit);
1245 		ether_ifdetach(ifp);
1246 	}
1247 
1248 fail:
1249 	if (error)
1250 		re_detach(dev);
1251 
1252 	return (error);
1253 }
1254 
1255 /*
1256  * Shutdown hardware and free up resources. This can be called any
1257  * time after the mutex has been initialized. It is called in both
1258  * the error case in attach and the normal detach case so it needs
1259  * to be careful about only freeing resources that have actually been
1260  * allocated.
1261  */
1262 static int
1263 re_detach(dev)
1264 	device_t		dev;
1265 {
1266 	struct rl_softc		*sc;
1267 	struct ifnet		*ifp;
1268 	int			i;
1269 
1270 	sc = device_get_softc(dev);
1271 	ifp = sc->rl_ifp;
1272 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1273 
1274 	/* These should only be active if attach succeeded */
1275 	if (device_is_attached(dev)) {
1276 		RL_LOCK(sc);
1277 #if 0
1278 		sc->suspended = 1;
1279 #endif
1280 		re_stop(sc);
1281 		RL_UNLOCK(sc);
1282 		/*
1283 		 * Force off the IFF_UP flag here, in case someone
1284 		 * still had a BPF descriptor attached to this
1285 		 * interface. If they do, ether_ifdetach() will cause
1286 		 * the BPF code to try and clear the promisc mode
1287 		 * flag, which will bubble down to re_ioctl(),
1288 		 * which will try to call re_init() again. This will
1289 		 * turn the NIC back on and restart the MII ticker,
1290 		 * which will panic the system when the kernel tries
1291 		 * to invoke the re_tick() function that isn't there
1292 		 * anymore.
1293 		 */
1294 		ifp->if_flags &= ~IFF_UP;
1295 		ether_ifdetach(ifp);
1296 	}
1297 	if (sc->rl_miibus)
1298 		device_delete_child(dev, sc->rl_miibus);
1299 	bus_generic_detach(dev);
1300 
1301 	/*
1302 	 * The rest is resource deallocation, so we should already be
1303 	 * stopped here.
1304 	 */
1305 
1306 	if (sc->rl_intrhand)
1307 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1308 	if (ifp != NULL)
1309 		if_free(ifp);
1310 	if (sc->rl_irq)
1311 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1312 	if (sc->rl_res)
1313 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1314 
1315 
1316 	/* Unload and free the RX DMA ring memory and map */
1317 
1318 	if (sc->rl_ldata.rl_rx_list_tag) {
1319 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1320 		    sc->rl_ldata.rl_rx_list_map);
1321 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1322 		    sc->rl_ldata.rl_rx_list,
1323 		    sc->rl_ldata.rl_rx_list_map);
1324 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1325 	}
1326 
1327 	/* Unload and free the TX DMA ring memory and map */
1328 
1329 	if (sc->rl_ldata.rl_tx_list_tag) {
1330 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1331 		    sc->rl_ldata.rl_tx_list_map);
1332 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1333 		    sc->rl_ldata.rl_tx_list,
1334 		    sc->rl_ldata.rl_tx_list_map);
1335 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1336 	}
1337 
1338 	/* Destroy all the RX and TX buffer maps */
1339 
1340 	if (sc->rl_ldata.rl_mtag) {
1341 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1342 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1343 			    sc->rl_ldata.rl_tx_dmamap[i]);
1344 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1345 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1346 			    sc->rl_ldata.rl_rx_dmamap[i]);
1347 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1348 	}
1349 
1350 	/* Unload and free the stats buffer and map */
1351 
1352 	if (sc->rl_ldata.rl_stag) {
1353 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1354 		    sc->rl_ldata.rl_rx_list_map);
1355 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1356 		    sc->rl_ldata.rl_stats,
1357 		    sc->rl_ldata.rl_smap);
1358 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1359 	}
1360 
1361 	if (sc->rl_parent_tag)
1362 		bus_dma_tag_destroy(sc->rl_parent_tag);
1363 
1364 	mtx_destroy(&sc->rl_mtx);
1365 
1366 	return (0);
1367 }
1368 
1369 static int
1370 re_newbuf(sc, idx, m)
1371 	struct rl_softc		*sc;
1372 	int			idx;
1373 	struct mbuf		*m;
1374 {
1375 	struct rl_dmaload_arg	arg;
1376 	struct mbuf		*n = NULL;
1377 	int			error;
1378 
1379 	if (m == NULL) {
1380 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1381 		if (n == NULL)
1382 			return (ENOBUFS);
1383 		m = n;
1384 	} else
1385 		m->m_data = m->m_ext.ext_buf;
1386 
1387 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1388 #ifdef RE_FIXUP_RX
1389 	/*
1390 	 * This is part of an evil trick to deal with non-x86 platforms.
1391 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1392 	 * boundaries, but that will hose non-x86 machines. To get around
1393 	 * this, we leave some empty space at the start of each buffer
1394 	 * and for non-x86 hosts, we copy the buffer back six bytes
1395 	 * to achieve word alignment. This is slightly more efficient
1396 	 * than allocating a new buffer, copying the contents, and
1397 	 * discarding the old buffer.
1398 	 */
1399 	m_adj(m, RE_ETHER_ALIGN);
1400 #endif
1401 	arg.sc = sc;
1402 	arg.rl_idx = idx;
1403 	arg.rl_maxsegs = 1;
1404 	arg.rl_flags = 0;
1405 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1406 
1407 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1408 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1409 	    &arg, BUS_DMA_NOWAIT);
1410 	if (error || arg.rl_maxsegs != 1) {
1411 		if (n != NULL)
1412 			m_freem(n);
1413 		return (ENOMEM);
1414 	}
1415 
1416 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1417 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1418 
1419 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1420 	    sc->rl_ldata.rl_rx_dmamap[idx],
1421 	    BUS_DMASYNC_PREREAD);
1422 
1423 	return (0);
1424 }
1425 
1426 #ifdef RE_FIXUP_RX
1427 static __inline void
1428 re_fixup_rx(m)
1429 	struct mbuf		*m;
1430 {
1431 	int                     i;
1432 	uint16_t                *src, *dst;
1433 
1434 	src = mtod(m, uint16_t *);
1435 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1436 
1437 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1438 		*dst++ = *src++;
1439 
1440 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1441 
1442 	return;
1443 }
1444 #endif
1445 
1446 static int
1447 re_tx_list_init(sc)
1448 	struct rl_softc		*sc;
1449 {
1450 
1451 	RL_LOCK_ASSERT(sc);
1452 
1453 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1454 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1455 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1456 
1457 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1458 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1459 	sc->rl_ldata.rl_tx_prodidx = 0;
1460 	sc->rl_ldata.rl_tx_considx = 0;
1461 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1462 
1463 	return (0);
1464 }
1465 
1466 static int
1467 re_rx_list_init(sc)
1468 	struct rl_softc		*sc;
1469 {
1470 	int			i;
1471 
1472 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1473 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1474 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1475 
1476 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1477 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1478 			return (ENOBUFS);
1479 	}
1480 
1481 	/* Flush the RX descriptors */
1482 
1483 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1484 	    sc->rl_ldata.rl_rx_list_map,
1485 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1486 
1487 	sc->rl_ldata.rl_rx_prodidx = 0;
1488 	sc->rl_head = sc->rl_tail = NULL;
1489 
1490 	return (0);
1491 }
1492 
1493 /*
1494  * RX handler for C+ and 8169. For the gigE chips, we support
1495  * the reception of jumbo frames that have been fragmented
1496  * across multiple 2K mbuf cluster buffers.
1497  */
1498 static void
1499 re_rxeof(sc)
1500 	struct rl_softc		*sc;
1501 {
1502 	struct mbuf		*m;
1503 	struct ifnet		*ifp;
1504 	int			i, total_len;
1505 	struct rl_desc		*cur_rx;
1506 	u_int32_t		rxstat, rxvlan;
1507 
1508 	RL_LOCK_ASSERT(sc);
1509 
1510 	ifp = sc->rl_ifp;
1511 	i = sc->rl_ldata.rl_rx_prodidx;
1512 
1513 	/* Invalidate the descriptor memory */
1514 
1515 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1516 	    sc->rl_ldata.rl_rx_list_map,
1517 	    BUS_DMASYNC_POSTREAD);
1518 
1519 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1520 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1521 		m = sc->rl_ldata.rl_rx_mbuf[i];
1522 		total_len = RL_RXBYTES(cur_rx);
1523 		rxstat = le32toh(cur_rx->rl_cmdstat);
1524 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1525 
1526 		/* Invalidate the RX mbuf and unload its map */
1527 
1528 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1529 		    sc->rl_ldata.rl_rx_dmamap[i],
1530 		    BUS_DMASYNC_POSTWRITE);
1531 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1532 		    sc->rl_ldata.rl_rx_dmamap[i]);
1533 
1534 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1535 			m->m_len = RE_RX_DESC_BUFLEN;
1536 			if (sc->rl_head == NULL)
1537 				sc->rl_head = sc->rl_tail = m;
1538 			else {
1539 				m->m_flags &= ~M_PKTHDR;
1540 				sc->rl_tail->m_next = m;
1541 				sc->rl_tail = m;
1542 			}
1543 			re_newbuf(sc, i, NULL);
1544 			RL_DESC_INC(i);
1545 			continue;
1546 		}
1547 
1548 		/*
1549 		 * NOTE: for the 8139C+, the frame length field
1550 		 * is always 12 bits in size, but for the gigE chips,
1551 		 * it is 13 bits (since the max RX frame length is 16K).
1552 		 * Unfortunately, all 32 bits in the status word
1553 		 * were already used, so to make room for the extra
1554 		 * length bit, RealTek took out the 'frame alignment
1555 		 * error' bit and shifted the other status bits
1556 		 * over one slot. The OWN, EOR, FS and LS bits are
1557 		 * still in the same places. We have already extracted
1558 		 * the frame length and checked the OWN bit, so rather
1559 		 * than using an alternate bit mapping, we shift the
1560 		 * status bits one space to the right so we can evaluate
1561 		 * them using the 8169 status as though it was in the
1562 		 * same format as that of the 8139C+.
1563 		 */
1564 		if (sc->rl_type == RL_8169)
1565 			rxstat >>= 1;
1566 
1567 		/*
1568 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1569 		 * set, but if CRC is clear, it will still be a valid frame.
1570 		 */
1571 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1572 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1573 			ifp->if_ierrors++;
1574 			/*
1575 			 * If this is part of a multi-fragment packet,
1576 			 * discard all the pieces.
1577 			 */
1578 			if (sc->rl_head != NULL) {
1579 				m_freem(sc->rl_head);
1580 				sc->rl_head = sc->rl_tail = NULL;
1581 			}
1582 			re_newbuf(sc, i, m);
1583 			RL_DESC_INC(i);
1584 			continue;
1585 		}
1586 
1587 		/*
1588 		 * If allocating a replacement mbuf fails,
1589 		 * reload the current one.
1590 		 */
1591 
1592 		if (re_newbuf(sc, i, NULL)) {
1593 			ifp->if_ierrors++;
1594 			if (sc->rl_head != NULL) {
1595 				m_freem(sc->rl_head);
1596 				sc->rl_head = sc->rl_tail = NULL;
1597 			}
1598 			re_newbuf(sc, i, m);
1599 			RL_DESC_INC(i);
1600 			continue;
1601 		}
1602 
1603 		RL_DESC_INC(i);
1604 
1605 		if (sc->rl_head != NULL) {
1606 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1607 			if (m->m_len == 0)
1608 				m->m_len = RE_RX_DESC_BUFLEN;
1609 			/*
1610 			 * Special case: if there's 4 bytes or less
1611 			 * in this buffer, the mbuf can be discarded:
1612 			 * the last 4 bytes is the CRC, which we don't
1613 			 * care about anyway.
1614 			 */
1615 			if (m->m_len <= ETHER_CRC_LEN) {
1616 				sc->rl_tail->m_len -=
1617 				    (ETHER_CRC_LEN - m->m_len);
1618 				m_freem(m);
1619 			} else {
1620 				m->m_len -= ETHER_CRC_LEN;
1621 				m->m_flags &= ~M_PKTHDR;
1622 				sc->rl_tail->m_next = m;
1623 			}
1624 			m = sc->rl_head;
1625 			sc->rl_head = sc->rl_tail = NULL;
1626 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1627 		} else
1628 			m->m_pkthdr.len = m->m_len =
1629 			    (total_len - ETHER_CRC_LEN);
1630 
1631 #ifdef RE_FIXUP_RX
1632 		re_fixup_rx(m);
1633 #endif
1634 		ifp->if_ipackets++;
1635 		m->m_pkthdr.rcvif = ifp;
1636 
1637 		/* Do RX checksumming if enabled */
1638 
1639 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1640 
1641 			/* Check IP header checksum */
1642 			if (rxstat & RL_RDESC_STAT_PROTOID)
1643 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1644 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1645 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1646 
1647 			/* Check TCP/UDP checksum */
1648 			if ((RL_TCPPKT(rxstat) &&
1649 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1650 			    (RL_UDPPKT(rxstat) &&
1651 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1652 				m->m_pkthdr.csum_flags |=
1653 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1654 				m->m_pkthdr.csum_data = 0xffff;
1655 			}
1656 		}
1657 
1658 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1659 			VLAN_INPUT_TAG(ifp, m,
1660 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1661 		RL_UNLOCK(sc);
1662 		(*ifp->if_input)(ifp, m);
1663 		RL_LOCK(sc);
1664 	}
1665 
1666 	/* Flush the RX DMA ring */
1667 
1668 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1669 	    sc->rl_ldata.rl_rx_list_map,
1670 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1671 
1672 	sc->rl_ldata.rl_rx_prodidx = i;
1673 }
1674 
1675 static void
1676 re_txeof(sc)
1677 	struct rl_softc		*sc;
1678 {
1679 	struct ifnet		*ifp;
1680 	u_int32_t		txstat;
1681 	int			idx;
1682 
1683 	ifp = sc->rl_ifp;
1684 	idx = sc->rl_ldata.rl_tx_considx;
1685 
1686 	/* Invalidate the TX descriptor list */
1687 
1688 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1689 	    sc->rl_ldata.rl_tx_list_map,
1690 	    BUS_DMASYNC_POSTREAD);
1691 
1692 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1693 
1694 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1695 		if (txstat & RL_TDESC_CMD_OWN)
1696 			break;
1697 
1698 		/*
1699 		 * We only stash mbufs in the last descriptor
1700 		 * in a fragment chain, which also happens to
1701 		 * be the only place where the TX status bits
1702 		 * are valid.
1703 		 */
1704 
1705 		if (txstat & RL_TDESC_CMD_EOF) {
1706 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1707 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1708 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1709 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1710 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1711 			    RL_TDESC_STAT_COLCNT))
1712 				ifp->if_collisions++;
1713 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1714 				ifp->if_oerrors++;
1715 			else
1716 				ifp->if_opackets++;
1717 		}
1718 		sc->rl_ldata.rl_tx_free++;
1719 		RL_DESC_INC(idx);
1720 	}
1721 
1722 	/* No changes made to the TX ring, so no flush needed */
1723 
1724 	if (idx != sc->rl_ldata.rl_tx_considx) {
1725 		sc->rl_ldata.rl_tx_considx = idx;
1726 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1727 		ifp->if_timer = 0;
1728 	}
1729 
1730 	/*
1731 	 * If not all descriptors have been released reaped yet,
1732 	 * reload the timer so that we will eventually get another
1733 	 * interrupt that will cause us to re-enter this routine.
1734 	 * This is done in case the transmitter has gone idle.
1735 	 */
1736 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1737 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1738 }
1739 
1740 static void
1741 re_tick(xsc)
1742 	void			*xsc;
1743 {
1744 	struct rl_softc		*sc;
1745 
1746 	sc = xsc;
1747 	RL_LOCK(sc);
1748 	re_tick_locked(sc);
1749 	RL_UNLOCK(sc);
1750 }
1751 
1752 static void
1753 re_tick_locked(sc)
1754 	struct rl_softc		*sc;
1755 {
1756 	struct mii_data		*mii;
1757 
1758 	RL_LOCK_ASSERT(sc);
1759 
1760 	mii = device_get_softc(sc->rl_miibus);
1761 
1762 	mii_tick(mii);
1763 
1764 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1765 }
1766 
1767 #ifdef DEVICE_POLLING
1768 static void
1769 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1770 {
1771 	struct rl_softc *sc = ifp->if_softc;
1772 
1773 	RL_LOCK(sc);
1774 	re_poll_locked(ifp, cmd, count);
1775 	RL_UNLOCK(sc);
1776 }
1777 
1778 static void
1779 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1780 {
1781 	struct rl_softc *sc = ifp->if_softc;
1782 
1783 	RL_LOCK_ASSERT(sc);
1784 
1785 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1786 		ether_poll_deregister(ifp);
1787 		cmd = POLL_DEREGISTER;
1788 	}
1789 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1790 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1791 		return;
1792 	}
1793 
1794 	sc->rxcycles = count;
1795 	re_rxeof(sc);
1796 	re_txeof(sc);
1797 
1798 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1799 		re_start_locked(ifp);
1800 
1801 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1802 		u_int16_t       status;
1803 
1804 		status = CSR_READ_2(sc, RL_ISR);
1805 		if (status == 0xffff)
1806 			return;
1807 		if (status)
1808 			CSR_WRITE_2(sc, RL_ISR, status);
1809 
1810 		/*
1811 		 * XXX check behaviour on receiver stalls.
1812 		 */
1813 
1814 		if (status & RL_ISR_SYSTEM_ERR) {
1815 			re_reset(sc);
1816 			re_init_locked(sc);
1817 		}
1818 	}
1819 }
1820 #endif /* DEVICE_POLLING */
1821 
1822 static void
1823 re_intr(arg)
1824 	void			*arg;
1825 {
1826 	struct rl_softc		*sc;
1827 	struct ifnet		*ifp;
1828 	u_int16_t		status;
1829 
1830 	sc = arg;
1831 
1832 	RL_LOCK(sc);
1833 
1834 	ifp = sc->rl_ifp;
1835 
1836 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1837 		goto done_locked;
1838 
1839 #ifdef DEVICE_POLLING
1840 	if  (ifp->if_flags & IFF_POLLING)
1841 		goto done_locked;
1842 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1843 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1844 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1845 		re_poll_locked(ifp, 0, 1);
1846 		goto done_locked;
1847 	}
1848 #endif /* DEVICE_POLLING */
1849 
1850 	for (;;) {
1851 
1852 		status = CSR_READ_2(sc, RL_ISR);
1853 		/* If the card has gone away the read returns 0xffff. */
1854 		if (status == 0xffff)
1855 			break;
1856 		if (status)
1857 			CSR_WRITE_2(sc, RL_ISR, status);
1858 
1859 		if ((status & RL_INTRS_CPLUS) == 0)
1860 			break;
1861 
1862 		if ((status & RL_ISR_RX_OK) ||
1863 		    (status & RL_ISR_RX_ERR))
1864 			re_rxeof(sc);
1865 
1866 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1867 		    (status & RL_ISR_TX_ERR) ||
1868 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1869 			re_txeof(sc);
1870 
1871 		if (status & RL_ISR_SYSTEM_ERR) {
1872 			re_reset(sc);
1873 			re_init_locked(sc);
1874 		}
1875 
1876 		if (status & RL_ISR_LINKCHG) {
1877 			untimeout(re_tick, sc, sc->rl_stat_ch);
1878 			re_tick_locked(sc);
1879 		}
1880 	}
1881 
1882 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1883 		re_start_locked(ifp);
1884 
1885 done_locked:
1886 	RL_UNLOCK(sc);
1887 }
1888 
1889 static int
1890 re_encap(sc, m_head, idx)
1891 	struct rl_softc		*sc;
1892 	struct mbuf		**m_head;
1893 	int			*idx;
1894 {
1895 	struct mbuf		*m_new = NULL;
1896 	struct rl_dmaload_arg	arg;
1897 	bus_dmamap_t		map;
1898 	int			error;
1899 	struct m_tag		*mtag;
1900 
1901 	RL_LOCK_ASSERT(sc);
1902 
1903 	if (sc->rl_ldata.rl_tx_free <= 4)
1904 		return (EFBIG);
1905 
1906 	/*
1907 	 * Set up checksum offload. Note: checksum offload bits must
1908 	 * appear in all descriptors of a multi-descriptor transmit
1909 	 * attempt. This is according to testing done with an 8169
1910 	 * chip. This is a requirement.
1911 	 */
1912 
1913 	arg.rl_flags = 0;
1914 
1915 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1916 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1917 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1918 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1919 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1920 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1921 
1922 	arg.sc = sc;
1923 	arg.rl_idx = *idx;
1924 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1925 	if (arg.rl_maxsegs > 4)
1926 		arg.rl_maxsegs -= 4;
1927 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1928 
1929 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1930 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1931 	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1932 
1933 	if (error && error != EFBIG) {
1934 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1935 		return (ENOBUFS);
1936 	}
1937 
1938 	/* Too many segments to map, coalesce into a single mbuf */
1939 
1940 	if (error || arg.rl_maxsegs == 0) {
1941 		m_new = m_defrag(*m_head, M_DONTWAIT);
1942 		if (m_new == NULL)
1943 			return (ENOBUFS);
1944 		else
1945 			*m_head = m_new;
1946 
1947 		arg.sc = sc;
1948 		arg.rl_idx = *idx;
1949 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1950 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1951 
1952 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1953 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1954 		if (error) {
1955 			printf("re%d: can't map mbuf (error %d)\n",
1956 			    sc->rl_unit, error);
1957 			return (EFBIG);
1958 		}
1959 	}
1960 
1961 	/*
1962 	 * Insure that the map for this transmission
1963 	 * is placed at the array index of the last descriptor
1964 	 * in this chain.  (Swap last and first dmamaps.)
1965 	 */
1966 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1967 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1968 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1969 
1970 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1971 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1972 
1973 	/*
1974 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1975 	 * appear in the first descriptor of a multi-descriptor
1976 	 * transmission attempt.
1977 	 */
1978 
1979 	mtag = VLAN_OUTPUT_TAG(sc->rl_ifp, *m_head);
1980 	if (mtag != NULL)
1981 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1982 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1983 
1984 	/* Transfer ownership of packet to the chip. */
1985 
1986 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1987 	    htole32(RL_TDESC_CMD_OWN);
1988 	if (*idx != arg.rl_idx)
1989 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1990 		    htole32(RL_TDESC_CMD_OWN);
1991 
1992 	RL_DESC_INC(arg.rl_idx);
1993 	*idx = arg.rl_idx;
1994 
1995 	return (0);
1996 }
1997 
1998 static void
1999 re_start(ifp)
2000 	struct ifnet		*ifp;
2001 {
2002 	struct rl_softc		*sc;
2003 
2004 	sc = ifp->if_softc;
2005 	RL_LOCK(sc);
2006 	re_start_locked(ifp);
2007 	RL_UNLOCK(sc);
2008 }
2009 
2010 /*
2011  * Main transmit routine for C+ and gigE NICs.
2012  */
2013 static void
2014 re_start_locked(ifp)
2015 	struct ifnet		*ifp;
2016 {
2017 	struct rl_softc		*sc;
2018 	struct mbuf		*m_head = NULL;
2019 	int			idx, queued = 0;
2020 
2021 	sc = ifp->if_softc;
2022 
2023 	RL_LOCK_ASSERT(sc);
2024 
2025 	idx = sc->rl_ldata.rl_tx_prodidx;
2026 
2027 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2028 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2029 		if (m_head == NULL)
2030 			break;
2031 
2032 		if (re_encap(sc, &m_head, &idx)) {
2033 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2034 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2035 			break;
2036 		}
2037 
2038 		/*
2039 		 * If there's a BPF listener, bounce a copy of this frame
2040 		 * to him.
2041 		 */
2042 		BPF_MTAP(ifp, m_head);
2043 
2044 		queued++;
2045 	}
2046 
2047 	if (queued == 0)
2048 		return;
2049 
2050 	/* Flush the TX descriptors */
2051 
2052 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2053 	    sc->rl_ldata.rl_tx_list_map,
2054 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2055 
2056 	sc->rl_ldata.rl_tx_prodidx = idx;
2057 
2058 	/*
2059 	 * RealTek put the TX poll request register in a different
2060 	 * location on the 8169 gigE chip. I don't know why.
2061 	 */
2062 
2063 	if (sc->rl_type == RL_8169)
2064 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2065 	else
2066 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2067 
2068 	/*
2069 	 * Use the countdown timer for interrupt moderation.
2070 	 * 'TX done' interrupts are disabled. Instead, we reset the
2071 	 * countdown timer, which will begin counting until it hits
2072 	 * the value in the TIMERINT register, and then trigger an
2073 	 * interrupt. Each time we write to the TIMERCNT register,
2074 	 * the timer count is reset to 0.
2075 	 */
2076 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2077 
2078 	/*
2079 	 * Set a timeout in case the chip goes out to lunch.
2080 	 */
2081 	ifp->if_timer = 5;
2082 }
2083 
2084 static void
2085 re_init(xsc)
2086 	void			*xsc;
2087 {
2088 	struct rl_softc		*sc = xsc;
2089 
2090 	RL_LOCK(sc);
2091 	re_init_locked(sc);
2092 	RL_UNLOCK(sc);
2093 }
2094 
2095 static void
2096 re_init_locked(sc)
2097 	struct rl_softc		*sc;
2098 {
2099 	struct ifnet		*ifp = sc->rl_ifp;
2100 	struct mii_data		*mii;
2101 	u_int32_t		rxcfg = 0;
2102 
2103 	RL_LOCK_ASSERT(sc);
2104 
2105 	mii = device_get_softc(sc->rl_miibus);
2106 
2107 	/*
2108 	 * Cancel pending I/O and free all RX/TX buffers.
2109 	 */
2110 	re_stop(sc);
2111 
2112 	/*
2113 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2114 	 * RX checksum offload. We must configure the C+ register
2115 	 * before all others.
2116 	 */
2117 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2118 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2119 	    RL_CPLUSCMD_VLANSTRIP|
2120 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2121 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2122 
2123 	/*
2124 	 * Init our MAC address.  Even though the chipset
2125 	 * documentation doesn't mention it, we need to enter "Config
2126 	 * register write enable" mode to modify the ID registers.
2127 	 */
2128 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2129 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2130 	    *(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[0]));
2131 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2132 	    *(u_int32_t *)(&IFP2ENADDR(sc->rl_ifp)[4]));
2133 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2134 
2135 	/*
2136 	 * For C+ mode, initialize the RX descriptors and mbufs.
2137 	 */
2138 	re_rx_list_init(sc);
2139 	re_tx_list_init(sc);
2140 
2141 	/*
2142 	 * Enable transmit and receive.
2143 	 */
2144 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2145 
2146 	/*
2147 	 * Set the initial TX and RX configuration.
2148 	 */
2149 	if (sc->rl_testmode) {
2150 		if (sc->rl_type == RL_8169)
2151 			CSR_WRITE_4(sc, RL_TXCFG,
2152 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2153 		else
2154 			CSR_WRITE_4(sc, RL_TXCFG,
2155 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2156 	} else
2157 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2158 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2159 
2160 	/* Set the individual bit to receive frames for this host only. */
2161 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2162 	rxcfg |= RL_RXCFG_RX_INDIV;
2163 
2164 	/* If we want promiscuous mode, set the allframes bit. */
2165 	if (ifp->if_flags & IFF_PROMISC)
2166 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2167 	else
2168 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2169 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2170 
2171 	/*
2172 	 * Set capture broadcast bit to capture broadcast frames.
2173 	 */
2174 	if (ifp->if_flags & IFF_BROADCAST)
2175 		rxcfg |= RL_RXCFG_RX_BROAD;
2176 	else
2177 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2178 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2179 
2180 	/*
2181 	 * Program the multicast filter, if necessary.
2182 	 */
2183 	re_setmulti(sc);
2184 
2185 #ifdef DEVICE_POLLING
2186 	/*
2187 	 * Disable interrupts if we are polling.
2188 	 */
2189 	if (ifp->if_flags & IFF_POLLING)
2190 		CSR_WRITE_2(sc, RL_IMR, 0);
2191 	else	/* otherwise ... */
2192 #endif /* DEVICE_POLLING */
2193 	/*
2194 	 * Enable interrupts.
2195 	 */
2196 	if (sc->rl_testmode)
2197 		CSR_WRITE_2(sc, RL_IMR, 0);
2198 	else
2199 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2200 
2201 	/* Set initial TX threshold */
2202 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2203 
2204 	/* Start RX/TX process. */
2205 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2206 #ifdef notdef
2207 	/* Enable receiver and transmitter. */
2208 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2209 #endif
2210 	/*
2211 	 * Load the addresses of the RX and TX lists into the chip.
2212 	 */
2213 
2214 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2215 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2216 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2217 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2218 
2219 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2220 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2221 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2222 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2223 
2224 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2225 
2226 	/*
2227 	 * Initialize the timer interrupt register so that
2228 	 * a timer interrupt will be generated once the timer
2229 	 * reaches a certain number of ticks. The timer is
2230 	 * reloaded on each transmit. This gives us TX interrupt
2231 	 * moderation, which dramatically improves TX frame rate.
2232 	 */
2233 	if (sc->rl_type == RL_8169)
2234 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2235 	else
2236 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2237 
2238 	/*
2239 	 * For 8169 gigE NICs, set the max allowed RX packet
2240 	 * size so we can receive jumbo frames.
2241 	 */
2242 	if (sc->rl_type == RL_8169)
2243 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2244 
2245 	if (sc->rl_testmode)
2246 		return;
2247 
2248 	mii_mediachg(mii);
2249 
2250 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2251 
2252 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2253 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2254 
2255 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2256 }
2257 
2258 /*
2259  * Set media options.
2260  */
2261 static int
2262 re_ifmedia_upd(ifp)
2263 	struct ifnet		*ifp;
2264 {
2265 	struct rl_softc		*sc;
2266 	struct mii_data		*mii;
2267 
2268 	sc = ifp->if_softc;
2269 	mii = device_get_softc(sc->rl_miibus);
2270 	mii_mediachg(mii);
2271 
2272 	return (0);
2273 }
2274 
2275 /*
2276  * Report current media status.
2277  */
2278 static void
2279 re_ifmedia_sts(ifp, ifmr)
2280 	struct ifnet		*ifp;
2281 	struct ifmediareq	*ifmr;
2282 {
2283 	struct rl_softc		*sc;
2284 	struct mii_data		*mii;
2285 
2286 	sc = ifp->if_softc;
2287 	mii = device_get_softc(sc->rl_miibus);
2288 
2289 	mii_pollstat(mii);
2290 	ifmr->ifm_active = mii->mii_media_active;
2291 	ifmr->ifm_status = mii->mii_media_status;
2292 }
2293 
2294 static int
2295 re_ioctl(ifp, command, data)
2296 	struct ifnet		*ifp;
2297 	u_long			command;
2298 	caddr_t			data;
2299 {
2300 	struct rl_softc		*sc = ifp->if_softc;
2301 	struct ifreq		*ifr = (struct ifreq *) data;
2302 	struct mii_data		*mii;
2303 	int			error = 0;
2304 
2305 	switch (command) {
2306 	case SIOCSIFMTU:
2307 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2308 			error = EINVAL;
2309 		ifp->if_mtu = ifr->ifr_mtu;
2310 		break;
2311 	case SIOCSIFFLAGS:
2312 		RL_LOCK(sc);
2313 		if (ifp->if_flags & IFF_UP)
2314 			re_init_locked(sc);
2315 		else if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2316 			re_stop(sc);
2317 		RL_UNLOCK(sc);
2318 		error = 0;
2319 		break;
2320 	case SIOCADDMULTI:
2321 	case SIOCDELMULTI:
2322 		RL_LOCK(sc);
2323 		re_setmulti(sc);
2324 		RL_UNLOCK(sc);
2325 		error = 0;
2326 		break;
2327 	case SIOCGIFMEDIA:
2328 	case SIOCSIFMEDIA:
2329 		mii = device_get_softc(sc->rl_miibus);
2330 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2331 		break;
2332 	case SIOCSIFCAP:
2333 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2334 		ifp->if_capenable |=
2335 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2336 		if (ifp->if_capenable & IFCAP_TXCSUM)
2337 			ifp->if_hwassist = RE_CSUM_FEATURES;
2338 		else
2339 			ifp->if_hwassist = 0;
2340 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2341 			re_init(sc);
2342 		break;
2343 	default:
2344 		error = ether_ioctl(ifp, command, data);
2345 		break;
2346 	}
2347 
2348 	return (error);
2349 }
2350 
2351 static void
2352 re_watchdog(ifp)
2353 	struct ifnet		*ifp;
2354 {
2355 	struct rl_softc		*sc;
2356 
2357 	sc = ifp->if_softc;
2358 	RL_LOCK(sc);
2359 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2360 	ifp->if_oerrors++;
2361 
2362 	re_txeof(sc);
2363 	re_rxeof(sc);
2364 	re_init_locked(sc);
2365 
2366 	RL_UNLOCK(sc);
2367 }
2368 
2369 /*
2370  * Stop the adapter and free any mbufs allocated to the
2371  * RX and TX lists.
2372  */
2373 static void
2374 re_stop(sc)
2375 	struct rl_softc		*sc;
2376 {
2377 	register int		i;
2378 	struct ifnet		*ifp;
2379 
2380 	RL_LOCK_ASSERT(sc);
2381 
2382 	ifp = sc->rl_ifp;
2383 	ifp->if_timer = 0;
2384 
2385 	untimeout(re_tick, sc, sc->rl_stat_ch);
2386 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2387 #ifdef DEVICE_POLLING
2388 	ether_poll_deregister(ifp);
2389 #endif /* DEVICE_POLLING */
2390 
2391 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2392 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2393 
2394 	if (sc->rl_head != NULL) {
2395 		m_freem(sc->rl_head);
2396 		sc->rl_head = sc->rl_tail = NULL;
2397 	}
2398 
2399 	/* Free the TX list buffers. */
2400 
2401 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2402 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2403 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2404 			    sc->rl_ldata.rl_tx_dmamap[i]);
2405 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2406 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2407 		}
2408 	}
2409 
2410 	/* Free the RX list buffers. */
2411 
2412 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2413 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2414 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2415 			    sc->rl_ldata.rl_rx_dmamap[i]);
2416 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2417 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2418 		}
2419 	}
2420 }
2421 
2422 /*
2423  * Device suspend routine.  Stop the interface and save some PCI
2424  * settings in case the BIOS doesn't restore them properly on
2425  * resume.
2426  */
2427 static int
2428 re_suspend(dev)
2429 	device_t		dev;
2430 {
2431 	struct rl_softc		*sc;
2432 
2433 	sc = device_get_softc(dev);
2434 
2435 	RL_LOCK(sc);
2436 	re_stop(sc);
2437 	sc->suspended = 1;
2438 	RL_UNLOCK(sc);
2439 
2440 	return (0);
2441 }
2442 
2443 /*
2444  * Device resume routine.  Restore some PCI settings in case the BIOS
2445  * doesn't, re-enable busmastering, and restart the interface if
2446  * appropriate.
2447  */
2448 static int
2449 re_resume(dev)
2450 	device_t		dev;
2451 {
2452 	struct rl_softc		*sc;
2453 	struct ifnet		*ifp;
2454 
2455 	sc = device_get_softc(dev);
2456 
2457 	RL_LOCK(sc);
2458 
2459 	ifp = sc->rl_ifp;
2460 
2461 	/* reinitialize interface if necessary */
2462 	if (ifp->if_flags & IFF_UP)
2463 		re_init_locked(sc);
2464 
2465 	sc->suspended = 0;
2466 	RL_UNLOCK(sc);
2467 
2468 	return (0);
2469 }
2470 
2471 /*
2472  * Stop all chip I/O so that the kernel's probe routines don't
2473  * get confused by errant DMAs when rebooting.
2474  */
2475 static void
2476 re_shutdown(dev)
2477 	device_t		dev;
2478 {
2479 	struct rl_softc		*sc;
2480 
2481 	sc = device_get_softc(dev);
2482 
2483 	RL_LOCK(sc);
2484 	re_stop(sc);
2485 	/*
2486 	 * Mark interface as down since otherwise we will panic if
2487 	 * interrupt comes in later on, which can happen in some
2488 	 * cases.
2489 	 */
2490 	sc->rl_ifp->if_flags &= ~IFF_UP;
2491 	RL_UNLOCK(sc);
2492 }
2493