1 /*- 2 * Copyright (c) 2017 Oliver Pinter 3 * Copyright (c) 2017 W. Dean Freeman 4 * Copyright (c) 2000-2015 Mark R V Murray 5 * Copyright (c) 2013 Arthur Mesh 6 * Copyright (c) 2004 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer 14 * in this position and unchanged. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/conf.h> 38 #include <sys/eventhandler.h> 39 #include <sys/hash.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/linker.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/module.h> 46 #include <sys/mutex.h> 47 #include <sys/random.h> 48 #include <sys/sbuf.h> 49 #include <sys/sysctl.h> 50 #include <sys/unistd.h> 51 52 #if defined(RANDOM_LOADABLE) 53 #include <sys/lock.h> 54 #include <sys/sx.h> 55 #endif 56 57 #include <machine/atomic.h> 58 #include <machine/cpu.h> 59 60 #include <dev/random/randomdev.h> 61 #include <dev/random/random_harvestq.h> 62 63 static void random_kthread(void); 64 static void random_sources_feed(void); 65 66 static u_int read_rate; 67 68 /* List for the dynamic sysctls */ 69 static struct sysctl_ctx_list random_clist; 70 71 /* 72 * How many events to queue up. We create this many items in 73 * an 'empty' queue, then transfer them to the 'harvest' queue with 74 * supplied junk. When used, they are transferred back to the 75 * 'empty' queue. 76 */ 77 #define RANDOM_RING_MAX 1024 78 #define RANDOM_ACCUM_MAX 8 79 80 /* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */ 81 volatile int random_kthread_control; 82 83 /* 84 * Put all the harvest queue context stuff in one place. 85 * this make is a bit easier to lock and protect. 86 */ 87 static struct harvest_context { 88 /* The harvest mutex protects all of harvest_context and 89 * the related data. 90 */ 91 struct mtx hc_mtx; 92 /* Round-robin destination cache. */ 93 u_int hc_destination[ENTROPYSOURCE]; 94 /* The context of the kernel thread processing harvested entropy */ 95 struct proc *hc_kthread_proc; 96 /* Allow the sysadmin to select the broad category of 97 * entropy types to harvest. 98 */ 99 u_int hc_source_mask; 100 /* 101 * Lockless ring buffer holding entropy events 102 * If ring.in == ring.out, 103 * the buffer is empty. 104 * If ring.in != ring.out, 105 * the buffer contains harvested entropy. 106 * If (ring.in + 1) == ring.out (mod RANDOM_RING_MAX), 107 * the buffer is full. 108 * 109 * NOTE: ring.in points to the last added element, 110 * and ring.out points to the last consumed element. 111 * 112 * The ring.in variable needs locking as there are multiple 113 * sources to the ring. Only the sources may change ring.in, 114 * but the consumer may examine it. 115 * 116 * The ring.out variable does not need locking as there is 117 * only one consumer. Only the consumer may change ring.out, 118 * but the sources may examine it. 119 */ 120 struct entropy_ring { 121 struct harvest_event ring[RANDOM_RING_MAX]; 122 volatile u_int in; 123 volatile u_int out; 124 } hc_entropy_ring; 125 struct fast_entropy_accumulator { 126 volatile u_int pos; 127 uint32_t buf[RANDOM_ACCUM_MAX]; 128 } hc_entropy_fast_accumulator; 129 } harvest_context; 130 131 static struct kproc_desc random_proc_kp = { 132 "rand_harvestq", 133 random_kthread, 134 &harvest_context.hc_kthread_proc, 135 }; 136 137 /* Pass the given event straight through to Fortuna/Yarrow/Whatever. */ 138 static __inline void 139 random_harvestq_fast_process_event(struct harvest_event *event) 140 { 141 #if defined(RANDOM_LOADABLE) 142 RANDOM_CONFIG_S_LOCK(); 143 if (p_random_alg_context) 144 #endif 145 p_random_alg_context->ra_event_processor(event); 146 #if defined(RANDOM_LOADABLE) 147 RANDOM_CONFIG_S_UNLOCK(); 148 #endif 149 } 150 151 static void 152 random_kthread(void) 153 { 154 u_int maxloop, ring_out, i; 155 156 /* 157 * Locking is not needed as this is the only place we modify ring.out, and 158 * we only examine ring.in without changing it. Both of these are volatile, 159 * and this is a unique thread. 160 */ 161 for (random_kthread_control = 1; random_kthread_control;) { 162 /* Deal with events, if any. Restrict the number we do in one go. */ 163 maxloop = RANDOM_RING_MAX; 164 while (harvest_context.hc_entropy_ring.out != harvest_context.hc_entropy_ring.in) { 165 ring_out = (harvest_context.hc_entropy_ring.out + 1)%RANDOM_RING_MAX; 166 random_harvestq_fast_process_event(harvest_context.hc_entropy_ring.ring + ring_out); 167 harvest_context.hc_entropy_ring.out = ring_out; 168 if (!--maxloop) 169 break; 170 } 171 random_sources_feed(); 172 /* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */ 173 for (i = 0; i < RANDOM_ACCUM_MAX; i++) { 174 if (harvest_context.hc_entropy_fast_accumulator.buf[i]) { 175 random_harvest_direct(harvest_context.hc_entropy_fast_accumulator.buf + i, sizeof(harvest_context.hc_entropy_fast_accumulator.buf[0]), 4, RANDOM_UMA); 176 harvest_context.hc_entropy_fast_accumulator.buf[i] = 0; 177 } 178 } 179 /* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */ 180 tsleep_sbt(&harvest_context.hc_kthread_proc, 0, "-", SBT_1S/10, 0, C_PREL(1)); 181 } 182 random_kthread_control = -1; 183 wakeup(&harvest_context.hc_kthread_proc); 184 kproc_exit(0); 185 /* NOTREACHED */ 186 } 187 /* This happens well after SI_SUB_RANDOM */ 188 SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start, 189 &random_proc_kp); 190 191 /* 192 * Run through all fast sources reading entropy for the given 193 * number of rounds, which should be a multiple of the number 194 * of entropy accumulation pools in use; 2 for Yarrow and 32 195 * for Fortuna. 196 */ 197 static void 198 random_sources_feed(void) 199 { 200 uint32_t entropy[HARVESTSIZE]; 201 struct random_sources *rrs; 202 u_int i, n, local_read_rate; 203 204 /* 205 * Step over all of live entropy sources, and feed their output 206 * to the system-wide RNG. 207 */ 208 #if defined(RANDOM_LOADABLE) 209 RANDOM_CONFIG_S_LOCK(); 210 if (p_random_alg_context) { 211 /* It's an indenting error. Yeah, Yeah. */ 212 #endif 213 local_read_rate = atomic_readandclear_32(&read_rate); 214 LIST_FOREACH(rrs, &source_list, rrs_entries) { 215 for (i = 0; i < p_random_alg_context->ra_poolcount*(local_read_rate + 1); i++) { 216 n = rrs->rrs_source->rs_read(entropy, sizeof(entropy)); 217 KASSERT((n <= sizeof(entropy)), ("%s: rs_read returned too much data (%u > %zu)", __func__, n, sizeof(entropy))); 218 /* It would appear that in some circumstances (e.g. virtualisation), 219 * the underlying hardware entropy source might not always return 220 * random numbers. Accept this but make a noise. If too much happens, 221 * can that source be trusted? 222 */ 223 if (n == 0) { 224 printf("%s: rs_read for hardware device '%s' returned no entropy.\n", __func__, rrs->rrs_source->rs_ident); 225 continue; 226 } 227 random_harvest_direct(entropy, n, (n*8)/2, rrs->rrs_source->rs_source); 228 } 229 } 230 explicit_bzero(entropy, sizeof(entropy)); 231 #if defined(RANDOM_LOADABLE) 232 } 233 RANDOM_CONFIG_S_UNLOCK(); 234 #endif 235 } 236 237 void 238 read_rate_increment(u_int chunk) 239 { 240 241 atomic_add_32(&read_rate, chunk); 242 } 243 244 /* ARGSUSED */ 245 static int 246 random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS) 247 { 248 int error; 249 u_int value, orig_value; 250 251 orig_value = value = harvest_context.hc_source_mask; 252 error = sysctl_handle_int(oidp, &value, 0, req); 253 if (error != 0 || req->newptr == NULL) 254 return (error); 255 256 if (flsl(value) > ENTROPYSOURCE) 257 return (EINVAL); 258 259 /* 260 * Disallow userspace modification of pure entropy sources. 261 */ 262 harvest_context.hc_source_mask = (value & ~RANDOM_HARVEST_PURE_MASK) | 263 (orig_value & RANDOM_HARVEST_PURE_MASK); 264 return (0); 265 } 266 267 /* ARGSUSED */ 268 static int 269 random_print_harvestmask(SYSCTL_HANDLER_ARGS) 270 { 271 struct sbuf sbuf; 272 int error, i; 273 274 error = sysctl_wire_old_buffer(req, 0); 275 if (error == 0) { 276 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 277 for (i = ENTROPYSOURCE - 1; i >= 0; i--) 278 sbuf_cat(&sbuf, (harvest_context.hc_source_mask & (1 << i)) ? "1" : "0"); 279 error = sbuf_finish(&sbuf); 280 sbuf_delete(&sbuf); 281 } 282 return (error); 283 } 284 285 static const char *random_source_descr[ENTROPYSOURCE] = { 286 [RANDOM_CACHED] = "CACHED", 287 [RANDOM_ATTACH] = "ATTACH", 288 [RANDOM_KEYBOARD] = "KEYBOARD", 289 [RANDOM_MOUSE] = "MOUSE", 290 [RANDOM_NET_TUN] = "NET_TUN", 291 [RANDOM_NET_ETHER] = "NET_ETHER", 292 [RANDOM_NET_NG] = "NET_NG", 293 [RANDOM_INTERRUPT] = "INTERRUPT", 294 [RANDOM_SWI] = "SWI", 295 [RANDOM_FS_ATIME] = "FS_ATIME", 296 [RANDOM_UMA] = "UMA", /* ENVIRONMENTAL_END */ 297 [RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */ 298 [RANDOM_PURE_SAFE] = "PURE_SAFE", 299 [RANDOM_PURE_GLXSB] = "PURE_GLXSB", 300 [RANDOM_PURE_UBSEC] = "PURE_UBSEC", 301 [RANDOM_PURE_HIFN] = "PURE_HIFN", 302 [RANDOM_PURE_RDRAND] = "PURE_RDRAND", 303 [RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH", 304 [RANDOM_PURE_RNDTEST] = "PURE_RNDTEST", 305 [RANDOM_PURE_VIRTIO] = "PURE_VIRTIO", 306 [RANDOM_PURE_BROADCOM] = "PURE_BROADCOM", 307 [RANDOM_PURE_CCP] = "PURE_CCP", 308 /* "ENTROPYSOURCE" */ 309 }; 310 311 /* ARGSUSED */ 312 static int 313 random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS) 314 { 315 struct sbuf sbuf; 316 int error, i; 317 bool first; 318 319 first = true; 320 error = sysctl_wire_old_buffer(req, 0); 321 if (error == 0) { 322 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 323 for (i = ENTROPYSOURCE - 1; i >= 0; i--) { 324 if (i >= RANDOM_PURE_START && 325 (harvest_context.hc_source_mask & (1 << i)) == 0) 326 continue; 327 if (!first) 328 sbuf_cat(&sbuf, ","); 329 sbuf_cat(&sbuf, !(harvest_context.hc_source_mask & (1 << i)) ? "[" : ""); 330 sbuf_cat(&sbuf, random_source_descr[i]); 331 sbuf_cat(&sbuf, !(harvest_context.hc_source_mask & (1 << i)) ? "]" : ""); 332 first = false; 333 } 334 error = sbuf_finish(&sbuf); 335 sbuf_delete(&sbuf); 336 } 337 return (error); 338 } 339 340 /* ARGSUSED */ 341 static void 342 random_harvestq_init(void *unused __unused) 343 { 344 struct sysctl_oid *random_sys_o; 345 346 random_sys_o = SYSCTL_ADD_NODE(&random_clist, 347 SYSCTL_STATIC_CHILDREN(_kern_random), 348 OID_AUTO, "harvest", CTLFLAG_RW, 0, 349 "Entropy Device Parameters"); 350 harvest_context.hc_source_mask = RANDOM_HARVEST_EVERYTHING_MASK; 351 SYSCTL_ADD_PROC(&random_clist, 352 SYSCTL_CHILDREN(random_sys_o), 353 OID_AUTO, "mask", CTLTYPE_UINT | CTLFLAG_RW, 354 NULL, 0, random_check_uint_harvestmask, "IU", 355 "Entropy harvesting mask"); 356 SYSCTL_ADD_PROC(&random_clist, 357 SYSCTL_CHILDREN(random_sys_o), 358 OID_AUTO, "mask_bin", CTLTYPE_STRING | CTLFLAG_RD, 359 NULL, 0, random_print_harvestmask, "A", "Entropy harvesting mask (printable)"); 360 SYSCTL_ADD_PROC(&random_clist, 361 SYSCTL_CHILDREN(random_sys_o), 362 OID_AUTO, "mask_symbolic", CTLTYPE_STRING | CTLFLAG_RD, 363 NULL, 0, random_print_harvestmask_symbolic, "A", "Entropy harvesting mask (symbolic)"); 364 RANDOM_HARVEST_INIT_LOCK(); 365 harvest_context.hc_entropy_ring.in = harvest_context.hc_entropy_ring.out = 0; 366 } 367 SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_SECOND, random_harvestq_init, NULL); 368 369 /* 370 * This is used to prime the RNG by grabbing any early random stuff 371 * known to the kernel, and inserting it directly into the hashing 372 * module, e.g. Fortuna or Yarrow. 373 */ 374 /* ARGSUSED */ 375 static void 376 random_harvestq_prime(void *unused __unused) 377 { 378 struct harvest_event event; 379 size_t count, size, i; 380 uint8_t *keyfile, *data; 381 382 /* 383 * Get entropy that may have been preloaded by loader(8) 384 * and use it to pre-charge the entropy harvest queue. 385 */ 386 keyfile = preload_search_by_type(RANDOM_CACHED_BOOT_ENTROPY_MODULE); 387 #ifndef NO_BACKWARD_COMPATIBILITY 388 if (keyfile == NULL) 389 keyfile = preload_search_by_type(RANDOM_LEGACY_BOOT_ENTROPY_MODULE); 390 #endif 391 if (keyfile != NULL) { 392 data = preload_fetch_addr(keyfile); 393 size = preload_fetch_size(keyfile); 394 /* skip the first bit of the stash so others like arc4 can also have some. */ 395 if (size > RANDOM_CACHED_SKIP_START) { 396 data += RANDOM_CACHED_SKIP_START; 397 size -= RANDOM_CACHED_SKIP_START; 398 } 399 /* Trim the size. If the admin has a file with a funny size, we lose some. Tough. */ 400 size -= (size % sizeof(event.he_entropy)); 401 if (data != NULL && size != 0) { 402 for (i = 0; i < size; i += sizeof(event.he_entropy)) { 403 count = sizeof(event.he_entropy); 404 event.he_somecounter = (uint32_t)get_cyclecount(); 405 event.he_size = count; 406 event.he_bits = count/4; /* Underestimate the size for Yarrow */ 407 event.he_source = RANDOM_CACHED; 408 event.he_destination = harvest_context.hc_destination[0]++; 409 memcpy(event.he_entropy, data + i, sizeof(event.he_entropy)); 410 random_harvestq_fast_process_event(&event); 411 explicit_bzero(&event, sizeof(event)); 412 } 413 explicit_bzero(data, size); 414 if (bootverbose) 415 printf("random: read %zu bytes from preloaded cache\n", size); 416 } else 417 if (bootverbose) 418 printf("random: no preloaded entropy cache\n"); 419 } 420 } 421 SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_FOURTH, random_harvestq_prime, NULL); 422 423 /* ARGSUSED */ 424 static void 425 random_harvestq_deinit(void *unused __unused) 426 { 427 428 /* Command the hash/reseed thread to end and wait for it to finish */ 429 random_kthread_control = 0; 430 while (random_kthread_control >= 0) 431 tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5); 432 sysctl_ctx_free(&random_clist); 433 } 434 SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_SECOND, random_harvestq_deinit, NULL); 435 436 /*- 437 * Entropy harvesting queue routine. 438 * 439 * This is supposed to be fast; do not do anything slow in here! 440 * It is also illegal (and morally reprehensible) to insert any 441 * high-rate data here. "High-rate" is defined as a data source 442 * that will usually cause lots of failures of the "Lockless read" 443 * check a few lines below. This includes the "always-on" sources 444 * like the Intel "rdrand" or the VIA Nehamiah "xstore" sources. 445 */ 446 /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle 447 * counters are built in, but on older hardware it will do a real time clock 448 * read which can be quite expensive. 449 */ 450 void 451 random_harvest_queue(const void *entropy, u_int size, u_int bits, enum random_entropy_source origin) 452 { 453 struct harvest_event *event; 454 u_int ring_in; 455 456 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 457 if (!(harvest_context.hc_source_mask & (1 << origin))) 458 return; 459 RANDOM_HARVEST_LOCK(); 460 ring_in = (harvest_context.hc_entropy_ring.in + 1)%RANDOM_RING_MAX; 461 if (ring_in != harvest_context.hc_entropy_ring.out) { 462 /* The ring is not full */ 463 event = harvest_context.hc_entropy_ring.ring + ring_in; 464 event->he_somecounter = (uint32_t)get_cyclecount(); 465 event->he_source = origin; 466 event->he_destination = harvest_context.hc_destination[origin]++; 467 event->he_bits = bits; 468 if (size <= sizeof(event->he_entropy)) { 469 event->he_size = size; 470 memcpy(event->he_entropy, entropy, size); 471 } 472 else { 473 /* Big event, so squash it */ 474 event->he_size = sizeof(event->he_entropy[0]); 475 event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event); 476 } 477 harvest_context.hc_entropy_ring.in = ring_in; 478 } 479 RANDOM_HARVEST_UNLOCK(); 480 } 481 482 /*- 483 * Entropy harvesting fast routine. 484 * 485 * This is supposed to be very fast; do not do anything slow in here! 486 * This is the right place for high-rate harvested data. 487 */ 488 void 489 random_harvest_fast(const void *entropy, u_int size, u_int bits, enum random_entropy_source origin) 490 { 491 u_int pos; 492 493 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 494 /* XXX: FIX!! The above KASSERT is BS. Right now we ignore most structure and just accumulate the supplied data */ 495 if (!(harvest_context.hc_source_mask & (1 << origin))) 496 return; 497 pos = harvest_context.hc_entropy_fast_accumulator.pos; 498 harvest_context.hc_entropy_fast_accumulator.buf[pos] ^= jenkins_hash(entropy, size, (uint32_t)get_cyclecount()); 499 harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX; 500 } 501 502 /*- 503 * Entropy harvesting direct routine. 504 * 505 * This is not supposed to be fast, but will only be used during 506 * (e.g.) booting when initial entropy is being gathered. 507 */ 508 void 509 random_harvest_direct(const void *entropy, u_int size, u_int bits, enum random_entropy_source origin) 510 { 511 struct harvest_event event; 512 513 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 514 if (!(harvest_context.hc_source_mask & (1 << origin))) 515 return; 516 size = MIN(size, sizeof(event.he_entropy)); 517 event.he_somecounter = (uint32_t)get_cyclecount(); 518 event.he_size = size; 519 event.he_bits = bits; 520 event.he_source = origin; 521 event.he_destination = harvest_context.hc_destination[origin]++; 522 memcpy(event.he_entropy, entropy, size); 523 random_harvestq_fast_process_event(&event); 524 explicit_bzero(&event, sizeof(event)); 525 } 526 527 void 528 random_harvest_register_source(enum random_entropy_source source) 529 { 530 531 harvest_context.hc_source_mask |= (1 << source); 532 } 533 534 void 535 random_harvest_deregister_source(enum random_entropy_source source) 536 { 537 538 harvest_context.hc_source_mask &= ~(1 << source); 539 } 540 541 MODULE_VERSION(random_harvestq, 1); 542