xref: /freebsd/sys/dev/re/if_re.c (revision 1e413cf93298b5b97441a21d9a50fdcd0ee9945e)
1 /*-
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S/8168/8111/8101E PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * seven devices in this family: the RTL8139C+, the RTL8169, the RTL8169S,
48  * RTL8110S, the RTL8168, the RTL8111 and the RTL8101E.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #ifdef HAVE_KERNEL_OPTION_HEADERS
112 #include "opt_device_polling.h"
113 #endif
114 
115 #include <sys/param.h>
116 #include <sys/endian.h>
117 #include <sys/systm.h>
118 #include <sys/sockio.h>
119 #include <sys/mbuf.h>
120 #include <sys/malloc.h>
121 #include <sys/module.h>
122 #include <sys/kernel.h>
123 #include <sys/socket.h>
124 #include <sys/lock.h>
125 #include <sys/mutex.h>
126 #include <sys/taskqueue.h>
127 
128 #include <net/if.h>
129 #include <net/if_arp.h>
130 #include <net/ethernet.h>
131 #include <net/if_dl.h>
132 #include <net/if_media.h>
133 #include <net/if_types.h>
134 #include <net/if_vlan_var.h>
135 
136 #include <net/bpf.h>
137 
138 #include <machine/bus.h>
139 #include <machine/resource.h>
140 #include <sys/bus.h>
141 #include <sys/rman.h>
142 
143 #include <dev/mii/mii.h>
144 #include <dev/mii/miivar.h>
145 
146 #include <dev/pci/pcireg.h>
147 #include <dev/pci/pcivar.h>
148 
149 #include <pci/if_rlreg.h>
150 
151 MODULE_DEPEND(re, pci, 1, 1, 1);
152 MODULE_DEPEND(re, ether, 1, 1, 1);
153 MODULE_DEPEND(re, miibus, 1, 1, 1);
154 
155 /* "device miibus" required.  See GENERIC if you get errors here. */
156 #include "miibus_if.h"
157 
158 /*
159  * Default to using PIO access for this driver.
160  */
161 #define RE_USEIOSPACE
162 
163 /* Tunables. */
164 static int msi_disable = 0;
165 TUNABLE_INT("hw.re.msi_disable", &msi_disable);
166 
167 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
168 
169 /*
170  * Various supported device vendors/types and their names.
171  */
172 static struct rl_type re_devs[] = {
173 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S,
174 		"D-Link DGE-528(T) Gigabit Ethernet Adapter" },
175 	{ DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169_8110SB,
176 		"D-Link DGE-528(T) Rev.B1 Gigabit Ethernet Adapter" },
177 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
178 		"RealTek 8139C+ 10/100BaseTX" },
179 	{ RT_VENDORID, RT_DEVICEID_8101E, RL_HWREV_8101E,
180 		"RealTek 8101E PCIe 10/100baseTX" },
181 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN1,
182 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
183 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN2,
184 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
185 	{ RT_VENDORID, RT_DEVICEID_8168, RL_HWREV_8168_SPIN3,
186 		"RealTek 8168/8111B PCIe Gigabit Ethernet" },
187 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
188 		"RealTek 8169 Gigabit Ethernet" },
189 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
190 		"RealTek 8169S Single-chip Gigabit Ethernet" },
191 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SB,
192 		"RealTek 8169SB/8110SB Single-chip Gigabit Ethernet" },
193 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169_8110SC,
194 		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
195 	{ RT_VENDORID, RT_DEVICEID_8169SC, RL_HWREV_8169_8110SC,
196 		"RealTek 8169SC/8110SC Single-chip Gigabit Ethernet" },
197 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
198 		"RealTek 8110S Single-chip Gigabit Ethernet" },
199 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
200 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
201 	{ LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S,
202 		"Linksys EG1032 (RTL8169S) Gigabit Ethernet" },
203 	{ USR_VENDORID, USR_DEVICEID_997902, RL_HWREV_8169S,
204 		"US Robotics 997902 (RTL8169S) Gigabit Ethernet" },
205 	{ 0, 0, 0, NULL }
206 };
207 
208 static struct rl_hwrev re_hwrevs[] = {
209 	{ RL_HWREV_8139, RL_8139,  "" },
210 	{ RL_HWREV_8139A, RL_8139, "A" },
211 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
212 	{ RL_HWREV_8139B, RL_8139, "B" },
213 	{ RL_HWREV_8130, RL_8139, "8130" },
214 	{ RL_HWREV_8139C, RL_8139, "C" },
215 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
216 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
217 	{ RL_HWREV_8168_SPIN1, RL_8169, "8168"},
218 	{ RL_HWREV_8169, RL_8169, "8169"},
219 	{ RL_HWREV_8169S, RL_8169, "8169S"},
220 	{ RL_HWREV_8110S, RL_8169, "8110S"},
221 	{ RL_HWREV_8169_8110SB, RL_8169, "8169SB"},
222 	{ RL_HWREV_8169_8110SC, RL_8169, "8169SC"},
223 	{ RL_HWREV_8100, RL_8139, "8100"},
224 	{ RL_HWREV_8101, RL_8139, "8101"},
225 	{ RL_HWREV_8100E, RL_8169, "8100E"},
226 	{ RL_HWREV_8101E, RL_8169, "8101E"},
227 	{ RL_HWREV_8168_SPIN2, RL_8169, "8168"},
228 	{ RL_HWREV_8168_SPIN3, RL_8169, "8168"},
229 	{ 0, 0, NULL }
230 };
231 
232 static int re_probe		(device_t);
233 static int re_attach		(device_t);
234 static int re_detach		(device_t);
235 
236 static struct mbuf *re_defrag	(struct mbuf *, int, int);
237 static int re_encap		(struct rl_softc *, struct mbuf **);
238 
239 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
240 static int re_allocmem		(device_t, struct rl_softc *);
241 static __inline void re_discard_rxbuf
242 				(struct rl_softc *, int);
243 static int re_newbuf		(struct rl_softc *, int);
244 static int re_rx_list_init	(struct rl_softc *);
245 static int re_tx_list_init	(struct rl_softc *);
246 #ifdef RE_FIXUP_RX
247 static __inline void re_fixup_rx
248 				(struct mbuf *);
249 #endif
250 static int re_rxeof		(struct rl_softc *);
251 static void re_txeof		(struct rl_softc *);
252 #ifdef DEVICE_POLLING
253 static void re_poll		(struct ifnet *, enum poll_cmd, int);
254 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
255 #endif
256 static int re_intr		(void *);
257 static void re_tick		(void *);
258 static void re_tx_task		(void *, int);
259 static void re_int_task		(void *, int);
260 static void re_start		(struct ifnet *);
261 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
262 static void re_init		(void *);
263 static void re_init_locked	(struct rl_softc *);
264 static void re_stop		(struct rl_softc *);
265 static void re_watchdog		(struct rl_softc *);
266 static int re_suspend		(device_t);
267 static int re_resume		(device_t);
268 static int re_shutdown		(device_t);
269 static int re_ifmedia_upd	(struct ifnet *);
270 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
271 
272 static void re_eeprom_putbyte	(struct rl_softc *, int);
273 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
274 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int);
275 static int re_gmii_readreg	(device_t, int, int);
276 static int re_gmii_writereg	(device_t, int, int, int);
277 
278 static int re_miibus_readreg	(device_t, int, int);
279 static int re_miibus_writereg	(device_t, int, int, int);
280 static void re_miibus_statchg	(device_t);
281 
282 static void re_setmulti		(struct rl_softc *);
283 static void re_reset		(struct rl_softc *);
284 
285 #ifdef RE_DIAG
286 static int re_diag		(struct rl_softc *);
287 #endif
288 
289 #ifdef RE_USEIOSPACE
290 #define RL_RES			SYS_RES_IOPORT
291 #define RL_RID			RL_PCI_LOIO
292 #else
293 #define RL_RES			SYS_RES_MEMORY
294 #define RL_RID			RL_PCI_LOMEM
295 #endif
296 
297 static device_method_t re_methods[] = {
298 	/* Device interface */
299 	DEVMETHOD(device_probe,		re_probe),
300 	DEVMETHOD(device_attach,	re_attach),
301 	DEVMETHOD(device_detach,	re_detach),
302 	DEVMETHOD(device_suspend,	re_suspend),
303 	DEVMETHOD(device_resume,	re_resume),
304 	DEVMETHOD(device_shutdown,	re_shutdown),
305 
306 	/* bus interface */
307 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
308 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
309 
310 	/* MII interface */
311 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
312 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
313 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
314 
315 	{ 0, 0 }
316 };
317 
318 static driver_t re_driver = {
319 	"re",
320 	re_methods,
321 	sizeof(struct rl_softc)
322 };
323 
324 static devclass_t re_devclass;
325 
326 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
327 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
328 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
329 
330 #define EE_SET(x)					\
331 	CSR_WRITE_1(sc, RL_EECMD,			\
332 		CSR_READ_1(sc, RL_EECMD) | x)
333 
334 #define EE_CLR(x)					\
335 	CSR_WRITE_1(sc, RL_EECMD,			\
336 		CSR_READ_1(sc, RL_EECMD) & ~x)
337 
338 /*
339  * Send a read command and address to the EEPROM, check for ACK.
340  */
341 static void
342 re_eeprom_putbyte(sc, addr)
343 	struct rl_softc		*sc;
344 	int			addr;
345 {
346 	register int		d, i;
347 
348 	d = addr | (RL_9346_READ << sc->rl_eewidth);
349 
350 	/*
351 	 * Feed in each bit and strobe the clock.
352 	 */
353 
354 	for (i = 1 << (sc->rl_eewidth + 3); i; i >>= 1) {
355 		if (d & i) {
356 			EE_SET(RL_EE_DATAIN);
357 		} else {
358 			EE_CLR(RL_EE_DATAIN);
359 		}
360 		DELAY(100);
361 		EE_SET(RL_EE_CLK);
362 		DELAY(150);
363 		EE_CLR(RL_EE_CLK);
364 		DELAY(100);
365 	}
366 
367 	return;
368 }
369 
370 /*
371  * Read a word of data stored in the EEPROM at address 'addr.'
372  */
373 static void
374 re_eeprom_getword(sc, addr, dest)
375 	struct rl_softc		*sc;
376 	int			addr;
377 	u_int16_t		*dest;
378 {
379 	register int		i;
380 	u_int16_t		word = 0;
381 
382 	/*
383 	 * Send address of word we want to read.
384 	 */
385 	re_eeprom_putbyte(sc, addr);
386 
387 	/*
388 	 * Start reading bits from EEPROM.
389 	 */
390 	for (i = 0x8000; i; i >>= 1) {
391 		EE_SET(RL_EE_CLK);
392 		DELAY(100);
393 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
394 			word |= i;
395 		EE_CLR(RL_EE_CLK);
396 		DELAY(100);
397 	}
398 
399 	*dest = word;
400 
401 	return;
402 }
403 
404 /*
405  * Read a sequence of words from the EEPROM.
406  */
407 static void
408 re_read_eeprom(sc, dest, off, cnt)
409 	struct rl_softc		*sc;
410 	caddr_t			dest;
411 	int			off;
412 	int			cnt;
413 {
414 	int			i;
415 	u_int16_t		word = 0, *ptr;
416 
417 	CSR_SETBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
418 
419         DELAY(100);
420 
421 	for (i = 0; i < cnt; i++) {
422 		CSR_SETBIT_1(sc, RL_EECMD, RL_EE_SEL);
423 		re_eeprom_getword(sc, off + i, &word);
424 		CSR_CLRBIT_1(sc, RL_EECMD, RL_EE_SEL);
425 		ptr = (u_int16_t *)(dest + (i * 2));
426                 *ptr = word;
427 	}
428 
429 	CSR_CLRBIT_1(sc, RL_EECMD, RL_EEMODE_PROGRAM);
430 
431 	return;
432 }
433 
434 static int
435 re_gmii_readreg(dev, phy, reg)
436 	device_t		dev;
437 	int			phy, reg;
438 {
439 	struct rl_softc		*sc;
440 	u_int32_t		rval;
441 	int			i;
442 
443 	if (phy != 1)
444 		return (0);
445 
446 	sc = device_get_softc(dev);
447 
448 	/* Let the rgephy driver read the GMEDIASTAT register */
449 
450 	if (reg == RL_GMEDIASTAT) {
451 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
452 		return (rval);
453 	}
454 
455 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
456 	DELAY(1000);
457 
458 	for (i = 0; i < RL_TIMEOUT; i++) {
459 		rval = CSR_READ_4(sc, RL_PHYAR);
460 		if (rval & RL_PHYAR_BUSY)
461 			break;
462 		DELAY(100);
463 	}
464 
465 	if (i == RL_TIMEOUT) {
466 		device_printf(sc->rl_dev, "PHY read failed\n");
467 		return (0);
468 	}
469 
470 	return (rval & RL_PHYAR_PHYDATA);
471 }
472 
473 static int
474 re_gmii_writereg(dev, phy, reg, data)
475 	device_t		dev;
476 	int			phy, reg, data;
477 {
478 	struct rl_softc		*sc;
479 	u_int32_t		rval;
480 	int			i;
481 
482 	sc = device_get_softc(dev);
483 
484 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
485 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
486 	DELAY(1000);
487 
488 	for (i = 0; i < RL_TIMEOUT; i++) {
489 		rval = CSR_READ_4(sc, RL_PHYAR);
490 		if (!(rval & RL_PHYAR_BUSY))
491 			break;
492 		DELAY(100);
493 	}
494 
495 	if (i == RL_TIMEOUT) {
496 		device_printf(sc->rl_dev, "PHY write failed\n");
497 		return (0);
498 	}
499 
500 	return (0);
501 }
502 
503 static int
504 re_miibus_readreg(dev, phy, reg)
505 	device_t		dev;
506 	int			phy, reg;
507 {
508 	struct rl_softc		*sc;
509 	u_int16_t		rval = 0;
510 	u_int16_t		re8139_reg = 0;
511 
512 	sc = device_get_softc(dev);
513 
514 	if (sc->rl_type == RL_8169) {
515 		rval = re_gmii_readreg(dev, phy, reg);
516 		return (rval);
517 	}
518 
519 	/* Pretend the internal PHY is only at address 0 */
520 	if (phy) {
521 		return (0);
522 	}
523 	switch (reg) {
524 	case MII_BMCR:
525 		re8139_reg = RL_BMCR;
526 		break;
527 	case MII_BMSR:
528 		re8139_reg = RL_BMSR;
529 		break;
530 	case MII_ANAR:
531 		re8139_reg = RL_ANAR;
532 		break;
533 	case MII_ANER:
534 		re8139_reg = RL_ANER;
535 		break;
536 	case MII_ANLPAR:
537 		re8139_reg = RL_LPAR;
538 		break;
539 	case MII_PHYIDR1:
540 	case MII_PHYIDR2:
541 		return (0);
542 	/*
543 	 * Allow the rlphy driver to read the media status
544 	 * register. If we have a link partner which does not
545 	 * support NWAY, this is the register which will tell
546 	 * us the results of parallel detection.
547 	 */
548 	case RL_MEDIASTAT:
549 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
550 		return (rval);
551 	default:
552 		device_printf(sc->rl_dev, "bad phy register\n");
553 		return (0);
554 	}
555 	rval = CSR_READ_2(sc, re8139_reg);
556 	if (sc->rl_type == RL_8139CPLUS && re8139_reg == RL_BMCR) {
557 		/* 8139C+ has different bit layout. */
558 		rval &= ~(BMCR_LOOP | BMCR_ISO);
559 	}
560 	return (rval);
561 }
562 
563 static int
564 re_miibus_writereg(dev, phy, reg, data)
565 	device_t		dev;
566 	int			phy, reg, data;
567 {
568 	struct rl_softc		*sc;
569 	u_int16_t		re8139_reg = 0;
570 	int			rval = 0;
571 
572 	sc = device_get_softc(dev);
573 
574 	if (sc->rl_type == RL_8169) {
575 		rval = re_gmii_writereg(dev, phy, reg, data);
576 		return (rval);
577 	}
578 
579 	/* Pretend the internal PHY is only at address 0 */
580 	if (phy)
581 		return (0);
582 
583 	switch (reg) {
584 	case MII_BMCR:
585 		re8139_reg = RL_BMCR;
586 		if (sc->rl_type == RL_8139CPLUS) {
587 			/* 8139C+ has different bit layout. */
588 			data &= ~(BMCR_LOOP | BMCR_ISO);
589 		}
590 		break;
591 	case MII_BMSR:
592 		re8139_reg = RL_BMSR;
593 		break;
594 	case MII_ANAR:
595 		re8139_reg = RL_ANAR;
596 		break;
597 	case MII_ANER:
598 		re8139_reg = RL_ANER;
599 		break;
600 	case MII_ANLPAR:
601 		re8139_reg = RL_LPAR;
602 		break;
603 	case MII_PHYIDR1:
604 	case MII_PHYIDR2:
605 		return (0);
606 		break;
607 	default:
608 		device_printf(sc->rl_dev, "bad phy register\n");
609 		return (0);
610 	}
611 	CSR_WRITE_2(sc, re8139_reg, data);
612 	return (0);
613 }
614 
615 static void
616 re_miibus_statchg(dev)
617 	device_t		dev;
618 {
619 
620 }
621 
622 /*
623  * Program the 64-bit multicast hash filter.
624  */
625 static void
626 re_setmulti(sc)
627 	struct rl_softc		*sc;
628 {
629 	struct ifnet		*ifp;
630 	int			h = 0;
631 	u_int32_t		hashes[2] = { 0, 0 };
632 	struct ifmultiaddr	*ifma;
633 	u_int32_t		rxfilt;
634 	int			mcnt = 0;
635 	u_int32_t		hwrev;
636 
637 	RL_LOCK_ASSERT(sc);
638 
639 	ifp = sc->rl_ifp;
640 
641 
642 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
643 	rxfilt &= ~(RL_RXCFG_RX_ALLPHYS | RL_RXCFG_RX_MULTI);
644 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
645 		if (ifp->if_flags & IFF_PROMISC)
646 			rxfilt |= RL_RXCFG_RX_ALLPHYS;
647 		/*
648 		 * Unlike other hardwares, we have to explicitly set
649 		 * RL_RXCFG_RX_MULTI to receive multicast frames in
650 		 * promiscuous mode.
651 		 */
652 		rxfilt |= RL_RXCFG_RX_MULTI;
653 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
654 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
655 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
656 		return;
657 	}
658 
659 	/* first, zot all the existing hash bits */
660 	CSR_WRITE_4(sc, RL_MAR0, 0);
661 	CSR_WRITE_4(sc, RL_MAR4, 0);
662 
663 	/* now program new ones */
664 	IF_ADDR_LOCK(ifp);
665 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
666 		if (ifma->ifma_addr->sa_family != AF_LINK)
667 			continue;
668 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
669 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
670 		if (h < 32)
671 			hashes[0] |= (1 << h);
672 		else
673 			hashes[1] |= (1 << (h - 32));
674 		mcnt++;
675 	}
676 	IF_ADDR_UNLOCK(ifp);
677 
678 	if (mcnt)
679 		rxfilt |= RL_RXCFG_RX_MULTI;
680 	else
681 		rxfilt &= ~RL_RXCFG_RX_MULTI;
682 
683 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
684 
685 	/*
686 	 * For some unfathomable reason, RealTek decided to reverse
687 	 * the order of the multicast hash registers in the PCI Express
688 	 * parts. This means we have to write the hash pattern in reverse
689 	 * order for those devices.
690 	 */
691 
692 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
693 
694 	switch (hwrev) {
695 	case RL_HWREV_8100E:
696 	case RL_HWREV_8101E:
697 	case RL_HWREV_8168_SPIN1:
698 	case RL_HWREV_8168_SPIN2:
699 	case RL_HWREV_8168_SPIN3:
700 		CSR_WRITE_4(sc, RL_MAR0, bswap32(hashes[1]));
701 		CSR_WRITE_4(sc, RL_MAR4, bswap32(hashes[0]));
702 		break;
703 	default:
704 		CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
705 		CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
706 		break;
707 	}
708 }
709 
710 static void
711 re_reset(sc)
712 	struct rl_softc		*sc;
713 {
714 	register int		i;
715 
716 	RL_LOCK_ASSERT(sc);
717 
718 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
719 
720 	for (i = 0; i < RL_TIMEOUT; i++) {
721 		DELAY(10);
722 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
723 			break;
724 	}
725 	if (i == RL_TIMEOUT)
726 		device_printf(sc->rl_dev, "reset never completed!\n");
727 
728 	CSR_WRITE_1(sc, 0x82, 1);
729 }
730 
731 #ifdef RE_DIAG
732 
733 /*
734  * The following routine is designed to test for a defect on some
735  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
736  * lines connected to the bus, however for a 32-bit only card, they
737  * should be pulled high. The result of this defect is that the
738  * NIC will not work right if you plug it into a 64-bit slot: DMA
739  * operations will be done with 64-bit transfers, which will fail
740  * because the 64-bit data lines aren't connected.
741  *
742  * There's no way to work around this (short of talking a soldering
743  * iron to the board), however we can detect it. The method we use
744  * here is to put the NIC into digital loopback mode, set the receiver
745  * to promiscuous mode, and then try to send a frame. We then compare
746  * the frame data we sent to what was received. If the data matches,
747  * then the NIC is working correctly, otherwise we know the user has
748  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
749  * slot. In the latter case, there's no way the NIC can work correctly,
750  * so we print out a message on the console and abort the device attach.
751  */
752 
753 static int
754 re_diag(sc)
755 	struct rl_softc		*sc;
756 {
757 	struct ifnet		*ifp = sc->rl_ifp;
758 	struct mbuf		*m0;
759 	struct ether_header	*eh;
760 	struct rl_desc		*cur_rx;
761 	u_int16_t		status;
762 	u_int32_t		rxstat;
763 	int			total_len, i, error = 0, phyaddr;
764 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
765 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
766 
767 	/* Allocate a single mbuf */
768 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
769 	if (m0 == NULL)
770 		return (ENOBUFS);
771 
772 	RL_LOCK(sc);
773 
774 	/*
775 	 * Initialize the NIC in test mode. This sets the chip up
776 	 * so that it can send and receive frames, but performs the
777 	 * following special functions:
778 	 * - Puts receiver in promiscuous mode
779 	 * - Enables digital loopback mode
780 	 * - Leaves interrupts turned off
781 	 */
782 
783 	ifp->if_flags |= IFF_PROMISC;
784 	sc->rl_testmode = 1;
785 	re_reset(sc);
786 	re_init_locked(sc);
787 	sc->rl_link = 1;
788 	if (sc->rl_type == RL_8169)
789 		phyaddr = 1;
790 	else
791 		phyaddr = 0;
792 
793 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_RESET);
794 	for (i = 0; i < RL_TIMEOUT; i++) {
795 		status = re_miibus_readreg(sc->rl_dev, phyaddr, MII_BMCR);
796 		if (!(status & BMCR_RESET))
797 			break;
798 	}
799 
800 	re_miibus_writereg(sc->rl_dev, phyaddr, MII_BMCR, BMCR_LOOP);
801 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS);
802 
803 	DELAY(100000);
804 
805 	/* Put some data in the mbuf */
806 
807 	eh = mtod(m0, struct ether_header *);
808 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
809 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
810 	eh->ether_type = htons(ETHERTYPE_IP);
811 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
812 
813 	/*
814 	 * Queue the packet, start transmission.
815 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
816 	 */
817 
818 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
819 	RL_UNLOCK(sc);
820 	/* XXX: re_diag must not be called when in ALTQ mode */
821 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
822 	RL_LOCK(sc);
823 	m0 = NULL;
824 
825 	/* Wait for it to propagate through the chip */
826 
827 	DELAY(100000);
828 	for (i = 0; i < RL_TIMEOUT; i++) {
829 		status = CSR_READ_2(sc, RL_ISR);
830 		CSR_WRITE_2(sc, RL_ISR, status);
831 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
832 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
833 			break;
834 		DELAY(10);
835 	}
836 
837 	if (i == RL_TIMEOUT) {
838 		device_printf(sc->rl_dev,
839 		    "diagnostic failed, failed to receive packet in"
840 		    " loopback mode\n");
841 		error = EIO;
842 		goto done;
843 	}
844 
845 	/*
846 	 * The packet should have been dumped into the first
847 	 * entry in the RX DMA ring. Grab it from there.
848 	 */
849 
850 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
851 	    sc->rl_ldata.rl_rx_list_map,
852 	    BUS_DMASYNC_POSTREAD);
853 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag,
854 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap,
855 	    BUS_DMASYNC_POSTREAD);
856 	bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
857 	    sc->rl_ldata.rl_rx_desc[0].rx_dmamap);
858 
859 	m0 = sc->rl_ldata.rl_rx_desc[0].rx_m;
860 	sc->rl_ldata.rl_rx_desc[0].rx_m = NULL;
861 	eh = mtod(m0, struct ether_header *);
862 
863 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
864 	total_len = RL_RXBYTES(cur_rx);
865 	rxstat = le32toh(cur_rx->rl_cmdstat);
866 
867 	if (total_len != ETHER_MIN_LEN) {
868 		device_printf(sc->rl_dev,
869 		    "diagnostic failed, received short packet\n");
870 		error = EIO;
871 		goto done;
872 	}
873 
874 	/* Test that the received packet data matches what we sent. */
875 
876 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
877 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
878 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
879 		device_printf(sc->rl_dev, "WARNING, DMA FAILURE!\n");
880 		device_printf(sc->rl_dev, "expected TX data: %6D/%6D/0x%x\n",
881 		    dst, ":", src, ":", ETHERTYPE_IP);
882 		device_printf(sc->rl_dev, "received RX data: %6D/%6D/0x%x\n",
883 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
884 		    ntohs(eh->ether_type));
885 		device_printf(sc->rl_dev, "You may have a defective 32-bit "
886 		    "NIC plugged into a 64-bit PCI slot.\n");
887 		device_printf(sc->rl_dev, "Please re-install the NIC in a "
888 		    "32-bit slot for proper operation.\n");
889 		device_printf(sc->rl_dev, "Read the re(4) man page for more "
890 		    "details.\n");
891 		error = EIO;
892 	}
893 
894 done:
895 	/* Turn interface off, release resources */
896 
897 	sc->rl_testmode = 0;
898 	sc->rl_link = 0;
899 	ifp->if_flags &= ~IFF_PROMISC;
900 	re_stop(sc);
901 	if (m0 != NULL)
902 		m_freem(m0);
903 
904 	RL_UNLOCK(sc);
905 
906 	return (error);
907 }
908 
909 #endif
910 
911 /*
912  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
913  * IDs against our list and return a device name if we find a match.
914  */
915 static int
916 re_probe(dev)
917 	device_t		dev;
918 {
919 	struct rl_type		*t;
920 	struct rl_softc		*sc;
921 	int			rid;
922 	u_int32_t		hwrev;
923 
924 	t = re_devs;
925 	sc = device_get_softc(dev);
926 
927 	while (t->rl_name != NULL) {
928 		if ((pci_get_vendor(dev) == t->rl_vid) &&
929 		    (pci_get_device(dev) == t->rl_did)) {
930 			/*
931 			 * Only attach to rev. 3 of the Linksys EG1032 adapter.
932 			 * Rev. 2 i supported by sk(4).
933 			 */
934 			if ((t->rl_vid == LINKSYS_VENDORID) &&
935 				(t->rl_did == LINKSYS_DEVICEID_EG1032) &&
936 				(pci_get_subdevice(dev) !=
937 				LINKSYS_SUBDEVICE_EG1032_REV3)) {
938 				t++;
939 				continue;
940 			}
941 
942 			/*
943 			 * Temporarily map the I/O space
944 			 * so we can read the chip ID register.
945 			 */
946 			rid = RL_RID;
947 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
948 			    RF_ACTIVE);
949 			if (sc->rl_res == NULL) {
950 				device_printf(dev,
951 				    "couldn't map ports/memory\n");
952 				return (ENXIO);
953 			}
954 			sc->rl_btag = rman_get_bustag(sc->rl_res);
955 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
956 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
957 			bus_release_resource(dev, RL_RES,
958 			    RL_RID, sc->rl_res);
959 			if (t->rl_basetype == hwrev) {
960 				device_set_desc(dev, t->rl_name);
961 				return (BUS_PROBE_DEFAULT);
962 			}
963 		}
964 		t++;
965 	}
966 
967 	return (ENXIO);
968 }
969 
970 /*
971  * Map a single buffer address.
972  */
973 
974 static void
975 re_dma_map_addr(arg, segs, nseg, error)
976 	void			*arg;
977 	bus_dma_segment_t	*segs;
978 	int			nseg;
979 	int			error;
980 {
981 	bus_addr_t		*addr;
982 
983 	if (error)
984 		return;
985 
986 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
987 	addr = arg;
988 	*addr = segs->ds_addr;
989 }
990 
991 static int
992 re_allocmem(dev, sc)
993 	device_t		dev;
994 	struct rl_softc		*sc;
995 {
996 	bus_size_t		rx_list_size, tx_list_size;
997 	int			error;
998 	int			i;
999 
1000 	rx_list_size = sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc);
1001 	tx_list_size = sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc);
1002 
1003 	/*
1004 	 * Allocate the parent bus DMA tag appropriate for PCI.
1005 	 */
1006 	error = bus_dma_tag_create(bus_get_dma_tag(dev), 1, 0,
1007 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1008 	    BUS_SPACE_MAXSIZE_32BIT, 0, BUS_SPACE_MAXSIZE_32BIT, 0,
1009 	    NULL, NULL, &sc->rl_parent_tag);
1010 	if (error) {
1011 		device_printf(dev, "could not allocate parent DMA tag\n");
1012 		return (error);
1013 	}
1014 
1015 	/*
1016 	 * Allocate map for TX mbufs.
1017 	 */
1018 	error = bus_dma_tag_create(sc->rl_parent_tag, 1, 0,
1019 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL,
1020 	    NULL, MCLBYTES * RL_NTXSEGS, RL_NTXSEGS, 4096, 0,
1021 	    NULL, NULL, &sc->rl_ldata.rl_tx_mtag);
1022 	if (error) {
1023 		device_printf(dev, "could not allocate TX DMA tag\n");
1024 		return (error);
1025 	}
1026 
1027 	/*
1028 	 * Allocate map for RX mbufs.
1029 	 */
1030 
1031 	error = bus_dma_tag_create(sc->rl_parent_tag, sizeof(uint64_t), 0,
1032 	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1033 	    MCLBYTES, 1, MCLBYTES, 0, NULL, NULL, &sc->rl_ldata.rl_rx_mtag);
1034 	if (error) {
1035 		device_printf(dev, "could not allocate RX DMA tag\n");
1036 		return (error);
1037 	}
1038 
1039 	/*
1040 	 * Allocate map for TX descriptor list.
1041 	 */
1042 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1043 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1044 	    NULL, tx_list_size, 1, tx_list_size, 0,
1045 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
1046 	if (error) {
1047 		device_printf(dev, "could not allocate TX DMA ring tag\n");
1048 		return (error);
1049 	}
1050 
1051 	/* Allocate DMA'able memory for the TX ring */
1052 
1053 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
1054 	    (void **)&sc->rl_ldata.rl_tx_list,
1055 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1056 	    &sc->rl_ldata.rl_tx_list_map);
1057 	if (error) {
1058 		device_printf(dev, "could not allocate TX DMA ring\n");
1059 		return (error);
1060 	}
1061 
1062 	/* Load the map for the TX ring. */
1063 
1064 	sc->rl_ldata.rl_tx_list_addr = 0;
1065 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
1066 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
1067 	     tx_list_size, re_dma_map_addr,
1068 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
1069 	if (error != 0 || sc->rl_ldata.rl_tx_list_addr == 0) {
1070 		device_printf(dev, "could not load TX DMA ring\n");
1071 		return (ENOMEM);
1072 	}
1073 
1074 	/* Create DMA maps for TX buffers */
1075 
1076 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
1077 		error = bus_dmamap_create(sc->rl_ldata.rl_tx_mtag, 0,
1078 		    &sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1079 		if (error) {
1080 			device_printf(dev, "could not create DMA map for TX\n");
1081 			return (error);
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * Allocate map for RX descriptor list.
1087 	 */
1088 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1089 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1090 	    NULL, rx_list_size, 1, rx_list_size, 0,
1091 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1092 	if (error) {
1093 		device_printf(dev, "could not create RX DMA ring tag\n");
1094 		return (error);
1095 	}
1096 
1097 	/* Allocate DMA'able memory for the RX ring */
1098 
1099 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1100 	    (void **)&sc->rl_ldata.rl_rx_list,
1101 	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
1102 	    &sc->rl_ldata.rl_rx_list_map);
1103 	if (error) {
1104 		device_printf(dev, "could not allocate RX DMA ring\n");
1105 		return (error);
1106 	}
1107 
1108 	/* Load the map for the RX ring. */
1109 
1110 	sc->rl_ldata.rl_rx_list_addr = 0;
1111 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1112 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1113 	     rx_list_size, re_dma_map_addr,
1114 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1115 	if (error != 0 || sc->rl_ldata.rl_rx_list_addr == 0) {
1116 		device_printf(dev, "could not load RX DMA ring\n");
1117 		return (ENOMEM);
1118 	}
1119 
1120 	/* Create DMA maps for RX buffers */
1121 
1122 	error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1123 	    &sc->rl_ldata.rl_rx_sparemap);
1124 	if (error) {
1125 		device_printf(dev, "could not create spare DMA map for RX\n");
1126 		return (error);
1127 	}
1128 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1129 		error = bus_dmamap_create(sc->rl_ldata.rl_rx_mtag, 0,
1130 		    &sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1131 		if (error) {
1132 			device_printf(dev, "could not create DMA map for RX\n");
1133 			return (error);
1134 		}
1135 	}
1136 
1137 	return (0);
1138 }
1139 
1140 /*
1141  * Attach the interface. Allocate softc structures, do ifmedia
1142  * setup and ethernet/BPF attach.
1143  */
1144 static int
1145 re_attach(dev)
1146 	device_t		dev;
1147 {
1148 	u_char			eaddr[ETHER_ADDR_LEN];
1149 	u_int16_t		as[ETHER_ADDR_LEN / 2];
1150 	struct rl_softc		*sc;
1151 	struct ifnet		*ifp;
1152 	struct rl_hwrev		*hw_rev;
1153 	int			hwrev;
1154 	u_int16_t		re_did = 0;
1155 	int			error = 0, rid, i;
1156 	int			msic, reg;
1157 
1158 	sc = device_get_softc(dev);
1159 	sc->rl_dev = dev;
1160 
1161 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1162 	    MTX_DEF);
1163 	callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0);
1164 
1165 	/*
1166 	 * Map control/status registers.
1167 	 */
1168 	pci_enable_busmaster(dev);
1169 
1170 	rid = RL_RID;
1171 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1172 	    RF_ACTIVE);
1173 
1174 	if (sc->rl_res == NULL) {
1175 		device_printf(dev, "couldn't map ports/memory\n");
1176 		error = ENXIO;
1177 		goto fail;
1178 	}
1179 
1180 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1181 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1182 
1183 	msic = 0;
1184 	if (pci_find_extcap(dev, PCIY_EXPRESS, &reg) == 0) {
1185 		msic = pci_msi_count(dev);
1186 		if (bootverbose)
1187 			device_printf(dev, "MSI count : %d\n", msic);
1188 	}
1189 	if (msic == RL_MSI_MESSAGES  && msi_disable == 0) {
1190 		if (pci_alloc_msi(dev, &msic) == 0) {
1191 			if (msic == RL_MSI_MESSAGES) {
1192 				device_printf(dev, "Using %d MSI messages\n",
1193 				    msic);
1194 				sc->rl_msi = 1;
1195 			} else
1196 				pci_release_msi(dev);
1197 		}
1198 	}
1199 
1200 	/* Allocate interrupt */
1201 	if (sc->rl_msi == 0) {
1202 		rid = 0;
1203 		sc->rl_irq[0] = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1204 		    RF_SHAREABLE | RF_ACTIVE);
1205 		if (sc->rl_irq[0] == NULL) {
1206 			device_printf(dev, "couldn't allocate IRQ resources\n");
1207 			error = ENXIO;
1208 			goto fail;
1209 		}
1210 	} else {
1211 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1212 			sc->rl_irq[i] = bus_alloc_resource_any(dev,
1213 			    SYS_RES_IRQ, &rid, RF_ACTIVE);
1214 			if (sc->rl_irq[i] == NULL) {
1215 				device_printf(dev,
1216 				    "couldn't llocate IRQ resources for "
1217 				    "message %d\n", rid);
1218 				error = ENXIO;
1219 				goto fail;
1220 			}
1221 		}
1222 	}
1223 
1224 	/* Reset the adapter. */
1225 	RL_LOCK(sc);
1226 	re_reset(sc);
1227 	RL_UNLOCK(sc);
1228 
1229 	hw_rev = re_hwrevs;
1230 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1231 	while (hw_rev->rl_desc != NULL) {
1232 		if (hw_rev->rl_rev == hwrev) {
1233 			sc->rl_type = hw_rev->rl_type;
1234 			break;
1235 		}
1236 		hw_rev++;
1237 	}
1238 	if (hw_rev->rl_desc == NULL) {
1239 		device_printf(dev, "Unknown H/W revision: %08x\n", hwrev);
1240 		error = ENXIO;
1241 		goto fail;
1242 	}
1243 
1244 	sc->rl_eewidth = RL_9356_ADDR_LEN;
1245 	re_read_eeprom(sc, (caddr_t)&re_did, 0, 1);
1246 	if (re_did != 0x8129)
1247 	        sc->rl_eewidth = RL_9346_ADDR_LEN;
1248 
1249 	/*
1250 	 * Get station address from the EEPROM.
1251 	 */
1252 	re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3);
1253 	for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
1254 		as[i] = le16toh(as[i]);
1255 	bcopy(as, eaddr, sizeof(eaddr));
1256 
1257 	if (sc->rl_type == RL_8169) {
1258 		/* Set RX length mask and number of descriptors. */
1259 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1260 		sc->rl_txstart = RL_GTXSTART;
1261 		sc->rl_ldata.rl_tx_desc_cnt = RL_8169_TX_DESC_CNT;
1262 		sc->rl_ldata.rl_rx_desc_cnt = RL_8169_RX_DESC_CNT;
1263 	} else {
1264 		/* Set RX length mask and number of descriptors. */
1265 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1266 		sc->rl_txstart = RL_TXSTART;
1267 		sc->rl_ldata.rl_tx_desc_cnt = RL_8139_TX_DESC_CNT;
1268 		sc->rl_ldata.rl_rx_desc_cnt = RL_8139_RX_DESC_CNT;
1269 	}
1270 
1271 	error = re_allocmem(dev, sc);
1272 	if (error)
1273 		goto fail;
1274 
1275 	ifp = sc->rl_ifp = if_alloc(IFT_ETHER);
1276 	if (ifp == NULL) {
1277 		device_printf(dev, "can not if_alloc()\n");
1278 		error = ENOSPC;
1279 		goto fail;
1280 	}
1281 
1282 	/* Do MII setup */
1283 	if (mii_phy_probe(dev, &sc->rl_miibus,
1284 	    re_ifmedia_upd, re_ifmedia_sts)) {
1285 		device_printf(dev, "MII without any phy!\n");
1286 		error = ENXIO;
1287 		goto fail;
1288 	}
1289 
1290 	/* Take PHY out of power down mode. */
1291 	if (sc->rl_type == RL_8169) {
1292 		uint32_t rev;
1293 
1294 		rev = CSR_READ_4(sc, RL_TXCFG);
1295 		/* HWVERID 0, 1 and 2 :  bit26-30, bit23 */
1296 		rev &= 0x7c800000;
1297 		if (rev != 0) {
1298 			/* RTL8169S single chip */
1299 			switch (rev) {
1300 			case RL_HWREV_8169_8110SB:
1301 			case RL_HWREV_8169_8110SC:
1302 			case RL_HWREV_8168_SPIN2:
1303 			case RL_HWREV_8168_SPIN3:
1304 				re_gmii_writereg(dev, 1, 0x1f, 0);
1305 				re_gmii_writereg(dev, 1, 0x0e, 0);
1306 				break;
1307 			default:
1308 				break;
1309 			}
1310 		}
1311 	}
1312 
1313 	ifp->if_softc = sc;
1314 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1315 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1316 	ifp->if_ioctl = re_ioctl;
1317 	ifp->if_start = re_start;
1318 	ifp->if_hwassist = RE_CSUM_FEATURES | CSUM_TSO;
1319 	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
1320 	ifp->if_capenable = ifp->if_capabilities;
1321 	ifp->if_init = re_init;
1322 	IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN);
1323 	ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN;
1324 	IFQ_SET_READY(&ifp->if_snd);
1325 
1326 	TASK_INIT(&sc->rl_txtask, 1, re_tx_task, ifp);
1327 	TASK_INIT(&sc->rl_inttask, 0, re_int_task, sc);
1328 
1329 	/*
1330 	 * Call MI attach routine.
1331 	 */
1332 	ether_ifattach(ifp, eaddr);
1333 
1334 	/* VLAN capability setup */
1335 	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
1336 	if (ifp->if_capabilities & IFCAP_HWCSUM)
1337 		ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
1338 	ifp->if_capenable = ifp->if_capabilities;
1339 #ifdef DEVICE_POLLING
1340 	ifp->if_capabilities |= IFCAP_POLLING;
1341 #endif
1342 	/*
1343 	 * Tell the upper layer(s) we support long frames.
1344 	 * Must appear after the call to ether_ifattach() because
1345 	 * ether_ifattach() sets ifi_hdrlen to the default value.
1346 	 */
1347 	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
1348 
1349 #ifdef RE_DIAG
1350 	/*
1351 	 * Perform hardware diagnostic on the original RTL8169.
1352 	 * Some 32-bit cards were incorrectly wired and would
1353 	 * malfunction if plugged into a 64-bit slot.
1354 	 */
1355 
1356 	if (hwrev == RL_HWREV_8169) {
1357 		error = re_diag(sc);
1358 		if (error) {
1359 			device_printf(dev,
1360 		    	"attach aborted due to hardware diag failure\n");
1361 			ether_ifdetach(ifp);
1362 			goto fail;
1363 		}
1364 	}
1365 #endif
1366 
1367 	/* Hook interrupt last to avoid having to lock softc */
1368 	if (sc->rl_msi == 0)
1369 		error = bus_setup_intr(dev, sc->rl_irq[0],
1370 		    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1371 		    &sc->rl_intrhand[0]);
1372 	else {
1373 		for (i = 0; i < RL_MSI_MESSAGES; i++) {
1374 			error = bus_setup_intr(dev, sc->rl_irq[i],
1375 			    INTR_TYPE_NET | INTR_MPSAFE, re_intr, NULL, sc,
1376 		    	    &sc->rl_intrhand[i]);
1377 			if (error != 0)
1378 				break;
1379 		}
1380 	}
1381 	if (error) {
1382 		device_printf(dev, "couldn't set up irq\n");
1383 		ether_ifdetach(ifp);
1384 	}
1385 
1386 fail:
1387 
1388 	if (error)
1389 		re_detach(dev);
1390 
1391 	return (error);
1392 }
1393 
1394 /*
1395  * Shutdown hardware and free up resources. This can be called any
1396  * time after the mutex has been initialized. It is called in both
1397  * the error case in attach and the normal detach case so it needs
1398  * to be careful about only freeing resources that have actually been
1399  * allocated.
1400  */
1401 static int
1402 re_detach(dev)
1403 	device_t		dev;
1404 {
1405 	struct rl_softc		*sc;
1406 	struct ifnet		*ifp;
1407 	int			i, rid;
1408 
1409 	sc = device_get_softc(dev);
1410 	ifp = sc->rl_ifp;
1411 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1412 
1413 #ifdef DEVICE_POLLING
1414 	if (ifp->if_capenable & IFCAP_POLLING)
1415 		ether_poll_deregister(ifp);
1416 #endif
1417 	/* These should only be active if attach succeeded */
1418 	if (device_is_attached(dev)) {
1419 		RL_LOCK(sc);
1420 #if 0
1421 		sc->suspended = 1;
1422 #endif
1423 		re_stop(sc);
1424 		RL_UNLOCK(sc);
1425 		callout_drain(&sc->rl_stat_callout);
1426 		taskqueue_drain(taskqueue_fast, &sc->rl_inttask);
1427 		taskqueue_drain(taskqueue_fast, &sc->rl_txtask);
1428 		/*
1429 		 * Force off the IFF_UP flag here, in case someone
1430 		 * still had a BPF descriptor attached to this
1431 		 * interface. If they do, ether_ifdetach() will cause
1432 		 * the BPF code to try and clear the promisc mode
1433 		 * flag, which will bubble down to re_ioctl(),
1434 		 * which will try to call re_init() again. This will
1435 		 * turn the NIC back on and restart the MII ticker,
1436 		 * which will panic the system when the kernel tries
1437 		 * to invoke the re_tick() function that isn't there
1438 		 * anymore.
1439 		 */
1440 		ifp->if_flags &= ~IFF_UP;
1441 		ether_ifdetach(ifp);
1442 	}
1443 	if (sc->rl_miibus)
1444 		device_delete_child(dev, sc->rl_miibus);
1445 	bus_generic_detach(dev);
1446 
1447 	/*
1448 	 * The rest is resource deallocation, so we should already be
1449 	 * stopped here.
1450 	 */
1451 
1452 	for (i = 0; i < RL_MSI_MESSAGES; i++) {
1453 		if (sc->rl_intrhand[i] != NULL) {
1454 			bus_teardown_intr(dev, sc->rl_irq[i],
1455 			    sc->rl_intrhand[i]);
1456 			sc->rl_intrhand[i] = NULL;
1457 		}
1458 	}
1459 	if (ifp != NULL)
1460 		if_free(ifp);
1461 	if (sc->rl_msi == 0) {
1462 		if (sc->rl_irq[0] != NULL) {
1463 			bus_release_resource(dev, SYS_RES_IRQ, 0,
1464 			    sc->rl_irq[0]);
1465 			sc->rl_irq[0] = NULL;
1466 		}
1467 	} else {
1468 		for (i = 0, rid = 1; i < RL_MSI_MESSAGES; i++, rid++) {
1469 			if (sc->rl_irq[i] != NULL) {
1470 				bus_release_resource(dev, SYS_RES_IRQ, rid,
1471 				    sc->rl_irq[i]);
1472 				sc->rl_irq[i] = NULL;
1473 			}
1474 		}
1475 		pci_release_msi(dev);
1476 	}
1477 	if (sc->rl_res)
1478 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1479 
1480 	/* Unload and free the RX DMA ring memory and map */
1481 
1482 	if (sc->rl_ldata.rl_rx_list_tag) {
1483 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1484 		    sc->rl_ldata.rl_rx_list_map);
1485 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1486 		    sc->rl_ldata.rl_rx_list,
1487 		    sc->rl_ldata.rl_rx_list_map);
1488 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1489 	}
1490 
1491 	/* Unload and free the TX DMA ring memory and map */
1492 
1493 	if (sc->rl_ldata.rl_tx_list_tag) {
1494 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1495 		    sc->rl_ldata.rl_tx_list_map);
1496 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1497 		    sc->rl_ldata.rl_tx_list,
1498 		    sc->rl_ldata.rl_tx_list_map);
1499 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1500 	}
1501 
1502 	/* Destroy all the RX and TX buffer maps */
1503 
1504 	if (sc->rl_ldata.rl_tx_mtag) {
1505 		for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1506 			bus_dmamap_destroy(sc->rl_ldata.rl_tx_mtag,
1507 			    sc->rl_ldata.rl_tx_desc[i].tx_dmamap);
1508 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_mtag);
1509 	}
1510 	if (sc->rl_ldata.rl_rx_mtag) {
1511 		for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++)
1512 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1513 			    sc->rl_ldata.rl_rx_desc[i].rx_dmamap);
1514 		if (sc->rl_ldata.rl_rx_sparemap)
1515 			bus_dmamap_destroy(sc->rl_ldata.rl_rx_mtag,
1516 			    sc->rl_ldata.rl_rx_sparemap);
1517 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_mtag);
1518 	}
1519 
1520 	/* Unload and free the stats buffer and map */
1521 
1522 	if (sc->rl_ldata.rl_stag) {
1523 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1524 		    sc->rl_ldata.rl_rx_list_map);
1525 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1526 		    sc->rl_ldata.rl_stats,
1527 		    sc->rl_ldata.rl_smap);
1528 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1529 	}
1530 
1531 	if (sc->rl_parent_tag)
1532 		bus_dma_tag_destroy(sc->rl_parent_tag);
1533 
1534 	mtx_destroy(&sc->rl_mtx);
1535 
1536 	return (0);
1537 }
1538 
1539 static __inline void
1540 re_discard_rxbuf(sc, idx)
1541 	struct rl_softc		*sc;
1542 	int			idx;
1543 {
1544 	struct rl_desc		*desc;
1545 	struct rl_rxdesc	*rxd;
1546 	uint32_t		cmdstat;
1547 
1548 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1549 	desc = &sc->rl_ldata.rl_rx_list[idx];
1550 	desc->rl_vlanctl = 0;
1551 	cmdstat = rxd->rx_size;
1552 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1553 		cmdstat |= RL_RDESC_CMD_EOR;
1554 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1555 }
1556 
1557 static int
1558 re_newbuf(sc, idx)
1559 	struct rl_softc		*sc;
1560 	int			idx;
1561 {
1562 	struct mbuf		*m;
1563 	struct rl_rxdesc	*rxd;
1564 	bus_dma_segment_t	segs[1];
1565 	bus_dmamap_t		map;
1566 	struct rl_desc		*desc;
1567 	uint32_t		cmdstat;
1568 	int			error, nsegs;
1569 
1570 	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1571 	if (m == NULL)
1572 		return (ENOBUFS);
1573 
1574 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1575 #ifdef RE_FIXUP_RX
1576 	/*
1577 	 * This is part of an evil trick to deal with non-x86 platforms.
1578 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1579 	 * boundaries, but that will hose non-x86 machines. To get around
1580 	 * this, we leave some empty space at the start of each buffer
1581 	 * and for non-x86 hosts, we copy the buffer back six bytes
1582 	 * to achieve word alignment. This is slightly more efficient
1583 	 * than allocating a new buffer, copying the contents, and
1584 	 * discarding the old buffer.
1585 	 */
1586 	m_adj(m, RE_ETHER_ALIGN);
1587 #endif
1588 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_rx_mtag,
1589 	    sc->rl_ldata.rl_rx_sparemap, m, segs, &nsegs, BUS_DMA_NOWAIT);
1590 	if (error != 0) {
1591 		m_freem(m);
1592 		return (ENOBUFS);
1593 	}
1594 	KASSERT(nsegs == 1, ("%s: %d segment returned!", __func__, nsegs));
1595 
1596 	rxd = &sc->rl_ldata.rl_rx_desc[idx];
1597 	if (rxd->rx_m != NULL) {
1598 		bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1599 		    BUS_DMASYNC_POSTREAD);
1600 		bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap);
1601 	}
1602 
1603 	rxd->rx_m = m;
1604 	map = rxd->rx_dmamap;
1605 	rxd->rx_dmamap = sc->rl_ldata.rl_rx_sparemap;
1606 	rxd->rx_size = segs[0].ds_len;
1607 	sc->rl_ldata.rl_rx_sparemap = map;
1608 	bus_dmamap_sync(sc->rl_ldata.rl_rx_mtag, rxd->rx_dmamap,
1609 	    BUS_DMASYNC_PREREAD);
1610 
1611 	desc = &sc->rl_ldata.rl_rx_list[idx];
1612 	desc->rl_vlanctl = 0;
1613 	desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[0].ds_addr));
1614 	desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[0].ds_addr));
1615 	cmdstat = segs[0].ds_len;
1616 	if (idx == sc->rl_ldata.rl_rx_desc_cnt - 1)
1617 		cmdstat |= RL_RDESC_CMD_EOR;
1618 	desc->rl_cmdstat = htole32(cmdstat | RL_RDESC_CMD_OWN);
1619 
1620 	return (0);
1621 }
1622 
1623 #ifdef RE_FIXUP_RX
1624 static __inline void
1625 re_fixup_rx(m)
1626 	struct mbuf		*m;
1627 {
1628 	int                     i;
1629 	uint16_t                *src, *dst;
1630 
1631 	src = mtod(m, uint16_t *);
1632 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1633 
1634 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1635 		*dst++ = *src++;
1636 
1637 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1638 
1639 	return;
1640 }
1641 #endif
1642 
1643 static int
1644 re_tx_list_init(sc)
1645 	struct rl_softc		*sc;
1646 {
1647 	struct rl_desc		*desc;
1648 	int			i;
1649 
1650 	RL_LOCK_ASSERT(sc);
1651 
1652 	bzero(sc->rl_ldata.rl_tx_list,
1653 	    sc->rl_ldata.rl_tx_desc_cnt * sizeof(struct rl_desc));
1654 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++)
1655 		sc->rl_ldata.rl_tx_desc[i].tx_m = NULL;
1656 	/* Set EOR. */
1657 	desc = &sc->rl_ldata.rl_tx_list[sc->rl_ldata.rl_tx_desc_cnt - 1];
1658 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOR);
1659 
1660 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1661 	    sc->rl_ldata.rl_tx_list_map,
1662 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1663 
1664 	sc->rl_ldata.rl_tx_prodidx = 0;
1665 	sc->rl_ldata.rl_tx_considx = 0;
1666 	sc->rl_ldata.rl_tx_free = sc->rl_ldata.rl_tx_desc_cnt;
1667 
1668 	return (0);
1669 }
1670 
1671 static int
1672 re_rx_list_init(sc)
1673 	struct rl_softc		*sc;
1674 {
1675 	int			error, i;
1676 
1677 	bzero(sc->rl_ldata.rl_rx_list,
1678 	    sc->rl_ldata.rl_rx_desc_cnt * sizeof(struct rl_desc));
1679 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
1680 		sc->rl_ldata.rl_rx_desc[i].rx_m = NULL;
1681 		if ((error = re_newbuf(sc, i)) != 0)
1682 			return (error);
1683 	}
1684 
1685 	/* Flush the RX descriptors */
1686 
1687 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1688 	    sc->rl_ldata.rl_rx_list_map,
1689 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1690 
1691 	sc->rl_ldata.rl_rx_prodidx = 0;
1692 	sc->rl_head = sc->rl_tail = NULL;
1693 
1694 	return (0);
1695 }
1696 
1697 /*
1698  * RX handler for C+ and 8169. For the gigE chips, we support
1699  * the reception of jumbo frames that have been fragmented
1700  * across multiple 2K mbuf cluster buffers.
1701  */
1702 static int
1703 re_rxeof(sc)
1704 	struct rl_softc		*sc;
1705 {
1706 	struct mbuf		*m;
1707 	struct ifnet		*ifp;
1708 	int			i, total_len;
1709 	struct rl_desc		*cur_rx;
1710 	u_int32_t		rxstat, rxvlan;
1711 	int			maxpkt = 16;
1712 
1713 	RL_LOCK_ASSERT(sc);
1714 
1715 	ifp = sc->rl_ifp;
1716 
1717 	/* Invalidate the descriptor memory */
1718 
1719 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1720 	    sc->rl_ldata.rl_rx_list_map,
1721 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1722 
1723 	for (i = sc->rl_ldata.rl_rx_prodidx; maxpkt > 0;
1724 	    i = RL_RX_DESC_NXT(sc, i)) {
1725 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1726 		rxstat = le32toh(cur_rx->rl_cmdstat);
1727 		if ((rxstat & RL_RDESC_STAT_OWN) != 0)
1728 			break;
1729 		total_len = rxstat & sc->rl_rxlenmask;
1730 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1731 		m = sc->rl_ldata.rl_rx_desc[i].rx_m;
1732 
1733 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1734 			if (re_newbuf(sc, i) != 0) {
1735 				/*
1736 				 * If this is part of a multi-fragment packet,
1737 				 * discard all the pieces.
1738 				 */
1739 				if (sc->rl_head != NULL) {
1740 					m_freem(sc->rl_head);
1741 					sc->rl_head = sc->rl_tail = NULL;
1742 				}
1743 				re_discard_rxbuf(sc, i);
1744 				continue;
1745 			}
1746 			m->m_len = RE_RX_DESC_BUFLEN;
1747 			if (sc->rl_head == NULL)
1748 				sc->rl_head = sc->rl_tail = m;
1749 			else {
1750 				m->m_flags &= ~M_PKTHDR;
1751 				sc->rl_tail->m_next = m;
1752 				sc->rl_tail = m;
1753 			}
1754 			continue;
1755 		}
1756 
1757 		/*
1758 		 * NOTE: for the 8139C+, the frame length field
1759 		 * is always 12 bits in size, but for the gigE chips,
1760 		 * it is 13 bits (since the max RX frame length is 16K).
1761 		 * Unfortunately, all 32 bits in the status word
1762 		 * were already used, so to make room for the extra
1763 		 * length bit, RealTek took out the 'frame alignment
1764 		 * error' bit and shifted the other status bits
1765 		 * over one slot. The OWN, EOR, FS and LS bits are
1766 		 * still in the same places. We have already extracted
1767 		 * the frame length and checked the OWN bit, so rather
1768 		 * than using an alternate bit mapping, we shift the
1769 		 * status bits one space to the right so we can evaluate
1770 		 * them using the 8169 status as though it was in the
1771 		 * same format as that of the 8139C+.
1772 		 */
1773 		if (sc->rl_type == RL_8169)
1774 			rxstat >>= 1;
1775 
1776 		/*
1777 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1778 		 * set, but if CRC is clear, it will still be a valid frame.
1779 		 */
1780 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1781 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1782 			ifp->if_ierrors++;
1783 			/*
1784 			 * If this is part of a multi-fragment packet,
1785 			 * discard all the pieces.
1786 			 */
1787 			if (sc->rl_head != NULL) {
1788 				m_freem(sc->rl_head);
1789 				sc->rl_head = sc->rl_tail = NULL;
1790 			}
1791 			re_discard_rxbuf(sc, i);
1792 			continue;
1793 		}
1794 
1795 		/*
1796 		 * If allocating a replacement mbuf fails,
1797 		 * reload the current one.
1798 		 */
1799 
1800 		if (re_newbuf(sc, i) != 0) {
1801 			ifp->if_iqdrops++;
1802 			if (sc->rl_head != NULL) {
1803 				m_freem(sc->rl_head);
1804 				sc->rl_head = sc->rl_tail = NULL;
1805 			}
1806 			re_discard_rxbuf(sc, i);
1807 			continue;
1808 		}
1809 
1810 		if (sc->rl_head != NULL) {
1811 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1812 			if (m->m_len == 0)
1813 				m->m_len = RE_RX_DESC_BUFLEN;
1814 			/*
1815 			 * Special case: if there's 4 bytes or less
1816 			 * in this buffer, the mbuf can be discarded:
1817 			 * the last 4 bytes is the CRC, which we don't
1818 			 * care about anyway.
1819 			 */
1820 			if (m->m_len <= ETHER_CRC_LEN) {
1821 				sc->rl_tail->m_len -=
1822 				    (ETHER_CRC_LEN - m->m_len);
1823 				m_freem(m);
1824 			} else {
1825 				m->m_len -= ETHER_CRC_LEN;
1826 				m->m_flags &= ~M_PKTHDR;
1827 				sc->rl_tail->m_next = m;
1828 			}
1829 			m = sc->rl_head;
1830 			sc->rl_head = sc->rl_tail = NULL;
1831 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1832 		} else
1833 			m->m_pkthdr.len = m->m_len =
1834 			    (total_len - ETHER_CRC_LEN);
1835 
1836 #ifdef RE_FIXUP_RX
1837 		re_fixup_rx(m);
1838 #endif
1839 		ifp->if_ipackets++;
1840 		m->m_pkthdr.rcvif = ifp;
1841 
1842 		/* Do RX checksumming if enabled */
1843 
1844 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1845 
1846 			/* Check IP header checksum */
1847 			if (rxstat & RL_RDESC_STAT_PROTOID)
1848 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1849 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1850 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1851 
1852 			/* Check TCP/UDP checksum */
1853 			if ((RL_TCPPKT(rxstat) &&
1854 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1855 			    (RL_UDPPKT(rxstat) &&
1856 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1857 				m->m_pkthdr.csum_flags |=
1858 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1859 				m->m_pkthdr.csum_data = 0xffff;
1860 			}
1861 		}
1862 		maxpkt--;
1863 		if (rxvlan & RL_RDESC_VLANCTL_TAG) {
1864 			m->m_pkthdr.ether_vtag =
1865 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA));
1866 			m->m_flags |= M_VLANTAG;
1867 		}
1868 		RL_UNLOCK(sc);
1869 		(*ifp->if_input)(ifp, m);
1870 		RL_LOCK(sc);
1871 	}
1872 
1873 	/* Flush the RX DMA ring */
1874 
1875 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1876 	    sc->rl_ldata.rl_rx_list_map,
1877 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1878 
1879 	sc->rl_ldata.rl_rx_prodidx = i;
1880 
1881 	if (maxpkt)
1882 		return(EAGAIN);
1883 
1884 	return(0);
1885 }
1886 
1887 static void
1888 re_txeof(sc)
1889 	struct rl_softc		*sc;
1890 {
1891 	struct ifnet		*ifp;
1892 	struct rl_txdesc	*txd;
1893 	u_int32_t		txstat;
1894 	int			cons;
1895 
1896 	cons = sc->rl_ldata.rl_tx_considx;
1897 	if (cons == sc->rl_ldata.rl_tx_prodidx)
1898 		return;
1899 
1900 	ifp = sc->rl_ifp;
1901 	/* Invalidate the TX descriptor list */
1902 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1903 	    sc->rl_ldata.rl_tx_list_map,
1904 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1905 
1906 	for (; cons != sc->rl_ldata.rl_tx_prodidx;
1907 	    cons = RL_TX_DESC_NXT(sc, cons)) {
1908 		txstat = le32toh(sc->rl_ldata.rl_tx_list[cons].rl_cmdstat);
1909 		if (txstat & RL_TDESC_STAT_OWN)
1910 			break;
1911 		/*
1912 		 * We only stash mbufs in the last descriptor
1913 		 * in a fragment chain, which also happens to
1914 		 * be the only place where the TX status bits
1915 		 * are valid.
1916 		 */
1917 		if (txstat & RL_TDESC_CMD_EOF) {
1918 			txd = &sc->rl_ldata.rl_tx_desc[cons];
1919 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
1920 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
1921 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
1922 			    txd->tx_dmamap);
1923 			KASSERT(txd->tx_m != NULL,
1924 			    ("%s: freeing NULL mbufs!", __func__));
1925 			m_freem(txd->tx_m);
1926 			txd->tx_m = NULL;
1927 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1928 			    RL_TDESC_STAT_COLCNT))
1929 				ifp->if_collisions++;
1930 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1931 				ifp->if_oerrors++;
1932 			else
1933 				ifp->if_opackets++;
1934 		}
1935 		sc->rl_ldata.rl_tx_free++;
1936 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1937 	}
1938 	sc->rl_ldata.rl_tx_considx = cons;
1939 
1940 	/* No changes made to the TX ring, so no flush needed */
1941 
1942 	if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt) {
1943 		/*
1944 		 * Some chips will ignore a second TX request issued
1945 		 * while an existing transmission is in progress. If
1946 		 * the transmitter goes idle but there are still
1947 		 * packets waiting to be sent, we need to restart the
1948 		 * channel here to flush them out. This only seems to
1949 		 * be required with the PCIe devices.
1950 		 */
1951 		CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
1952 
1953 #ifdef RE_TX_MODERATION
1954 		/*
1955 		 * If not all descriptors have been reaped yet, reload
1956 		 * the timer so that we will eventually get another
1957 		 * interrupt that will cause us to re-enter this routine.
1958 		 * This is done in case the transmitter has gone idle.
1959 		 */
1960 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1961 #endif
1962 	} else
1963 		sc->rl_watchdog_timer = 0;
1964 }
1965 
1966 static void
1967 re_tick(xsc)
1968 	void			*xsc;
1969 {
1970 	struct rl_softc		*sc;
1971 	struct mii_data		*mii;
1972 	struct ifnet		*ifp;
1973 
1974 	sc = xsc;
1975 	ifp = sc->rl_ifp;
1976 
1977 	RL_LOCK_ASSERT(sc);
1978 
1979 	re_watchdog(sc);
1980 
1981 	mii = device_get_softc(sc->rl_miibus);
1982 	mii_tick(mii);
1983 	if (sc->rl_link) {
1984 		if (!(mii->mii_media_status & IFM_ACTIVE))
1985 			sc->rl_link = 0;
1986 	} else {
1987 		if (mii->mii_media_status & IFM_ACTIVE &&
1988 		    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
1989 			sc->rl_link = 1;
1990 			if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1991 				taskqueue_enqueue_fast(taskqueue_fast,
1992 				    &sc->rl_txtask);
1993 		}
1994 	}
1995 
1996 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
1997 }
1998 
1999 #ifdef DEVICE_POLLING
2000 static void
2001 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
2002 {
2003 	struct rl_softc *sc = ifp->if_softc;
2004 
2005 	RL_LOCK(sc);
2006 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2007 		re_poll_locked(ifp, cmd, count);
2008 	RL_UNLOCK(sc);
2009 }
2010 
2011 static void
2012 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
2013 {
2014 	struct rl_softc *sc = ifp->if_softc;
2015 
2016 	RL_LOCK_ASSERT(sc);
2017 
2018 	sc->rxcycles = count;
2019 	re_rxeof(sc);
2020 	re_txeof(sc);
2021 
2022 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2023 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2024 
2025 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
2026 		u_int16_t       status;
2027 
2028 		status = CSR_READ_2(sc, RL_ISR);
2029 		if (status == 0xffff)
2030 			return;
2031 		if (status)
2032 			CSR_WRITE_2(sc, RL_ISR, status);
2033 
2034 		/*
2035 		 * XXX check behaviour on receiver stalls.
2036 		 */
2037 
2038 		if (status & RL_ISR_SYSTEM_ERR) {
2039 			re_reset(sc);
2040 			re_init_locked(sc);
2041 		}
2042 	}
2043 }
2044 #endif /* DEVICE_POLLING */
2045 
2046 static int
2047 re_intr(arg)
2048 	void			*arg;
2049 {
2050 	struct rl_softc		*sc;
2051 	uint16_t		status;
2052 
2053 	sc = arg;
2054 
2055 	status = CSR_READ_2(sc, RL_ISR);
2056 	if (status == 0xFFFF || (status & RL_INTRS_CPLUS) == 0)
2057                 return (FILTER_STRAY);
2058 	CSR_WRITE_2(sc, RL_IMR, 0);
2059 
2060 	taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2061 
2062 	return (FILTER_HANDLED);
2063 }
2064 
2065 static void
2066 re_int_task(arg, npending)
2067 	void			*arg;
2068 	int			npending;
2069 {
2070 	struct rl_softc		*sc;
2071 	struct ifnet		*ifp;
2072 	u_int16_t		status;
2073 	int			rval = 0;
2074 
2075 	sc = arg;
2076 	ifp = sc->rl_ifp;
2077 
2078 	RL_LOCK(sc);
2079 
2080 	status = CSR_READ_2(sc, RL_ISR);
2081         CSR_WRITE_2(sc, RL_ISR, status);
2082 
2083 	if (sc->suspended ||
2084 	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2085 		RL_UNLOCK(sc);
2086 		return;
2087 	}
2088 
2089 #ifdef DEVICE_POLLING
2090 	if  (ifp->if_capenable & IFCAP_POLLING) {
2091 		RL_UNLOCK(sc);
2092 		return;
2093 	}
2094 #endif
2095 
2096 	if (status & (RL_ISR_RX_OK|RL_ISR_RX_ERR|RL_ISR_FIFO_OFLOW))
2097 		rval = re_rxeof(sc);
2098 
2099 #ifdef RE_TX_MODERATION
2100 	if (status & (RL_ISR_TIMEOUT_EXPIRED|
2101 #else
2102 	if (status & (RL_ISR_TX_OK|
2103 #endif
2104 	    RL_ISR_TX_ERR|RL_ISR_TX_DESC_UNAVAIL))
2105 		re_txeof(sc);
2106 
2107 	if (status & RL_ISR_SYSTEM_ERR) {
2108 		re_reset(sc);
2109 		re_init_locked(sc);
2110 	}
2111 
2112 	if (status & RL_ISR_LINKCHG) {
2113 		callout_stop(&sc->rl_stat_callout);
2114 		re_tick(sc);
2115 	}
2116 
2117 	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2118 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_txtask);
2119 
2120 	RL_UNLOCK(sc);
2121 
2122         if ((CSR_READ_2(sc, RL_ISR) & RL_INTRS_CPLUS) || rval) {
2123 		taskqueue_enqueue_fast(taskqueue_fast, &sc->rl_inttask);
2124 		return;
2125 	}
2126 
2127 	CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2128 
2129 	return;
2130 }
2131 
2132 /*
2133  * It's copy of ath_defrag(ath(4)).
2134  *
2135  * Defragment an mbuf chain, returning at most maxfrags separate
2136  * mbufs+clusters.  If this is not possible NULL is returned and
2137  * the original mbuf chain is left in it's present (potentially
2138  * modified) state.  We use two techniques: collapsing consecutive
2139  * mbufs and replacing consecutive mbufs by a cluster.
2140  */
2141 static struct mbuf *
2142 re_defrag(m0, how, maxfrags)
2143 	struct mbuf *m0;
2144 	int how;
2145 	int maxfrags;
2146 {
2147 	struct mbuf *m, *n, *n2, **prev;
2148 	u_int curfrags;
2149 
2150 	/*
2151 	 * Calculate the current number of frags.
2152 	 */
2153 	curfrags = 0;
2154 	for (m = m0; m != NULL; m = m->m_next)
2155 		curfrags++;
2156 	/*
2157 	 * First, try to collapse mbufs.  Note that we always collapse
2158 	 * towards the front so we don't need to deal with moving the
2159 	 * pkthdr.  This may be suboptimal if the first mbuf has much
2160 	 * less data than the following.
2161 	 */
2162 	m = m0;
2163 again:
2164 	for (;;) {
2165 		n = m->m_next;
2166 		if (n == NULL)
2167 			break;
2168 		if ((m->m_flags & M_RDONLY) == 0 &&
2169 		    n->m_len < M_TRAILINGSPACE(m)) {
2170 			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2171 				n->m_len);
2172 			m->m_len += n->m_len;
2173 			m->m_next = n->m_next;
2174 			m_free(n);
2175 			if (--curfrags <= maxfrags)
2176 				return (m0);
2177 		} else
2178 			m = n;
2179 	}
2180 	KASSERT(maxfrags > 1,
2181 		("maxfrags %u, but normal collapse failed", maxfrags));
2182 	/*
2183 	 * Collapse consecutive mbufs to a cluster.
2184 	 */
2185 	prev = &m0->m_next;		/* NB: not the first mbuf */
2186 	while ((n = *prev) != NULL) {
2187 		if ((n2 = n->m_next) != NULL &&
2188 		    n->m_len + n2->m_len < MCLBYTES) {
2189 			m = m_getcl(how, MT_DATA, 0);
2190 			if (m == NULL)
2191 				goto bad;
2192 			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2193 			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2194 				n2->m_len);
2195 			m->m_len = n->m_len + n2->m_len;
2196 			m->m_next = n2->m_next;
2197 			*prev = m;
2198 			m_free(n);
2199 			m_free(n2);
2200 			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2201 				return m0;
2202 			/*
2203 			 * Still not there, try the normal collapse
2204 			 * again before we allocate another cluster.
2205 			 */
2206 			goto again;
2207 		}
2208 		prev = &n->m_next;
2209 	}
2210 	/*
2211 	 * No place where we can collapse to a cluster; punt.
2212 	 * This can occur if, for example, you request 2 frags
2213 	 * but the packet requires that both be clusters (we
2214 	 * never reallocate the first mbuf to avoid moving the
2215 	 * packet header).
2216 	 */
2217 bad:
2218 	return (NULL);
2219 }
2220 
2221 static int
2222 re_encap(sc, m_head)
2223 	struct rl_softc		*sc;
2224 	struct mbuf		**m_head;
2225 {
2226 	struct rl_txdesc	*txd, *txd_last;
2227 	bus_dma_segment_t	segs[RL_NTXSEGS];
2228 	bus_dmamap_t		map;
2229 	struct mbuf		*m_new;
2230 	struct rl_desc		*desc;
2231 	int			nsegs, prod;
2232 	int			i, error, ei, si;
2233 	int			padlen;
2234 	uint32_t		cmdstat, csum_flags;
2235 
2236 	RL_LOCK_ASSERT(sc);
2237 	M_ASSERTPKTHDR((*m_head));
2238 
2239 	/*
2240 	 * With some of the RealTek chips, using the checksum offload
2241 	 * support in conjunction with the autopadding feature results
2242 	 * in the transmission of corrupt frames. For example, if we
2243 	 * need to send a really small IP fragment that's less than 60
2244 	 * bytes in size, and IP header checksumming is enabled, the
2245 	 * resulting ethernet frame that appears on the wire will
2246 	 * have garbled payload. To work around this, if TX checksum
2247 	 * offload is enabled, we always manually pad short frames out
2248 	 * to the minimum ethernet frame size.
2249 	 *
2250 	 * Note: this appears unnecessary for TCP, and doing it for TCP
2251 	 * with PCIe adapters seems to result in bad checksums.
2252 	 */
2253 	if ((*m_head)->m_pkthdr.csum_flags & (CSUM_IP | CSUM_UDP) &&
2254 	    ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) == 0 &&
2255             (*m_head)->m_pkthdr.len < RL_MIN_FRAMELEN) {
2256 		padlen = RL_MIN_FRAMELEN - (*m_head)->m_pkthdr.len;
2257 		if (M_WRITABLE(*m_head) == 0) {
2258 			/* Get a writable copy. */
2259 			m_new = m_dup(*m_head, M_DONTWAIT);
2260 			m_freem(*m_head);
2261 			if (m_new == NULL) {
2262 				*m_head = NULL;
2263 				return (ENOBUFS);
2264 			}
2265 			*m_head = m_new;
2266 		}
2267 		if ((*m_head)->m_next != NULL ||
2268 		    M_TRAILINGSPACE(*m_head) < padlen) {
2269 			m_new = m_defrag(*m_head, M_DONTWAIT);
2270 			if (m_new == NULL) {
2271 				m_freem(*m_head);
2272 				*m_head = NULL;
2273 				return (ENOBUFS);
2274 			}
2275 		} else
2276 			m_new = *m_head;
2277 
2278 		/*
2279 		 * Manually pad short frames, and zero the pad space
2280 		 * to avoid leaking data.
2281 		 */
2282 		bzero(mtod(m_new, char *) + m_new->m_pkthdr.len, padlen);
2283 		m_new->m_pkthdr.len += padlen;
2284 		m_new->m_len = m_new->m_pkthdr.len;
2285 		*m_head = m_new;
2286 	}
2287 
2288 	prod = sc->rl_ldata.rl_tx_prodidx;
2289 	txd = &sc->rl_ldata.rl_tx_desc[prod];
2290 	error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2291 	    *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2292 	if (error == EFBIG) {
2293 		m_new = re_defrag(*m_head, M_DONTWAIT, RL_NTXSEGS);
2294 		if (m_new == NULL) {
2295 			m_freem(*m_head);
2296 			*m_head = NULL;
2297 			return (ENOBUFS);
2298 		}
2299 		*m_head = m_new;
2300 		error = bus_dmamap_load_mbuf_sg(sc->rl_ldata.rl_tx_mtag,
2301 		    txd->tx_dmamap, *m_head, segs, &nsegs, BUS_DMA_NOWAIT);
2302 		if (error != 0) {
2303 			m_freem(*m_head);
2304 			*m_head = NULL;
2305 			return (error);
2306 		}
2307 	} else if (error != 0)
2308 		return (error);
2309 	if (nsegs == 0) {
2310 		m_freem(*m_head);
2311 		*m_head = NULL;
2312 		return (EIO);
2313 	}
2314 
2315 	/* Check for number of available descriptors. */
2316 	if (sc->rl_ldata.rl_tx_free - nsegs <= 1) {
2317 		bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap);
2318 		return (ENOBUFS);
2319 	}
2320 
2321 	bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag, txd->tx_dmamap,
2322 	    BUS_DMASYNC_PREWRITE);
2323 
2324 	/*
2325 	 * Set up checksum offload. Note: checksum offload bits must
2326 	 * appear in all descriptors of a multi-descriptor transmit
2327 	 * attempt. This is according to testing done with an 8169
2328 	 * chip. This is a requirement.
2329 	 */
2330 	csum_flags = 0;
2331 	if (((*m_head)->m_pkthdr.csum_flags & CSUM_TSO) != 0)
2332 		csum_flags = RL_TDESC_CMD_LGSEND |
2333 		    ((uint32_t)(*m_head)->m_pkthdr.tso_segsz <<
2334 		    RL_TDESC_CMD_MSSVAL_SHIFT);
2335 	else {
2336 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
2337 			csum_flags |= RL_TDESC_CMD_IPCSUM;
2338 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
2339 			csum_flags |= RL_TDESC_CMD_TCPCSUM;
2340 		if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
2341 			csum_flags |= RL_TDESC_CMD_UDPCSUM;
2342 	}
2343 
2344 	si = prod;
2345 	for (i = 0; i < nsegs; i++, prod = RL_TX_DESC_NXT(sc, prod)) {
2346 		desc = &sc->rl_ldata.rl_tx_list[prod];
2347 		desc->rl_vlanctl = 0;
2348 		desc->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
2349 		desc->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
2350 		cmdstat = segs[i].ds_len;
2351 		if (i != 0)
2352 			cmdstat |= RL_TDESC_CMD_OWN;
2353 		if (prod == sc->rl_ldata.rl_tx_desc_cnt - 1)
2354 			cmdstat |= RL_TDESC_CMD_EOR;
2355 		desc->rl_cmdstat = htole32(cmdstat | csum_flags);
2356 		sc->rl_ldata.rl_tx_free--;
2357 	}
2358 	/* Update producer index. */
2359 	sc->rl_ldata.rl_tx_prodidx = prod;
2360 
2361 	/* Set EOF on the last descriptor. */
2362 	ei = RL_TX_DESC_PRV(sc, prod);
2363 	desc = &sc->rl_ldata.rl_tx_list[ei];
2364 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
2365 
2366 	desc = &sc->rl_ldata.rl_tx_list[si];
2367 	/*
2368 	 * Set up hardware VLAN tagging. Note: vlan tag info must
2369 	 * appear in the first descriptor of a multi-descriptor
2370 	 * transmission attempt.
2371 	 */
2372 	if ((*m_head)->m_flags & M_VLANTAG)
2373 		desc->rl_vlanctl =
2374 		    htole32(htons((*m_head)->m_pkthdr.ether_vtag) |
2375 		    RL_TDESC_VLANCTL_TAG);
2376 	/* Set SOF and transfer ownership of packet to the chip. */
2377 	desc->rl_cmdstat |= htole32(RL_TDESC_CMD_OWN | RL_TDESC_CMD_SOF);
2378 
2379 	/*
2380 	 * Insure that the map for this transmission
2381 	 * is placed at the array index of the last descriptor
2382 	 * in this chain.  (Swap last and first dmamaps.)
2383 	 */
2384 	txd_last = &sc->rl_ldata.rl_tx_desc[ei];
2385 	map = txd->tx_dmamap;
2386 	txd->tx_dmamap = txd_last->tx_dmamap;
2387 	txd_last->tx_dmamap = map;
2388 	txd_last->tx_m = *m_head;
2389 
2390 	return (0);
2391 }
2392 
2393 static void
2394 re_tx_task(arg, npending)
2395 	void			*arg;
2396 	int			npending;
2397 {
2398 	struct ifnet		*ifp;
2399 
2400 	ifp = arg;
2401 	re_start(ifp);
2402 
2403 	return;
2404 }
2405 
2406 /*
2407  * Main transmit routine for C+ and gigE NICs.
2408  */
2409 static void
2410 re_start(ifp)
2411 	struct ifnet		*ifp;
2412 {
2413 	struct rl_softc		*sc;
2414 	struct mbuf		*m_head;
2415 	int			queued;
2416 
2417 	sc = ifp->if_softc;
2418 
2419 	RL_LOCK(sc);
2420 
2421 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
2422 	    IFF_DRV_RUNNING || sc->rl_link == 0) {
2423 		RL_UNLOCK(sc);
2424 		return;
2425 	}
2426 
2427 	for (queued = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
2428 	    sc->rl_ldata.rl_tx_free > 1;) {
2429 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
2430 		if (m_head == NULL)
2431 			break;
2432 
2433 		if (re_encap(sc, &m_head) != 0) {
2434 			if (m_head == NULL)
2435 				break;
2436 			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
2437 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2438 			break;
2439 		}
2440 
2441 		/*
2442 		 * If there's a BPF listener, bounce a copy of this frame
2443 		 * to him.
2444 		 */
2445 		ETHER_BPF_MTAP(ifp, m_head);
2446 
2447 		queued++;
2448 	}
2449 
2450 	if (queued == 0) {
2451 #ifdef RE_TX_MODERATION
2452 		if (sc->rl_ldata.rl_tx_free != sc->rl_ldata.rl_tx_desc_cnt)
2453 			CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2454 #endif
2455 		RL_UNLOCK(sc);
2456 		return;
2457 	}
2458 
2459 	/* Flush the TX descriptors */
2460 
2461 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2462 	    sc->rl_ldata.rl_tx_list_map,
2463 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2464 
2465 	CSR_WRITE_1(sc, sc->rl_txstart, RL_TXSTART_START);
2466 
2467 #ifdef RE_TX_MODERATION
2468 	/*
2469 	 * Use the countdown timer for interrupt moderation.
2470 	 * 'TX done' interrupts are disabled. Instead, we reset the
2471 	 * countdown timer, which will begin counting until it hits
2472 	 * the value in the TIMERINT register, and then trigger an
2473 	 * interrupt. Each time we write to the TIMERCNT register,
2474 	 * the timer count is reset to 0.
2475 	 */
2476 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2477 #endif
2478 
2479 	/*
2480 	 * Set a timeout in case the chip goes out to lunch.
2481 	 */
2482 	sc->rl_watchdog_timer = 5;
2483 
2484 	RL_UNLOCK(sc);
2485 
2486 	return;
2487 }
2488 
2489 static void
2490 re_init(xsc)
2491 	void			*xsc;
2492 {
2493 	struct rl_softc		*sc = xsc;
2494 
2495 	RL_LOCK(sc);
2496 	re_init_locked(sc);
2497 	RL_UNLOCK(sc);
2498 }
2499 
2500 static void
2501 re_init_locked(sc)
2502 	struct rl_softc		*sc;
2503 {
2504 	struct ifnet		*ifp = sc->rl_ifp;
2505 	struct mii_data		*mii;
2506 	u_int32_t		rxcfg = 0;
2507 	union {
2508 		uint32_t align_dummy;
2509 		u_char eaddr[ETHER_ADDR_LEN];
2510         } eaddr;
2511 
2512 	RL_LOCK_ASSERT(sc);
2513 
2514 	mii = device_get_softc(sc->rl_miibus);
2515 
2516 	/*
2517 	 * Cancel pending I/O and free all RX/TX buffers.
2518 	 */
2519 	re_stop(sc);
2520 
2521 	/*
2522 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2523 	 * RX checksum offload. We must configure the C+ register
2524 	 * before all others.
2525 	 */
2526 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2527 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2528 	    RL_CPLUSCMD_VLANSTRIP|RL_CPLUSCMD_RXCSUM_ENB);
2529 
2530 	/*
2531 	 * Init our MAC address.  Even though the chipset
2532 	 * documentation doesn't mention it, we need to enter "Config
2533 	 * register write enable" mode to modify the ID registers.
2534 	 */
2535 	/* Copy MAC address on stack to align. */
2536 	bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN);
2537 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2538 	CSR_WRITE_4(sc, RL_IDR0,
2539 	    htole32(*(u_int32_t *)(&eaddr.eaddr[0])));
2540 	CSR_WRITE_4(sc, RL_IDR4,
2541 	    htole32(*(u_int32_t *)(&eaddr.eaddr[4])));
2542 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2543 
2544 	/*
2545 	 * For C+ mode, initialize the RX descriptors and mbufs.
2546 	 */
2547 	re_rx_list_init(sc);
2548 	re_tx_list_init(sc);
2549 
2550 	/*
2551 	 * Load the addresses of the RX and TX lists into the chip.
2552 	 */
2553 
2554 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2555 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2556 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2557 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2558 
2559 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2560 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2561 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2562 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2563 
2564 	/*
2565 	 * Enable transmit and receive.
2566 	 */
2567 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2568 
2569 	/*
2570 	 * Set the initial TX and RX configuration.
2571 	 */
2572 	if (sc->rl_testmode) {
2573 		if (sc->rl_type == RL_8169)
2574 			CSR_WRITE_4(sc, RL_TXCFG,
2575 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2576 		else
2577 			CSR_WRITE_4(sc, RL_TXCFG,
2578 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2579 	} else
2580 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2581 
2582 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2583 
2584 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2585 
2586 	/* Set the individual bit to receive frames for this host only. */
2587 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2588 	rxcfg |= RL_RXCFG_RX_INDIV;
2589 
2590 	/* If we want promiscuous mode, set the allframes bit. */
2591 	if (ifp->if_flags & IFF_PROMISC)
2592 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2593 	else
2594 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2595 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2596 
2597 	/*
2598 	 * Set capture broadcast bit to capture broadcast frames.
2599 	 */
2600 	if (ifp->if_flags & IFF_BROADCAST)
2601 		rxcfg |= RL_RXCFG_RX_BROAD;
2602 	else
2603 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2604 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2605 
2606 	/*
2607 	 * Program the multicast filter, if necessary.
2608 	 */
2609 	re_setmulti(sc);
2610 
2611 #ifdef DEVICE_POLLING
2612 	/*
2613 	 * Disable interrupts if we are polling.
2614 	 */
2615 	if (ifp->if_capenable & IFCAP_POLLING)
2616 		CSR_WRITE_2(sc, RL_IMR, 0);
2617 	else	/* otherwise ... */
2618 #endif
2619 
2620 	/*
2621 	 * Enable interrupts.
2622 	 */
2623 	if (sc->rl_testmode)
2624 		CSR_WRITE_2(sc, RL_IMR, 0);
2625 	else
2626 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2627 	CSR_WRITE_2(sc, RL_ISR, RL_INTRS_CPLUS);
2628 
2629 	/* Set initial TX threshold */
2630 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2631 
2632 	/* Start RX/TX process. */
2633 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2634 #ifdef notdef
2635 	/* Enable receiver and transmitter. */
2636 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2637 #endif
2638 
2639 #ifdef RE_TX_MODERATION
2640 	/*
2641 	 * Initialize the timer interrupt register so that
2642 	 * a timer interrupt will be generated once the timer
2643 	 * reaches a certain number of ticks. The timer is
2644 	 * reloaded on each transmit. This gives us TX interrupt
2645 	 * moderation, which dramatically improves TX frame rate.
2646 	 */
2647 	if (sc->rl_type == RL_8169)
2648 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2649 	else
2650 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2651 #endif
2652 
2653 	/*
2654 	 * For 8169 gigE NICs, set the max allowed RX packet
2655 	 * size so we can receive jumbo frames.
2656 	 */
2657 	if (sc->rl_type == RL_8169)
2658 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2659 
2660 	if (sc->rl_testmode)
2661 		return;
2662 
2663 	mii_mediachg(mii);
2664 
2665 	CSR_WRITE_1(sc, RL_CFG1, CSR_READ_1(sc, RL_CFG1) | RL_CFG1_DRVLOAD);
2666 
2667 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2668 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2669 
2670 	sc->rl_link = 0;
2671 	sc->rl_watchdog_timer = 0;
2672 	callout_reset(&sc->rl_stat_callout, hz, re_tick, sc);
2673 }
2674 
2675 /*
2676  * Set media options.
2677  */
2678 static int
2679 re_ifmedia_upd(ifp)
2680 	struct ifnet		*ifp;
2681 {
2682 	struct rl_softc		*sc;
2683 	struct mii_data		*mii;
2684 
2685 	sc = ifp->if_softc;
2686 	mii = device_get_softc(sc->rl_miibus);
2687 	RL_LOCK(sc);
2688 	mii_mediachg(mii);
2689 	RL_UNLOCK(sc);
2690 
2691 	return (0);
2692 }
2693 
2694 /*
2695  * Report current media status.
2696  */
2697 static void
2698 re_ifmedia_sts(ifp, ifmr)
2699 	struct ifnet		*ifp;
2700 	struct ifmediareq	*ifmr;
2701 {
2702 	struct rl_softc		*sc;
2703 	struct mii_data		*mii;
2704 
2705 	sc = ifp->if_softc;
2706 	mii = device_get_softc(sc->rl_miibus);
2707 
2708 	RL_LOCK(sc);
2709 	mii_pollstat(mii);
2710 	RL_UNLOCK(sc);
2711 	ifmr->ifm_active = mii->mii_media_active;
2712 	ifmr->ifm_status = mii->mii_media_status;
2713 }
2714 
2715 static int
2716 re_ioctl(ifp, command, data)
2717 	struct ifnet		*ifp;
2718 	u_long			command;
2719 	caddr_t			data;
2720 {
2721 	struct rl_softc		*sc = ifp->if_softc;
2722 	struct ifreq		*ifr = (struct ifreq *) data;
2723 	struct mii_data		*mii;
2724 	int			error = 0;
2725 
2726 	switch (command) {
2727 	case SIOCSIFMTU:
2728 		RL_LOCK(sc);
2729 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2730 			error = EINVAL;
2731 		ifp->if_mtu = ifr->ifr_mtu;
2732 		RL_UNLOCK(sc);
2733 		break;
2734 	case SIOCSIFFLAGS:
2735 		RL_LOCK(sc);
2736 		if ((ifp->if_flags & IFF_UP) != 0) {
2737 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2738 				if (((ifp->if_flags ^ sc->rl_if_flags)
2739 				    & IFF_PROMISC) != 0)
2740 					re_setmulti(sc);
2741 			} else
2742 				re_init_locked(sc);
2743 		} else {
2744 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2745 				re_stop(sc);
2746 		}
2747 		sc->rl_if_flags = ifp->if_flags;
2748 		RL_UNLOCK(sc);
2749 		break;
2750 	case SIOCADDMULTI:
2751 	case SIOCDELMULTI:
2752 		RL_LOCK(sc);
2753 		re_setmulti(sc);
2754 		RL_UNLOCK(sc);
2755 		break;
2756 	case SIOCGIFMEDIA:
2757 	case SIOCSIFMEDIA:
2758 		mii = device_get_softc(sc->rl_miibus);
2759 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2760 		break;
2761 	case SIOCSIFCAP:
2762 	    {
2763 		int mask, reinit;
2764 
2765 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
2766 		reinit = 0;
2767 #ifdef DEVICE_POLLING
2768 		if (mask & IFCAP_POLLING) {
2769 			if (ifr->ifr_reqcap & IFCAP_POLLING) {
2770 				error = ether_poll_register(re_poll, ifp);
2771 				if (error)
2772 					return(error);
2773 				RL_LOCK(sc);
2774 				/* Disable interrupts */
2775 				CSR_WRITE_2(sc, RL_IMR, 0x0000);
2776 				ifp->if_capenable |= IFCAP_POLLING;
2777 				RL_UNLOCK(sc);
2778 			} else {
2779 				error = ether_poll_deregister(ifp);
2780 				/* Enable interrupts. */
2781 				RL_LOCK(sc);
2782 				CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2783 				ifp->if_capenable &= ~IFCAP_POLLING;
2784 				RL_UNLOCK(sc);
2785 			}
2786 		}
2787 #endif /* DEVICE_POLLING */
2788 		if (mask & IFCAP_HWCSUM) {
2789 			ifp->if_capenable ^= IFCAP_HWCSUM;
2790 			if (ifp->if_capenable & IFCAP_TXCSUM)
2791 				ifp->if_hwassist |= RE_CSUM_FEATURES;
2792 			else
2793 				ifp->if_hwassist &= ~RE_CSUM_FEATURES;
2794 			reinit = 1;
2795 		}
2796 		if (mask & IFCAP_VLAN_HWTAGGING) {
2797 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
2798 			reinit = 1;
2799 		}
2800 		if (mask & IFCAP_TSO4) {
2801 			ifp->if_capenable ^= IFCAP_TSO4;
2802 			if ((IFCAP_TSO4 & ifp->if_capenable) &&
2803 			    (IFCAP_TSO4 & ifp->if_capabilities))
2804 				ifp->if_hwassist |= CSUM_TSO;
2805 			else
2806 				ifp->if_hwassist &= ~CSUM_TSO;
2807 		}
2808 		if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING)
2809 			re_init(sc);
2810 		VLAN_CAPABILITIES(ifp);
2811 	    }
2812 		break;
2813 	default:
2814 		error = ether_ioctl(ifp, command, data);
2815 		break;
2816 	}
2817 
2818 	return (error);
2819 }
2820 
2821 static void
2822 re_watchdog(sc)
2823 	struct rl_softc		*sc;
2824 {
2825 
2826 	RL_LOCK_ASSERT(sc);
2827 
2828 	if (sc->rl_watchdog_timer == 0 || --sc->rl_watchdog_timer != 0)
2829 		return;
2830 
2831 	device_printf(sc->rl_dev, "watchdog timeout\n");
2832 	sc->rl_ifp->if_oerrors++;
2833 
2834 	re_txeof(sc);
2835 	re_rxeof(sc);
2836 	re_init_locked(sc);
2837 }
2838 
2839 /*
2840  * Stop the adapter and free any mbufs allocated to the
2841  * RX and TX lists.
2842  */
2843 static void
2844 re_stop(sc)
2845 	struct rl_softc		*sc;
2846 {
2847 	register int		i;
2848 	struct ifnet		*ifp;
2849 	struct rl_txdesc	*txd;
2850 	struct rl_rxdesc	*rxd;
2851 
2852 	RL_LOCK_ASSERT(sc);
2853 
2854 	ifp = sc->rl_ifp;
2855 
2856 	sc->rl_watchdog_timer = 0;
2857 	callout_stop(&sc->rl_stat_callout);
2858 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2859 
2860 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2861 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2862 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
2863 
2864 	if (sc->rl_head != NULL) {
2865 		m_freem(sc->rl_head);
2866 		sc->rl_head = sc->rl_tail = NULL;
2867 	}
2868 
2869 	/* Free the TX list buffers. */
2870 
2871 	for (i = 0; i < sc->rl_ldata.rl_tx_desc_cnt; i++) {
2872 		txd = &sc->rl_ldata.rl_tx_desc[i];
2873 		if (txd->tx_m != NULL) {
2874 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2875 			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2876 			bus_dmamap_unload(sc->rl_ldata.rl_tx_mtag,
2877 			    txd->tx_dmamap);
2878 			m_freem(txd->tx_m);
2879 			txd->tx_m = NULL;
2880 		}
2881 	}
2882 
2883 	/* Free the RX list buffers. */
2884 
2885 	for (i = 0; i < sc->rl_ldata.rl_rx_desc_cnt; i++) {
2886 		rxd = &sc->rl_ldata.rl_rx_desc[i];
2887 		if (rxd->rx_m != NULL) {
2888 			bus_dmamap_sync(sc->rl_ldata.rl_tx_mtag,
2889 			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2890 			bus_dmamap_unload(sc->rl_ldata.rl_rx_mtag,
2891 			    rxd->rx_dmamap);
2892 			m_freem(rxd->rx_m);
2893 			rxd->rx_m = NULL;
2894 		}
2895 	}
2896 }
2897 
2898 /*
2899  * Device suspend routine.  Stop the interface and save some PCI
2900  * settings in case the BIOS doesn't restore them properly on
2901  * resume.
2902  */
2903 static int
2904 re_suspend(dev)
2905 	device_t		dev;
2906 {
2907 	struct rl_softc		*sc;
2908 
2909 	sc = device_get_softc(dev);
2910 
2911 	RL_LOCK(sc);
2912 	re_stop(sc);
2913 	sc->suspended = 1;
2914 	RL_UNLOCK(sc);
2915 
2916 	return (0);
2917 }
2918 
2919 /*
2920  * Device resume routine.  Restore some PCI settings in case the BIOS
2921  * doesn't, re-enable busmastering, and restart the interface if
2922  * appropriate.
2923  */
2924 static int
2925 re_resume(dev)
2926 	device_t		dev;
2927 {
2928 	struct rl_softc		*sc;
2929 	struct ifnet		*ifp;
2930 
2931 	sc = device_get_softc(dev);
2932 
2933 	RL_LOCK(sc);
2934 
2935 	ifp = sc->rl_ifp;
2936 
2937 	/* reinitialize interface if necessary */
2938 	if (ifp->if_flags & IFF_UP)
2939 		re_init_locked(sc);
2940 
2941 	sc->suspended = 0;
2942 	RL_UNLOCK(sc);
2943 
2944 	return (0);
2945 }
2946 
2947 /*
2948  * Stop all chip I/O so that the kernel's probe routines don't
2949  * get confused by errant DMAs when rebooting.
2950  */
2951 static int
2952 re_shutdown(dev)
2953 	device_t		dev;
2954 {
2955 	struct rl_softc		*sc;
2956 
2957 	sc = device_get_softc(dev);
2958 
2959 	RL_LOCK(sc);
2960 	re_stop(sc);
2961 	/*
2962 	 * Mark interface as down since otherwise we will panic if
2963 	 * interrupt comes in later on, which can happen in some
2964 	 * cases.
2965 	 */
2966 	sc->rl_ifp->if_flags &= ~IFF_UP;
2967 	RL_UNLOCK(sc);
2968 
2969 	return (0);
2970 }
2971