xref: /freebsd/sys/dev/re/if_re.c (revision 3193579b66fd7067f898dbc54bdea81a0e6f9bd0)
1 /*
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  * 	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *      o RX and TX DMA rings can have up to 1024 descriptors
86  *        (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7.5K, so the max MTU possible with this
108  * driver is 7500 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/kernel.h>
118 #include <sys/socket.h>
119 
120 #include <net/if.h>
121 #include <net/if_arp.h>
122 #include <net/ethernet.h>
123 #include <net/if_dl.h>
124 #include <net/if_media.h>
125 #include <net/if_vlan_var.h>
126 
127 #include <net/bpf.h>
128 
129 #include <machine/bus_pio.h>
130 #include <machine/bus_memio.h>
131 #include <machine/bus.h>
132 #include <machine/resource.h>
133 #include <sys/bus.h>
134 #include <sys/rman.h>
135 
136 #include <dev/mii/mii.h>
137 #include <dev/mii/miivar.h>
138 
139 #include <dev/pci/pcireg.h>
140 #include <dev/pci/pcivar.h>
141 
142 MODULE_DEPEND(re, pci, 1, 1, 1);
143 MODULE_DEPEND(re, ether, 1, 1, 1);
144 MODULE_DEPEND(re, miibus, 1, 1, 1);
145 
146 /* "controller miibus0" required.  See GENERIC if you get errors here. */
147 #include "miibus_if.h"
148 
149 /*
150  * Default to using PIO access for this driver.
151  */
152 #define RE_USEIOSPACE
153 
154 #include <pci/if_rlreg.h>
155 
156 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
157 
158 /*
159  * Various supported device vendors/types and their names.
160  */
161 static struct rl_type re_devs[] = {
162 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
163 		"RealTek 8139C+ 10/100BaseTX" },
164 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
165 		"RealTek 8169 Gigabit Ethernet" },
166 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
167 		"RealTek 8169S Single-chip Gigabit Ethernet" },
168 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
169 		"RealTek 8110S Single-chip Gigabit Ethernet" },
170 	{ 0, 0, 0, NULL }
171 };
172 
173 static struct rl_hwrev re_hwrevs[] = {
174 	{ RL_HWREV_8139, RL_8139,  "" },
175 	{ RL_HWREV_8139A, RL_8139, "A" },
176 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
177 	{ RL_HWREV_8139B, RL_8139, "B" },
178 	{ RL_HWREV_8130, RL_8139, "8130" },
179 	{ RL_HWREV_8139C, RL_8139, "C" },
180 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
181 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
182 	{ RL_HWREV_8169, RL_8169, "8169"},
183 	{ RL_HWREV_8169S, RL_8169, "8169S"},
184 	{ RL_HWREV_8110S, RL_8169, "8110S"},
185 	{ RL_HWREV_8100, RL_8139, "8100"},
186 	{ RL_HWREV_8101, RL_8139, "8101"},
187 	{ 0, 0, NULL }
188 };
189 
190 static int re_probe		(device_t);
191 static int re_attach		(device_t);
192 static int re_detach		(device_t);
193 
194 static int re_encap		(struct rl_softc *, struct mbuf *, int *);
195 
196 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
197 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
198 				    bus_size_t, int);
199 static int re_allocmem		(device_t, struct rl_softc *);
200 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
201 static int re_rx_list_init	(struct rl_softc *);
202 static int re_tx_list_init	(struct rl_softc *);
203 static void re_rxeof		(struct rl_softc *);
204 static void re_txeof		(struct rl_softc *);
205 static void re_intr		(void *);
206 static void re_tick		(void *);
207 static void re_start		(struct ifnet *);
208 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
209 static void re_init		(void *);
210 static void re_stop		(struct rl_softc *);
211 static void re_watchdog		(struct ifnet *);
212 static int re_suspend		(device_t);
213 static int re_resume		(device_t);
214 static void re_shutdown		(device_t);
215 static int re_ifmedia_upd	(struct ifnet *);
216 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
217 
218 static void re_eeprom_putbyte	(struct rl_softc *, int);
219 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
220 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
221 static int re_gmii_readreg	(device_t, int, int);
222 static int re_gmii_writereg	(device_t, int, int, int);
223 
224 static int re_miibus_readreg	(device_t, int, int);
225 static int re_miibus_writereg	(device_t, int, int, int);
226 static void re_miibus_statchg	(device_t);
227 
228 static u_int32_t re_mchash	(caddr_t);
229 static void re_setmulti		(struct rl_softc *);
230 static void re_reset		(struct rl_softc *);
231 
232 static int re_diag		(struct rl_softc *);
233 
234 #ifdef RE_USEIOSPACE
235 #define RL_RES			SYS_RES_IOPORT
236 #define RL_RID			RL_PCI_LOIO
237 #else
238 #define RL_RES			SYS_RES_MEMORY
239 #define RL_RID			RL_PCI_LOMEM
240 #endif
241 
242 static device_method_t re_methods[] = {
243 	/* Device interface */
244 	DEVMETHOD(device_probe,		re_probe),
245 	DEVMETHOD(device_attach,	re_attach),
246 	DEVMETHOD(device_detach,	re_detach),
247 	DEVMETHOD(device_suspend,	re_suspend),
248 	DEVMETHOD(device_resume,	re_resume),
249 	DEVMETHOD(device_shutdown,	re_shutdown),
250 
251 	/* bus interface */
252 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
253 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
254 
255 	/* MII interface */
256 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
257 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
258 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
259 
260 	{ 0, 0 }
261 };
262 
263 static driver_t re_driver = {
264 	"re",
265 	re_methods,
266 	sizeof(struct rl_softc)
267 };
268 
269 static devclass_t re_devclass;
270 
271 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
272 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
273 
274 #define EE_SET(x)					\
275 	CSR_WRITE_1(sc, RL_EECMD,			\
276 		CSR_READ_1(sc, RL_EECMD) | x)
277 
278 #define EE_CLR(x)					\
279 	CSR_WRITE_1(sc, RL_EECMD,			\
280 		CSR_READ_1(sc, RL_EECMD) & ~x)
281 
282 /*
283  * Send a read command and address to the EEPROM, check for ACK.
284  */
285 static void
286 re_eeprom_putbyte(sc, addr)
287 	struct rl_softc		*sc;
288 	int			addr;
289 {
290 	register int		d, i;
291 
292 	d = addr | sc->rl_eecmd_read;
293 
294 	/*
295 	 * Feed in each bit and strobe the clock.
296 	 */
297 	for (i = 0x400; i; i >>= 1) {
298 		if (d & i) {
299 			EE_SET(RL_EE_DATAIN);
300 		} else {
301 			EE_CLR(RL_EE_DATAIN);
302 		}
303 		DELAY(100);
304 		EE_SET(RL_EE_CLK);
305 		DELAY(150);
306 		EE_CLR(RL_EE_CLK);
307 		DELAY(100);
308 	}
309 
310 	return;
311 }
312 
313 /*
314  * Read a word of data stored in the EEPROM at address 'addr.'
315  */
316 static void
317 re_eeprom_getword(sc, addr, dest)
318 	struct rl_softc		*sc;
319 	int			addr;
320 	u_int16_t		*dest;
321 {
322 	register int		i;
323 	u_int16_t		word = 0;
324 
325 	/* Enter EEPROM access mode. */
326 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
327 
328 	/*
329 	 * Send address of word we want to read.
330 	 */
331 	re_eeprom_putbyte(sc, addr);
332 
333 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
334 
335 	/*
336 	 * Start reading bits from EEPROM.
337 	 */
338 	for (i = 0x8000; i; i >>= 1) {
339 		EE_SET(RL_EE_CLK);
340 		DELAY(100);
341 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
342 			word |= i;
343 		EE_CLR(RL_EE_CLK);
344 		DELAY(100);
345 	}
346 
347 	/* Turn off EEPROM access mode. */
348 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
349 
350 	*dest = word;
351 
352 	return;
353 }
354 
355 /*
356  * Read a sequence of words from the EEPROM.
357  */
358 static void
359 re_read_eeprom(sc, dest, off, cnt, swap)
360 	struct rl_softc		*sc;
361 	caddr_t			dest;
362 	int			off;
363 	int			cnt;
364 	int			swap;
365 {
366 	int			i;
367 	u_int16_t		word = 0, *ptr;
368 
369 	for (i = 0; i < cnt; i++) {
370 		re_eeprom_getword(sc, off + i, &word);
371 		ptr = (u_int16_t *)(dest + (i * 2));
372 		if (swap)
373 			*ptr = ntohs(word);
374 		else
375 			*ptr = word;
376 	}
377 
378 	return;
379 }
380 
381 static int
382 re_gmii_readreg(dev, phy, reg)
383 	device_t		dev;
384 	int			phy, reg;
385 {
386 	struct rl_softc		*sc;
387 	u_int32_t		rval;
388 	int			i;
389 
390 	if (phy != 1)
391 		return(0);
392 
393 	sc = device_get_softc(dev);
394 
395 	/* Let the rgephy driver read the GMEDIASTAT register */
396 
397 	if (reg == RL_GMEDIASTAT) {
398 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
399 		return(rval);
400 	}
401 
402 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
403 	DELAY(1000);
404 
405 	for (i = 0; i < RL_TIMEOUT; i++) {
406 		rval = CSR_READ_4(sc, RL_PHYAR);
407 		if (rval & RL_PHYAR_BUSY)
408 			break;
409 		DELAY(100);
410 	}
411 
412 	if (i == RL_TIMEOUT) {
413 		printf ("re%d: PHY read failed\n", sc->rl_unit);
414 		return (0);
415 	}
416 
417 	return (rval & RL_PHYAR_PHYDATA);
418 }
419 
420 static int
421 re_gmii_writereg(dev, phy, reg, data)
422 	device_t		dev;
423 	int			phy, reg, data;
424 {
425 	struct rl_softc		*sc;
426 	u_int32_t		rval;
427 	int			i;
428 
429 	sc = device_get_softc(dev);
430 
431 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
432 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
433 	DELAY(1000);
434 
435 	for (i = 0; i < RL_TIMEOUT; i++) {
436 		rval = CSR_READ_4(sc, RL_PHYAR);
437 		if (!(rval & RL_PHYAR_BUSY))
438 			break;
439 		DELAY(100);
440 	}
441 
442 	if (i == RL_TIMEOUT) {
443 		printf ("re%d: PHY write failed\n", sc->rl_unit);
444 		return (0);
445 	}
446 
447 	return (0);
448 }
449 
450 static int
451 re_miibus_readreg(dev, phy, reg)
452 	device_t		dev;
453 	int			phy, reg;
454 {
455 	struct rl_softc		*sc;
456 	u_int16_t		rval = 0;
457 	u_int16_t		re8139_reg = 0;
458 
459 	sc = device_get_softc(dev);
460 	RL_LOCK(sc);
461 
462 	if (sc->rl_type == RL_8169) {
463 		rval = re_gmii_readreg(dev, phy, reg);
464 		RL_UNLOCK(sc);
465 		return (rval);
466 	}
467 
468 	/* Pretend the internal PHY is only at address 0 */
469 	if (phy) {
470 		RL_UNLOCK(sc);
471 		return(0);
472 	}
473 	switch(reg) {
474 	case MII_BMCR:
475 		re8139_reg = RL_BMCR;
476 		break;
477 	case MII_BMSR:
478 		re8139_reg = RL_BMSR;
479 		break;
480 	case MII_ANAR:
481 		re8139_reg = RL_ANAR;
482 		break;
483 	case MII_ANER:
484 		re8139_reg = RL_ANER;
485 		break;
486 	case MII_ANLPAR:
487 		re8139_reg = RL_LPAR;
488 		break;
489 	case MII_PHYIDR1:
490 	case MII_PHYIDR2:
491 		RL_UNLOCK(sc);
492 		return(0);
493 	/*
494 	 * Allow the rlphy driver to read the media status
495 	 * register. If we have a link partner which does not
496 	 * support NWAY, this is the register which will tell
497 	 * us the results of parallel detection.
498 	 */
499 	case RL_MEDIASTAT:
500 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
501 		RL_UNLOCK(sc);
502 		return(rval);
503 	default:
504 		printf("re%d: bad phy register\n", sc->rl_unit);
505 		RL_UNLOCK(sc);
506 		return(0);
507 	}
508 	rval = CSR_READ_2(sc, re8139_reg);
509 	RL_UNLOCK(sc);
510 	return(rval);
511 }
512 
513 static int
514 re_miibus_writereg(dev, phy, reg, data)
515 	device_t		dev;
516 	int			phy, reg, data;
517 {
518 	struct rl_softc		*sc;
519 	u_int16_t		re8139_reg = 0;
520 	int			rval = 0;
521 
522 	sc = device_get_softc(dev);
523 	RL_LOCK(sc);
524 
525 	if (sc->rl_type == RL_8169) {
526 		rval = re_gmii_writereg(dev, phy, reg, data);
527 		RL_UNLOCK(sc);
528 		return (rval);
529 	}
530 
531 	/* Pretend the internal PHY is only at address 0 */
532 	if (phy) {
533 		RL_UNLOCK(sc);
534 		return(0);
535 	}
536 	switch(reg) {
537 	case MII_BMCR:
538 		re8139_reg = RL_BMCR;
539 		break;
540 	case MII_BMSR:
541 		re8139_reg = RL_BMSR;
542 		break;
543 	case MII_ANAR:
544 		re8139_reg = RL_ANAR;
545 		break;
546 	case MII_ANER:
547 		re8139_reg = RL_ANER;
548 		break;
549 	case MII_ANLPAR:
550 		re8139_reg = RL_LPAR;
551 		break;
552 	case MII_PHYIDR1:
553 	case MII_PHYIDR2:
554 		RL_UNLOCK(sc);
555 		return(0);
556 		break;
557 	default:
558 		printf("re%d: bad phy register\n", sc->rl_unit);
559 		RL_UNLOCK(sc);
560 		return(0);
561 	}
562 	CSR_WRITE_2(sc, re8139_reg, data);
563 	RL_UNLOCK(sc);
564 	return(0);
565 }
566 
567 static void
568 re_miibus_statchg(dev)
569 	device_t		dev;
570 {
571 	return;
572 }
573 
574 /*
575  * Calculate CRC of a multicast group address, return the upper 6 bits.
576  */
577 static u_int32_t
578 re_mchash(addr)
579 	caddr_t		addr;
580 {
581 	u_int32_t	crc, carry;
582 	int		idx, bit;
583 	u_int8_t	data;
584 
585 	/* Compute CRC for the address value. */
586 	crc = 0xFFFFFFFF; /* initial value */
587 
588 	for (idx = 0; idx < 6; idx++) {
589 		for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1) {
590 			carry = ((crc & 0x80000000) ? 1 : 0) ^ (data & 0x01);
591 			crc <<= 1;
592 			if (carry)
593 				crc = (crc ^ 0x04c11db6) | carry;
594 		}
595 	}
596 
597 	/* return the filter bit position */
598 	return(crc >> 26);
599 }
600 
601 /*
602  * Program the 64-bit multicast hash filter.
603  */
604 static void
605 re_setmulti(sc)
606 	struct rl_softc		*sc;
607 {
608 	struct ifnet		*ifp;
609 	int			h = 0;
610 	u_int32_t		hashes[2] = { 0, 0 };
611 	struct ifmultiaddr	*ifma;
612 	u_int32_t		rxfilt;
613 	int			mcnt = 0;
614 
615 	ifp = &sc->arpcom.ac_if;
616 
617 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
618 
619 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
620 		rxfilt |= RL_RXCFG_RX_MULTI;
621 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
622 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
623 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
624 		return;
625 	}
626 
627 	/* first, zot all the existing hash bits */
628 	CSR_WRITE_4(sc, RL_MAR0, 0);
629 	CSR_WRITE_4(sc, RL_MAR4, 0);
630 
631 	/* now program new ones */
632 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
633 		if (ifma->ifma_addr->sa_family != AF_LINK)
634 			continue;
635 		h = re_mchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
636 		if (h < 32)
637 			hashes[0] |= (1 << h);
638 		else
639 			hashes[1] |= (1 << (h - 32));
640 		mcnt++;
641 	}
642 
643 	if (mcnt)
644 		rxfilt |= RL_RXCFG_RX_MULTI;
645 	else
646 		rxfilt &= ~RL_RXCFG_RX_MULTI;
647 
648 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
649 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
650 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
651 
652 	return;
653 }
654 
655 static void
656 re_reset(sc)
657 	struct rl_softc		*sc;
658 {
659 	register int		i;
660 
661 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
662 
663 	for (i = 0; i < RL_TIMEOUT; i++) {
664 		DELAY(10);
665 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
666 			break;
667 	}
668 	if (i == RL_TIMEOUT)
669 		printf("re%d: reset never completed!\n", sc->rl_unit);
670 
671 	CSR_WRITE_1(sc, 0x82, 1);
672 
673 	return;
674 }
675 
676 /*
677  * The following routine is designed to test for a defect on some
678  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
679  * lines connected to the bus, however for a 32-bit only card, they
680  * should be pulled high. The result of this defect is that the
681  * NIC will not work right if you plug it into a 64-bit slot: DMA
682  * operations will be done with 64-bit transfers, which will fail
683  * because the 64-bit data lines aren't connected.
684  *
685  * There's no way to work around this (short of talking a soldering
686  * iron to the board), however we can detect it. The method we use
687  * here is to put the NIC into digital loopback mode, set the receiver
688  * to promiscuous mode, and then try to send a frame. We then compare
689  * the frame data we sent to what was received. If the data matches,
690  * then the NIC is working correctly, otherwise we know the user has
691  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
692  * slot. In the latter case, there's no way the NIC can work correctly,
693  * so we print out a message on the console and abort the device attach.
694  */
695 
696 static int
697 re_diag(sc)
698 	struct rl_softc		*sc;
699 {
700 	struct ifnet		*ifp = &sc->arpcom.ac_if;
701 	struct mbuf		*m0;
702 	struct ether_header	*eh;
703 	struct rl_desc		*cur_rx;
704 	u_int16_t		status;
705 	u_int32_t		rxstat;
706 	int			total_len, i, error = 0;
707 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
708 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
709 
710 	/* Allocate a single mbuf */
711 
712 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
713 	if (m0 == NULL)
714 		return(ENOBUFS);
715 
716 	/*
717 	 * Initialize the NIC in test mode. This sets the chip up
718 	 * so that it can send and receive frames, but performs the
719 	 * following special functions:
720 	 * - Puts receiver in promiscuous mode
721 	 * - Enables digital loopback mode
722 	 * - Leaves interrupts turned off
723 	 */
724 
725 	ifp->if_flags |= IFF_PROMISC;
726 	sc->rl_testmode = 1;
727 	re_init(sc);
728 	re_stop(sc);
729 	DELAY(100000);
730 	re_init(sc);
731 
732 	/* Put some data in the mbuf */
733 
734 	eh = mtod(m0, struct ether_header *);
735 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
736 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
737 	eh->ether_type = htons(ETHERTYPE_IP);
738 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
739 
740 	/*
741 	 * Queue the packet, start transmission.
742 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
743 	 */
744 
745 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
746 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
747 	m0 = NULL;
748 
749 	/* Wait for it to propagate through the chip */
750 
751 	DELAY(100000);
752 	for (i = 0; i < RL_TIMEOUT; i++) {
753 		status = CSR_READ_2(sc, RL_ISR);
754 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
755 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
756 			break;
757 		DELAY(10);
758 	}
759 
760 	if (i == RL_TIMEOUT) {
761 		printf("re%d: diagnostic failed, failed to receive packet "
762 		    "in loopback mode\n", sc->rl_unit);
763 		error = EIO;
764 		goto done;
765 	}
766 
767 	/*
768 	 * The packet should have been dumped into the first
769 	 * entry in the RX DMA ring. Grab it from there.
770 	 */
771 
772 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
773 	    sc->rl_ldata.rl_rx_list_map,
774 	    BUS_DMASYNC_POSTREAD);
775 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
776 	    sc->rl_ldata.rl_rx_dmamap[0],
777 	    BUS_DMASYNC_POSTWRITE);
778 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
779 	    sc->rl_ldata.rl_rx_dmamap[0]);
780 
781 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
782 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
783 	eh = mtod(m0, struct ether_header *);
784 
785 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
786 	total_len = RL_RXBYTES(cur_rx);
787 	rxstat = le32toh(cur_rx->rl_cmdstat);
788 
789 	if (total_len != ETHER_MIN_LEN) {
790 		printf("re%d: diagnostic failed, received short packet\n",
791 		    sc->rl_unit);
792 		error = EIO;
793 		goto done;
794 	}
795 
796 	/* Test that the received packet data matches what we sent. */
797 
798 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
799 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
800 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
801 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
802 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
803 		    dst, ":", src, ":", ETHERTYPE_IP);
804 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
805 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
806 		    ntohs(eh->ether_type));
807 		printf("re%d: You may have a defective 32-bit NIC plugged "
808 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
809 		printf("re%d: Please re-install the NIC in a 32-bit slot "
810 		    "for proper operation.\n", sc->rl_unit);
811 		printf("re%d: Read the re(4) man page for more details.\n",
812 		    sc->rl_unit);
813 		error = EIO;
814 	}
815 
816 done:
817 	/* Turn interface off, release resources */
818 
819 	sc->rl_testmode = 0;
820 	ifp->if_flags &= ~IFF_PROMISC;
821 	re_stop(sc);
822 	if (m0 != NULL)
823 		m_freem(m0);
824 
825 	return (error);
826 }
827 
828 /*
829  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
830  * IDs against our list and return a device name if we find a match.
831  */
832 static int
833 re_probe(dev)
834 	device_t		dev;
835 {
836 	struct rl_type		*t;
837 	struct rl_softc		*sc;
838 	int			rid;
839 	u_int32_t		hwrev;
840 
841 	t = re_devs;
842 	sc = device_get_softc(dev);
843 
844 	while(t->rl_name != NULL) {
845 		if ((pci_get_vendor(dev) == t->rl_vid) &&
846 		    (pci_get_device(dev) == t->rl_did)) {
847 
848 			/*
849 			 * Temporarily map the I/O space
850 			 * so we can read the chip ID register.
851 			 */
852 			rid = RL_RID;
853 			sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
854 			    0, ~0, 1, RF_ACTIVE);
855 			if (sc->rl_res == NULL) {
856 				device_printf(dev,
857 				    "couldn't map ports/memory\n");
858 				return(ENXIO);
859 			}
860 			sc->rl_btag = rman_get_bustag(sc->rl_res);
861 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
862 			mtx_init(&sc->rl_mtx,
863 			    device_get_nameunit(dev),
864 			    MTX_NETWORK_LOCK, MTX_DEF);
865 			RL_LOCK(sc);
866 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
867 			bus_release_resource(dev, RL_RES,
868 			    RL_RID, sc->rl_res);
869 			RL_UNLOCK(sc);
870 			mtx_destroy(&sc->rl_mtx);
871 			if (t->rl_basetype == hwrev) {
872 				device_set_desc(dev, t->rl_name);
873 				return(0);
874 			}
875 		}
876 		t++;
877 	}
878 
879 	return(ENXIO);
880 }
881 
882 /*
883  * This routine takes the segment list provided as the result of
884  * a bus_dma_map_load() operation and assigns the addresses/lengths
885  * to RealTek DMA descriptors. This can be called either by the RX
886  * code or the TX code. In the RX case, we'll probably wind up mapping
887  * at most one segment. For the TX case, there could be any number of
888  * segments since TX packets may span multiple mbufs. In either case,
889  * if the number of segments is larger than the rl_maxsegs limit
890  * specified by the caller, we abort the mapping operation. Sadly,
891  * whoever designed the buffer mapping API did not provide a way to
892  * return an error from here, so we have to fake it a bit.
893  */
894 
895 static void
896 re_dma_map_desc(arg, segs, nseg, mapsize, error)
897 	void			*arg;
898 	bus_dma_segment_t	*segs;
899 	int			nseg;
900 	bus_size_t		mapsize;
901 	int			error;
902 {
903 	struct rl_dmaload_arg	*ctx;
904 	struct rl_desc		*d = NULL;
905 	int			i = 0, idx;
906 
907 	if (error)
908 		return;
909 
910 	ctx = arg;
911 
912 	/* Signal error to caller if there's too many segments */
913 	if (nseg > ctx->rl_maxsegs) {
914 		ctx->rl_maxsegs = 0;
915 		return;
916 	}
917 
918 	/*
919 	 * Map the segment array into descriptors. Note that we set the
920 	 * start-of-frame and end-of-frame markers for either TX or RX, but
921 	 * they really only have meaning in the TX case. (In the RX case,
922 	 * it's the chip that tells us where packets begin and end.)
923 	 * We also keep track of the end of the ring and set the
924 	 * end-of-ring bits as needed, and we set the ownership bits
925 	 * in all except the very first descriptor. (The caller will
926 	 * set this descriptor later when it start transmission or
927 	 * reception.)
928 	 */
929 	idx = ctx->rl_idx;
930 	while(1) {
931 		u_int32_t		cmdstat;
932 		d = &ctx->rl_ring[idx];
933 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
934 			ctx->rl_maxsegs = 0;
935 			return;
936 		}
937 		cmdstat = segs[i].ds_len;
938 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
939 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
940 		if (i == 0)
941 			cmdstat |= RL_TDESC_CMD_SOF;
942 		else
943 			cmdstat |= RL_TDESC_CMD_OWN;
944 		if (idx == (RL_RX_DESC_CNT - 1))
945 			cmdstat |= RL_TDESC_CMD_EOR;
946 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
947 		i++;
948 		if (i == nseg)
949 			break;
950 		RL_DESC_INC(idx);
951 	}
952 
953 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
954 	ctx->rl_maxsegs = nseg;
955 	ctx->rl_idx = idx;
956 
957 	return;
958 }
959 
960 /*
961  * Map a single buffer address.
962  */
963 
964 static void
965 re_dma_map_addr(arg, segs, nseg, error)
966 	void			*arg;
967 	bus_dma_segment_t	*segs;
968 	int			nseg;
969 	int			error;
970 {
971 	u_int32_t		*addr;
972 
973 	if (error)
974 		return;
975 
976 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
977 	addr = arg;
978 	*addr = segs->ds_addr;
979 
980 	return;
981 }
982 
983 static int
984 re_allocmem(dev, sc)
985 	device_t		dev;
986 	struct rl_softc		*sc;
987 {
988 	int			error;
989 	int			nseg;
990 	int			i;
991 
992 	/*
993 	 * Allocate map for RX mbufs.
994 	 */
995 	nseg = 32;
996 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
997 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
998 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
999 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
1000 	if (error) {
1001 		device_printf(dev, "could not allocate dma tag\n");
1002 		return (ENOMEM);
1003 	}
1004 
1005 	/*
1006 	 * Allocate map for TX descriptor list.
1007 	 */
1008 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1009 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1010             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1011 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1012 	if (error) {
1013 		device_printf(dev, "could not allocate dma tag\n");
1014 		return (ENOMEM);
1015 	}
1016 
1017 	/* Allocate DMA'able memory for the TX ring */
1018 
1019         error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1020 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1021             &sc->rl_ldata.rl_tx_list_map);
1022         if (error)
1023                 return (ENOMEM);
1024 
1025 	/* Load the map for the TX ring. */
1026 
1027 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1028 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1029 	     RL_TX_LIST_SZ, re_dma_map_addr,
1030 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1031 
1032 	/* Create DMA maps for TX buffers */
1033 
1034 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
1035 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1036 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1037 		if (error) {
1038 			device_printf(dev, "can't create DMA map for TX\n");
1039 			return(ENOMEM);
1040 		}
1041 	}
1042 
1043 	/*
1044 	 * Allocate map for RX descriptor list.
1045 	 */
1046 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1047 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1048             NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
1049 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1050 	if (error) {
1051 		device_printf(dev, "could not allocate dma tag\n");
1052 		return (ENOMEM);
1053 	}
1054 
1055 	/* Allocate DMA'able memory for the RX ring */
1056 
1057         error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1058 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1059             &sc->rl_ldata.rl_rx_list_map);
1060         if (error)
1061                 return (ENOMEM);
1062 
1063 	/* Load the map for the RX ring. */
1064 
1065 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1066 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1067 	     RL_TX_LIST_SZ, re_dma_map_addr,
1068 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1069 
1070 	/* Create DMA maps for RX buffers */
1071 
1072 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1073 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1074 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1075 		if (error) {
1076 			device_printf(dev, "can't create DMA map for RX\n");
1077 			return(ENOMEM);
1078 		}
1079 	}
1080 
1081 	return(0);
1082 }
1083 
1084 /*
1085  * Attach the interface. Allocate softc structures, do ifmedia
1086  * setup and ethernet/BPF attach.
1087  */
1088 static int
1089 re_attach(dev)
1090 	device_t		dev;
1091 {
1092 	u_char			eaddr[ETHER_ADDR_LEN];
1093 	u_int16_t		as[3];
1094 	struct rl_softc		*sc;
1095 	struct ifnet		*ifp;
1096 	struct rl_hwrev		*hw_rev;
1097 	int			hwrev;
1098 	u_int16_t		re_did = 0;
1099 	int			unit, error = 0, rid, i;
1100 
1101 	sc = device_get_softc(dev);
1102 	unit = device_get_unit(dev);
1103 
1104 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1105 	    MTX_DEF | MTX_RECURSE);
1106 #ifndef BURN_BRIDGES
1107 	/*
1108 	 * Handle power management nonsense.
1109 	 */
1110 
1111 	if (pci_get_powerstate(dev) != PCI_POWERSTATE_D0) {
1112 		u_int32_t		iobase, membase, irq;
1113 
1114 		/* Save important PCI config data. */
1115 		iobase = pci_read_config(dev, RL_PCI_LOIO, 4);
1116 		membase = pci_read_config(dev, RL_PCI_LOMEM, 4);
1117 		irq = pci_read_config(dev, RL_PCI_INTLINE, 4);
1118 
1119 		/* Reset the power state. */
1120 		printf("re%d: chip is is in D%d power mode "
1121 		    "-- setting to D0\n", unit,
1122 		    pci_get_powerstate(dev));
1123 
1124 		pci_set_powerstate(dev, PCI_POWERSTATE_D0);
1125 
1126 		/* Restore PCI config data. */
1127 		pci_write_config(dev, RL_PCI_LOIO, iobase, 4);
1128 		pci_write_config(dev, RL_PCI_LOMEM, membase, 4);
1129 		pci_write_config(dev, RL_PCI_INTLINE, irq, 4);
1130 	}
1131 #endif
1132 	/*
1133 	 * Map control/status registers.
1134 	 */
1135 	pci_enable_busmaster(dev);
1136 
1137 	rid = RL_RID;
1138 	sc->rl_res = bus_alloc_resource(dev, RL_RES, &rid,
1139 	    0, ~0, 1, RF_ACTIVE);
1140 
1141 	if (sc->rl_res == NULL) {
1142 		printf ("re%d: couldn't map ports/memory\n", unit);
1143 		error = ENXIO;
1144 		goto fail;
1145 	}
1146 
1147 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1148 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1149 
1150 	/* Allocate interrupt */
1151 	rid = 0;
1152 	sc->rl_irq = bus_alloc_resource(dev, SYS_RES_IRQ, &rid, 0, ~0, 1,
1153 	    RF_SHAREABLE | RF_ACTIVE);
1154 
1155 	if (sc->rl_irq == NULL) {
1156 		printf("re%d: couldn't map interrupt\n", unit);
1157 		error = ENXIO;
1158 		goto fail;
1159 	}
1160 
1161 	/* Reset the adapter. */
1162 	re_reset(sc);
1163 
1164 	hw_rev = re_hwrevs;
1165 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1166 	while (hw_rev->rl_desc != NULL) {
1167 		if (hw_rev->rl_rev == hwrev) {
1168 			sc->rl_type = hw_rev->rl_type;
1169 			break;
1170 		}
1171 		hw_rev++;
1172 	}
1173 
1174 	if (sc->rl_type == RL_8169) {
1175 
1176 		/* Set RX length mask */
1177 
1178 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1179 
1180 		/* Force station address autoload from the EEPROM */
1181 
1182 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1183 		for (i = 0; i < RL_TIMEOUT; i++) {
1184 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1185 				break;
1186 			DELAY(100);
1187 		}
1188 		if (i == RL_TIMEOUT)
1189 			printf ("re%d: eeprom autoload timed out\n", unit);
1190 
1191 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1192 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1193 	} else {
1194 
1195 		/* Set RX length mask */
1196 
1197 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1198 
1199 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1200 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1201 		if (re_did != 0x8129)
1202 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1203 
1204 		/*
1205 		 * Get station address from the EEPROM.
1206 		 */
1207 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1208 		for (i = 0; i < 3; i++) {
1209 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1210 			eaddr[(i * 2) + 1] = as[i] >> 8;
1211 		}
1212 	}
1213 
1214 	/*
1215 	 * A RealTek chip was detected. Inform the world.
1216 	 */
1217 	printf("re%d: Ethernet address: %6D\n", unit, eaddr, ":");
1218 
1219 	sc->rl_unit = unit;
1220 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1221 
1222 	/*
1223 	 * Allocate the parent bus DMA tag appropriate for PCI.
1224 	 */
1225 #define RL_NSEG_NEW 32
1226 	error = bus_dma_tag_create(NULL,	/* parent */
1227 			1, 0,			/* alignment, boundary */
1228 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1229 			BUS_SPACE_MAXADDR,	/* highaddr */
1230 			NULL, NULL,		/* filter, filterarg */
1231 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1232 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1233 			BUS_DMA_ALLOCNOW,	/* flags */
1234 			NULL, NULL,		/* lockfunc, lockarg */
1235 			&sc->rl_parent_tag);
1236 	if (error)
1237 		goto fail;
1238 
1239 	error = re_allocmem(dev, sc);
1240 
1241 	if (error)
1242 		goto fail;
1243 
1244 	/* Do MII setup */
1245 	if (mii_phy_probe(dev, &sc->rl_miibus,
1246 	    re_ifmedia_upd, re_ifmedia_sts)) {
1247 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1248 		error = ENXIO;
1249 		goto fail;
1250 	}
1251 
1252 	ifp = &sc->arpcom.ac_if;
1253 	ifp->if_softc = sc;
1254 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1255 	ifp->if_mtu = ETHERMTU;
1256 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1257 	ifp->if_ioctl = re_ioctl;
1258 	ifp->if_output = ether_output;
1259 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1260 	ifp->if_start = re_start;
1261 	ifp->if_hwassist = RE_CSUM_FEATURES;
1262 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1263 	ifp->if_watchdog = re_watchdog;
1264 	ifp->if_init = re_init;
1265 	if (sc->rl_type == RL_8169)
1266 		ifp->if_baudrate = 1000000000;
1267 	else
1268 		ifp->if_baudrate = 100000000;
1269 	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1270 	ifp->if_capenable = ifp->if_capabilities;
1271 
1272 	callout_handle_init(&sc->rl_stat_ch);
1273 
1274 	/*
1275 	 * Call MI attach routine.
1276 	 */
1277 	ether_ifattach(ifp, eaddr);
1278 
1279 	/* Perform hardware diagnostic. */
1280 	error = re_diag(sc);
1281 
1282 	if (error) {
1283 		printf("re%d: attach aborted due to hardware diag failure\n",
1284 		    unit);
1285 		ether_ifdetach(ifp);
1286 		goto fail;
1287 	}
1288 
1289 	/* Hook interrupt last to avoid having to lock softc */
1290 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET,
1291 	    re_intr, sc, &sc->rl_intrhand);
1292 
1293 	if (error) {
1294 		printf("re%d: couldn't set up irq\n", unit);
1295 		ether_ifdetach(ifp);
1296 		goto fail;
1297 	}
1298 
1299 fail:
1300 	if (error)
1301 		re_detach(dev);
1302 
1303 	return (error);
1304 }
1305 
1306 /*
1307  * Shutdown hardware and free up resources. This can be called any
1308  * time after the mutex has been initialized. It is called in both
1309  * the error case in attach and the normal detach case so it needs
1310  * to be careful about only freeing resources that have actually been
1311  * allocated.
1312  */
1313 static int
1314 re_detach(dev)
1315 	device_t		dev;
1316 {
1317 	struct rl_softc		*sc;
1318 	struct ifnet		*ifp;
1319 	int			i;
1320 
1321 	sc = device_get_softc(dev);
1322 	KASSERT(mtx_initialized(&sc->rl_mtx), ("rl mutex not initialized"));
1323 	RL_LOCK(sc);
1324 	ifp = &sc->arpcom.ac_if;
1325 
1326 	/* These should only be active if attach succeeded */
1327 	if (device_is_attached(dev)) {
1328 		re_stop(sc);
1329 		/*
1330 		 * Force off the IFF_UP flag here, in case someone
1331 		 * still had a BPF descriptor attached to this
1332 		 * interface. If they do, ether_ifattach() will cause
1333 		 * the BPF code to try and clear the promisc mode
1334 		 * flag, which will bubble down to re_ioctl(),
1335 		 * which will try to call re_init() again. This will
1336 		 * turn the NIC back on and restart the MII ticker,
1337 		 * which will panic the system when the kernel tries
1338 		 * to invoke the re_tick() function that isn't there
1339 		 * anymore.
1340 		 */
1341 		ifp->if_flags &= ~IFF_UP;
1342 		ether_ifdetach(ifp);
1343 	}
1344 	if (sc->rl_miibus)
1345 		device_delete_child(dev, sc->rl_miibus);
1346 	bus_generic_detach(dev);
1347 
1348 	if (sc->rl_intrhand)
1349 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1350 	if (sc->rl_irq)
1351 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1352 	if (sc->rl_res)
1353 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1354 
1355 
1356 	/* Unload and free the RX DMA ring memory and map */
1357 
1358 	if (sc->rl_ldata.rl_rx_list_tag) {
1359 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1360 		    sc->rl_ldata.rl_rx_list_map);
1361 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1362 		    sc->rl_ldata.rl_rx_list,
1363 		    sc->rl_ldata.rl_rx_list_map);
1364 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1365 	}
1366 
1367 	/* Unload and free the TX DMA ring memory and map */
1368 
1369 	if (sc->rl_ldata.rl_tx_list_tag) {
1370 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1371 		    sc->rl_ldata.rl_tx_list_map);
1372 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1373 		    sc->rl_ldata.rl_tx_list,
1374 		    sc->rl_ldata.rl_tx_list_map);
1375 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1376 	}
1377 
1378 	/* Destroy all the RX and TX buffer maps */
1379 
1380 	if (sc->rl_ldata.rl_mtag) {
1381 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1382 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1383 			    sc->rl_ldata.rl_tx_dmamap[i]);
1384 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1385 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1386 			    sc->rl_ldata.rl_rx_dmamap[i]);
1387 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1388 	}
1389 
1390 	/* Unload and free the stats buffer and map */
1391 
1392 	if (sc->rl_ldata.rl_stag) {
1393 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1394 		    sc->rl_ldata.rl_rx_list_map);
1395 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1396 		    sc->rl_ldata.rl_stats,
1397 		    sc->rl_ldata.rl_smap);
1398 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1399 	}
1400 
1401 	if (sc->rl_parent_tag)
1402 		bus_dma_tag_destroy(sc->rl_parent_tag);
1403 
1404 	RL_UNLOCK(sc);
1405 	mtx_destroy(&sc->rl_mtx);
1406 
1407 	return(0);
1408 }
1409 
1410 static int
1411 re_newbuf(sc, idx, m)
1412 	struct rl_softc		*sc;
1413 	int			idx;
1414 	struct mbuf		*m;
1415 {
1416 	struct rl_dmaload_arg	arg;
1417 	struct mbuf		*n = NULL;
1418 	int			error;
1419 
1420 	if (m == NULL) {
1421 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1422 		if (n == NULL)
1423 			return(ENOBUFS);
1424 		m = n;
1425 	} else
1426 		m->m_data = m->m_ext.ext_buf;
1427 
1428 	/*
1429 	 * Initialize mbuf length fields and fixup
1430 	 * alignment so that the frame payload is
1431 	 * longword aligned.
1432 	 */
1433 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1434 	m_adj(m, ETHER_ALIGN);
1435 
1436 	arg.sc = sc;
1437 	arg.rl_idx = idx;
1438 	arg.rl_maxsegs = 1;
1439 	arg.rl_flags = 0;
1440 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1441 
1442         error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1443 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1444 	    &arg, BUS_DMA_NOWAIT);
1445 	if (error || arg.rl_maxsegs != 1) {
1446 		if (n != NULL)
1447 			m_freem(n);
1448 		return (ENOMEM);
1449 	}
1450 
1451 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1452 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1453 
1454         bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1455 	    sc->rl_ldata.rl_rx_dmamap[idx],
1456 	    BUS_DMASYNC_PREREAD);
1457 
1458 	return(0);
1459 }
1460 
1461 static int
1462 re_tx_list_init(sc)
1463 	struct rl_softc		*sc;
1464 {
1465 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1466 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1467 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1468 
1469 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1470 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1471 	sc->rl_ldata.rl_tx_prodidx = 0;
1472 	sc->rl_ldata.rl_tx_considx = 0;
1473 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1474 
1475 	return(0);
1476 }
1477 
1478 static int
1479 re_rx_list_init(sc)
1480 	struct rl_softc		*sc;
1481 {
1482 	int			i;
1483 
1484 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1485 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1486 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1487 
1488 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1489 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1490 			return(ENOBUFS);
1491 	}
1492 
1493 	/* Flush the RX descriptors */
1494 
1495 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1496 	    sc->rl_ldata.rl_rx_list_map,
1497 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1498 
1499 	sc->rl_ldata.rl_rx_prodidx = 0;
1500 	sc->rl_head = sc->rl_tail = NULL;
1501 
1502 	return(0);
1503 }
1504 
1505 /*
1506  * RX handler for C+ and 8169. For the gigE chips, we support
1507  * the reception of jumbo frames that have been fragmented
1508  * across multiple 2K mbuf cluster buffers.
1509  */
1510 static void
1511 re_rxeof(sc)
1512 	struct rl_softc		*sc;
1513 {
1514 	struct mbuf		*m;
1515 	struct ifnet		*ifp;
1516 	int			i, total_len;
1517 	struct rl_desc		*cur_rx;
1518 	u_int32_t		rxstat, rxvlan;
1519 
1520 	RL_LOCK_ASSERT(sc);
1521 
1522 	ifp = &sc->arpcom.ac_if;
1523 	i = sc->rl_ldata.rl_rx_prodidx;
1524 
1525 	/* Invalidate the descriptor memory */
1526 
1527 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1528 	    sc->rl_ldata.rl_rx_list_map,
1529 	    BUS_DMASYNC_POSTREAD);
1530 
1531 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1532 
1533 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1534 		m = sc->rl_ldata.rl_rx_mbuf[i];
1535 		total_len = RL_RXBYTES(cur_rx);
1536 		rxstat = le32toh(cur_rx->rl_cmdstat);
1537 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1538 
1539 		/* Invalidate the RX mbuf and unload its map */
1540 
1541 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1542 		    sc->rl_ldata.rl_rx_dmamap[i],
1543 		    BUS_DMASYNC_POSTWRITE);
1544 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1545 		    sc->rl_ldata.rl_rx_dmamap[i]);
1546 
1547 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1548 			m->m_len = MCLBYTES - ETHER_ALIGN;
1549 			if (sc->rl_head == NULL)
1550 				sc->rl_head = sc->rl_tail = m;
1551 			else {
1552 				m->m_flags &= ~M_PKTHDR;
1553 				sc->rl_tail->m_next = m;
1554 				sc->rl_tail = m;
1555 			}
1556 			re_newbuf(sc, i, NULL);
1557 			RL_DESC_INC(i);
1558 			continue;
1559 		}
1560 
1561 		/*
1562 		 * NOTE: for the 8139C+, the frame length field
1563 		 * is always 12 bits in size, but for the gigE chips,
1564 		 * it is 13 bits (since the max RX frame length is 16K).
1565 		 * Unfortunately, all 32 bits in the status word
1566 		 * were already used, so to make room for the extra
1567 		 * length bit, RealTek took out the 'frame alignment
1568 		 * error' bit and shifted the other status bits
1569 		 * over one slot. The OWN, EOR, FS and LS bits are
1570 		 * still in the same places. We have already extracted
1571 		 * the frame length and checked the OWN bit, so rather
1572 		 * than using an alternate bit mapping, we shift the
1573 		 * status bits one space to the right so we can evaluate
1574 		 * them using the 8169 status as though it was in the
1575 		 * same format as that of the 8139C+.
1576 		 */
1577 		if (sc->rl_type == RL_8169)
1578 			rxstat >>= 1;
1579 
1580 		if (rxstat & RL_RDESC_STAT_RXERRSUM) {
1581 			ifp->if_ierrors++;
1582 			/*
1583 			 * If this is part of a multi-fragment packet,
1584 			 * discard all the pieces.
1585 			 */
1586 			if (sc->rl_head != NULL) {
1587 				m_freem(sc->rl_head);
1588 				sc->rl_head = sc->rl_tail = NULL;
1589 			}
1590 			re_newbuf(sc, i, m);
1591 			RL_DESC_INC(i);
1592 			continue;
1593 		}
1594 
1595 		/*
1596 		 * If allocating a replacement mbuf fails,
1597 		 * reload the current one.
1598 		 */
1599 
1600 		if (re_newbuf(sc, i, NULL)) {
1601 			ifp->if_ierrors++;
1602 			if (sc->rl_head != NULL) {
1603 				m_freem(sc->rl_head);
1604 				sc->rl_head = sc->rl_tail = NULL;
1605 			}
1606 			re_newbuf(sc, i, m);
1607 			RL_DESC_INC(i);
1608 			continue;
1609 		}
1610 
1611 		RL_DESC_INC(i);
1612 
1613 		if (sc->rl_head != NULL) {
1614 			m->m_len = total_len % (MCLBYTES - ETHER_ALIGN);
1615 			/*
1616 			 * Special case: if there's 4 bytes or less
1617 			 * in this buffer, the mbuf can be discarded:
1618 			 * the last 4 bytes is the CRC, which we don't
1619 			 * care about anyway.
1620 			 */
1621 			if (m->m_len <= ETHER_CRC_LEN) {
1622 				sc->rl_tail->m_len -=
1623 				    (ETHER_CRC_LEN - m->m_len);
1624 				m_freem(m);
1625 			} else {
1626 				m->m_len -= ETHER_CRC_LEN;
1627 				m->m_flags &= ~M_PKTHDR;
1628 				sc->rl_tail->m_next = m;
1629 			}
1630 			m = sc->rl_head;
1631 			sc->rl_head = sc->rl_tail = NULL;
1632 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1633 		} else
1634 			m->m_pkthdr.len = m->m_len =
1635 			    (total_len - ETHER_CRC_LEN);
1636 
1637 		ifp->if_ipackets++;
1638 		m->m_pkthdr.rcvif = ifp;
1639 
1640 		/* Do RX checksumming if enabled */
1641 
1642 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1643 
1644 			/* Check IP header checksum */
1645 			if (rxstat & RL_RDESC_STAT_PROTOID)
1646 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1647 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1648 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1649 
1650 			/* Check TCP/UDP checksum */
1651 			if ((RL_TCPPKT(rxstat) &&
1652 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1653 			    (RL_UDPPKT(rxstat) &&
1654 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1655 				m->m_pkthdr.csum_flags |=
1656 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1657 				m->m_pkthdr.csum_data = 0xffff;
1658 			}
1659 		}
1660 
1661 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1662 			VLAN_INPUT_TAG(ifp, m,
1663 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1664 		RL_UNLOCK(sc);
1665 		(*ifp->if_input)(ifp, m);
1666 		RL_LOCK(sc);
1667 	}
1668 
1669 	/* Flush the RX DMA ring */
1670 
1671 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1672 	    sc->rl_ldata.rl_rx_list_map,
1673 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1674 
1675 	sc->rl_ldata.rl_rx_prodidx = i;
1676 
1677 	return;
1678 }
1679 
1680 static void
1681 re_txeof(sc)
1682 	struct rl_softc		*sc;
1683 {
1684 	struct ifnet		*ifp;
1685 	u_int32_t		txstat;
1686 	int			idx;
1687 
1688 	ifp = &sc->arpcom.ac_if;
1689 	idx = sc->rl_ldata.rl_tx_considx;
1690 
1691 	/* Invalidate the TX descriptor list */
1692 
1693 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1694 	    sc->rl_ldata.rl_tx_list_map,
1695 	    BUS_DMASYNC_POSTREAD);
1696 
1697 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1698 
1699 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1700 		if (txstat & RL_TDESC_CMD_OWN)
1701 			break;
1702 
1703 		/*
1704 		 * We only stash mbufs in the last descriptor
1705 		 * in a fragment chain, which also happens to
1706 		 * be the only place where the TX status bits
1707 		 * are valid.
1708 		 */
1709 
1710 		if (txstat & RL_TDESC_CMD_EOF) {
1711 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1712 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1713 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1714 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1715 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1716 			    RL_TDESC_STAT_COLCNT))
1717 				ifp->if_collisions++;
1718 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1719 				ifp->if_oerrors++;
1720 			else
1721 				ifp->if_opackets++;
1722 		}
1723 		sc->rl_ldata.rl_tx_free++;
1724 		RL_DESC_INC(idx);
1725 	}
1726 
1727 	/* No changes made to the TX ring, so no flush needed */
1728 
1729 	if (idx != sc->rl_ldata.rl_tx_considx) {
1730 		sc->rl_ldata.rl_tx_considx = idx;
1731 		ifp->if_flags &= ~IFF_OACTIVE;
1732 		ifp->if_timer = 0;
1733 	}
1734 
1735 	/*
1736 	 * If not all descriptors have been released reaped yet,
1737 	 * reload the timer so that we will eventually get another
1738 	 * interrupt that will cause us to re-enter this routine.
1739 	 * This is done in case the transmitter has gone idle.
1740 	 */
1741 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1742                 CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1743 
1744 	return;
1745 }
1746 
1747 static void
1748 re_tick(xsc)
1749 	void			*xsc;
1750 {
1751 	struct rl_softc		*sc;
1752 	struct mii_data		*mii;
1753 
1754 	sc = xsc;
1755 	RL_LOCK(sc);
1756 	mii = device_get_softc(sc->rl_miibus);
1757 
1758 	mii_tick(mii);
1759 
1760 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1761 	RL_UNLOCK(sc);
1762 
1763 	return;
1764 }
1765 
1766 #ifdef DEVICE_POLLING
1767 static void
1768 re_poll (struct ifnet *ifp, enum poll_cmd cmd, int count)
1769 {
1770 	struct rl_softc *sc = ifp->if_softc;
1771 
1772 	RL_LOCK(sc);
1773 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1774 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1775 		goto done;
1776 	}
1777 
1778 	sc->rxcycles = count;
1779 	re_rxeof(sc);
1780 	re_txeof(sc);
1781 
1782 	if (ifp->if_snd.ifq_head != NULL)
1783 		(*ifp->if_start)(ifp);
1784 
1785 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1786 		u_int16_t       status;
1787 
1788 		status = CSR_READ_2(sc, RL_ISR);
1789 		if (status == 0xffff)
1790 			goto done;
1791 		if (status)
1792 			CSR_WRITE_2(sc, RL_ISR, status);
1793 
1794 		/*
1795 		 * XXX check behaviour on receiver stalls.
1796 		 */
1797 
1798 		if (status & RL_ISR_SYSTEM_ERR) {
1799 			re_reset(sc);
1800 			re_init(sc);
1801 		}
1802 	}
1803 done:
1804 	RL_UNLOCK(sc);
1805 }
1806 #endif /* DEVICE_POLLING */
1807 
1808 static void
1809 re_intr(arg)
1810 	void			*arg;
1811 {
1812 	struct rl_softc		*sc;
1813 	struct ifnet		*ifp;
1814 	u_int16_t		status;
1815 
1816 	sc = arg;
1817 
1818 	if (sc->suspended) {
1819 		return;
1820 	}
1821 
1822 	RL_LOCK(sc);
1823 	ifp = &sc->arpcom.ac_if;
1824 
1825 	if (!(ifp->if_flags & IFF_UP)) {
1826 		RL_UNLOCK(sc);
1827 		return;
1828 	}
1829 
1830 #ifdef DEVICE_POLLING
1831 	if  (ifp->if_flags & IFF_POLLING)
1832 		goto done;
1833 	if (ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1834 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1835 		re_poll(ifp, 0, 1);
1836 		goto done;
1837 	}
1838 #endif /* DEVICE_POLLING */
1839 
1840 	for (;;) {
1841 
1842 		status = CSR_READ_2(sc, RL_ISR);
1843 		/* If the card has gone away the read returns 0xffff. */
1844 		if (status == 0xffff)
1845 			break;
1846 		if (status)
1847 			CSR_WRITE_2(sc, RL_ISR, status);
1848 
1849 		if ((status & RL_INTRS_CPLUS) == 0)
1850 			break;
1851 
1852 		if (status & RL_ISR_RX_OK)
1853 			re_rxeof(sc);
1854 
1855 		if (status & RL_ISR_RX_ERR)
1856 			re_rxeof(sc);
1857 
1858 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1859 		    (status & RL_ISR_TX_ERR) ||
1860 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1861 			re_txeof(sc);
1862 
1863 		if (status & RL_ISR_SYSTEM_ERR) {
1864 			re_reset(sc);
1865 			re_init(sc);
1866 		}
1867 
1868 		if (status & RL_ISR_LINKCHG) {
1869 			untimeout(re_tick, sc, sc->rl_stat_ch);
1870 			re_tick(sc);
1871 		}
1872 	}
1873 
1874 	if (ifp->if_snd.ifq_head != NULL)
1875 		(*ifp->if_start)(ifp);
1876 
1877 #ifdef DEVICE_POLLING
1878 done:
1879 #endif
1880 	RL_UNLOCK(sc);
1881 
1882 	return;
1883 }
1884 
1885 static int
1886 re_encap(sc, m_head, idx)
1887 	struct rl_softc		*sc;
1888 	struct mbuf		*m_head;
1889 	int			*idx;
1890 {
1891 	struct mbuf		*m_new = NULL;
1892 	struct rl_dmaload_arg	arg;
1893 	bus_dmamap_t		map;
1894 	int			error;
1895 	struct m_tag		*mtag;
1896 
1897 	if (sc->rl_ldata.rl_tx_free <= 4)
1898 		return(EFBIG);
1899 
1900 	/*
1901 	 * Set up checksum offload. Note: checksum offload bits must
1902 	 * appear in all descriptors of a multi-descriptor transmit
1903 	 * attempt. (This is according to testing done with an 8169
1904 	 * chip. I'm not sure if this is a requirement or a bug.)
1905 	 */
1906 
1907 	arg.rl_flags = 0;
1908 
1909 	if (m_head->m_pkthdr.csum_flags & CSUM_IP)
1910 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1911 	if (m_head->m_pkthdr.csum_flags & CSUM_TCP)
1912 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1913 	if (m_head->m_pkthdr.csum_flags & CSUM_UDP)
1914 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1915 
1916 	arg.sc = sc;
1917 	arg.rl_idx = *idx;
1918 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1919 	if (arg.rl_maxsegs > 4)
1920 		arg.rl_maxsegs -= 4;
1921 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1922 
1923 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1924 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1925 	    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1926 
1927 	if (error && error != EFBIG) {
1928 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1929 		return(ENOBUFS);
1930 	}
1931 
1932 	/* Too many segments to map, coalesce into a single mbuf */
1933 
1934 	if (error || arg.rl_maxsegs == 0) {
1935 		m_new = m_defrag(m_head, M_DONTWAIT);
1936 		if (m_new == NULL)
1937 			return(1);
1938 		else
1939 			m_head = m_new;
1940 
1941 		arg.sc = sc;
1942 		arg.rl_idx = *idx;
1943 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1944 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1945 
1946 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1947 		    m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1948 		if (error) {
1949 			printf("re%d: can't map mbuf (error %d)\n",
1950 			    sc->rl_unit, error);
1951 			return(EFBIG);
1952 		}
1953 	}
1954 
1955 	/*
1956 	 * Insure that the map for this transmission
1957 	 * is placed at the array index of the last descriptor
1958 	 * in this chain.
1959 	 */
1960 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1961 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1962 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1963 
1964 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = m_head;
1965 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1966 
1967 	/*
1968 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1969 	 * appear in the first descriptor of a multi-descriptor
1970 	 * transmission attempt.
1971 	 */
1972 
1973 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, m_head);
1974 	if (mtag != NULL)
1975 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1976 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1977 
1978 	/* Transfer ownership of packet to the chip. */
1979 
1980 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1981 	    htole32(RL_TDESC_CMD_OWN);
1982 	if (*idx != arg.rl_idx)
1983 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1984 		    htole32(RL_TDESC_CMD_OWN);
1985 
1986 	RL_DESC_INC(arg.rl_idx);
1987 	*idx = arg.rl_idx;
1988 
1989 	return(0);
1990 }
1991 
1992 /*
1993  * Main transmit routine for C+ and gigE NICs.
1994  */
1995 
1996 static void
1997 re_start(ifp)
1998 	struct ifnet		*ifp;
1999 {
2000 	struct rl_softc		*sc;
2001 	struct mbuf		*m_head = NULL;
2002 	int			idx;
2003 
2004 	sc = ifp->if_softc;
2005 	RL_LOCK(sc);
2006 
2007 	idx = sc->rl_ldata.rl_tx_prodidx;
2008 
2009 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2010 		IF_DEQUEUE(&ifp->if_snd, m_head);
2011 		if (m_head == NULL)
2012 			break;
2013 
2014 		if (re_encap(sc, m_head, &idx)) {
2015 			IF_PREPEND(&ifp->if_snd, m_head);
2016 			ifp->if_flags |= IFF_OACTIVE;
2017 			break;
2018 		}
2019 
2020 		/*
2021 		 * If there's a BPF listener, bounce a copy of this frame
2022 		 * to him.
2023 		 */
2024 		BPF_MTAP(ifp, m_head);
2025 	}
2026 
2027 	/* Flush the TX descriptors */
2028 
2029 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2030 	    sc->rl_ldata.rl_tx_list_map,
2031 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2032 
2033 	sc->rl_ldata.rl_tx_prodidx = idx;
2034 
2035 	/*
2036 	 * RealTek put the TX poll request register in a different
2037 	 * location on the 8169 gigE chip. I don't know why.
2038 	 */
2039 
2040 	if (sc->rl_type == RL_8169)
2041 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2042 	else
2043 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2044 
2045 	/*
2046 	 * Use the countdown timer for interrupt moderation.
2047 	 * 'TX done' interrupts are disabled. Instead, we reset the
2048 	 * countdown timer, which will begin counting until it hits
2049 	 * the value in the TIMERINT register, and then trigger an
2050 	 * interrupt. Each time we write to the TIMERCNT register,
2051 	 * the timer count is reset to 0.
2052 	 */
2053 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2054 
2055 	RL_UNLOCK(sc);
2056 
2057 	/*
2058 	 * Set a timeout in case the chip goes out to lunch.
2059 	 */
2060 	ifp->if_timer = 5;
2061 
2062 	return;
2063 }
2064 
2065 static void
2066 re_init(xsc)
2067 	void			*xsc;
2068 {
2069 	struct rl_softc		*sc = xsc;
2070 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2071 	struct mii_data		*mii;
2072 	u_int32_t		rxcfg = 0;
2073 
2074 	RL_LOCK(sc);
2075 	mii = device_get_softc(sc->rl_miibus);
2076 
2077 	/*
2078 	 * Cancel pending I/O and free all RX/TX buffers.
2079 	 */
2080 	re_stop(sc);
2081 
2082 	/*
2083 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2084 	 * RX checksum offload. We must configure the C+ register
2085 	 * before all others.
2086 	 */
2087 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2088 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2089 	    RL_CPLUSCMD_VLANSTRIP|
2090 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2091 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2092 
2093 	/*
2094 	 * Init our MAC address.  Even though the chipset
2095 	 * documentation doesn't mention it, we need to enter "Config
2096 	 * register write enable" mode to modify the ID registers.
2097 	 */
2098 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2099 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2100 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2101 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2102 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2103 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2104 
2105 	/*
2106 	 * For C+ mode, initialize the RX descriptors and mbufs.
2107 	 */
2108 	re_rx_list_init(sc);
2109 	re_tx_list_init(sc);
2110 
2111 	/*
2112 	 * Enable transmit and receive.
2113 	 */
2114 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2115 
2116 	/*
2117 	 * Set the initial TX and RX configuration.
2118 	 */
2119 	if (sc->rl_testmode) {
2120 		if (sc->rl_type == RL_8169)
2121 			CSR_WRITE_4(sc, RL_TXCFG,
2122 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2123 		else
2124 			CSR_WRITE_4(sc, RL_TXCFG,
2125 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2126 	} else
2127 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2128 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2129 
2130 	/* Set the individual bit to receive frames for this host only. */
2131 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2132 	rxcfg |= RL_RXCFG_RX_INDIV;
2133 
2134 	/* If we want promiscuous mode, set the allframes bit. */
2135 	if (ifp->if_flags & IFF_PROMISC) {
2136 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2137 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2138 	} else {
2139 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2140 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2141 	}
2142 
2143 	/*
2144 	 * Set capture broadcast bit to capture broadcast frames.
2145 	 */
2146 	if (ifp->if_flags & IFF_BROADCAST) {
2147 		rxcfg |= RL_RXCFG_RX_BROAD;
2148 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2149 	} else {
2150 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2151 		CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2152 	}
2153 
2154 	/*
2155 	 * Program the multicast filter, if necessary.
2156 	 */
2157 	re_setmulti(sc);
2158 
2159 #ifdef DEVICE_POLLING
2160 	/*
2161 	 * Disable interrupts if we are polling.
2162 	 */
2163 	if (ifp->if_flags & IFF_POLLING)
2164 		CSR_WRITE_2(sc, RL_IMR, 0);
2165 	else	/* otherwise ... */
2166 #endif /* DEVICE_POLLING */
2167 	/*
2168 	 * Enable interrupts.
2169 	 */
2170 	if (sc->rl_testmode)
2171 		CSR_WRITE_2(sc, RL_IMR, 0);
2172 	else
2173 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2174 
2175 	/* Set initial TX threshold */
2176 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2177 
2178 	/* Start RX/TX process. */
2179 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2180 #ifdef notdef
2181 	/* Enable receiver and transmitter. */
2182 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2183 #endif
2184 	/*
2185 	 * Load the addresses of the RX and TX lists into the chip.
2186 	 */
2187 
2188 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2189 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2190 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2191 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2192 
2193 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2194 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2195 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2196 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2197 
2198 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2199 
2200 	/*
2201 	 * Initialize the timer interrupt register so that
2202 	 * a timer interrupt will be generated once the timer
2203 	 * reaches a certain number of ticks. The timer is
2204 	 * reloaded on each transmit. This gives us TX interrupt
2205 	 * moderation, which dramatically improves TX frame rate.
2206 	 */
2207 
2208 	if (sc->rl_type == RL_8169)
2209 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2210 	else
2211 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2212 
2213 	/*
2214 	 * For 8169 gigE NICs, set the max allowed RX packet
2215 	 * size so we can receive jumbo frames.
2216 	 */
2217 	if (sc->rl_type == RL_8169)
2218 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2219 
2220 	if (sc->rl_testmode) {
2221 		RL_UNLOCK(sc);
2222 		return;
2223 	}
2224 
2225 	mii_mediachg(mii);
2226 
2227 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2228 
2229 	ifp->if_flags |= IFF_RUNNING;
2230 	ifp->if_flags &= ~IFF_OACTIVE;
2231 
2232 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2233 	RL_UNLOCK(sc);
2234 
2235 	return;
2236 }
2237 
2238 /*
2239  * Set media options.
2240  */
2241 static int
2242 re_ifmedia_upd(ifp)
2243 	struct ifnet		*ifp;
2244 {
2245 	struct rl_softc		*sc;
2246 	struct mii_data		*mii;
2247 
2248 	sc = ifp->if_softc;
2249 	mii = device_get_softc(sc->rl_miibus);
2250 	mii_mediachg(mii);
2251 
2252 	return(0);
2253 }
2254 
2255 /*
2256  * Report current media status.
2257  */
2258 static void
2259 re_ifmedia_sts(ifp, ifmr)
2260 	struct ifnet		*ifp;
2261 	struct ifmediareq	*ifmr;
2262 {
2263 	struct rl_softc		*sc;
2264 	struct mii_data		*mii;
2265 
2266 	sc = ifp->if_softc;
2267 	mii = device_get_softc(sc->rl_miibus);
2268 
2269 	mii_pollstat(mii);
2270 	ifmr->ifm_active = mii->mii_media_active;
2271 	ifmr->ifm_status = mii->mii_media_status;
2272 
2273 	return;
2274 }
2275 
2276 static int
2277 re_ioctl(ifp, command, data)
2278 	struct ifnet		*ifp;
2279 	u_long			command;
2280 	caddr_t			data;
2281 {
2282 	struct rl_softc		*sc = ifp->if_softc;
2283 	struct ifreq		*ifr = (struct ifreq *) data;
2284 	struct mii_data		*mii;
2285 	int			error = 0;
2286 
2287 	RL_LOCK(sc);
2288 
2289 	switch(command) {
2290 	case SIOCSIFMTU:
2291 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2292 			error = EINVAL;
2293 		ifp->if_mtu = ifr->ifr_mtu;
2294 		break;
2295 	case SIOCSIFFLAGS:
2296 		if (ifp->if_flags & IFF_UP) {
2297 			re_init(sc);
2298 		} else {
2299 			if (ifp->if_flags & IFF_RUNNING)
2300 				re_stop(sc);
2301 		}
2302 		error = 0;
2303 		break;
2304 	case SIOCADDMULTI:
2305 	case SIOCDELMULTI:
2306 		re_setmulti(sc);
2307 		error = 0;
2308 		break;
2309 	case SIOCGIFMEDIA:
2310 	case SIOCSIFMEDIA:
2311 		mii = device_get_softc(sc->rl_miibus);
2312 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2313 		break;
2314 	case SIOCSIFCAP:
2315 		ifp->if_capenable = ifr->ifr_reqcap;
2316 		if (ifp->if_capenable & IFCAP_TXCSUM)
2317 			ifp->if_hwassist = RE_CSUM_FEATURES;
2318 		else
2319 			ifp->if_hwassist = 0;
2320 		if (ifp->if_flags & IFF_RUNNING)
2321 			re_init(sc);
2322 		break;
2323 	default:
2324 		error = ether_ioctl(ifp, command, data);
2325 		break;
2326 	}
2327 
2328 	RL_UNLOCK(sc);
2329 
2330 	return(error);
2331 }
2332 
2333 static void
2334 re_watchdog(ifp)
2335 	struct ifnet		*ifp;
2336 {
2337 	struct rl_softc		*sc;
2338 
2339 	sc = ifp->if_softc;
2340 	RL_LOCK(sc);
2341 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2342 	ifp->if_oerrors++;
2343 
2344 	re_txeof(sc);
2345 	re_rxeof(sc);
2346 
2347 	re_init(sc);
2348 
2349 	RL_UNLOCK(sc);
2350 
2351 	return;
2352 }
2353 
2354 /*
2355  * Stop the adapter and free any mbufs allocated to the
2356  * RX and TX lists.
2357  */
2358 static void
2359 re_stop(sc)
2360 	struct rl_softc		*sc;
2361 {
2362 	register int		i;
2363 	struct ifnet		*ifp;
2364 
2365 	RL_LOCK(sc);
2366 	ifp = &sc->arpcom.ac_if;
2367 	ifp->if_timer = 0;
2368 
2369 	untimeout(re_tick, sc, sc->rl_stat_ch);
2370 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2371 #ifdef DEVICE_POLLING
2372 	ether_poll_deregister(ifp);
2373 #endif /* DEVICE_POLLING */
2374 
2375 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2376 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2377 
2378 	if (sc->rl_head != NULL) {
2379 		m_freem(sc->rl_head);
2380 		sc->rl_head = sc->rl_tail = NULL;
2381 	}
2382 
2383 	/* Free the TX list buffers. */
2384 
2385 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2386 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2387 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2388 			    sc->rl_ldata.rl_tx_dmamap[i]);
2389 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2390 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2391 		}
2392 	}
2393 
2394 	/* Free the RX list buffers. */
2395 
2396 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2397 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2398 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2399 			    sc->rl_ldata.rl_rx_dmamap[i]);
2400 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2401 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2402 		}
2403 	}
2404 
2405 	RL_UNLOCK(sc);
2406 	return;
2407 }
2408 
2409 /*
2410  * Device suspend routine.  Stop the interface and save some PCI
2411  * settings in case the BIOS doesn't restore them properly on
2412  * resume.
2413  */
2414 static int
2415 re_suspend(dev)
2416 	device_t		dev;
2417 {
2418 	register int		i;
2419 	struct rl_softc		*sc;
2420 
2421 	sc = device_get_softc(dev);
2422 
2423 	re_stop(sc);
2424 
2425 	for (i = 0; i < 5; i++)
2426 		sc->saved_maps[i] = pci_read_config(dev, PCIR_MAPS + i * 4, 4);
2427 	sc->saved_biosaddr = pci_read_config(dev, PCIR_BIOS, 4);
2428 	sc->saved_intline = pci_read_config(dev, PCIR_INTLINE, 1);
2429 	sc->saved_cachelnsz = pci_read_config(dev, PCIR_CACHELNSZ, 1);
2430 	sc->saved_lattimer = pci_read_config(dev, PCIR_LATTIMER, 1);
2431 
2432 	sc->suspended = 1;
2433 
2434 	return (0);
2435 }
2436 
2437 /*
2438  * Device resume routine.  Restore some PCI settings in case the BIOS
2439  * doesn't, re-enable busmastering, and restart the interface if
2440  * appropriate.
2441  */
2442 static int
2443 re_resume(dev)
2444 	device_t		dev;
2445 {
2446 	register int		i;
2447 	struct rl_softc		*sc;
2448 	struct ifnet		*ifp;
2449 
2450 	sc = device_get_softc(dev);
2451 	ifp = &sc->arpcom.ac_if;
2452 
2453 	/* better way to do this? */
2454 	for (i = 0; i < 5; i++)
2455 		pci_write_config(dev, PCIR_MAPS + i * 4, sc->saved_maps[i], 4);
2456 	pci_write_config(dev, PCIR_BIOS, sc->saved_biosaddr, 4);
2457 	pci_write_config(dev, PCIR_INTLINE, sc->saved_intline, 1);
2458 	pci_write_config(dev, PCIR_CACHELNSZ, sc->saved_cachelnsz, 1);
2459 	pci_write_config(dev, PCIR_LATTIMER, sc->saved_lattimer, 1);
2460 
2461 	/* reenable busmastering */
2462 	pci_enable_busmaster(dev);
2463 	pci_enable_io(dev, RL_RES);
2464 
2465 	/* reinitialize interface if necessary */
2466 	if (ifp->if_flags & IFF_UP)
2467 		re_init(sc);
2468 
2469 	sc->suspended = 0;
2470 
2471 	return (0);
2472 }
2473 
2474 /*
2475  * Stop all chip I/O so that the kernel's probe routines don't
2476  * get confused by errant DMAs when rebooting.
2477  */
2478 static void
2479 re_shutdown(dev)
2480 	device_t		dev;
2481 {
2482 	struct rl_softc		*sc;
2483 
2484 	sc = device_get_softc(dev);
2485 
2486 	re_stop(sc);
2487 
2488 	return;
2489 }
2490