1 /*- 2 * Copyright (c) 2017 Oliver Pinter 3 * Copyright (c) 2017 W. Dean Freeman 4 * Copyright (c) 2000-2015 Mark R V Murray 5 * Copyright (c) 2013 Arthur Mesh 6 * Copyright (c) 2004 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer 14 * in this position and unchanged. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/ck.h> 38 #include <sys/conf.h> 39 #include <sys/epoch.h> 40 #include <sys/eventhandler.h> 41 #include <sys/hash.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/linker.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/module.h> 48 #include <sys/mutex.h> 49 #include <sys/random.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysctl.h> 52 #include <sys/unistd.h> 53 54 #include <machine/atomic.h> 55 #include <machine/cpu.h> 56 57 #include <crypto/rijndael/rijndael-api-fst.h> 58 #include <crypto/sha2/sha256.h> 59 60 #include <dev/random/hash.h> 61 #include <dev/random/randomdev.h> 62 #include <dev/random/random_harvestq.h> 63 64 #if defined(RANDOM_ENABLE_ETHER) 65 #define _RANDOM_HARVEST_ETHER_OFF 0 66 #else 67 #define _RANDOM_HARVEST_ETHER_OFF (1u << RANDOM_NET_ETHER) 68 #endif 69 #if defined(RANDOM_ENABLE_UMA) 70 #define _RANDOM_HARVEST_UMA_OFF 0 71 #else 72 #define _RANDOM_HARVEST_UMA_OFF (1u << RANDOM_UMA) 73 #endif 74 75 /* 76 * Note that random_sources_feed() will also use this to try and split up 77 * entropy into a subset of pools per iteration with the goal of feeding 78 * HARVESTSIZE into every pool at least once per second. 79 */ 80 #define RANDOM_KTHREAD_HZ 10 81 82 static void random_kthread(void); 83 static void random_sources_feed(void); 84 85 /* 86 * Random must initialize much earlier than epoch, but we can initialize the 87 * epoch code before SMP starts. Prior to SMP, we can safely bypass 88 * concurrency primitives. 89 */ 90 static __read_mostly bool epoch_inited; 91 static __read_mostly epoch_t rs_epoch; 92 93 /* 94 * How many events to queue up. We create this many items in 95 * an 'empty' queue, then transfer them to the 'harvest' queue with 96 * supplied junk. When used, they are transferred back to the 97 * 'empty' queue. 98 */ 99 #define RANDOM_RING_MAX 1024 100 #define RANDOM_ACCUM_MAX 8 101 102 /* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */ 103 volatile int random_kthread_control; 104 105 106 /* Allow the sysadmin to select the broad category of 107 * entropy types to harvest. 108 */ 109 __read_frequently u_int hc_source_mask; 110 111 struct random_sources { 112 CK_LIST_ENTRY(random_sources) rrs_entries; 113 struct random_source *rrs_source; 114 }; 115 116 static CK_LIST_HEAD(sources_head, random_sources) source_list = 117 CK_LIST_HEAD_INITIALIZER(source_list); 118 119 SYSCTL_NODE(_kern_random, OID_AUTO, harvest, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 120 "Entropy Device Parameters"); 121 122 /* 123 * Put all the harvest queue context stuff in one place. 124 * this make is a bit easier to lock and protect. 125 */ 126 static struct harvest_context { 127 /* The harvest mutex protects all of harvest_context and 128 * the related data. 129 */ 130 struct mtx hc_mtx; 131 /* Round-robin destination cache. */ 132 u_int hc_destination[ENTROPYSOURCE]; 133 /* The context of the kernel thread processing harvested entropy */ 134 struct proc *hc_kthread_proc; 135 /* 136 * Lockless ring buffer holding entropy events 137 * If ring.in == ring.out, 138 * the buffer is empty. 139 * If ring.in != ring.out, 140 * the buffer contains harvested entropy. 141 * If (ring.in + 1) == ring.out (mod RANDOM_RING_MAX), 142 * the buffer is full. 143 * 144 * NOTE: ring.in points to the last added element, 145 * and ring.out points to the last consumed element. 146 * 147 * The ring.in variable needs locking as there are multiple 148 * sources to the ring. Only the sources may change ring.in, 149 * but the consumer may examine it. 150 * 151 * The ring.out variable does not need locking as there is 152 * only one consumer. Only the consumer may change ring.out, 153 * but the sources may examine it. 154 */ 155 struct entropy_ring { 156 struct harvest_event ring[RANDOM_RING_MAX]; 157 volatile u_int in; 158 volatile u_int out; 159 } hc_entropy_ring; 160 struct fast_entropy_accumulator { 161 volatile u_int pos; 162 uint32_t buf[RANDOM_ACCUM_MAX]; 163 } hc_entropy_fast_accumulator; 164 } harvest_context; 165 166 static struct kproc_desc random_proc_kp = { 167 "rand_harvestq", 168 random_kthread, 169 &harvest_context.hc_kthread_proc, 170 }; 171 172 /* Pass the given event straight through to Fortuna/Whatever. */ 173 static __inline void 174 random_harvestq_fast_process_event(struct harvest_event *event) 175 { 176 p_random_alg_context->ra_event_processor(event); 177 explicit_bzero(event, sizeof(*event)); 178 } 179 180 static void 181 random_kthread(void) 182 { 183 u_int maxloop, ring_out, i; 184 185 /* 186 * Locking is not needed as this is the only place we modify ring.out, and 187 * we only examine ring.in without changing it. Both of these are volatile, 188 * and this is a unique thread. 189 */ 190 for (random_kthread_control = 1; random_kthread_control;) { 191 /* Deal with events, if any. Restrict the number we do in one go. */ 192 maxloop = RANDOM_RING_MAX; 193 while (harvest_context.hc_entropy_ring.out != harvest_context.hc_entropy_ring.in) { 194 ring_out = (harvest_context.hc_entropy_ring.out + 1)%RANDOM_RING_MAX; 195 random_harvestq_fast_process_event(harvest_context.hc_entropy_ring.ring + ring_out); 196 harvest_context.hc_entropy_ring.out = ring_out; 197 if (!--maxloop) 198 break; 199 } 200 random_sources_feed(); 201 /* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */ 202 for (i = 0; i < RANDOM_ACCUM_MAX; i++) { 203 if (harvest_context.hc_entropy_fast_accumulator.buf[i]) { 204 random_harvest_direct(harvest_context.hc_entropy_fast_accumulator.buf + i, sizeof(harvest_context.hc_entropy_fast_accumulator.buf[0]), RANDOM_UMA); 205 harvest_context.hc_entropy_fast_accumulator.buf[i] = 0; 206 } 207 } 208 /* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */ 209 tsleep_sbt(&harvest_context.hc_kthread_proc, 0, "-", 210 SBT_1S/RANDOM_KTHREAD_HZ, 0, C_PREL(1)); 211 } 212 random_kthread_control = -1; 213 wakeup(&harvest_context.hc_kthread_proc); 214 kproc_exit(0); 215 /* NOTREACHED */ 216 } 217 /* This happens well after SI_SUB_RANDOM */ 218 SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start, 219 &random_proc_kp); 220 221 static void 222 rs_epoch_init(void *dummy __unused) 223 { 224 rs_epoch = epoch_alloc("Random Sources", EPOCH_PREEMPT); 225 epoch_inited = true; 226 } 227 SYSINIT(rs_epoch_init, SI_SUB_EPOCH, SI_ORDER_ANY, rs_epoch_init, NULL); 228 229 /* 230 * Run through all fast sources reading entropy for the given 231 * number of rounds, which should be a multiple of the number 232 * of entropy accumulation pools in use; it is 32 for Fortuna. 233 */ 234 static void 235 random_sources_feed(void) 236 { 237 uint32_t entropy[HARVESTSIZE]; 238 struct epoch_tracker et; 239 struct random_sources *rrs; 240 u_int i, n, npools; 241 bool rse_warm; 242 243 rse_warm = epoch_inited; 244 245 /* 246 * Evenly-ish distribute pool population across the second based on how 247 * frequently random_kthread iterates. 248 * 249 * For Fortuna, the math currently works out as such: 250 * 251 * 64 bits * 4 pools = 256 bits per iteration 252 * 256 bits * 10 Hz = 2560 bits per second, 320 B/s 253 * 254 */ 255 npools = howmany(p_random_alg_context->ra_poolcount, RANDOM_KTHREAD_HZ); 256 257 /* 258 * Step over all of live entropy sources, and feed their output 259 * to the system-wide RNG. 260 */ 261 if (rse_warm) 262 epoch_enter_preempt(rs_epoch, &et); 263 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) { 264 for (i = 0; i < npools; i++) { 265 n = rrs->rrs_source->rs_read(entropy, sizeof(entropy)); 266 KASSERT((n <= sizeof(entropy)), ("%s: rs_read returned too much data (%u > %zu)", __func__, n, sizeof(entropy))); 267 /* 268 * Sometimes the HW entropy source doesn't have anything 269 * ready for us. This isn't necessarily untrustworthy. 270 * We don't perform any other verification of an entropy 271 * source (i.e., length is allowed to be anywhere from 1 272 * to sizeof(entropy), quality is unchecked, etc), so 273 * don't balk verbosely at slow random sources either. 274 * There are reports that RDSEED on x86 metal falls 275 * behind the rate at which we query it, for example. 276 * But it's still a better entropy source than RDRAND. 277 */ 278 if (n == 0) 279 continue; 280 random_harvest_direct(entropy, n, rrs->rrs_source->rs_source); 281 } 282 } 283 if (rse_warm) 284 epoch_exit_preempt(rs_epoch, &et); 285 explicit_bzero(entropy, sizeof(entropy)); 286 } 287 288 /* ARGSUSED */ 289 static int 290 random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS) 291 { 292 static const u_int user_immutable_mask = 293 (((1 << ENTROPYSOURCE) - 1) & (-1UL << RANDOM_PURE_START)) | 294 _RANDOM_HARVEST_ETHER_OFF | _RANDOM_HARVEST_UMA_OFF; 295 296 int error; 297 u_int value, orig_value; 298 299 orig_value = value = hc_source_mask; 300 error = sysctl_handle_int(oidp, &value, 0, req); 301 if (error != 0 || req->newptr == NULL) 302 return (error); 303 304 if (flsl(value) > ENTROPYSOURCE) 305 return (EINVAL); 306 307 /* 308 * Disallow userspace modification of pure entropy sources. 309 */ 310 hc_source_mask = (value & ~user_immutable_mask) | 311 (orig_value & user_immutable_mask); 312 return (0); 313 } 314 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask, 315 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 316 random_check_uint_harvestmask, "IU", 317 "Entropy harvesting mask"); 318 319 /* ARGSUSED */ 320 static int 321 random_print_harvestmask(SYSCTL_HANDLER_ARGS) 322 { 323 struct sbuf sbuf; 324 int error, i; 325 326 error = sysctl_wire_old_buffer(req, 0); 327 if (error == 0) { 328 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 329 for (i = ENTROPYSOURCE - 1; i >= 0; i--) 330 sbuf_cat(&sbuf, (hc_source_mask & (1 << i)) ? "1" : "0"); 331 error = sbuf_finish(&sbuf); 332 sbuf_delete(&sbuf); 333 } 334 return (error); 335 } 336 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_bin, 337 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 338 random_print_harvestmask, "A", 339 "Entropy harvesting mask (printable)"); 340 341 static const char *random_source_descr[ENTROPYSOURCE] = { 342 [RANDOM_CACHED] = "CACHED", 343 [RANDOM_ATTACH] = "ATTACH", 344 [RANDOM_KEYBOARD] = "KEYBOARD", 345 [RANDOM_MOUSE] = "MOUSE", 346 [RANDOM_NET_TUN] = "NET_TUN", 347 [RANDOM_NET_ETHER] = "NET_ETHER", 348 [RANDOM_NET_NG] = "NET_NG", 349 [RANDOM_INTERRUPT] = "INTERRUPT", 350 [RANDOM_SWI] = "SWI", 351 [RANDOM_FS_ATIME] = "FS_ATIME", 352 [RANDOM_UMA] = "UMA", /* ENVIRONMENTAL_END */ 353 [RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */ 354 [RANDOM_PURE_SAFE] = "PURE_SAFE", 355 [RANDOM_PURE_GLXSB] = "PURE_GLXSB", 356 [RANDOM_PURE_HIFN] = "PURE_HIFN", 357 [RANDOM_PURE_RDRAND] = "PURE_RDRAND", 358 [RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH", 359 [RANDOM_PURE_RNDTEST] = "PURE_RNDTEST", 360 [RANDOM_PURE_VIRTIO] = "PURE_VIRTIO", 361 [RANDOM_PURE_BROADCOM] = "PURE_BROADCOM", 362 [RANDOM_PURE_CCP] = "PURE_CCP", 363 [RANDOM_PURE_DARN] = "PURE_DARN", 364 [RANDOM_PURE_TPM] = "PURE_TPM", 365 [RANDOM_PURE_VMGENID] = "VMGENID", 366 /* "ENTROPYSOURCE" */ 367 }; 368 369 /* ARGSUSED */ 370 static int 371 random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS) 372 { 373 struct sbuf sbuf; 374 int error, i; 375 bool first; 376 377 first = true; 378 error = sysctl_wire_old_buffer(req, 0); 379 if (error == 0) { 380 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 381 for (i = ENTROPYSOURCE - 1; i >= 0; i--) { 382 if (i >= RANDOM_PURE_START && 383 (hc_source_mask & (1 << i)) == 0) 384 continue; 385 if (!first) 386 sbuf_cat(&sbuf, ","); 387 sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "[" : ""); 388 sbuf_cat(&sbuf, random_source_descr[i]); 389 sbuf_cat(&sbuf, !(hc_source_mask & (1 << i)) ? "]" : ""); 390 first = false; 391 } 392 error = sbuf_finish(&sbuf); 393 sbuf_delete(&sbuf); 394 } 395 return (error); 396 } 397 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_symbolic, 398 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 399 random_print_harvestmask_symbolic, "A", 400 "Entropy harvesting mask (symbolic)"); 401 402 /* ARGSUSED */ 403 static void 404 random_harvestq_init(void *unused __unused) 405 { 406 static const u_int almost_everything_mask = 407 (((1 << (RANDOM_ENVIRONMENTAL_END + 1)) - 1) & 408 ~_RANDOM_HARVEST_ETHER_OFF & ~_RANDOM_HARVEST_UMA_OFF); 409 410 hc_source_mask = almost_everything_mask; 411 RANDOM_HARVEST_INIT_LOCK(); 412 harvest_context.hc_entropy_ring.in = harvest_context.hc_entropy_ring.out = 0; 413 } 414 SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_init, NULL); 415 416 /* 417 * Subroutine to slice up a contiguous chunk of 'entropy' and feed it into the 418 * underlying algorithm. Returns number of bytes actually fed into underlying 419 * algorithm. 420 */ 421 static size_t 422 random_early_prime(char *entropy, size_t len) 423 { 424 struct harvest_event event; 425 size_t i; 426 427 len = rounddown(len, sizeof(event.he_entropy)); 428 if (len == 0) 429 return (0); 430 431 for (i = 0; i < len; i += sizeof(event.he_entropy)) { 432 event.he_somecounter = (uint32_t)get_cyclecount(); 433 event.he_size = sizeof(event.he_entropy); 434 event.he_source = RANDOM_CACHED; 435 event.he_destination = 436 harvest_context.hc_destination[RANDOM_CACHED]++; 437 memcpy(event.he_entropy, entropy + i, sizeof(event.he_entropy)); 438 random_harvestq_fast_process_event(&event); 439 } 440 explicit_bzero(entropy, len); 441 return (len); 442 } 443 444 /* 445 * Subroutine to search for known loader-loaded files in memory and feed them 446 * into the underlying algorithm early in boot. Returns the number of bytes 447 * loaded (zero if none were loaded). 448 */ 449 static size_t 450 random_prime_loader_file(const char *type) 451 { 452 uint8_t *keyfile, *data; 453 size_t size; 454 455 keyfile = preload_search_by_type(type); 456 if (keyfile == NULL) 457 return (0); 458 459 data = preload_fetch_addr(keyfile); 460 size = preload_fetch_size(keyfile); 461 if (data == NULL) 462 return (0); 463 464 return (random_early_prime(data, size)); 465 } 466 467 /* 468 * This is used to prime the RNG by grabbing any early random stuff 469 * known to the kernel, and inserting it directly into the hashing 470 * module, currently Fortuna. 471 */ 472 /* ARGSUSED */ 473 static void 474 random_harvestq_prime(void *unused __unused) 475 { 476 size_t size; 477 478 /* 479 * Get entropy that may have been preloaded by loader(8) 480 * and use it to pre-charge the entropy harvest queue. 481 */ 482 size = random_prime_loader_file(RANDOM_CACHED_BOOT_ENTROPY_MODULE); 483 if (bootverbose) { 484 if (size > 0) 485 printf("random: read %zu bytes from preloaded cache\n", 486 size); 487 else 488 printf("random: no preloaded entropy cache\n"); 489 } 490 } 491 SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_MIDDLE, random_harvestq_prime, NULL); 492 493 /* ARGSUSED */ 494 static void 495 random_harvestq_deinit(void *unused __unused) 496 { 497 498 /* Command the hash/reseed thread to end and wait for it to finish */ 499 random_kthread_control = 0; 500 while (random_kthread_control >= 0) 501 tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5); 502 } 503 SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_deinit, NULL); 504 505 /*- 506 * Entropy harvesting queue routine. 507 * 508 * This is supposed to be fast; do not do anything slow in here! 509 * It is also illegal (and morally reprehensible) to insert any 510 * high-rate data here. "High-rate" is defined as a data source 511 * that will usually cause lots of failures of the "Lockless read" 512 * check a few lines below. This includes the "always-on" sources 513 * like the Intel "rdrand" or the VIA Nehamiah "xstore" sources. 514 */ 515 /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle 516 * counters are built in, but on older hardware it will do a real time clock 517 * read which can be quite expensive. 518 */ 519 void 520 random_harvest_queue_(const void *entropy, u_int size, enum random_entropy_source origin) 521 { 522 struct harvest_event *event; 523 u_int ring_in; 524 525 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 526 RANDOM_HARVEST_LOCK(); 527 ring_in = (harvest_context.hc_entropy_ring.in + 1)%RANDOM_RING_MAX; 528 if (ring_in != harvest_context.hc_entropy_ring.out) { 529 /* The ring is not full */ 530 event = harvest_context.hc_entropy_ring.ring + ring_in; 531 event->he_somecounter = (uint32_t)get_cyclecount(); 532 event->he_source = origin; 533 event->he_destination = harvest_context.hc_destination[origin]++; 534 if (size <= sizeof(event->he_entropy)) { 535 event->he_size = size; 536 memcpy(event->he_entropy, entropy, size); 537 } 538 else { 539 /* Big event, so squash it */ 540 event->he_size = sizeof(event->he_entropy[0]); 541 event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event); 542 } 543 harvest_context.hc_entropy_ring.in = ring_in; 544 } 545 RANDOM_HARVEST_UNLOCK(); 546 } 547 548 /*- 549 * Entropy harvesting fast routine. 550 * 551 * This is supposed to be very fast; do not do anything slow in here! 552 * This is the right place for high-rate harvested data. 553 */ 554 void 555 random_harvest_fast_(const void *entropy, u_int size) 556 { 557 u_int pos; 558 559 pos = harvest_context.hc_entropy_fast_accumulator.pos; 560 harvest_context.hc_entropy_fast_accumulator.buf[pos] ^= jenkins_hash(entropy, size, (uint32_t)get_cyclecount()); 561 harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX; 562 } 563 564 /*- 565 * Entropy harvesting direct routine. 566 * 567 * This is not supposed to be fast, but will only be used during 568 * (e.g.) booting when initial entropy is being gathered. 569 */ 570 void 571 random_harvest_direct_(const void *entropy, u_int size, enum random_entropy_source origin) 572 { 573 struct harvest_event event; 574 575 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 576 size = MIN(size, sizeof(event.he_entropy)); 577 event.he_somecounter = (uint32_t)get_cyclecount(); 578 event.he_size = size; 579 event.he_source = origin; 580 event.he_destination = harvest_context.hc_destination[origin]++; 581 memcpy(event.he_entropy, entropy, size); 582 random_harvestq_fast_process_event(&event); 583 } 584 585 void 586 random_harvest_register_source(enum random_entropy_source source) 587 { 588 589 hc_source_mask |= (1 << source); 590 } 591 592 void 593 random_harvest_deregister_source(enum random_entropy_source source) 594 { 595 596 hc_source_mask &= ~(1 << source); 597 } 598 599 void 600 random_source_register(struct random_source *rsource) 601 { 602 struct random_sources *rrs; 603 604 KASSERT(rsource != NULL, ("invalid input to %s", __func__)); 605 606 rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK); 607 rrs->rrs_source = rsource; 608 609 random_harvest_register_source(rsource->rs_source); 610 611 printf("random: registering fast source %s\n", rsource->rs_ident); 612 613 RANDOM_HARVEST_LOCK(); 614 CK_LIST_INSERT_HEAD(&source_list, rrs, rrs_entries); 615 RANDOM_HARVEST_UNLOCK(); 616 } 617 618 void 619 random_source_deregister(struct random_source *rsource) 620 { 621 struct random_sources *rrs = NULL; 622 623 KASSERT(rsource != NULL, ("invalid input to %s", __func__)); 624 625 random_harvest_deregister_source(rsource->rs_source); 626 627 RANDOM_HARVEST_LOCK(); 628 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) 629 if (rrs->rrs_source == rsource) { 630 CK_LIST_REMOVE(rrs, rrs_entries); 631 break; 632 } 633 RANDOM_HARVEST_UNLOCK(); 634 635 if (rrs != NULL && epoch_inited) 636 epoch_wait_preempt(rs_epoch); 637 free(rrs, M_ENTROPY); 638 } 639 640 static int 641 random_source_handler(SYSCTL_HANDLER_ARGS) 642 { 643 struct epoch_tracker et; 644 struct random_sources *rrs; 645 struct sbuf sbuf; 646 int error, count; 647 648 error = sysctl_wire_old_buffer(req, 0); 649 if (error != 0) 650 return (error); 651 652 sbuf_new_for_sysctl(&sbuf, NULL, 64, req); 653 count = 0; 654 epoch_enter_preempt(rs_epoch, &et); 655 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) { 656 sbuf_cat(&sbuf, (count++ ? ",'" : "'")); 657 sbuf_cat(&sbuf, rrs->rrs_source->rs_ident); 658 sbuf_cat(&sbuf, "'"); 659 } 660 epoch_exit_preempt(rs_epoch, &et); 661 error = sbuf_finish(&sbuf); 662 sbuf_delete(&sbuf); 663 return (error); 664 } 665 SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 666 NULL, 0, random_source_handler, "A", 667 "List of active fast entropy sources."); 668 669 MODULE_VERSION(random_harvestq, 1); 670