xref: /freebsd/sys/dev/re/if_re.c (revision 06064893b3c62c648518be78604fac29fc0d9d61)
1 /*
2  * Copyright (c) 1997, 1998-2003
3  *	Bill Paul <wpaul@windriver.com>.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by Bill Paul.
16  * 4. Neither the name of the author nor the names of any co-contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
30  * THE POSSIBILITY OF SUCH DAMAGE.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 /*
37  * RealTek 8139C+/8169/8169S/8110S PCI NIC driver
38  *
39  * Written by Bill Paul <wpaul@windriver.com>
40  * Senior Networking Software Engineer
41  * Wind River Systems
42  */
43 
44 /*
45  * This driver is designed to support RealTek's next generation of
46  * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently
47  * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S
48  * and the RTL8110S.
49  *
50  * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible
51  * with the older 8139 family, however it also supports a special
52  * C+ mode of operation that provides several new performance enhancing
53  * features. These include:
54  *
55  *	o Descriptor based DMA mechanism. Each descriptor represents
56  *	  a single packet fragment. Data buffers may be aligned on
57  *	  any byte boundary.
58  *
59  *	o 64-bit DMA
60  *
61  *	o TCP/IP checksum offload for both RX and TX
62  *
63  *	o High and normal priority transmit DMA rings
64  *
65  *	o VLAN tag insertion and extraction
66  *
67  *	o TCP large send (segmentation offload)
68  *
69  * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+
70  * programming API is fairly straightforward. The RX filtering, EEPROM
71  * access and PHY access is the same as it is on the older 8139 series
72  * chips.
73  *
74  * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the
75  * same programming API and feature set as the 8139C+ with the following
76  * differences and additions:
77  *
78  *	o 1000Mbps mode
79  *
80  *	o Jumbo frames
81  *
82  *	o GMII and TBI ports/registers for interfacing with copper
83  *	  or fiber PHYs
84  *
85  *	o RX and TX DMA rings can have up to 1024 descriptors
86  *	  (the 8139C+ allows a maximum of 64)
87  *
88  *	o Slight differences in register layout from the 8139C+
89  *
90  * The TX start and timer interrupt registers are at different locations
91  * on the 8169 than they are on the 8139C+. Also, the status word in the
92  * RX descriptor has a slightly different bit layout. The 8169 does not
93  * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska'
94  * copper gigE PHY.
95  *
96  * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs
97  * (the 'S' stands for 'single-chip'). These devices have the same
98  * programming API as the older 8169, but also have some vendor-specific
99  * registers for the on-board PHY. The 8110S is a LAN-on-motherboard
100  * part designed to be pin-compatible with the RealTek 8100 10/100 chip.
101  *
102  * This driver takes advantage of the RX and TX checksum offload and
103  * VLAN tag insertion/extraction features. It also implements TX
104  * interrupt moderation using the timer interrupt registers, which
105  * significantly reduces TX interrupt load. There is also support
106  * for jumbo frames, however the 8169/8169S/8110S can not transmit
107  * jumbo frames larger than 7440, so the max MTU possible with this
108  * driver is 7422 bytes.
109  */
110 
111 #include <sys/param.h>
112 #include <sys/endian.h>
113 #include <sys/systm.h>
114 #include <sys/sockio.h>
115 #include <sys/mbuf.h>
116 #include <sys/malloc.h>
117 #include <sys/module.h>
118 #include <sys/kernel.h>
119 #include <sys/socket.h>
120 
121 #include <net/if.h>
122 #include <net/if_arp.h>
123 #include <net/ethernet.h>
124 #include <net/if_dl.h>
125 #include <net/if_media.h>
126 #include <net/if_vlan_var.h>
127 
128 #include <net/bpf.h>
129 
130 #include <machine/bus_pio.h>
131 #include <machine/bus_memio.h>
132 #include <machine/bus.h>
133 #include <machine/resource.h>
134 #include <sys/bus.h>
135 #include <sys/rman.h>
136 
137 #include <dev/mii/mii.h>
138 #include <dev/mii/miivar.h>
139 
140 #include <dev/pci/pcireg.h>
141 #include <dev/pci/pcivar.h>
142 
143 MODULE_DEPEND(re, pci, 1, 1, 1);
144 MODULE_DEPEND(re, ether, 1, 1, 1);
145 MODULE_DEPEND(re, miibus, 1, 1, 1);
146 
147 /* "controller miibus0" required.  See GENERIC if you get errors here. */
148 #include "miibus_if.h"
149 
150 /*
151  * Default to using PIO access for this driver.
152  */
153 #define RE_USEIOSPACE
154 
155 #include <pci/if_rlreg.h>
156 
157 #define RE_CSUM_FEATURES    (CSUM_IP | CSUM_TCP | CSUM_UDP)
158 
159 /*
160  * Various supported device vendors/types and their names.
161  */
162 static struct rl_type re_devs[] = {
163 	{ RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS,
164 		"RealTek 8139C+ 10/100BaseTX" },
165 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169,
166 		"RealTek 8169 Gigabit Ethernet" },
167 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S,
168 		"RealTek 8169S Single-chip Gigabit Ethernet" },
169 	{ RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S,
170 		"RealTek 8110S Single-chip Gigabit Ethernet" },
171 	{ COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S,
172 		"Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" },
173 	{ 0, 0, 0, NULL }
174 };
175 
176 static struct rl_hwrev re_hwrevs[] = {
177 	{ RL_HWREV_8139, RL_8139,  "" },
178 	{ RL_HWREV_8139A, RL_8139, "A" },
179 	{ RL_HWREV_8139AG, RL_8139, "A-G" },
180 	{ RL_HWREV_8139B, RL_8139, "B" },
181 	{ RL_HWREV_8130, RL_8139, "8130" },
182 	{ RL_HWREV_8139C, RL_8139, "C" },
183 	{ RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" },
184 	{ RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"},
185 	{ RL_HWREV_8169, RL_8169, "8169"},
186 	{ RL_HWREV_8169S, RL_8169, "8169S"},
187 	{ RL_HWREV_8110S, RL_8169, "8110S"},
188 	{ RL_HWREV_8100, RL_8139, "8100"},
189 	{ RL_HWREV_8101, RL_8139, "8101"},
190 	{ 0, 0, NULL }
191 };
192 
193 static int re_probe		(device_t);
194 static int re_attach		(device_t);
195 static int re_detach		(device_t);
196 
197 static int re_encap		(struct rl_softc *, struct mbuf **, int *);
198 
199 static void re_dma_map_addr	(void *, bus_dma_segment_t *, int, int);
200 static void re_dma_map_desc	(void *, bus_dma_segment_t *, int,
201 				    bus_size_t, int);
202 static int re_allocmem		(device_t, struct rl_softc *);
203 static int re_newbuf		(struct rl_softc *, int, struct mbuf *);
204 static int re_rx_list_init	(struct rl_softc *);
205 static int re_tx_list_init	(struct rl_softc *);
206 #ifdef RE_FIXUP_RX
207 static __inline void re_fixup_rx
208 				(struct mbuf *);
209 #endif
210 static void re_rxeof		(struct rl_softc *);
211 static void re_txeof		(struct rl_softc *);
212 #ifdef DEVICE_POLLING
213 static void re_poll		(struct ifnet *, enum poll_cmd, int);
214 static void re_poll_locked	(struct ifnet *, enum poll_cmd, int);
215 #endif
216 static void re_intr		(void *);
217 static void re_tick		(void *);
218 static void re_tick_locked	(struct rl_softc *);
219 static void re_start		(struct ifnet *);
220 static void re_start_locked	(struct ifnet *);
221 static int re_ioctl		(struct ifnet *, u_long, caddr_t);
222 static void re_init		(void *);
223 static void re_init_locked	(struct rl_softc *);
224 static void re_stop		(struct rl_softc *);
225 static void re_watchdog		(struct ifnet *);
226 static int re_suspend		(device_t);
227 static int re_resume		(device_t);
228 static void re_shutdown		(device_t);
229 static int re_ifmedia_upd	(struct ifnet *);
230 static void re_ifmedia_sts	(struct ifnet *, struct ifmediareq *);
231 
232 static void re_eeprom_putbyte	(struct rl_softc *, int);
233 static void re_eeprom_getword	(struct rl_softc *, int, u_int16_t *);
234 static void re_read_eeprom	(struct rl_softc *, caddr_t, int, int, int);
235 static int re_gmii_readreg	(device_t, int, int);
236 static int re_gmii_writereg	(device_t, int, int, int);
237 
238 static int re_miibus_readreg	(device_t, int, int);
239 static int re_miibus_writereg	(device_t, int, int, int);
240 static void re_miibus_statchg	(device_t);
241 
242 static void re_setmulti		(struct rl_softc *);
243 static void re_reset		(struct rl_softc *);
244 
245 static int re_diag		(struct rl_softc *);
246 
247 #ifdef RE_USEIOSPACE
248 #define RL_RES			SYS_RES_IOPORT
249 #define RL_RID			RL_PCI_LOIO
250 #else
251 #define RL_RES			SYS_RES_MEMORY
252 #define RL_RID			RL_PCI_LOMEM
253 #endif
254 
255 static device_method_t re_methods[] = {
256 	/* Device interface */
257 	DEVMETHOD(device_probe,		re_probe),
258 	DEVMETHOD(device_attach,	re_attach),
259 	DEVMETHOD(device_detach,	re_detach),
260 	DEVMETHOD(device_suspend,	re_suspend),
261 	DEVMETHOD(device_resume,	re_resume),
262 	DEVMETHOD(device_shutdown,	re_shutdown),
263 
264 	/* bus interface */
265 	DEVMETHOD(bus_print_child,	bus_generic_print_child),
266 	DEVMETHOD(bus_driver_added,	bus_generic_driver_added),
267 
268 	/* MII interface */
269 	DEVMETHOD(miibus_readreg,	re_miibus_readreg),
270 	DEVMETHOD(miibus_writereg,	re_miibus_writereg),
271 	DEVMETHOD(miibus_statchg,	re_miibus_statchg),
272 
273 	{ 0, 0 }
274 };
275 
276 static driver_t re_driver = {
277 	"re",
278 	re_methods,
279 	sizeof(struct rl_softc)
280 };
281 
282 static devclass_t re_devclass;
283 
284 DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0);
285 DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0);
286 DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0);
287 
288 #define EE_SET(x)					\
289 	CSR_WRITE_1(sc, RL_EECMD,			\
290 		CSR_READ_1(sc, RL_EECMD) | x)
291 
292 #define EE_CLR(x)					\
293 	CSR_WRITE_1(sc, RL_EECMD,			\
294 		CSR_READ_1(sc, RL_EECMD) & ~x)
295 
296 /*
297  * Send a read command and address to the EEPROM, check for ACK.
298  */
299 static void
300 re_eeprom_putbyte(sc, addr)
301 	struct rl_softc		*sc;
302 	int			addr;
303 {
304 	register int		d, i;
305 
306 	d = addr | sc->rl_eecmd_read;
307 
308 	/*
309 	 * Feed in each bit and strobe the clock.
310 	 */
311 	for (i = 0x400; i; i >>= 1) {
312 		if (d & i) {
313 			EE_SET(RL_EE_DATAIN);
314 		} else {
315 			EE_CLR(RL_EE_DATAIN);
316 		}
317 		DELAY(100);
318 		EE_SET(RL_EE_CLK);
319 		DELAY(150);
320 		EE_CLR(RL_EE_CLK);
321 		DELAY(100);
322 	}
323 }
324 
325 /*
326  * Read a word of data stored in the EEPROM at address 'addr.'
327  */
328 static void
329 re_eeprom_getword(sc, addr, dest)
330 	struct rl_softc		*sc;
331 	int			addr;
332 	u_int16_t		*dest;
333 {
334 	register int		i;
335 	u_int16_t		word = 0;
336 
337 	/* Enter EEPROM access mode. */
338 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
339 
340 	/*
341 	 * Send address of word we want to read.
342 	 */
343 	re_eeprom_putbyte(sc, addr);
344 
345 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL);
346 
347 	/*
348 	 * Start reading bits from EEPROM.
349 	 */
350 	for (i = 0x8000; i; i >>= 1) {
351 		EE_SET(RL_EE_CLK);
352 		DELAY(100);
353 		if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT)
354 			word |= i;
355 		EE_CLR(RL_EE_CLK);
356 		DELAY(100);
357 	}
358 
359 	/* Turn off EEPROM access mode. */
360 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
361 
362 	*dest = word;
363 }
364 
365 /*
366  * Read a sequence of words from the EEPROM.
367  */
368 static void
369 re_read_eeprom(sc, dest, off, cnt, swap)
370 	struct rl_softc		*sc;
371 	caddr_t			dest;
372 	int			off;
373 	int			cnt;
374 	int			swap;
375 {
376 	int			i;
377 	u_int16_t		word = 0, *ptr;
378 
379 	for (i = 0; i < cnt; i++) {
380 		re_eeprom_getword(sc, off + i, &word);
381 		ptr = (u_int16_t *)(dest + (i * 2));
382 		if (swap)
383 			*ptr = ntohs(word);
384 		else
385 			*ptr = word;
386 	}
387 }
388 
389 static int
390 re_gmii_readreg(dev, phy, reg)
391 	device_t		dev;
392 	int			phy, reg;
393 {
394 	struct rl_softc		*sc;
395 	u_int32_t		rval;
396 	int			i;
397 
398 	if (phy != 1)
399 		return (0);
400 
401 	sc = device_get_softc(dev);
402 
403 	/* Let the rgephy driver read the GMEDIASTAT register */
404 
405 	if (reg == RL_GMEDIASTAT) {
406 		rval = CSR_READ_1(sc, RL_GMEDIASTAT);
407 		return (rval);
408 	}
409 
410 	CSR_WRITE_4(sc, RL_PHYAR, reg << 16);
411 	DELAY(1000);
412 
413 	for (i = 0; i < RL_TIMEOUT; i++) {
414 		rval = CSR_READ_4(sc, RL_PHYAR);
415 		if (rval & RL_PHYAR_BUSY)
416 			break;
417 		DELAY(100);
418 	}
419 
420 	if (i == RL_TIMEOUT) {
421 		printf ("re%d: PHY read failed\n", sc->rl_unit);
422 		return (0);
423 	}
424 
425 	return (rval & RL_PHYAR_PHYDATA);
426 }
427 
428 static int
429 re_gmii_writereg(dev, phy, reg, data)
430 	device_t		dev;
431 	int			phy, reg, data;
432 {
433 	struct rl_softc		*sc;
434 	u_int32_t		rval;
435 	int			i;
436 
437 	sc = device_get_softc(dev);
438 
439 	CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) |
440 	    (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY);
441 	DELAY(1000);
442 
443 	for (i = 0; i < RL_TIMEOUT; i++) {
444 		rval = CSR_READ_4(sc, RL_PHYAR);
445 		if (!(rval & RL_PHYAR_BUSY))
446 			break;
447 		DELAY(100);
448 	}
449 
450 	if (i == RL_TIMEOUT) {
451 		printf ("re%d: PHY write failed\n", sc->rl_unit);
452 		return (0);
453 	}
454 
455 	return (0);
456 }
457 
458 static int
459 re_miibus_readreg(dev, phy, reg)
460 	device_t		dev;
461 	int			phy, reg;
462 {
463 	struct rl_softc		*sc;
464 	u_int16_t		rval = 0;
465 	u_int16_t		re8139_reg = 0;
466 
467 	sc = device_get_softc(dev);
468 
469 	if (sc->rl_type == RL_8169) {
470 		rval = re_gmii_readreg(dev, phy, reg);
471 		return (rval);
472 	}
473 
474 	/* Pretend the internal PHY is only at address 0 */
475 	if (phy) {
476 		return (0);
477 	}
478 	switch (reg) {
479 	case MII_BMCR:
480 		re8139_reg = RL_BMCR;
481 		break;
482 	case MII_BMSR:
483 		re8139_reg = RL_BMSR;
484 		break;
485 	case MII_ANAR:
486 		re8139_reg = RL_ANAR;
487 		break;
488 	case MII_ANER:
489 		re8139_reg = RL_ANER;
490 		break;
491 	case MII_ANLPAR:
492 		re8139_reg = RL_LPAR;
493 		break;
494 	case MII_PHYIDR1:
495 	case MII_PHYIDR2:
496 		return (0);
497 	/*
498 	 * Allow the rlphy driver to read the media status
499 	 * register. If we have a link partner which does not
500 	 * support NWAY, this is the register which will tell
501 	 * us the results of parallel detection.
502 	 */
503 	case RL_MEDIASTAT:
504 		rval = CSR_READ_1(sc, RL_MEDIASTAT);
505 		return (rval);
506 	default:
507 		printf("re%d: bad phy register\n", sc->rl_unit);
508 		return (0);
509 	}
510 	rval = CSR_READ_2(sc, re8139_reg);
511 	return (rval);
512 }
513 
514 static int
515 re_miibus_writereg(dev, phy, reg, data)
516 	device_t		dev;
517 	int			phy, reg, data;
518 {
519 	struct rl_softc		*sc;
520 	u_int16_t		re8139_reg = 0;
521 	int			rval = 0;
522 
523 	sc = device_get_softc(dev);
524 
525 	if (sc->rl_type == RL_8169) {
526 		rval = re_gmii_writereg(dev, phy, reg, data);
527 		return (rval);
528 	}
529 
530 	/* Pretend the internal PHY is only at address 0 */
531 	if (phy)
532 		return (0);
533 
534 	switch (reg) {
535 	case MII_BMCR:
536 		re8139_reg = RL_BMCR;
537 		break;
538 	case MII_BMSR:
539 		re8139_reg = RL_BMSR;
540 		break;
541 	case MII_ANAR:
542 		re8139_reg = RL_ANAR;
543 		break;
544 	case MII_ANER:
545 		re8139_reg = RL_ANER;
546 		break;
547 	case MII_ANLPAR:
548 		re8139_reg = RL_LPAR;
549 		break;
550 	case MII_PHYIDR1:
551 	case MII_PHYIDR2:
552 		return (0);
553 		break;
554 	default:
555 		printf("re%d: bad phy register\n", sc->rl_unit);
556 		return (0);
557 	}
558 	CSR_WRITE_2(sc, re8139_reg, data);
559 	return (0);
560 }
561 
562 static void
563 re_miibus_statchg(dev)
564 	device_t		dev;
565 {
566 
567 }
568 
569 /*
570  * Program the 64-bit multicast hash filter.
571  */
572 static void
573 re_setmulti(sc)
574 	struct rl_softc		*sc;
575 {
576 	struct ifnet		*ifp;
577 	int			h = 0;
578 	u_int32_t		hashes[2] = { 0, 0 };
579 	struct ifmultiaddr	*ifma;
580 	u_int32_t		rxfilt;
581 	int			mcnt = 0;
582 
583 	RL_LOCK_ASSERT(sc);
584 
585 	ifp = &sc->arpcom.ac_if;
586 
587 	rxfilt = CSR_READ_4(sc, RL_RXCFG);
588 
589 	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
590 		rxfilt |= RL_RXCFG_RX_MULTI;
591 		CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
592 		CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF);
593 		CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF);
594 		return;
595 	}
596 
597 	/* first, zot all the existing hash bits */
598 	CSR_WRITE_4(sc, RL_MAR0, 0);
599 	CSR_WRITE_4(sc, RL_MAR4, 0);
600 
601 	/* now program new ones */
602 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
603 		if (ifma->ifma_addr->sa_family != AF_LINK)
604 			continue;
605 		h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
606 		    ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
607 		if (h < 32)
608 			hashes[0] |= (1 << h);
609 		else
610 			hashes[1] |= (1 << (h - 32));
611 		mcnt++;
612 	}
613 
614 	if (mcnt)
615 		rxfilt |= RL_RXCFG_RX_MULTI;
616 	else
617 		rxfilt &= ~RL_RXCFG_RX_MULTI;
618 
619 	CSR_WRITE_4(sc, RL_RXCFG, rxfilt);
620 	CSR_WRITE_4(sc, RL_MAR0, hashes[0]);
621 	CSR_WRITE_4(sc, RL_MAR4, hashes[1]);
622 }
623 
624 static void
625 re_reset(sc)
626 	struct rl_softc		*sc;
627 {
628 	register int		i;
629 
630 	RL_LOCK_ASSERT(sc);
631 
632 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET);
633 
634 	for (i = 0; i < RL_TIMEOUT; i++) {
635 		DELAY(10);
636 		if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET))
637 			break;
638 	}
639 	if (i == RL_TIMEOUT)
640 		printf("re%d: reset never completed!\n", sc->rl_unit);
641 
642 	CSR_WRITE_1(sc, 0x82, 1);
643 }
644 
645 /*
646  * The following routine is designed to test for a defect on some
647  * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64#
648  * lines connected to the bus, however for a 32-bit only card, they
649  * should be pulled high. The result of this defect is that the
650  * NIC will not work right if you plug it into a 64-bit slot: DMA
651  * operations will be done with 64-bit transfers, which will fail
652  * because the 64-bit data lines aren't connected.
653  *
654  * There's no way to work around this (short of talking a soldering
655  * iron to the board), however we can detect it. The method we use
656  * here is to put the NIC into digital loopback mode, set the receiver
657  * to promiscuous mode, and then try to send a frame. We then compare
658  * the frame data we sent to what was received. If the data matches,
659  * then the NIC is working correctly, otherwise we know the user has
660  * a defective NIC which has been mistakenly plugged into a 64-bit PCI
661  * slot. In the latter case, there's no way the NIC can work correctly,
662  * so we print out a message on the console and abort the device attach.
663  */
664 
665 static int
666 re_diag(sc)
667 	struct rl_softc		*sc;
668 {
669 	struct ifnet		*ifp = &sc->arpcom.ac_if;
670 	struct mbuf		*m0;
671 	struct ether_header	*eh;
672 	struct rl_desc		*cur_rx;
673 	u_int16_t		status;
674 	u_int32_t		rxstat;
675 	int			total_len, i, error = 0;
676 	u_int8_t		dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' };
677 	u_int8_t		src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' };
678 
679 	/* Allocate a single mbuf */
680 	MGETHDR(m0, M_DONTWAIT, MT_DATA);
681 	if (m0 == NULL)
682 		return (ENOBUFS);
683 
684 	RL_LOCK(sc);
685 
686 	/*
687 	 * Initialize the NIC in test mode. This sets the chip up
688 	 * so that it can send and receive frames, but performs the
689 	 * following special functions:
690 	 * - Puts receiver in promiscuous mode
691 	 * - Enables digital loopback mode
692 	 * - Leaves interrupts turned off
693 	 */
694 
695 	ifp->if_flags |= IFF_PROMISC;
696 	sc->rl_testmode = 1;
697 	re_init_locked(sc);
698 	re_stop(sc);
699 	DELAY(100000);
700 	re_init_locked(sc);
701 
702 	/* Put some data in the mbuf */
703 
704 	eh = mtod(m0, struct ether_header *);
705 	bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN);
706 	bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN);
707 	eh->ether_type = htons(ETHERTYPE_IP);
708 	m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN;
709 
710 	/*
711 	 * Queue the packet, start transmission.
712 	 * Note: IF_HANDOFF() ultimately calls re_start() for us.
713 	 */
714 
715 	CSR_WRITE_2(sc, RL_ISR, 0xFFFF);
716 	RL_UNLOCK(sc);
717 	IF_HANDOFF(&ifp->if_snd, m0, ifp);
718 	RL_LOCK(sc);
719 	m0 = NULL;
720 
721 	/* Wait for it to propagate through the chip */
722 
723 	DELAY(100000);
724 	for (i = 0; i < RL_TIMEOUT; i++) {
725 		status = CSR_READ_2(sc, RL_ISR);
726 		if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) ==
727 		    (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK))
728 			break;
729 		DELAY(10);
730 	}
731 
732 	if (i == RL_TIMEOUT) {
733 		printf("re%d: diagnostic failed, failed to receive packet "
734 		    "in loopback mode\n", sc->rl_unit);
735 		error = EIO;
736 		goto done;
737 	}
738 
739 	/*
740 	 * The packet should have been dumped into the first
741 	 * entry in the RX DMA ring. Grab it from there.
742 	 */
743 
744 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
745 	    sc->rl_ldata.rl_rx_list_map,
746 	    BUS_DMASYNC_POSTREAD);
747 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
748 	    sc->rl_ldata.rl_rx_dmamap[0],
749 	    BUS_DMASYNC_POSTWRITE);
750 	bus_dmamap_unload(sc->rl_ldata.rl_mtag,
751 	    sc->rl_ldata.rl_rx_dmamap[0]);
752 
753 	m0 = sc->rl_ldata.rl_rx_mbuf[0];
754 	sc->rl_ldata.rl_rx_mbuf[0] = NULL;
755 	eh = mtod(m0, struct ether_header *);
756 
757 	cur_rx = &sc->rl_ldata.rl_rx_list[0];
758 	total_len = RL_RXBYTES(cur_rx);
759 	rxstat = le32toh(cur_rx->rl_cmdstat);
760 
761 	if (total_len != ETHER_MIN_LEN) {
762 		printf("re%d: diagnostic failed, received short packet\n",
763 		    sc->rl_unit);
764 		error = EIO;
765 		goto done;
766 	}
767 
768 	/* Test that the received packet data matches what we sent. */
769 
770 	if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) ||
771 	    bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) ||
772 	    ntohs(eh->ether_type) != ETHERTYPE_IP) {
773 		printf("re%d: WARNING, DMA FAILURE!\n", sc->rl_unit);
774 		printf("re%d: expected TX data: %6D/%6D/0x%x\n", sc->rl_unit,
775 		    dst, ":", src, ":", ETHERTYPE_IP);
776 		printf("re%d: received RX data: %6D/%6D/0x%x\n", sc->rl_unit,
777 		    eh->ether_dhost, ":",  eh->ether_shost, ":",
778 		    ntohs(eh->ether_type));
779 		printf("re%d: You may have a defective 32-bit NIC plugged "
780 		    "into a 64-bit PCI slot.\n", sc->rl_unit);
781 		printf("re%d: Please re-install the NIC in a 32-bit slot "
782 		    "for proper operation.\n", sc->rl_unit);
783 		printf("re%d: Read the re(4) man page for more details.\n",
784 		    sc->rl_unit);
785 		error = EIO;
786 	}
787 
788 done:
789 	/* Turn interface off, release resources */
790 
791 	sc->rl_testmode = 0;
792 	ifp->if_flags &= ~IFF_PROMISC;
793 	re_stop(sc);
794 	if (m0 != NULL)
795 		m_freem(m0);
796 
797 	RL_UNLOCK(sc);
798 
799 	return (error);
800 }
801 
802 /*
803  * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device
804  * IDs against our list and return a device name if we find a match.
805  */
806 static int
807 re_probe(dev)
808 	device_t		dev;
809 {
810 	struct rl_type		*t;
811 	struct rl_softc		*sc;
812 	int			rid;
813 	u_int32_t		hwrev;
814 
815 	t = re_devs;
816 	sc = device_get_softc(dev);
817 
818 	while (t->rl_name != NULL) {
819 		if ((pci_get_vendor(dev) == t->rl_vid) &&
820 		    (pci_get_device(dev) == t->rl_did)) {
821 
822 			/*
823 			 * Temporarily map the I/O space
824 			 * so we can read the chip ID register.
825 			 */
826 			rid = RL_RID;
827 			sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
828 			    RF_ACTIVE);
829 			if (sc->rl_res == NULL) {
830 				device_printf(dev,
831 				    "couldn't map ports/memory\n");
832 				return (ENXIO);
833 			}
834 			sc->rl_btag = rman_get_bustag(sc->rl_res);
835 			sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
836 			hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
837 			bus_release_resource(dev, RL_RES,
838 			    RL_RID, sc->rl_res);
839 			if (t->rl_basetype == hwrev) {
840 				device_set_desc(dev, t->rl_name);
841 				return (0);
842 			}
843 		}
844 		t++;
845 	}
846 
847 	return (ENXIO);
848 }
849 
850 /*
851  * This routine takes the segment list provided as the result of
852  * a bus_dma_map_load() operation and assigns the addresses/lengths
853  * to RealTek DMA descriptors. This can be called either by the RX
854  * code or the TX code. In the RX case, we'll probably wind up mapping
855  * at most one segment. For the TX case, there could be any number of
856  * segments since TX packets may span multiple mbufs. In either case,
857  * if the number of segments is larger than the rl_maxsegs limit
858  * specified by the caller, we abort the mapping operation. Sadly,
859  * whoever designed the buffer mapping API did not provide a way to
860  * return an error from here, so we have to fake it a bit.
861  */
862 
863 static void
864 re_dma_map_desc(arg, segs, nseg, mapsize, error)
865 	void			*arg;
866 	bus_dma_segment_t	*segs;
867 	int			nseg;
868 	bus_size_t		mapsize;
869 	int			error;
870 {
871 	struct rl_dmaload_arg	*ctx;
872 	struct rl_desc		*d = NULL;
873 	int			i = 0, idx;
874 
875 	if (error)
876 		return;
877 
878 	ctx = arg;
879 
880 	/* Signal error to caller if there's too many segments */
881 	if (nseg > ctx->rl_maxsegs) {
882 		ctx->rl_maxsegs = 0;
883 		return;
884 	}
885 
886 	/*
887 	 * Map the segment array into descriptors. Note that we set the
888 	 * start-of-frame and end-of-frame markers for either TX or RX, but
889 	 * they really only have meaning in the TX case. (In the RX case,
890 	 * it's the chip that tells us where packets begin and end.)
891 	 * We also keep track of the end of the ring and set the
892 	 * end-of-ring bits as needed, and we set the ownership bits
893 	 * in all except the very first descriptor. (The caller will
894 	 * set this descriptor later when it start transmission or
895 	 * reception.)
896 	 */
897 	idx = ctx->rl_idx;
898 	for (;;) {
899 		u_int32_t		cmdstat;
900 		d = &ctx->rl_ring[idx];
901 		if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) {
902 			ctx->rl_maxsegs = 0;
903 			return;
904 		}
905 		cmdstat = segs[i].ds_len;
906 		d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr));
907 		d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr));
908 		if (i == 0)
909 			cmdstat |= RL_TDESC_CMD_SOF;
910 		else
911 			cmdstat |= RL_TDESC_CMD_OWN;
912 		if (idx == (RL_RX_DESC_CNT - 1))
913 			cmdstat |= RL_TDESC_CMD_EOR;
914 		d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags);
915 		i++;
916 		if (i == nseg)
917 			break;
918 		RL_DESC_INC(idx);
919 	}
920 
921 	d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF);
922 	ctx->rl_maxsegs = nseg;
923 	ctx->rl_idx = idx;
924 }
925 
926 /*
927  * Map a single buffer address.
928  */
929 
930 static void
931 re_dma_map_addr(arg, segs, nseg, error)
932 	void			*arg;
933 	bus_dma_segment_t	*segs;
934 	int			nseg;
935 	int			error;
936 {
937 	u_int32_t		*addr;
938 
939 	if (error)
940 		return;
941 
942 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
943 	addr = arg;
944 	*addr = segs->ds_addr;
945 }
946 
947 static int
948 re_allocmem(dev, sc)
949 	device_t		dev;
950 	struct rl_softc		*sc;
951 {
952 	int			error;
953 	int			nseg;
954 	int			i;
955 
956 	/*
957 	 * Allocate map for RX mbufs.
958 	 */
959 	nseg = 32;
960 	error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0,
961 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
962 	    NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW,
963 	    NULL, NULL, &sc->rl_ldata.rl_mtag);
964 	if (error) {
965 		device_printf(dev, "could not allocate dma tag\n");
966 		return (ENOMEM);
967 	}
968 
969 	/*
970 	 * Allocate map for TX descriptor list.
971 	 */
972 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
973 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
974 	    NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW,
975 	    NULL, NULL, &sc->rl_ldata.rl_tx_list_tag);
976 	if (error) {
977 		device_printf(dev, "could not allocate dma tag\n");
978 		return (ENOMEM);
979 	}
980 
981 	/* Allocate DMA'able memory for the TX ring */
982 
983 	error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag,
984 	    (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
985 	    &sc->rl_ldata.rl_tx_list_map);
986 	if (error)
987 		return (ENOMEM);
988 
989 	/* Load the map for the TX ring. */
990 
991 	error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag,
992 	     sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list,
993 	     RL_TX_LIST_SZ, re_dma_map_addr,
994 	     &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT);
995 
996 	/* Create DMA maps for TX buffers */
997 
998 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
999 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1000 			    &sc->rl_ldata.rl_tx_dmamap[i]);
1001 		if (error) {
1002 			device_printf(dev, "can't create DMA map for TX\n");
1003 			return (ENOMEM);
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * Allocate map for RX descriptor list.
1009 	 */
1010 	error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN,
1011 	    0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL,
1012 	    NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW,
1013 	    NULL, NULL, &sc->rl_ldata.rl_rx_list_tag);
1014 	if (error) {
1015 		device_printf(dev, "could not allocate dma tag\n");
1016 		return (ENOMEM);
1017 	}
1018 
1019 	/* Allocate DMA'able memory for the RX ring */
1020 
1021 	error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag,
1022 	    (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO,
1023 	    &sc->rl_ldata.rl_rx_list_map);
1024 	if (error)
1025 		return (ENOMEM);
1026 
1027 	/* Load the map for the RX ring. */
1028 
1029 	error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag,
1030 	     sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list,
1031 	     RL_RX_LIST_SZ, re_dma_map_addr,
1032 	     &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT);
1033 
1034 	/* Create DMA maps for RX buffers */
1035 
1036 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1037 		error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0,
1038 			    &sc->rl_ldata.rl_rx_dmamap[i]);
1039 		if (error) {
1040 			device_printf(dev, "can't create DMA map for RX\n");
1041 			return (ENOMEM);
1042 		}
1043 	}
1044 
1045 	return (0);
1046 }
1047 
1048 /*
1049  * Attach the interface. Allocate softc structures, do ifmedia
1050  * setup and ethernet/BPF attach.
1051  */
1052 static int
1053 re_attach(dev)
1054 	device_t		dev;
1055 {
1056 	u_char			eaddr[ETHER_ADDR_LEN];
1057 	u_int16_t		as[3];
1058 	struct rl_softc		*sc;
1059 	struct ifnet		*ifp;
1060 	struct rl_hwrev		*hw_rev;
1061 	int			hwrev;
1062 	u_int16_t		re_did = 0;
1063 	int			unit, error = 0, rid, i;
1064 
1065 	sc = device_get_softc(dev);
1066 	unit = device_get_unit(dev);
1067 
1068 	mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
1069 	    MTX_DEF);
1070 	/*
1071 	 * Map control/status registers.
1072 	 */
1073 	pci_enable_busmaster(dev);
1074 
1075 	rid = RL_RID;
1076 	sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid,
1077 	    RF_ACTIVE);
1078 
1079 	if (sc->rl_res == NULL) {
1080 		printf ("re%d: couldn't map ports/memory\n", unit);
1081 		error = ENXIO;
1082 		goto fail;
1083 	}
1084 
1085 	sc->rl_btag = rman_get_bustag(sc->rl_res);
1086 	sc->rl_bhandle = rman_get_bushandle(sc->rl_res);
1087 
1088 	/* Allocate interrupt */
1089 	rid = 0;
1090 	sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
1091 	    RF_SHAREABLE | RF_ACTIVE);
1092 
1093 	if (sc->rl_irq == NULL) {
1094 		printf("re%d: couldn't map interrupt\n", unit);
1095 		error = ENXIO;
1096 		goto fail;
1097 	}
1098 
1099 	/* Reset the adapter. */
1100 	RL_LOCK(sc);
1101 	re_reset(sc);
1102 	RL_UNLOCK(sc);
1103 
1104 	hw_rev = re_hwrevs;
1105 	hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV;
1106 	while (hw_rev->rl_desc != NULL) {
1107 		if (hw_rev->rl_rev == hwrev) {
1108 			sc->rl_type = hw_rev->rl_type;
1109 			break;
1110 		}
1111 		hw_rev++;
1112 	}
1113 
1114 	if (sc->rl_type == RL_8169) {
1115 
1116 		/* Set RX length mask */
1117 
1118 		sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN;
1119 
1120 		/* Force station address autoload from the EEPROM */
1121 
1122 		CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD);
1123 		for (i = 0; i < RL_TIMEOUT; i++) {
1124 			if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD))
1125 				break;
1126 			DELAY(100);
1127 		}
1128 		if (i == RL_TIMEOUT)
1129 			printf ("re%d: eeprom autoload timed out\n", unit);
1130 
1131 			for (i = 0; i < ETHER_ADDR_LEN; i++)
1132 				eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i);
1133 	} else {
1134 
1135 		/* Set RX length mask */
1136 
1137 		sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN;
1138 
1139 		sc->rl_eecmd_read = RL_EECMD_READ_6BIT;
1140 		re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0);
1141 		if (re_did != 0x8129)
1142 			sc->rl_eecmd_read = RL_EECMD_READ_8BIT;
1143 
1144 		/*
1145 		 * Get station address from the EEPROM.
1146 		 */
1147 		re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0);
1148 		for (i = 0; i < 3; i++) {
1149 			eaddr[(i * 2) + 0] = as[i] & 0xff;
1150 			eaddr[(i * 2) + 1] = as[i] >> 8;
1151 		}
1152 	}
1153 
1154 	sc->rl_unit = unit;
1155 	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);
1156 
1157 	/*
1158 	 * Allocate the parent bus DMA tag appropriate for PCI.
1159 	 */
1160 #define RL_NSEG_NEW 32
1161 	error = bus_dma_tag_create(NULL,	/* parent */
1162 			1, 0,			/* alignment, boundary */
1163 			BUS_SPACE_MAXADDR_32BIT,/* lowaddr */
1164 			BUS_SPACE_MAXADDR,	/* highaddr */
1165 			NULL, NULL,		/* filter, filterarg */
1166 			MAXBSIZE, RL_NSEG_NEW,	/* maxsize, nsegments */
1167 			BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
1168 			BUS_DMA_ALLOCNOW,	/* flags */
1169 			NULL, NULL,		/* lockfunc, lockarg */
1170 			&sc->rl_parent_tag);
1171 	if (error)
1172 		goto fail;
1173 
1174 	error = re_allocmem(dev, sc);
1175 
1176 	if (error)
1177 		goto fail;
1178 
1179 	/* Do MII setup */
1180 	if (mii_phy_probe(dev, &sc->rl_miibus,
1181 	    re_ifmedia_upd, re_ifmedia_sts)) {
1182 		printf("re%d: MII without any phy!\n", sc->rl_unit);
1183 		error = ENXIO;
1184 		goto fail;
1185 	}
1186 
1187 	ifp = &sc->arpcom.ac_if;
1188 	ifp->if_softc = sc;
1189 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1190 	ifp->if_mtu = ETHERMTU;
1191 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1192 	ifp->if_ioctl = re_ioctl;
1193 	ifp->if_capabilities = IFCAP_VLAN_MTU;
1194 	ifp->if_start = re_start;
1195 	ifp->if_hwassist = RE_CSUM_FEATURES;
1196 	ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING;
1197 #ifdef DEVICE_POLLING
1198 	ifp->if_capabilities |= IFCAP_POLLING;
1199 #endif
1200 	ifp->if_watchdog = re_watchdog;
1201 	ifp->if_init = re_init;
1202 	if (sc->rl_type == RL_8169)
1203 		ifp->if_baudrate = 1000000000;
1204 	else
1205 		ifp->if_baudrate = 100000000;
1206 	ifp->if_snd.ifq_maxlen = RL_IFQ_MAXLEN;
1207 	ifp->if_capenable = ifp->if_capabilities;
1208 
1209 	callout_handle_init(&sc->rl_stat_ch);
1210 
1211 	/*
1212 	 * Call MI attach routine.
1213 	 */
1214 	ether_ifattach(ifp, eaddr);
1215 
1216 	/* Perform hardware diagnostic. */
1217 	error = re_diag(sc);
1218 
1219 	if (error) {
1220 		printf("re%d: attach aborted due to hardware diag failure\n",
1221 		    unit);
1222 		ether_ifdetach(ifp);
1223 		goto fail;
1224 	}
1225 
1226 	/* Hook interrupt last to avoid having to lock softc */
1227 	error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE,
1228 	    re_intr, sc, &sc->rl_intrhand);
1229 	if (error) {
1230 		printf("re%d: couldn't set up irq\n", unit);
1231 		ether_ifdetach(ifp);
1232 	}
1233 
1234 fail:
1235 	if (error)
1236 		re_detach(dev);
1237 
1238 	return (error);
1239 }
1240 
1241 /*
1242  * Shutdown hardware and free up resources. This can be called any
1243  * time after the mutex has been initialized. It is called in both
1244  * the error case in attach and the normal detach case so it needs
1245  * to be careful about only freeing resources that have actually been
1246  * allocated.
1247  */
1248 static int
1249 re_detach(dev)
1250 	device_t		dev;
1251 {
1252 	struct rl_softc		*sc;
1253 	struct ifnet		*ifp;
1254 	int			i;
1255 	int			attached;
1256 
1257 	sc = device_get_softc(dev);
1258 	ifp = &sc->arpcom.ac_if;
1259 	KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized"));
1260 
1261 	attached = device_is_attached(dev);
1262 	/* These should only be active if attach succeeded */
1263 	if (attached)
1264 		ether_ifdetach(ifp);
1265 
1266 	RL_LOCK(sc);
1267 #if 0
1268 	sc->suspended = 1;
1269 #endif
1270 
1271 	/* These should only be active if attach succeeded */
1272 	if (attached) {
1273 		re_stop(sc);
1274 		/*
1275 		 * Force off the IFF_UP flag here, in case someone
1276 		 * still had a BPF descriptor attached to this
1277 		 * interface. If they do, ether_ifdetach() will cause
1278 		 * the BPF code to try and clear the promisc mode
1279 		 * flag, which will bubble down to re_ioctl(),
1280 		 * which will try to call re_init() again. This will
1281 		 * turn the NIC back on and restart the MII ticker,
1282 		 * which will panic the system when the kernel tries
1283 		 * to invoke the re_tick() function that isn't there
1284 		 * anymore.
1285 		 */
1286 		ifp->if_flags &= ~IFF_UP;
1287 		ether_ifdetach(ifp);
1288 	}
1289 	if (sc->rl_miibus)
1290 		device_delete_child(dev, sc->rl_miibus);
1291 	bus_generic_detach(dev);
1292 
1293 	/*
1294 	 * The rest is resource deallocation, so we should already be
1295 	 * stopped here.
1296 	 */
1297 	RL_UNLOCK(sc);
1298 
1299 	if (sc->rl_intrhand)
1300 		bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand);
1301 	if (sc->rl_irq)
1302 		bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq);
1303 	if (sc->rl_res)
1304 		bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res);
1305 
1306 
1307 	/* Unload and free the RX DMA ring memory and map */
1308 
1309 	if (sc->rl_ldata.rl_rx_list_tag) {
1310 		bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag,
1311 		    sc->rl_ldata.rl_rx_list_map);
1312 		bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag,
1313 		    sc->rl_ldata.rl_rx_list,
1314 		    sc->rl_ldata.rl_rx_list_map);
1315 		bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag);
1316 	}
1317 
1318 	/* Unload and free the TX DMA ring memory and map */
1319 
1320 	if (sc->rl_ldata.rl_tx_list_tag) {
1321 		bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag,
1322 		    sc->rl_ldata.rl_tx_list_map);
1323 		bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag,
1324 		    sc->rl_ldata.rl_tx_list,
1325 		    sc->rl_ldata.rl_tx_list_map);
1326 		bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag);
1327 	}
1328 
1329 	/* Destroy all the RX and TX buffer maps */
1330 
1331 	if (sc->rl_ldata.rl_mtag) {
1332 		for (i = 0; i < RL_TX_DESC_CNT; i++)
1333 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1334 			    sc->rl_ldata.rl_tx_dmamap[i]);
1335 		for (i = 0; i < RL_RX_DESC_CNT; i++)
1336 			bus_dmamap_destroy(sc->rl_ldata.rl_mtag,
1337 			    sc->rl_ldata.rl_rx_dmamap[i]);
1338 		bus_dma_tag_destroy(sc->rl_ldata.rl_mtag);
1339 	}
1340 
1341 	/* Unload and free the stats buffer and map */
1342 
1343 	if (sc->rl_ldata.rl_stag) {
1344 		bus_dmamap_unload(sc->rl_ldata.rl_stag,
1345 		    sc->rl_ldata.rl_rx_list_map);
1346 		bus_dmamem_free(sc->rl_ldata.rl_stag,
1347 		    sc->rl_ldata.rl_stats,
1348 		    sc->rl_ldata.rl_smap);
1349 		bus_dma_tag_destroy(sc->rl_ldata.rl_stag);
1350 	}
1351 
1352 	if (sc->rl_parent_tag)
1353 		bus_dma_tag_destroy(sc->rl_parent_tag);
1354 
1355 	mtx_destroy(&sc->rl_mtx);
1356 
1357 	return (0);
1358 }
1359 
1360 static int
1361 re_newbuf(sc, idx, m)
1362 	struct rl_softc		*sc;
1363 	int			idx;
1364 	struct mbuf		*m;
1365 {
1366 	struct rl_dmaload_arg	arg;
1367 	struct mbuf		*n = NULL;
1368 	int			error;
1369 
1370 	if (m == NULL) {
1371 		n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1372 		if (n == NULL)
1373 			return (ENOBUFS);
1374 		m = n;
1375 	} else
1376 		m->m_data = m->m_ext.ext_buf;
1377 
1378 	m->m_len = m->m_pkthdr.len = MCLBYTES;
1379 #ifdef RE_FIXUP_RX
1380 	/*
1381 	 * This is part of an evil trick to deal with non-x86 platforms.
1382 	 * The RealTek chip requires RX buffers to be aligned on 64-bit
1383 	 * boundaries, but that will hose non-x86 machines. To get around
1384 	 * this, we leave some empty space at the start of each buffer
1385 	 * and for non-x86 hosts, we copy the buffer back six bytes
1386 	 * to achieve word alignment. This is slightly more efficient
1387 	 * than allocating a new buffer, copying the contents, and
1388 	 * discarding the old buffer.
1389 	 */
1390 	m_adj(m, RE_ETHER_ALIGN);
1391 #endif
1392 	arg.sc = sc;
1393 	arg.rl_idx = idx;
1394 	arg.rl_maxsegs = 1;
1395 	arg.rl_flags = 0;
1396 	arg.rl_ring = sc->rl_ldata.rl_rx_list;
1397 
1398 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag,
1399 	    sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc,
1400 	    &arg, BUS_DMA_NOWAIT);
1401 	if (error || arg.rl_maxsegs != 1) {
1402 		if (n != NULL)
1403 			m_freem(n);
1404 		return (ENOMEM);
1405 	}
1406 
1407 	sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN);
1408 	sc->rl_ldata.rl_rx_mbuf[idx] = m;
1409 
1410 	bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1411 	    sc->rl_ldata.rl_rx_dmamap[idx],
1412 	    BUS_DMASYNC_PREREAD);
1413 
1414 	return (0);
1415 }
1416 
1417 #ifdef RE_FIXUP_RX
1418 static __inline void
1419 re_fixup_rx(m)
1420 	struct mbuf		*m;
1421 {
1422 	int                     i;
1423 	uint16_t                *src, *dst;
1424 
1425 	src = mtod(m, uint16_t *);
1426 	dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src;
1427 
1428 	for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
1429 		*dst++ = *src++;
1430 
1431 	m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN;
1432 
1433 	return;
1434 }
1435 #endif
1436 
1437 static int
1438 re_tx_list_init(sc)
1439 	struct rl_softc		*sc;
1440 {
1441 
1442 	RL_LOCK_ASSERT(sc);
1443 
1444 	bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ);
1445 	bzero ((char *)&sc->rl_ldata.rl_tx_mbuf,
1446 	    (RL_TX_DESC_CNT * sizeof(struct mbuf *)));
1447 
1448 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1449 	    sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE);
1450 	sc->rl_ldata.rl_tx_prodidx = 0;
1451 	sc->rl_ldata.rl_tx_considx = 0;
1452 	sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT;
1453 
1454 	return (0);
1455 }
1456 
1457 static int
1458 re_rx_list_init(sc)
1459 	struct rl_softc		*sc;
1460 {
1461 	int			i;
1462 
1463 	bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ);
1464 	bzero ((char *)&sc->rl_ldata.rl_rx_mbuf,
1465 	    (RL_RX_DESC_CNT * sizeof(struct mbuf *)));
1466 
1467 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
1468 		if (re_newbuf(sc, i, NULL) == ENOBUFS)
1469 			return (ENOBUFS);
1470 	}
1471 
1472 	/* Flush the RX descriptors */
1473 
1474 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1475 	    sc->rl_ldata.rl_rx_list_map,
1476 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1477 
1478 	sc->rl_ldata.rl_rx_prodidx = 0;
1479 	sc->rl_head = sc->rl_tail = NULL;
1480 
1481 	return (0);
1482 }
1483 
1484 /*
1485  * RX handler for C+ and 8169. For the gigE chips, we support
1486  * the reception of jumbo frames that have been fragmented
1487  * across multiple 2K mbuf cluster buffers.
1488  */
1489 static void
1490 re_rxeof(sc)
1491 	struct rl_softc		*sc;
1492 {
1493 	struct mbuf		*m;
1494 	struct ifnet		*ifp;
1495 	int			i, total_len;
1496 	struct rl_desc		*cur_rx;
1497 	u_int32_t		rxstat, rxvlan;
1498 
1499 	RL_LOCK_ASSERT(sc);
1500 
1501 	ifp = &sc->arpcom.ac_if;
1502 	i = sc->rl_ldata.rl_rx_prodidx;
1503 
1504 	/* Invalidate the descriptor memory */
1505 
1506 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1507 	    sc->rl_ldata.rl_rx_list_map,
1508 	    BUS_DMASYNC_POSTREAD);
1509 
1510 	while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) {
1511 		cur_rx = &sc->rl_ldata.rl_rx_list[i];
1512 		m = sc->rl_ldata.rl_rx_mbuf[i];
1513 		total_len = RL_RXBYTES(cur_rx);
1514 		rxstat = le32toh(cur_rx->rl_cmdstat);
1515 		rxvlan = le32toh(cur_rx->rl_vlanctl);
1516 
1517 		/* Invalidate the RX mbuf and unload its map */
1518 
1519 		bus_dmamap_sync(sc->rl_ldata.rl_mtag,
1520 		    sc->rl_ldata.rl_rx_dmamap[i],
1521 		    BUS_DMASYNC_POSTWRITE);
1522 		bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1523 		    sc->rl_ldata.rl_rx_dmamap[i]);
1524 
1525 		if (!(rxstat & RL_RDESC_STAT_EOF)) {
1526 			m->m_len = RE_RX_DESC_BUFLEN;
1527 			if (sc->rl_head == NULL)
1528 				sc->rl_head = sc->rl_tail = m;
1529 			else {
1530 				m->m_flags &= ~M_PKTHDR;
1531 				sc->rl_tail->m_next = m;
1532 				sc->rl_tail = m;
1533 			}
1534 			re_newbuf(sc, i, NULL);
1535 			RL_DESC_INC(i);
1536 			continue;
1537 		}
1538 
1539 		/*
1540 		 * NOTE: for the 8139C+, the frame length field
1541 		 * is always 12 bits in size, but for the gigE chips,
1542 		 * it is 13 bits (since the max RX frame length is 16K).
1543 		 * Unfortunately, all 32 bits in the status word
1544 		 * were already used, so to make room for the extra
1545 		 * length bit, RealTek took out the 'frame alignment
1546 		 * error' bit and shifted the other status bits
1547 		 * over one slot. The OWN, EOR, FS and LS bits are
1548 		 * still in the same places. We have already extracted
1549 		 * the frame length and checked the OWN bit, so rather
1550 		 * than using an alternate bit mapping, we shift the
1551 		 * status bits one space to the right so we can evaluate
1552 		 * them using the 8169 status as though it was in the
1553 		 * same format as that of the 8139C+.
1554 		 */
1555 		if (sc->rl_type == RL_8169)
1556 			rxstat >>= 1;
1557 
1558 		/*
1559 		 * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be
1560 		 * set, but if CRC is clear, it will still be a valid frame.
1561 		 */
1562 		if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 &&
1563 		    (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) {
1564 			ifp->if_ierrors++;
1565 			/*
1566 			 * If this is part of a multi-fragment packet,
1567 			 * discard all the pieces.
1568 			 */
1569 			if (sc->rl_head != NULL) {
1570 				m_freem(sc->rl_head);
1571 				sc->rl_head = sc->rl_tail = NULL;
1572 			}
1573 			re_newbuf(sc, i, m);
1574 			RL_DESC_INC(i);
1575 			continue;
1576 		}
1577 
1578 		/*
1579 		 * If allocating a replacement mbuf fails,
1580 		 * reload the current one.
1581 		 */
1582 
1583 		if (re_newbuf(sc, i, NULL)) {
1584 			ifp->if_ierrors++;
1585 			if (sc->rl_head != NULL) {
1586 				m_freem(sc->rl_head);
1587 				sc->rl_head = sc->rl_tail = NULL;
1588 			}
1589 			re_newbuf(sc, i, m);
1590 			RL_DESC_INC(i);
1591 			continue;
1592 		}
1593 
1594 		RL_DESC_INC(i);
1595 
1596 		if (sc->rl_head != NULL) {
1597 			m->m_len = total_len % RE_RX_DESC_BUFLEN;
1598 			if (m->m_len == 0)
1599 				m->m_len = RE_RX_DESC_BUFLEN;
1600 			/*
1601 			 * Special case: if there's 4 bytes or less
1602 			 * in this buffer, the mbuf can be discarded:
1603 			 * the last 4 bytes is the CRC, which we don't
1604 			 * care about anyway.
1605 			 */
1606 			if (m->m_len <= ETHER_CRC_LEN) {
1607 				sc->rl_tail->m_len -=
1608 				    (ETHER_CRC_LEN - m->m_len);
1609 				m_freem(m);
1610 			} else {
1611 				m->m_len -= ETHER_CRC_LEN;
1612 				m->m_flags &= ~M_PKTHDR;
1613 				sc->rl_tail->m_next = m;
1614 			}
1615 			m = sc->rl_head;
1616 			sc->rl_head = sc->rl_tail = NULL;
1617 			m->m_pkthdr.len = total_len - ETHER_CRC_LEN;
1618 		} else
1619 			m->m_pkthdr.len = m->m_len =
1620 			    (total_len - ETHER_CRC_LEN);
1621 
1622 #ifdef RE_FIXUP_RX
1623 		re_fixup_rx(m);
1624 #endif
1625 		ifp->if_ipackets++;
1626 		m->m_pkthdr.rcvif = ifp;
1627 
1628 		/* Do RX checksumming if enabled */
1629 
1630 		if (ifp->if_capenable & IFCAP_RXCSUM) {
1631 
1632 			/* Check IP header checksum */
1633 			if (rxstat & RL_RDESC_STAT_PROTOID)
1634 				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
1635 			if (!(rxstat & RL_RDESC_STAT_IPSUMBAD))
1636 				m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
1637 
1638 			/* Check TCP/UDP checksum */
1639 			if ((RL_TCPPKT(rxstat) &&
1640 			    !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) ||
1641 			    (RL_UDPPKT(rxstat) &&
1642 			    !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) {
1643 				m->m_pkthdr.csum_flags |=
1644 				    CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
1645 				m->m_pkthdr.csum_data = 0xffff;
1646 			}
1647 		}
1648 
1649 		if (rxvlan & RL_RDESC_VLANCTL_TAG)
1650 			VLAN_INPUT_TAG(ifp, m,
1651 			    ntohs((rxvlan & RL_RDESC_VLANCTL_DATA)), continue);
1652 		RL_UNLOCK(sc);
1653 		(*ifp->if_input)(ifp, m);
1654 		RL_LOCK(sc);
1655 	}
1656 
1657 	/* Flush the RX DMA ring */
1658 
1659 	bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag,
1660 	    sc->rl_ldata.rl_rx_list_map,
1661 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
1662 
1663 	sc->rl_ldata.rl_rx_prodidx = i;
1664 }
1665 
1666 static void
1667 re_txeof(sc)
1668 	struct rl_softc		*sc;
1669 {
1670 	struct ifnet		*ifp;
1671 	u_int32_t		txstat;
1672 	int			idx;
1673 
1674 	ifp = &sc->arpcom.ac_if;
1675 	idx = sc->rl_ldata.rl_tx_considx;
1676 
1677 	/* Invalidate the TX descriptor list */
1678 
1679 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
1680 	    sc->rl_ldata.rl_tx_list_map,
1681 	    BUS_DMASYNC_POSTREAD);
1682 
1683 	while (idx != sc->rl_ldata.rl_tx_prodidx) {
1684 
1685 		txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat);
1686 		if (txstat & RL_TDESC_CMD_OWN)
1687 			break;
1688 
1689 		/*
1690 		 * We only stash mbufs in the last descriptor
1691 		 * in a fragment chain, which also happens to
1692 		 * be the only place where the TX status bits
1693 		 * are valid.
1694 		 */
1695 
1696 		if (txstat & RL_TDESC_CMD_EOF) {
1697 			m_freem(sc->rl_ldata.rl_tx_mbuf[idx]);
1698 			sc->rl_ldata.rl_tx_mbuf[idx] = NULL;
1699 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
1700 			    sc->rl_ldata.rl_tx_dmamap[idx]);
1701 			if (txstat & (RL_TDESC_STAT_EXCESSCOL|
1702 			    RL_TDESC_STAT_COLCNT))
1703 				ifp->if_collisions++;
1704 			if (txstat & RL_TDESC_STAT_TXERRSUM)
1705 				ifp->if_oerrors++;
1706 			else
1707 				ifp->if_opackets++;
1708 		}
1709 		sc->rl_ldata.rl_tx_free++;
1710 		RL_DESC_INC(idx);
1711 	}
1712 
1713 	/* No changes made to the TX ring, so no flush needed */
1714 
1715 	if (idx != sc->rl_ldata.rl_tx_considx) {
1716 		sc->rl_ldata.rl_tx_considx = idx;
1717 		ifp->if_flags &= ~IFF_OACTIVE;
1718 		ifp->if_timer = 0;
1719 	}
1720 
1721 	/*
1722 	 * If not all descriptors have been released reaped yet,
1723 	 * reload the timer so that we will eventually get another
1724 	 * interrupt that will cause us to re-enter this routine.
1725 	 * This is done in case the transmitter has gone idle.
1726 	 */
1727 	if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT)
1728 		CSR_WRITE_4(sc, RL_TIMERCNT, 1);
1729 }
1730 
1731 static void
1732 re_tick(xsc)
1733 	void			*xsc;
1734 {
1735 	struct rl_softc		*sc;
1736 
1737 	sc = xsc;
1738 	RL_LOCK(sc);
1739 	re_tick_locked(sc);
1740 	RL_UNLOCK(sc);
1741 }
1742 
1743 static void
1744 re_tick_locked(sc)
1745 	struct rl_softc		*sc;
1746 {
1747 	struct mii_data		*mii;
1748 
1749 	RL_LOCK_ASSERT(sc);
1750 
1751 	mii = device_get_softc(sc->rl_miibus);
1752 
1753 	mii_tick(mii);
1754 
1755 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
1756 }
1757 
1758 #ifdef DEVICE_POLLING
1759 static void
1760 re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
1761 {
1762 	struct rl_softc *sc = ifp->if_softc;
1763 
1764 	RL_LOCK(sc);
1765 	re_poll_locked(ifp, cmd, count);
1766 	RL_UNLOCK(sc);
1767 }
1768 
1769 static void
1770 re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count)
1771 {
1772 	struct rl_softc *sc = ifp->if_softc;
1773 
1774 	RL_LOCK_ASSERT(sc);
1775 
1776 	if (!(ifp->if_capenable & IFCAP_POLLING)) {
1777 		ether_poll_deregister(ifp);
1778 		cmd = POLL_DEREGISTER;
1779 	}
1780 	if (cmd == POLL_DEREGISTER) { /* final call, enable interrupts */
1781 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
1782 		return;
1783 	}
1784 
1785 	sc->rxcycles = count;
1786 	re_rxeof(sc);
1787 	re_txeof(sc);
1788 
1789 	if (ifp->if_snd.ifq_head != NULL)
1790 		re_start_locked(ifp);
1791 
1792 	if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */
1793 		u_int16_t       status;
1794 
1795 		status = CSR_READ_2(sc, RL_ISR);
1796 		if (status == 0xffff)
1797 			return;
1798 		if (status)
1799 			CSR_WRITE_2(sc, RL_ISR, status);
1800 
1801 		/*
1802 		 * XXX check behaviour on receiver stalls.
1803 		 */
1804 
1805 		if (status & RL_ISR_SYSTEM_ERR) {
1806 			re_reset(sc);
1807 			re_init_locked(sc);
1808 		}
1809 	}
1810 }
1811 #endif /* DEVICE_POLLING */
1812 
1813 static void
1814 re_intr(arg)
1815 	void			*arg;
1816 {
1817 	struct rl_softc		*sc;
1818 	struct ifnet		*ifp;
1819 	u_int16_t		status;
1820 
1821 	sc = arg;
1822 
1823 	RL_LOCK(sc);
1824 
1825 	ifp = &sc->arpcom.ac_if;
1826 
1827 	if (sc->suspended || !(ifp->if_flags & IFF_UP))
1828 		goto done_locked;
1829 
1830 #ifdef DEVICE_POLLING
1831 	if  (ifp->if_flags & IFF_POLLING)
1832 		goto done_locked;
1833 	if ((ifp->if_capenable & IFCAP_POLLING) &&
1834 	    ether_poll_register(re_poll, ifp)) { /* ok, disable interrupts */
1835 		CSR_WRITE_2(sc, RL_IMR, 0x0000);
1836 		re_poll_locked(ifp, 0, 1);
1837 		goto done_locked;
1838 	}
1839 #endif /* DEVICE_POLLING */
1840 
1841 	for (;;) {
1842 
1843 		status = CSR_READ_2(sc, RL_ISR);
1844 		/* If the card has gone away the read returns 0xffff. */
1845 		if (status == 0xffff)
1846 			break;
1847 		if (status)
1848 			CSR_WRITE_2(sc, RL_ISR, status);
1849 
1850 		if ((status & RL_INTRS_CPLUS) == 0)
1851 			break;
1852 
1853 		if ((status & RL_ISR_RX_OK) ||
1854 		    (status & RL_ISR_RX_ERR))
1855 			re_rxeof(sc);
1856 
1857 		if ((status & RL_ISR_TIMEOUT_EXPIRED) ||
1858 		    (status & RL_ISR_TX_ERR) ||
1859 		    (status & RL_ISR_TX_DESC_UNAVAIL))
1860 			re_txeof(sc);
1861 
1862 		if (status & RL_ISR_SYSTEM_ERR) {
1863 			re_reset(sc);
1864 			re_init_locked(sc);
1865 		}
1866 
1867 		if (status & RL_ISR_LINKCHG) {
1868 			untimeout(re_tick, sc, sc->rl_stat_ch);
1869 			re_tick_locked(sc);
1870 		}
1871 	}
1872 
1873 	if (ifp->if_snd.ifq_head != NULL)
1874 		re_start_locked(ifp);
1875 
1876 done_locked:
1877 	RL_UNLOCK(sc);
1878 }
1879 
1880 static int
1881 re_encap(sc, m_head, idx)
1882 	struct rl_softc		*sc;
1883 	struct mbuf		**m_head;
1884 	int			*idx;
1885 {
1886 	struct mbuf		*m_new = NULL;
1887 	struct rl_dmaload_arg	arg;
1888 	bus_dmamap_t		map;
1889 	int			error;
1890 	struct m_tag		*mtag;
1891 
1892 	RL_LOCK_ASSERT(sc);
1893 
1894 	if (sc->rl_ldata.rl_tx_free <= 4)
1895 		return (EFBIG);
1896 
1897 	/*
1898 	 * Set up checksum offload. Note: checksum offload bits must
1899 	 * appear in all descriptors of a multi-descriptor transmit
1900 	 * attempt. This is according to testing done with an 8169
1901 	 * chip. This is a requirement.
1902 	 */
1903 
1904 	arg.rl_flags = 0;
1905 
1906 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP)
1907 		arg.rl_flags |= RL_TDESC_CMD_IPCSUM;
1908 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP)
1909 		arg.rl_flags |= RL_TDESC_CMD_TCPCSUM;
1910 	if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP)
1911 		arg.rl_flags |= RL_TDESC_CMD_UDPCSUM;
1912 
1913 	arg.sc = sc;
1914 	arg.rl_idx = *idx;
1915 	arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1916 	if (arg.rl_maxsegs > 4)
1917 		arg.rl_maxsegs -= 4;
1918 	arg.rl_ring = sc->rl_ldata.rl_tx_list;
1919 
1920 	map = sc->rl_ldata.rl_tx_dmamap[*idx];
1921 	error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1922 	    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1923 
1924 	if (error && error != EFBIG) {
1925 		printf("re%d: can't map mbuf (error %d)\n", sc->rl_unit, error);
1926 		return (ENOBUFS);
1927 	}
1928 
1929 	/* Too many segments to map, coalesce into a single mbuf */
1930 
1931 	if (error || arg.rl_maxsegs == 0) {
1932 		m_new = m_defrag(*m_head, M_DONTWAIT);
1933 		if (m_new == NULL)
1934 			return (ENOBUFS);
1935 		else
1936 			*m_head = m_new;
1937 
1938 		arg.sc = sc;
1939 		arg.rl_idx = *idx;
1940 		arg.rl_maxsegs = sc->rl_ldata.rl_tx_free;
1941 		arg.rl_ring = sc->rl_ldata.rl_tx_list;
1942 
1943 		error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map,
1944 		    *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT);
1945 		if (error) {
1946 			printf("re%d: can't map mbuf (error %d)\n",
1947 			    sc->rl_unit, error);
1948 			return (EFBIG);
1949 		}
1950 	}
1951 
1952 	/*
1953 	 * Insure that the map for this transmission
1954 	 * is placed at the array index of the last descriptor
1955 	 * in this chain.  (Swap last and first dmamaps.)
1956 	 */
1957 	sc->rl_ldata.rl_tx_dmamap[*idx] =
1958 	    sc->rl_ldata.rl_tx_dmamap[arg.rl_idx];
1959 	sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map;
1960 
1961 	sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head;
1962 	sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs;
1963 
1964 	/*
1965 	 * Set up hardware VLAN tagging. Note: vlan tag info must
1966 	 * appear in the first descriptor of a multi-descriptor
1967 	 * transmission attempt.
1968 	 */
1969 
1970 	mtag = VLAN_OUTPUT_TAG(&sc->arpcom.ac_if, *m_head);
1971 	if (mtag != NULL)
1972 		sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl =
1973 		    htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG);
1974 
1975 	/* Transfer ownership of packet to the chip. */
1976 
1977 	sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |=
1978 	    htole32(RL_TDESC_CMD_OWN);
1979 	if (*idx != arg.rl_idx)
1980 		sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |=
1981 		    htole32(RL_TDESC_CMD_OWN);
1982 
1983 	RL_DESC_INC(arg.rl_idx);
1984 	*idx = arg.rl_idx;
1985 
1986 	return (0);
1987 }
1988 
1989 static void
1990 re_start(ifp)
1991 	struct ifnet		*ifp;
1992 {
1993 	struct rl_softc		*sc;
1994 
1995 	sc = ifp->if_softc;
1996 	RL_LOCK(sc);
1997 	re_start_locked(ifp);
1998 	RL_UNLOCK(sc);
1999 }
2000 
2001 /*
2002  * Main transmit routine for C+ and gigE NICs.
2003  */
2004 static void
2005 re_start_locked(ifp)
2006 	struct ifnet		*ifp;
2007 {
2008 	struct rl_softc		*sc;
2009 	struct mbuf		*m_head = NULL;
2010 	int			idx;
2011 
2012 	sc = ifp->if_softc;
2013 
2014 	RL_LOCK_ASSERT(sc);
2015 
2016 	idx = sc->rl_ldata.rl_tx_prodidx;
2017 
2018 	while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) {
2019 		IF_DEQUEUE(&ifp->if_snd, m_head);
2020 		if (m_head == NULL)
2021 			break;
2022 
2023 		if (re_encap(sc, &m_head, &idx)) {
2024 			IF_PREPEND(&ifp->if_snd, m_head);
2025 			ifp->if_flags |= IFF_OACTIVE;
2026 			break;
2027 		}
2028 
2029 		/*
2030 		 * If there's a BPF listener, bounce a copy of this frame
2031 		 * to him.
2032 		 */
2033 		BPF_MTAP(ifp, m_head);
2034 	}
2035 
2036 	/* Flush the TX descriptors */
2037 
2038 	bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag,
2039 	    sc->rl_ldata.rl_tx_list_map,
2040 	    BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
2041 
2042 	sc->rl_ldata.rl_tx_prodidx = idx;
2043 
2044 	/*
2045 	 * RealTek put the TX poll request register in a different
2046 	 * location on the 8169 gigE chip. I don't know why.
2047 	 */
2048 
2049 	if (sc->rl_type == RL_8169)
2050 		CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START);
2051 	else
2052 		CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START);
2053 
2054 	/*
2055 	 * Use the countdown timer for interrupt moderation.
2056 	 * 'TX done' interrupts are disabled. Instead, we reset the
2057 	 * countdown timer, which will begin counting until it hits
2058 	 * the value in the TIMERINT register, and then trigger an
2059 	 * interrupt. Each time we write to the TIMERCNT register,
2060 	 * the timer count is reset to 0.
2061 	 */
2062 	CSR_WRITE_4(sc, RL_TIMERCNT, 1);
2063 
2064 	/*
2065 	 * Set a timeout in case the chip goes out to lunch.
2066 	 */
2067 	ifp->if_timer = 5;
2068 }
2069 
2070 static void
2071 re_init(xsc)
2072 	void			*xsc;
2073 {
2074 	struct rl_softc		*sc = xsc;
2075 
2076 	RL_LOCK(sc);
2077 	re_init_locked(sc);
2078 	RL_UNLOCK(sc);
2079 }
2080 
2081 static void
2082 re_init_locked(sc)
2083 	struct rl_softc		*sc;
2084 {
2085 	struct ifnet		*ifp = &sc->arpcom.ac_if;
2086 	struct mii_data		*mii;
2087 	u_int32_t		rxcfg = 0;
2088 
2089 	RL_LOCK_ASSERT(sc);
2090 
2091 	mii = device_get_softc(sc->rl_miibus);
2092 
2093 	/*
2094 	 * Cancel pending I/O and free all RX/TX buffers.
2095 	 */
2096 	re_stop(sc);
2097 
2098 	/*
2099 	 * Enable C+ RX and TX mode, as well as VLAN stripping and
2100 	 * RX checksum offload. We must configure the C+ register
2101 	 * before all others.
2102 	 */
2103 	CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB|
2104 	    RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW|
2105 	    RL_CPLUSCMD_VLANSTRIP|
2106 	    (ifp->if_capenable & IFCAP_RXCSUM ?
2107 	    RL_CPLUSCMD_RXCSUM_ENB : 0));
2108 
2109 	/*
2110 	 * Init our MAC address.  Even though the chipset
2111 	 * documentation doesn't mention it, we need to enter "Config
2112 	 * register write enable" mode to modify the ID registers.
2113 	 */
2114 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG);
2115 	CSR_WRITE_STREAM_4(sc, RL_IDR0,
2116 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
2117 	CSR_WRITE_STREAM_4(sc, RL_IDR4,
2118 	    *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));
2119 	CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF);
2120 
2121 	/*
2122 	 * For C+ mode, initialize the RX descriptors and mbufs.
2123 	 */
2124 	re_rx_list_init(sc);
2125 	re_tx_list_init(sc);
2126 
2127 	/*
2128 	 * Enable transmit and receive.
2129 	 */
2130 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2131 
2132 	/*
2133 	 * Set the initial TX and RX configuration.
2134 	 */
2135 	if (sc->rl_testmode) {
2136 		if (sc->rl_type == RL_8169)
2137 			CSR_WRITE_4(sc, RL_TXCFG,
2138 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON);
2139 		else
2140 			CSR_WRITE_4(sc, RL_TXCFG,
2141 			    RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS);
2142 	} else
2143 		CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG);
2144 	CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG);
2145 
2146 	/* Set the individual bit to receive frames for this host only. */
2147 	rxcfg = CSR_READ_4(sc, RL_RXCFG);
2148 	rxcfg |= RL_RXCFG_RX_INDIV;
2149 
2150 	/* If we want promiscuous mode, set the allframes bit. */
2151 	if (ifp->if_flags & IFF_PROMISC)
2152 		rxcfg |= RL_RXCFG_RX_ALLPHYS;
2153 	else
2154 		rxcfg &= ~RL_RXCFG_RX_ALLPHYS;
2155 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2156 
2157 	/*
2158 	 * Set capture broadcast bit to capture broadcast frames.
2159 	 */
2160 	if (ifp->if_flags & IFF_BROADCAST)
2161 		rxcfg |= RL_RXCFG_RX_BROAD;
2162 	else
2163 		rxcfg &= ~RL_RXCFG_RX_BROAD;
2164 	CSR_WRITE_4(sc, RL_RXCFG, rxcfg);
2165 
2166 	/*
2167 	 * Program the multicast filter, if necessary.
2168 	 */
2169 	re_setmulti(sc);
2170 
2171 #ifdef DEVICE_POLLING
2172 	/*
2173 	 * Disable interrupts if we are polling.
2174 	 */
2175 	if (ifp->if_flags & IFF_POLLING)
2176 		CSR_WRITE_2(sc, RL_IMR, 0);
2177 	else	/* otherwise ... */
2178 #endif /* DEVICE_POLLING */
2179 	/*
2180 	 * Enable interrupts.
2181 	 */
2182 	if (sc->rl_testmode)
2183 		CSR_WRITE_2(sc, RL_IMR, 0);
2184 	else
2185 		CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS);
2186 
2187 	/* Set initial TX threshold */
2188 	sc->rl_txthresh = RL_TX_THRESH_INIT;
2189 
2190 	/* Start RX/TX process. */
2191 	CSR_WRITE_4(sc, RL_MISSEDPKT, 0);
2192 #ifdef notdef
2193 	/* Enable receiver and transmitter. */
2194 	CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB);
2195 #endif
2196 	/*
2197 	 * Load the addresses of the RX and TX lists into the chip.
2198 	 */
2199 
2200 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI,
2201 	    RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr));
2202 	CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO,
2203 	    RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr));
2204 
2205 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI,
2206 	    RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr));
2207 	CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO,
2208 	    RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr));
2209 
2210 	CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16);
2211 
2212 	/*
2213 	 * Initialize the timer interrupt register so that
2214 	 * a timer interrupt will be generated once the timer
2215 	 * reaches a certain number of ticks. The timer is
2216 	 * reloaded on each transmit. This gives us TX interrupt
2217 	 * moderation, which dramatically improves TX frame rate.
2218 	 */
2219 	if (sc->rl_type == RL_8169)
2220 		CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800);
2221 	else
2222 		CSR_WRITE_4(sc, RL_TIMERINT, 0x400);
2223 
2224 	/*
2225 	 * For 8169 gigE NICs, set the max allowed RX packet
2226 	 * size so we can receive jumbo frames.
2227 	 */
2228 	if (sc->rl_type == RL_8169)
2229 		CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383);
2230 
2231 	if (sc->rl_testmode)
2232 		return;
2233 
2234 	mii_mediachg(mii);
2235 
2236 	CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX);
2237 
2238 	ifp->if_flags |= IFF_RUNNING;
2239 	ifp->if_flags &= ~IFF_OACTIVE;
2240 
2241 	sc->rl_stat_ch = timeout(re_tick, sc, hz);
2242 }
2243 
2244 /*
2245  * Set media options.
2246  */
2247 static int
2248 re_ifmedia_upd(ifp)
2249 	struct ifnet		*ifp;
2250 {
2251 	struct rl_softc		*sc;
2252 	struct mii_data		*mii;
2253 
2254 	sc = ifp->if_softc;
2255 	mii = device_get_softc(sc->rl_miibus);
2256 	mii_mediachg(mii);
2257 
2258 	return (0);
2259 }
2260 
2261 /*
2262  * Report current media status.
2263  */
2264 static void
2265 re_ifmedia_sts(ifp, ifmr)
2266 	struct ifnet		*ifp;
2267 	struct ifmediareq	*ifmr;
2268 {
2269 	struct rl_softc		*sc;
2270 	struct mii_data		*mii;
2271 
2272 	sc = ifp->if_softc;
2273 	mii = device_get_softc(sc->rl_miibus);
2274 
2275 	mii_pollstat(mii);
2276 	ifmr->ifm_active = mii->mii_media_active;
2277 	ifmr->ifm_status = mii->mii_media_status;
2278 }
2279 
2280 static int
2281 re_ioctl(ifp, command, data)
2282 	struct ifnet		*ifp;
2283 	u_long			command;
2284 	caddr_t			data;
2285 {
2286 	struct rl_softc		*sc = ifp->if_softc;
2287 	struct ifreq		*ifr = (struct ifreq *) data;
2288 	struct mii_data		*mii;
2289 	int			error = 0;
2290 
2291 	switch (command) {
2292 	case SIOCSIFMTU:
2293 		if (ifr->ifr_mtu > RL_JUMBO_MTU)
2294 			error = EINVAL;
2295 		ifp->if_mtu = ifr->ifr_mtu;
2296 		break;
2297 	case SIOCSIFFLAGS:
2298 		RL_LOCK(sc);
2299 		if (ifp->if_flags & IFF_UP)
2300 			re_init_locked(sc);
2301 		else if (ifp->if_flags & IFF_RUNNING)
2302 			re_stop(sc);
2303 		RL_UNLOCK(sc);
2304 		error = 0;
2305 		break;
2306 	case SIOCADDMULTI:
2307 	case SIOCDELMULTI:
2308 		RL_LOCK(sc);
2309 		re_setmulti(sc);
2310 		RL_UNLOCK(sc);
2311 		error = 0;
2312 		break;
2313 	case SIOCGIFMEDIA:
2314 	case SIOCSIFMEDIA:
2315 		mii = device_get_softc(sc->rl_miibus);
2316 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
2317 		break;
2318 	case SIOCSIFCAP:
2319 		ifp->if_capenable &= ~(IFCAP_HWCSUM | IFCAP_POLLING);
2320 		ifp->if_capenable |=
2321 		    ifr->ifr_reqcap & (IFCAP_HWCSUM | IFCAP_POLLING);
2322 		if (ifp->if_capenable & IFCAP_TXCSUM)
2323 			ifp->if_hwassist = RE_CSUM_FEATURES;
2324 		else
2325 			ifp->if_hwassist = 0;
2326 		if (ifp->if_flags & IFF_RUNNING)
2327 			re_init(sc);
2328 		break;
2329 	default:
2330 		error = ether_ioctl(ifp, command, data);
2331 		break;
2332 	}
2333 
2334 	return (error);
2335 }
2336 
2337 static void
2338 re_watchdog(ifp)
2339 	struct ifnet		*ifp;
2340 {
2341 	struct rl_softc		*sc;
2342 
2343 	sc = ifp->if_softc;
2344 	RL_LOCK(sc);
2345 	printf("re%d: watchdog timeout\n", sc->rl_unit);
2346 	ifp->if_oerrors++;
2347 
2348 	re_txeof(sc);
2349 	re_rxeof(sc);
2350 	re_init_locked(sc);
2351 
2352 	RL_UNLOCK(sc);
2353 }
2354 
2355 /*
2356  * Stop the adapter and free any mbufs allocated to the
2357  * RX and TX lists.
2358  */
2359 static void
2360 re_stop(sc)
2361 	struct rl_softc		*sc;
2362 {
2363 	register int		i;
2364 	struct ifnet		*ifp;
2365 
2366 	RL_LOCK_ASSERT(sc);
2367 
2368 	ifp = &sc->arpcom.ac_if;
2369 	ifp->if_timer = 0;
2370 
2371 	untimeout(re_tick, sc, sc->rl_stat_ch);
2372 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2373 #ifdef DEVICE_POLLING
2374 	ether_poll_deregister(ifp);
2375 #endif /* DEVICE_POLLING */
2376 
2377 	CSR_WRITE_1(sc, RL_COMMAND, 0x00);
2378 	CSR_WRITE_2(sc, RL_IMR, 0x0000);
2379 
2380 	if (sc->rl_head != NULL) {
2381 		m_freem(sc->rl_head);
2382 		sc->rl_head = sc->rl_tail = NULL;
2383 	}
2384 
2385 	/* Free the TX list buffers. */
2386 
2387 	for (i = 0; i < RL_TX_DESC_CNT; i++) {
2388 		if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) {
2389 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2390 			    sc->rl_ldata.rl_tx_dmamap[i]);
2391 			m_freem(sc->rl_ldata.rl_tx_mbuf[i]);
2392 			sc->rl_ldata.rl_tx_mbuf[i] = NULL;
2393 		}
2394 	}
2395 
2396 	/* Free the RX list buffers. */
2397 
2398 	for (i = 0; i < RL_RX_DESC_CNT; i++) {
2399 		if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) {
2400 			bus_dmamap_unload(sc->rl_ldata.rl_mtag,
2401 			    sc->rl_ldata.rl_rx_dmamap[i]);
2402 			m_freem(sc->rl_ldata.rl_rx_mbuf[i]);
2403 			sc->rl_ldata.rl_rx_mbuf[i] = NULL;
2404 		}
2405 	}
2406 }
2407 
2408 /*
2409  * Device suspend routine.  Stop the interface and save some PCI
2410  * settings in case the BIOS doesn't restore them properly on
2411  * resume.
2412  */
2413 static int
2414 re_suspend(dev)
2415 	device_t		dev;
2416 {
2417 	struct rl_softc		*sc;
2418 
2419 	sc = device_get_softc(dev);
2420 
2421 	RL_LOCK(sc);
2422 	re_stop(sc);
2423 	sc->suspended = 1;
2424 	RL_UNLOCK(sc);
2425 
2426 	return (0);
2427 }
2428 
2429 /*
2430  * Device resume routine.  Restore some PCI settings in case the BIOS
2431  * doesn't, re-enable busmastering, and restart the interface if
2432  * appropriate.
2433  */
2434 static int
2435 re_resume(dev)
2436 	device_t		dev;
2437 {
2438 	struct rl_softc		*sc;
2439 	struct ifnet		*ifp;
2440 
2441 	sc = device_get_softc(dev);
2442 
2443 	RL_LOCK(sc);
2444 
2445 	ifp = &sc->arpcom.ac_if;
2446 
2447 	/* reinitialize interface if necessary */
2448 	if (ifp->if_flags & IFF_UP)
2449 		re_init_locked(sc);
2450 
2451 	sc->suspended = 0;
2452 	RL_UNLOCK(sc);
2453 
2454 	return (0);
2455 }
2456 
2457 /*
2458  * Stop all chip I/O so that the kernel's probe routines don't
2459  * get confused by errant DMAs when rebooting.
2460  */
2461 static void
2462 re_shutdown(dev)
2463 	device_t		dev;
2464 {
2465 	struct rl_softc		*sc;
2466 
2467 	sc = device_get_softc(dev);
2468 
2469 	RL_LOCK(sc);
2470 	re_stop(sc);
2471 	RL_UNLOCK(sc);
2472 }
2473