1 /*- 2 * Copyright (c) 2017 Oliver Pinter 3 * Copyright (c) 2017 W. Dean Freeman 4 * Copyright (c) 2000-2015 Mark R V Murray 5 * Copyright (c) 2013 Arthur Mesh 6 * Copyright (c) 2004 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer 14 * in this position and unchanged. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * 30 */ 31 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/ck.h> 35 #include <sys/conf.h> 36 #include <sys/epoch.h> 37 #include <sys/eventhandler.h> 38 #include <sys/hash.h> 39 #include <sys/kernel.h> 40 #include <sys/kthread.h> 41 #include <sys/linker.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/module.h> 45 #include <sys/mutex.h> 46 #include <sys/random.h> 47 #include <sys/sbuf.h> 48 #include <sys/sysctl.h> 49 #include <sys/unistd.h> 50 51 #include <machine/atomic.h> 52 #include <machine/cpu.h> 53 54 #include <crypto/rijndael/rijndael-api-fst.h> 55 #include <crypto/sha2/sha256.h> 56 57 #include <dev/random/fortuna.h> 58 #include <dev/random/hash.h> 59 #include <dev/random/randomdev.h> 60 #include <dev/random/random_harvestq.h> 61 62 #if defined(RANDOM_ENABLE_ETHER) 63 #define _RANDOM_HARVEST_ETHER_OFF 0 64 #else 65 #define _RANDOM_HARVEST_ETHER_OFF (1u << RANDOM_NET_ETHER) 66 #endif 67 #if defined(RANDOM_ENABLE_UMA) 68 #define _RANDOM_HARVEST_UMA_OFF 0 69 #else 70 #define _RANDOM_HARVEST_UMA_OFF (1u << RANDOM_UMA) 71 #endif 72 73 /* 74 * Note that random_sources_feed() will also use this to try and split up 75 * entropy into a subset of pools per iteration with the goal of feeding 76 * HARVESTSIZE into every pool at least once per second. 77 */ 78 #define RANDOM_KTHREAD_HZ 10 79 80 static void random_kthread(void); 81 static void random_sources_feed(void); 82 83 /* 84 * Random must initialize much earlier than epoch, but we can initialize the 85 * epoch code before SMP starts. Prior to SMP, we can safely bypass 86 * concurrency primitives. 87 */ 88 static __read_mostly bool epoch_inited; 89 static __read_mostly epoch_t rs_epoch; 90 91 static const char *random_source_descr[ENTROPYSOURCE]; 92 93 /* 94 * How many events to queue up. We create this many items in 95 * an 'empty' queue, then transfer them to the 'harvest' queue with 96 * supplied junk. When used, they are transferred back to the 97 * 'empty' queue. 98 */ 99 #define RANDOM_RING_MAX 1024 100 #define RANDOM_ACCUM_MAX 8 101 102 /* 1 to let the kernel thread run, 0 to terminate, -1 to mark completion */ 103 volatile int random_kthread_control; 104 105 106 /* 107 * Allow the sysadmin to select the broad category of entropy types to harvest. 108 * 109 * Updates are synchronized by the harvest mutex. 110 */ 111 __read_frequently u_int hc_source_mask; 112 113 struct random_sources { 114 CK_LIST_ENTRY(random_sources) rrs_entries; 115 const struct random_source *rrs_source; 116 }; 117 118 static CK_LIST_HEAD(sources_head, random_sources) source_list = 119 CK_LIST_HEAD_INITIALIZER(source_list); 120 121 SYSCTL_NODE(_kern_random, OID_AUTO, harvest, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 122 "Entropy Device Parameters"); 123 124 /* 125 * Put all the harvest queue context stuff in one place. 126 * this make is a bit easier to lock and protect. 127 */ 128 static struct harvest_context { 129 /* The harvest mutex protects all of harvest_context and 130 * the related data. 131 */ 132 struct mtx hc_mtx; 133 /* Round-robin destination cache. */ 134 u_int hc_destination[ENTROPYSOURCE]; 135 /* The context of the kernel thread processing harvested entropy */ 136 struct proc *hc_kthread_proc; 137 /* 138 * A pair of buffers for queued events. New events are added to the 139 * active queue while the kthread processes the other one in parallel. 140 */ 141 struct entropy_buffer { 142 struct harvest_event ring[RANDOM_RING_MAX]; 143 u_int pos; 144 } hc_entropy_buf[2]; 145 u_int hc_active_buf; 146 struct fast_entropy_accumulator { 147 volatile u_int pos; 148 uint32_t buf[RANDOM_ACCUM_MAX]; 149 } hc_entropy_fast_accumulator; 150 } harvest_context; 151 152 #define RANDOM_HARVEST_INIT_LOCK() mtx_init(&harvest_context.hc_mtx, \ 153 "entropy harvest mutex", NULL, MTX_SPIN) 154 #define RANDOM_HARVEST_LOCK() mtx_lock_spin(&harvest_context.hc_mtx) 155 #define RANDOM_HARVEST_UNLOCK() mtx_unlock_spin(&harvest_context.hc_mtx) 156 157 static struct kproc_desc random_proc_kp = { 158 "rand_harvestq", 159 random_kthread, 160 &harvest_context.hc_kthread_proc, 161 }; 162 163 /* Pass the given event straight through to Fortuna/Whatever. */ 164 static __inline void 165 random_harvestq_fast_process_event(struct harvest_event *event) 166 { 167 p_random_alg_context->ra_event_processor(event); 168 explicit_bzero(event, sizeof(*event)); 169 } 170 171 static void 172 random_kthread(void) 173 { 174 struct harvest_context *hc; 175 176 hc = &harvest_context; 177 for (random_kthread_control = 1; random_kthread_control;) { 178 struct entropy_buffer *buf; 179 u_int entries; 180 181 /* Deal with queued events. */ 182 RANDOM_HARVEST_LOCK(); 183 buf = &hc->hc_entropy_buf[hc->hc_active_buf]; 184 entries = buf->pos; 185 buf->pos = 0; 186 hc->hc_active_buf = (hc->hc_active_buf + 1) % 187 nitems(hc->hc_entropy_buf); 188 RANDOM_HARVEST_UNLOCK(); 189 for (u_int i = 0; i < entries; i++) 190 random_harvestq_fast_process_event(&buf->ring[i]); 191 192 /* Poll sources of noise. */ 193 random_sources_feed(); 194 195 /* XXX: FIX!! Increase the high-performance data rate? Need some measurements first. */ 196 for (u_int i = 0; i < RANDOM_ACCUM_MAX; i++) { 197 if (hc->hc_entropy_fast_accumulator.buf[i]) { 198 random_harvest_direct(&hc->hc_entropy_fast_accumulator.buf[i], 199 sizeof(hc->hc_entropy_fast_accumulator.buf[0]), RANDOM_UMA); 200 hc->hc_entropy_fast_accumulator.buf[i] = 0; 201 } 202 } 203 /* XXX: FIX!! This is a *great* place to pass hardware/live entropy to random(9) */ 204 tsleep_sbt(&hc->hc_kthread_proc, 0, "-", 205 SBT_1S/RANDOM_KTHREAD_HZ, 0, C_PREL(1)); 206 } 207 random_kthread_control = -1; 208 wakeup(&hc->hc_kthread_proc); 209 kproc_exit(0); 210 /* NOTREACHED */ 211 } 212 SYSINIT(random_device_h_proc, SI_SUB_KICK_SCHEDULER, SI_ORDER_ANY, kproc_start, 213 &random_proc_kp); 214 _Static_assert(SI_SUB_KICK_SCHEDULER > SI_SUB_RANDOM, 215 "random kthread starting before subsystem initialization"); 216 217 static void 218 rs_epoch_init(void *dummy __unused) 219 { 220 rs_epoch = epoch_alloc("Random Sources", EPOCH_PREEMPT); 221 epoch_inited = true; 222 } 223 SYSINIT(rs_epoch_init, SI_SUB_EPOCH, SI_ORDER_ANY, rs_epoch_init, NULL); 224 225 /* 226 * Run through all fast sources reading entropy for the given 227 * number of rounds, which should be a multiple of the number 228 * of entropy accumulation pools in use; it is 32 for Fortuna. 229 */ 230 static void 231 random_sources_feed(void) 232 { 233 uint32_t entropy[HARVESTSIZE]; 234 struct epoch_tracker et; 235 struct random_sources *rrs; 236 u_int i, n, npools; 237 bool rse_warm; 238 239 rse_warm = epoch_inited; 240 241 /* 242 * Evenly-ish distribute pool population across the second based on how 243 * frequently random_kthread iterates. 244 * 245 * For Fortuna, the math currently works out as such: 246 * 247 * 64 bits * 4 pools = 256 bits per iteration 248 * 256 bits * 10 Hz = 2560 bits per second, 320 B/s 249 * 250 */ 251 npools = howmany(p_random_alg_context->ra_poolcount, RANDOM_KTHREAD_HZ); 252 253 /*- 254 * If we're not seeded yet, attempt to perform a "full seed", filling 255 * all of the PRNG's pools with entropy; if there is enough entropy 256 * available from "fast" entropy sources this will allow us to finish 257 * seeding and unblock the boot process immediately rather than being 258 * stuck for a few seconds with random_kthread gradually collecting a 259 * small chunk of entropy every 1 / RANDOM_KTHREAD_HZ seconds. 260 * 261 * We collect RANDOM_FORTUNA_DEFPOOLSIZE bytes per pool, i.e. enough 262 * to fill Fortuna's pools in the default configuration. With another 263 * PRNG or smaller pools for Fortuna, we might collect more entropy 264 * than needed to fill the pools, but this is harmless; alternatively, 265 * a different PRNG, larger pools, or fast entropy sources which are 266 * not able to provide as much entropy as we request may result in the 267 * not being fully seeded (and thus remaining blocked) but in that 268 * case we will return here after 1 / RANDOM_KTHREAD_HZ seconds and 269 * try again for a large amount of entropy. 270 */ 271 if (!p_random_alg_context->ra_seeded()) 272 npools = howmany(p_random_alg_context->ra_poolcount * 273 RANDOM_FORTUNA_DEFPOOLSIZE, sizeof(entropy)); 274 275 /* 276 * Step over all of live entropy sources, and feed their output 277 * to the system-wide RNG. 278 */ 279 if (rse_warm) 280 epoch_enter_preempt(rs_epoch, &et); 281 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) { 282 for (i = 0; i < npools; i++) { 283 if (rrs->rrs_source->rs_read == NULL) { 284 /* Source pushes entropy asynchronously. */ 285 continue; 286 } 287 n = rrs->rrs_source->rs_read(entropy, sizeof(entropy)); 288 KASSERT((n <= sizeof(entropy)), 289 ("%s: rs_read returned too much data (%u > %zu)", 290 __func__, n, sizeof(entropy))); 291 292 /* 293 * Sometimes the HW entropy source doesn't have anything 294 * ready for us. This isn't necessarily untrustworthy. 295 * We don't perform any other verification of an entropy 296 * source (i.e., length is allowed to be anywhere from 1 297 * to sizeof(entropy), quality is unchecked, etc), so 298 * don't balk verbosely at slow random sources either. 299 * There are reports that RDSEED on x86 metal falls 300 * behind the rate at which we query it, for example. 301 * But it's still a better entropy source than RDRAND. 302 */ 303 if (n == 0) 304 continue; 305 random_harvest_direct(entropy, n, rrs->rrs_source->rs_source); 306 } 307 } 308 if (rse_warm) 309 epoch_exit_preempt(rs_epoch, &et); 310 explicit_bzero(entropy, sizeof(entropy)); 311 } 312 313 /* 314 * State used for conducting NIST SP 800-90B health tests on entropy sources. 315 */ 316 static struct health_test_softc { 317 uint32_t ht_rct_value[HARVESTSIZE + 1]; 318 u_int ht_rct_count; /* number of samples with the same value */ 319 u_int ht_rct_limit; /* constant after init */ 320 321 uint32_t ht_apt_value[HARVESTSIZE + 1]; 322 u_int ht_apt_count; /* number of samples with the same value */ 323 u_int ht_apt_seq; /* sequence number of the last sample */ 324 u_int ht_apt_cutoff; /* constant after init */ 325 326 uint64_t ht_total_samples; 327 bool ondemand; /* Set to true to restart the state machine */ 328 enum { 329 INIT = 0, /* initial state */ 330 DISABLED, /* health checking is disabled */ 331 STARTUP, /* doing startup tests, samples are discarded */ 332 STEADY, /* steady-state operation */ 333 FAILED, /* health check failed, discard samples */ 334 } ht_state; 335 } healthtest[ENTROPYSOURCE]; 336 337 #define RANDOM_SELFTEST_STARTUP_SAMPLES 1024 /* 4.3, requirement 4 */ 338 #define RANDOM_SELFTEST_APT_WINDOW 512 /* 4.4.2 */ 339 340 static void 341 copy_event(uint32_t dst[static HARVESTSIZE + 1], 342 const struct harvest_event *event) 343 { 344 memset(dst, 0, sizeof(uint32_t) * (HARVESTSIZE + 1)); 345 memcpy(dst, event->he_entropy, event->he_size); 346 if (event->he_source <= RANDOM_ENVIRONMENTAL_END) { 347 /* 348 * For pure entropy sources the timestamp counter is generally 349 * quite determinstic since samples are taken at regular 350 * intervals, so does not contribute much to the entropy. To 351 * make health tests more effective, exclude it from the sample, 352 * since it might otherwise defeat the health tests in a 353 * scenario where the source is stuck. 354 */ 355 dst[HARVESTSIZE] = event->he_somecounter; 356 } 357 } 358 359 static void 360 random_healthtest_rct_init(struct health_test_softc *ht, 361 const struct harvest_event *event) 362 { 363 ht->ht_rct_count = 1; 364 copy_event(ht->ht_rct_value, event); 365 } 366 367 /* 368 * Apply the repitition count test to a sample. 369 * 370 * Return false if the test failed, i.e., we observed >= C consecutive samples 371 * with the same value, and true otherwise. 372 */ 373 static bool 374 random_healthtest_rct_next(struct health_test_softc *ht, 375 const struct harvest_event *event) 376 { 377 uint32_t val[HARVESTSIZE + 1]; 378 379 copy_event(val, event); 380 if (memcmp(val, ht->ht_rct_value, sizeof(ht->ht_rct_value)) != 0) { 381 ht->ht_rct_count = 1; 382 memcpy(ht->ht_rct_value, val, sizeof(ht->ht_rct_value)); 383 return (true); 384 } else { 385 ht->ht_rct_count++; 386 return (ht->ht_rct_count < ht->ht_rct_limit); 387 } 388 } 389 390 static void 391 random_healthtest_apt_init(struct health_test_softc *ht, 392 const struct harvest_event *event) 393 { 394 ht->ht_apt_count = 1; 395 ht->ht_apt_seq = 1; 396 copy_event(ht->ht_apt_value, event); 397 } 398 399 static bool 400 random_healthtest_apt_next(struct health_test_softc *ht, 401 const struct harvest_event *event) 402 { 403 uint32_t val[HARVESTSIZE + 1]; 404 405 if (ht->ht_apt_seq == 0) { 406 random_healthtest_apt_init(ht, event); 407 return (true); 408 } 409 410 copy_event(val, event); 411 if (memcmp(val, ht->ht_apt_value, sizeof(ht->ht_apt_value)) == 0) { 412 ht->ht_apt_count++; 413 if (ht->ht_apt_count >= ht->ht_apt_cutoff) 414 return (false); 415 } 416 417 ht->ht_apt_seq++; 418 if (ht->ht_apt_seq == RANDOM_SELFTEST_APT_WINDOW) 419 ht->ht_apt_seq = 0; 420 421 return (true); 422 } 423 424 /* 425 * Run the health tests for the given event. This is assumed to be called from 426 * a serialized context. 427 */ 428 bool 429 random_harvest_healthtest(const struct harvest_event *event) 430 { 431 struct health_test_softc *ht; 432 433 ht = &healthtest[event->he_source]; 434 435 /* 436 * Was on-demand testing requested? Restart the state machine if so, 437 * restarting the startup tests. 438 */ 439 if (atomic_load_bool(&ht->ondemand)) { 440 atomic_store_bool(&ht->ondemand, false); 441 ht->ht_state = INIT; 442 } 443 444 switch (ht->ht_state) { 445 case __predict_false(INIT): 446 /* Store the first sample and initialize test state. */ 447 random_healthtest_rct_init(ht, event); 448 random_healthtest_apt_init(ht, event); 449 ht->ht_total_samples = 0; 450 ht->ht_state = STARTUP; 451 return (false); 452 case DISABLED: 453 /* No health testing for this source. */ 454 return (true); 455 case STEADY: 456 case STARTUP: 457 ht->ht_total_samples++; 458 if (random_healthtest_rct_next(ht, event) && 459 random_healthtest_apt_next(ht, event)) { 460 if (ht->ht_state == STARTUP && 461 ht->ht_total_samples >= 462 RANDOM_SELFTEST_STARTUP_SAMPLES) { 463 printf( 464 "random: health test passed for source %s\n", 465 random_source_descr[event->he_source]); 466 ht->ht_state = STEADY; 467 } 468 return (ht->ht_state == STEADY); 469 } 470 ht->ht_state = FAILED; 471 printf( 472 "random: health test failed for source %s, discarding samples\n", 473 random_source_descr[event->he_source]); 474 /* FALLTHROUGH */ 475 case FAILED: 476 return (false); 477 } 478 } 479 480 static bool nist_healthtest_enabled = false; 481 SYSCTL_BOOL(_kern_random, OID_AUTO, nist_healthtest_enabled, 482 CTLFLAG_RDTUN, &nist_healthtest_enabled, 0, 483 "Enable NIST SP 800-90B health tests for noise sources"); 484 485 static void 486 random_healthtest_init(enum random_entropy_source source, int min_entropy) 487 { 488 struct health_test_softc *ht; 489 490 ht = &healthtest[source]; 491 memset(ht, 0, sizeof(*ht)); 492 KASSERT(ht->ht_state == INIT, 493 ("%s: health test state is %d for source %d", 494 __func__, ht->ht_state, source)); 495 496 /* 497 * If health-testing is enabled, validate all sources except CACHED and 498 * VMGENID: they are deterministic sources used only a small, fixed 499 * number of times, so statistical testing is not applicable. 500 */ 501 if (!nist_healthtest_enabled || 502 source == RANDOM_CACHED || source == RANDOM_PURE_VMGENID) { 503 ht->ht_state = DISABLED; 504 return; 505 } 506 507 /* 508 * Set cutoff values for the two tests, given a min-entropy estimate for 509 * the source and allowing for an error rate of 1 in 2^{34}. With a 510 * min-entropy estimate of 1 bit and a sample rate of RANDOM_KTHREAD_HZ, 511 * we expect to see an false positive once in ~54.5 years. 512 * 513 * The RCT limit comes from the formula in section 4.4.1. 514 * 515 * The APT cutoffs are calculated using the formula in section 4.4.2 516 * footnote 10 with the number of Bernoulli trials changed from W to 517 * W-1, since the test as written counts the number of samples equal to 518 * the first sample in the window, and thus tests W-1 samples. We 519 * provide cutoffs for estimates up to sizeof(uint32_t)*HARVESTSIZE*8 520 * bits. 521 */ 522 const int apt_cutoffs[] = { 523 [1] = 329, 524 [2] = 195, 525 [3] = 118, 526 [4] = 73, 527 [5] = 48, 528 [6] = 33, 529 [7] = 23, 530 [8] = 17, 531 [9] = 13, 532 [10] = 11, 533 [11] = 9, 534 [12] = 8, 535 [13] = 7, 536 [14] = 6, 537 [15] = 5, 538 [16] = 5, 539 [17 ... 19] = 4, 540 [20 ... 25] = 3, 541 [26 ... 42] = 2, 542 [43 ... 64] = 1, 543 }; 544 const int error_rate = 34; 545 546 if (min_entropy == 0) { 547 /* 548 * For environmental sources, the main source of entropy is the 549 * associated timecounter value. Since these sources can be 550 * influenced by unprivileged users, we conservatively use a 551 * min-entropy estimate of 1 bit per sample. For "pure" 552 * sources, we assume 8 bits per sample, as such sources provide 553 * a variable amount of data per read and in particular might 554 * only provide a single byte at a time. 555 */ 556 min_entropy = source >= RANDOM_PURE_START ? 8 : 1; 557 } else if (min_entropy < 0 || min_entropy >= nitems(apt_cutoffs)) { 558 panic("invalid min_entropy %d for %s", min_entropy, 559 random_source_descr[source]); 560 } 561 562 ht->ht_rct_limit = 1 + howmany(error_rate, min_entropy); 563 ht->ht_apt_cutoff = apt_cutoffs[min_entropy]; 564 } 565 566 static int 567 random_healthtest_ondemand(SYSCTL_HANDLER_ARGS) 568 { 569 u_int mask, source; 570 int error; 571 572 mask = 0; 573 error = sysctl_handle_int(oidp, &mask, 0, req); 574 if (error != 0 || req->newptr == NULL) 575 return (error); 576 577 while (mask != 0) { 578 source = ffs(mask) - 1; 579 if (source < nitems(healthtest)) 580 atomic_store_bool(&healthtest[source].ondemand, true); 581 mask &= ~(1u << source); 582 } 583 return (0); 584 } 585 SYSCTL_PROC(_kern_random, OID_AUTO, nist_healthtest_ondemand, 586 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 587 random_healthtest_ondemand, "I", 588 "Re-run NIST SP 800-90B startup health tests for a noise source"); 589 590 static int 591 random_check_uint_harvestmask(SYSCTL_HANDLER_ARGS) 592 { 593 static const u_int user_immutable_mask = 594 (((1 << ENTROPYSOURCE) - 1) & (-1UL << RANDOM_PURE_START)) | 595 _RANDOM_HARVEST_ETHER_OFF | _RANDOM_HARVEST_UMA_OFF; 596 597 int error; 598 u_int value; 599 600 value = atomic_load_int(&hc_source_mask); 601 error = sysctl_handle_int(oidp, &value, 0, req); 602 if (error != 0 || req->newptr == NULL) 603 return (error); 604 605 if (flsl(value) > ENTROPYSOURCE) 606 return (EINVAL); 607 608 /* 609 * Disallow userspace modification of pure entropy sources. 610 */ 611 RANDOM_HARVEST_LOCK(); 612 hc_source_mask = (value & ~user_immutable_mask) | 613 (hc_source_mask & user_immutable_mask); 614 RANDOM_HARVEST_UNLOCK(); 615 return (0); 616 } 617 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask, 618 CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0, 619 random_check_uint_harvestmask, "IU", 620 "Entropy harvesting mask"); 621 622 static int 623 random_print_harvestmask(SYSCTL_HANDLER_ARGS) 624 { 625 struct sbuf sbuf; 626 int error, i; 627 628 error = sysctl_wire_old_buffer(req, 0); 629 if (error == 0) { 630 u_int mask; 631 632 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 633 mask = atomic_load_int(&hc_source_mask); 634 for (i = ENTROPYSOURCE - 1; i >= 0; i--) { 635 bool present; 636 637 present = (mask & (1u << i)) != 0; 638 sbuf_cat(&sbuf, present ? "1" : "0"); 639 } 640 error = sbuf_finish(&sbuf); 641 sbuf_delete(&sbuf); 642 } 643 return (error); 644 } 645 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_bin, 646 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 647 random_print_harvestmask, "A", 648 "Entropy harvesting mask (printable)"); 649 650 static const char *random_source_descr[ENTROPYSOURCE] = { 651 [RANDOM_CACHED] = "CACHED", 652 [RANDOM_ATTACH] = "ATTACH", 653 [RANDOM_KEYBOARD] = "KEYBOARD", 654 [RANDOM_MOUSE] = "MOUSE", 655 [RANDOM_NET_TUN] = "NET_TUN", 656 [RANDOM_NET_ETHER] = "NET_ETHER", 657 [RANDOM_NET_NG] = "NET_NG", 658 [RANDOM_INTERRUPT] = "INTERRUPT", 659 [RANDOM_SWI] = "SWI", 660 [RANDOM_FS_ATIME] = "FS_ATIME", 661 [RANDOM_UMA] = "UMA", 662 [RANDOM_CALLOUT] = "CALLOUT", 663 [RANDOM_RANDOMDEV] = "RANDOMDEV", /* ENVIRONMENTAL_END */ 664 [RANDOM_PURE_OCTEON] = "PURE_OCTEON", /* PURE_START */ 665 [RANDOM_PURE_SAFE] = "PURE_SAFE", 666 [RANDOM_PURE_GLXSB] = "PURE_GLXSB", 667 [RANDOM_PURE_HIFN] = "PURE_HIFN", 668 [RANDOM_PURE_RDRAND] = "PURE_RDRAND", 669 [RANDOM_PURE_NEHEMIAH] = "PURE_NEHEMIAH", 670 [RANDOM_PURE_RNDTEST] = "PURE_RNDTEST", 671 [RANDOM_PURE_VIRTIO] = "PURE_VIRTIO", 672 [RANDOM_PURE_BROADCOM] = "PURE_BROADCOM", 673 [RANDOM_PURE_CCP] = "PURE_CCP", 674 [RANDOM_PURE_DARN] = "PURE_DARN", 675 [RANDOM_PURE_TPM] = "PURE_TPM", 676 [RANDOM_PURE_VMGENID] = "PURE_VMGENID", 677 [RANDOM_PURE_QUALCOMM] = "PURE_QUALCOMM", 678 [RANDOM_PURE_ARMV8] = "PURE_ARMV8", 679 [RANDOM_PURE_ARM_TRNG] = "PURE_ARM_TRNG", 680 /* "ENTROPYSOURCE" */ 681 }; 682 683 static int 684 random_print_harvestmask_symbolic(SYSCTL_HANDLER_ARGS) 685 { 686 struct sbuf sbuf; 687 int error, i; 688 bool first; 689 690 first = true; 691 error = sysctl_wire_old_buffer(req, 0); 692 if (error == 0) { 693 u_int mask; 694 695 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 696 mask = atomic_load_int(&hc_source_mask); 697 for (i = ENTROPYSOURCE - 1; i >= 0; i--) { 698 bool present; 699 700 present = (mask & (1u << i)) != 0; 701 if (i >= RANDOM_PURE_START && !present) 702 continue; 703 if (!first) 704 sbuf_cat(&sbuf, ","); 705 sbuf_cat(&sbuf, !present ? "[" : ""); 706 sbuf_cat(&sbuf, random_source_descr[i]); 707 sbuf_cat(&sbuf, !present ? "]" : ""); 708 first = false; 709 } 710 error = sbuf_finish(&sbuf); 711 sbuf_delete(&sbuf); 712 } 713 return (error); 714 } 715 SYSCTL_PROC(_kern_random_harvest, OID_AUTO, mask_symbolic, 716 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 717 random_print_harvestmask_symbolic, "A", 718 "Entropy harvesting mask (symbolic)"); 719 720 static void 721 random_harvestq_init(void *unused __unused) 722 { 723 static const u_int almost_everything_mask = 724 (((1 << (RANDOM_ENVIRONMENTAL_END + 1)) - 1) & 725 ~_RANDOM_HARVEST_ETHER_OFF & ~_RANDOM_HARVEST_UMA_OFF); 726 727 hc_source_mask = almost_everything_mask; 728 RANDOM_HARVEST_INIT_LOCK(); 729 harvest_context.hc_active_buf = 0; 730 731 for (int i = RANDOM_START; i <= RANDOM_ENVIRONMENTAL_END; i++) 732 random_healthtest_init(i, 0); 733 } 734 SYSINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_init, NULL); 735 736 /* 737 * Subroutine to slice up a contiguous chunk of 'entropy' and feed it into the 738 * underlying algorithm. Returns number of bytes actually fed into underlying 739 * algorithm. 740 */ 741 static size_t 742 random_early_prime(char *entropy, size_t len) 743 { 744 struct harvest_event event; 745 size_t i; 746 747 len = rounddown(len, sizeof(event.he_entropy)); 748 if (len == 0) 749 return (0); 750 751 for (i = 0; i < len; i += sizeof(event.he_entropy)) { 752 event.he_somecounter = random_get_cyclecount(); 753 event.he_size = sizeof(event.he_entropy); 754 event.he_source = RANDOM_CACHED; 755 event.he_destination = 756 harvest_context.hc_destination[RANDOM_CACHED]++; 757 memcpy(event.he_entropy, entropy + i, sizeof(event.he_entropy)); 758 random_harvestq_fast_process_event(&event); 759 } 760 explicit_bzero(entropy, len); 761 return (len); 762 } 763 764 /* 765 * Subroutine to search for known loader-loaded files in memory and feed them 766 * into the underlying algorithm early in boot. Returns the number of bytes 767 * loaded (zero if none were loaded). 768 */ 769 static size_t 770 random_prime_loader_file(const char *type) 771 { 772 uint8_t *keyfile, *data; 773 size_t size; 774 775 keyfile = preload_search_by_type(type); 776 if (keyfile == NULL) 777 return (0); 778 779 data = preload_fetch_addr(keyfile); 780 size = preload_fetch_size(keyfile); 781 if (data == NULL) 782 return (0); 783 784 return (random_early_prime(data, size)); 785 } 786 787 /* 788 * This is used to prime the RNG by grabbing any early random stuff 789 * known to the kernel, and inserting it directly into the hashing 790 * module, currently Fortuna. 791 */ 792 static void 793 random_harvestq_prime(void *unused __unused) 794 { 795 size_t size; 796 797 /* 798 * Get entropy that may have been preloaded by loader(8) 799 * and use it to pre-charge the entropy harvest queue. 800 */ 801 size = random_prime_loader_file(RANDOM_CACHED_BOOT_ENTROPY_MODULE); 802 if (bootverbose) { 803 if (size > 0) 804 printf("random: read %zu bytes from preloaded cache\n", 805 size); 806 else 807 printf("random: no preloaded entropy cache\n"); 808 } 809 size = random_prime_loader_file(RANDOM_PLATFORM_BOOT_ENTROPY_MODULE); 810 if (bootverbose) { 811 if (size > 0) 812 printf("random: read %zu bytes from platform bootloader\n", 813 size); 814 else 815 printf("random: no platform bootloader entropy\n"); 816 } 817 } 818 SYSINIT(random_device_prime, SI_SUB_RANDOM, SI_ORDER_MIDDLE, random_harvestq_prime, NULL); 819 820 static void 821 random_harvestq_deinit(void *unused __unused) 822 { 823 824 /* Command the hash/reseed thread to end and wait for it to finish */ 825 random_kthread_control = 0; 826 while (random_kthread_control >= 0) 827 tsleep(&harvest_context.hc_kthread_proc, 0, "harvqterm", hz/5); 828 } 829 SYSUNINIT(random_device_h_init, SI_SUB_RANDOM, SI_ORDER_THIRD, random_harvestq_deinit, NULL); 830 831 /*- 832 * Entropy harvesting queue routine. 833 * 834 * This is supposed to be fast; do not do anything slow in here! 835 * It is also illegal (and morally reprehensible) to insert any 836 * high-rate data here. "High-rate" is defined as a data source 837 * that is likely to fill up the buffer in much less than 100ms. 838 * This includes the "always-on" sources like the Intel "rdrand" 839 * or the VIA Nehamiah "xstore" sources. 840 */ 841 /* XXXRW: get_cyclecount() is cheap on most modern hardware, where cycle 842 * counters are built in, but on older hardware it will do a real time clock 843 * read which can be quite expensive. 844 */ 845 void 846 random_harvest_queue_(const void *entropy, u_int size, enum random_entropy_source origin) 847 { 848 struct harvest_context *hc; 849 struct entropy_buffer *buf; 850 struct harvest_event *event; 851 852 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, 853 ("%s: origin %d invalid", __func__, origin)); 854 855 hc = &harvest_context; 856 RANDOM_HARVEST_LOCK(); 857 buf = &hc->hc_entropy_buf[hc->hc_active_buf]; 858 if (buf->pos < RANDOM_RING_MAX) { 859 event = &buf->ring[buf->pos++]; 860 event->he_somecounter = random_get_cyclecount(); 861 event->he_source = origin; 862 event->he_destination = hc->hc_destination[origin]++; 863 if (size <= sizeof(event->he_entropy)) { 864 event->he_size = size; 865 memcpy(event->he_entropy, entropy, size); 866 } else { 867 /* Big event, so squash it */ 868 event->he_size = sizeof(event->he_entropy[0]); 869 event->he_entropy[0] = jenkins_hash(entropy, size, (uint32_t)(uintptr_t)event); 870 } 871 } 872 RANDOM_HARVEST_UNLOCK(); 873 } 874 875 /*- 876 * Entropy harvesting fast routine. 877 * 878 * This is supposed to be very fast; do not do anything slow in here! 879 * This is the right place for high-rate harvested data. 880 */ 881 void 882 random_harvest_fast_(const void *entropy, u_int size) 883 { 884 u_int pos; 885 886 pos = harvest_context.hc_entropy_fast_accumulator.pos; 887 harvest_context.hc_entropy_fast_accumulator.buf[pos] ^= 888 jenkins_hash(entropy, size, random_get_cyclecount()); 889 harvest_context.hc_entropy_fast_accumulator.pos = (pos + 1)%RANDOM_ACCUM_MAX; 890 } 891 892 /*- 893 * Entropy harvesting direct routine. 894 * 895 * This is not supposed to be fast, but will only be used during 896 * (e.g.) booting when initial entropy is being gathered. 897 */ 898 void 899 random_harvest_direct_(const void *entropy, u_int size, enum random_entropy_source origin) 900 { 901 struct harvest_event event; 902 903 KASSERT(origin >= RANDOM_START && origin < ENTROPYSOURCE, ("%s: origin %d invalid\n", __func__, origin)); 904 size = MIN(size, sizeof(event.he_entropy)); 905 event.he_somecounter = random_get_cyclecount(); 906 event.he_size = size; 907 event.he_source = origin; 908 event.he_destination = harvest_context.hc_destination[origin]++; 909 memcpy(event.he_entropy, entropy, size); 910 random_harvestq_fast_process_event(&event); 911 } 912 913 void 914 random_source_register(const struct random_source *rsource) 915 { 916 struct random_sources *rrs; 917 918 KASSERT(rsource != NULL, ("invalid input to %s", __func__)); 919 920 rrs = malloc(sizeof(*rrs), M_ENTROPY, M_WAITOK); 921 rrs->rrs_source = rsource; 922 923 printf("random: registering fast source %s\n", rsource->rs_ident); 924 925 random_healthtest_init(rsource->rs_source, rsource->rs_min_entropy); 926 927 RANDOM_HARVEST_LOCK(); 928 hc_source_mask |= (1 << rsource->rs_source); 929 CK_LIST_INSERT_HEAD(&source_list, rrs, rrs_entries); 930 RANDOM_HARVEST_UNLOCK(); 931 } 932 933 void 934 random_source_deregister(const struct random_source *rsource) 935 { 936 struct random_sources *rrs = NULL; 937 938 KASSERT(rsource != NULL, ("invalid input to %s", __func__)); 939 940 RANDOM_HARVEST_LOCK(); 941 hc_source_mask &= ~(1 << rsource->rs_source); 942 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) 943 if (rrs->rrs_source == rsource) { 944 CK_LIST_REMOVE(rrs, rrs_entries); 945 break; 946 } 947 RANDOM_HARVEST_UNLOCK(); 948 949 if (rrs != NULL && epoch_inited) 950 epoch_wait_preempt(rs_epoch); 951 free(rrs, M_ENTROPY); 952 } 953 954 static int 955 random_source_handler(SYSCTL_HANDLER_ARGS) 956 { 957 struct epoch_tracker et; 958 struct random_sources *rrs; 959 struct sbuf sbuf; 960 int error, count; 961 962 error = sysctl_wire_old_buffer(req, 0); 963 if (error != 0) 964 return (error); 965 966 sbuf_new_for_sysctl(&sbuf, NULL, 64, req); 967 count = 0; 968 epoch_enter_preempt(rs_epoch, &et); 969 CK_LIST_FOREACH(rrs, &source_list, rrs_entries) { 970 sbuf_cat(&sbuf, (count++ ? ",'" : "'")); 971 sbuf_cat(&sbuf, rrs->rrs_source->rs_ident); 972 sbuf_cat(&sbuf, "'"); 973 } 974 epoch_exit_preempt(rs_epoch, &et); 975 error = sbuf_finish(&sbuf); 976 sbuf_delete(&sbuf); 977 return (error); 978 } 979 SYSCTL_PROC(_kern_random, OID_AUTO, random_sources, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 980 NULL, 0, random_source_handler, "A", 981 "List of active fast entropy sources."); 982 983 MODULE_VERSION(random_harvestq, 1); 984