xref: /freebsd/sys/dev/random/fortuna.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * Copyright (c) 2017 W. Dean Freeman
3  * Copyright (c) 2013-2015 Mark R V Murray
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer
11  *    in this position and unchanged.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  *
27  */
28 
29 /*
30  * This implementation of Fortuna is based on the descriptions found in
31  * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier
32  * and Kohno ("FS&K").
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/limits.h>
40 
41 #ifdef _KERNEL
42 #include <sys/fail.h>
43 #include <sys/kernel.h>
44 #include <sys/lock.h>
45 #include <sys/malloc.h>
46 #include <sys/mutex.h>
47 #include <sys/random.h>
48 #include <sys/sdt.h>
49 #include <sys/sysctl.h>
50 #include <sys/systm.h>
51 
52 #include <machine/cpu.h>
53 #else /* !_KERNEL */
54 #include <inttypes.h>
55 #include <stdbool.h>
56 #include <stdio.h>
57 #include <stdlib.h>
58 #include <string.h>
59 #include <threads.h>
60 
61 #include "unit_test.h"
62 #endif /* _KERNEL */
63 
64 #include <crypto/chacha20/chacha.h>
65 #include <crypto/rijndael/rijndael-api-fst.h>
66 #include <crypto/sha2/sha256.h>
67 
68 #include <dev/random/hash.h>
69 #include <dev/random/randomdev.h>
70 #ifdef _KERNEL
71 #include <dev/random/random_harvestq.h>
72 #endif
73 #include <dev/random/uint128.h>
74 #include <dev/random/fortuna.h>
75 
76 /* Defined in FS&K */
77 #define	RANDOM_FORTUNA_NPOOLS 32		/* The number of accumulation pools */
78 #define	RANDOM_FORTUNA_DEFPOOLSIZE 64		/* The default pool size/length for a (re)seed */
79 #define	RANDOM_FORTUNA_MAX_READ (1 << 20)	/* Max bytes from AES before rekeying */
80 #define	RANDOM_FORTUNA_BLOCKS_PER_KEY (1 << 16)	/* Max blocks from AES before rekeying */
81 CTASSERT(RANDOM_FORTUNA_BLOCKS_PER_KEY * RANDOM_BLOCKSIZE ==
82     RANDOM_FORTUNA_MAX_READ);
83 
84 /*
85  * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above.
86  * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds,
87  * and too small may compromise initial security but get faster reseeds.
88  */
89 #define	RANDOM_FORTUNA_MINPOOLSIZE 16
90 #define	RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX
91 CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE);
92 CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE);
93 
94 /* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */
95 CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t));
96 CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE);
97 
98 /* Probes for dtrace(1) */
99 #ifdef _KERNEL
100 SDT_PROVIDER_DECLARE(random);
101 SDT_PROVIDER_DEFINE(random);
102 SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *");
103 #endif /* _KERNEL */
104 
105 /*
106  * This is the beastie that needs protecting. It contains all of the
107  * state that we are excited about. Exactly one is instantiated.
108  */
109 static struct fortuna_state {
110 	struct fs_pool {		/* P_i */
111 		u_int fsp_length;	/* Only the first one is used by Fortuna */
112 		struct randomdev_hash fsp_hash;
113 	} fs_pool[RANDOM_FORTUNA_NPOOLS];
114 	u_int fs_reseedcount;		/* ReseedCnt */
115 	uint128_t fs_counter;		/* C */
116 	union randomdev_key fs_key;	/* K */
117 	u_int fs_minpoolsize;		/* Extras */
118 	/* Extras for the OS */
119 #ifdef _KERNEL
120 	/* For use when 'pacing' the reseeds */
121 	sbintime_t fs_lasttime;
122 #endif
123 	/* Reseed lock */
124 	mtx_t fs_mtx;
125 } fortuna_state;
126 
127 /*
128  * This knob enables or disables the "Concurrent Reads" Fortuna feature.
129  *
130  * The benefit of Concurrent Reads is improved concurrency in Fortuna.  That is
131  * reflected in two related aspects:
132  *
133  * 1. Concurrent full-rate devrandom readers can achieve similar throughput to
134  *    a single reader thread (at least up to a modest number of cores; the
135  *    non-concurrent design falls over at 2 readers).
136  *
137  * 2. The rand_harvestq process spends much less time spinning when one or more
138  *    readers is processing a large request.  Partially this is due to
139  *    rand_harvestq / ra_event_processor design, which only passes one event at
140  *    a time to the underlying algorithm.  Each time, Fortuna must take its
141  *    global state mutex, potentially blocking on a reader.  Our adaptive
142  *    mutexes assume that a lock holder currently on CPU will release the lock
143  *    quickly, and spin if the owning thread is currently running.
144  *
145  *    (There is no reason rand_harvestq necessarily has to use the same lock as
146  *    the generator, or that it must necessarily drop and retake locks
147  *    repeatedly, but that is the current status quo.)
148  *
149  * The concern is that the reduced lock scope might results in a less safe
150  * random(4) design.  However, the reduced-lock scope design is still
151  * fundamentally Fortuna.  This is discussed below.
152  *
153  * Fortuna Read() only needs mutual exclusion between readers to correctly
154  * update the shared read-side state: C, the 128-bit counter; and K, the
155  * current cipher/PRF key.
156  *
157  * In the Fortuna design, the global counter C should provide an independent
158  * range of values per request.
159  *
160  * Under lock, we can save a copy of C on the stack, and increment the global C
161  * by the number of blocks a Read request will require.
162  *
163  * Still under lock, we can save a copy of the key K on the stack, and then
164  * perform the usual key erasure K' <- Keystream(C, K, ...).  This does require
165  * generating 256 bits (32 bytes) of cryptographic keystream output with the
166  * global lock held, but that's all; none of the API keystream generation must
167  * be performed under lock.
168  *
169  * At this point, we may unlock.
170  *
171  * Some example timelines below (to oversimplify, all requests are in units of
172  * native blocks, and the keysize happens to be equal or less to the native
173  * blocksize of the underlying cipher, and the same sequence of two requests
174  * arrive in the same order).  The possibly expensive consumer keystream
175  * generation portion is marked with '**'.
176  *
177  * Status Quo fortuna_read()           Reduced-scope locking
178  * -------------------------           ---------------------
179  * C=C_0, K=K_0                        C=C_0, K=K_0
180  * <Thr 1 requests N blocks>           <Thr 1 requests N blocks>
181  * 1:Lock()                            1:Lock()
182  * <Thr 2 requests M blocks>           <Thr 2 requests M blocks>
183  * 1:GenBytes()                        1:stack_C := C_0
184  * 1:  Keystream(C_0, K_0, N)          1:stack_K := K_0
185  * 1:    <N blocks generated>**        1:C' := C_0 + N
186  * 1:    C' := C_0 + N                 1:K' := Keystream(C', K_0, 1)
187  * 1:    <- Keystream                  1:  <1 block generated>
188  * 1:  K' := Keystream(C', K_0, 1)     1:  C'' := C' + 1
189  * 1:    <1 block generated>           1:  <- Keystream
190  * 1:    C'' := C' + 1                 1:Unlock()
191  * 1:    <- Keystream
192  * 1:  <- GenBytes()
193  * 1:Unlock()
194  *
195  * Just prior to unlock, shared state is identical:
196  * ------------------------------------------------
197  * C'' == C_0 + N + 1                  C'' == C_0 + N + 1
198  * K' == keystream generated from      K' == keystream generated from
199  *       C_0 + N, K_0.                       C_0 + N, K_0.
200  * K_0 has been erased.                K_0 has been erased.
201  *
202  * After both designs unlock, the 2nd reader is unblocked.
203  *
204  * 2:Lock()                            2:Lock()
205  * 2:GenBytes()                        2:stack_C' := C''
206  * 2:  Keystream(C'', K', M)           2:stack_K' := K'
207  * 2:    <M blocks generated>**        2:C''' := C'' + M
208  * 2:    C''' := C'' + M               2:K'' := Keystream(C''', K', 1)
209  * 2:    <- Keystream                  2:  <1 block generated>
210  * 2:  K'' := Keystream(C''', K', 1)   2:  C'''' := C''' + 1
211  * 2:    <1 block generated>           2:  <- Keystream
212  * 2:    C'''' := C''' + 1             2:Unlock()
213  * 2:    <- Keystream
214  * 2:  <- GenBytes()
215  * 2:Unlock()
216  *
217  * Just prior to unlock, global state is identical:
218  * ------------------------------------------------------
219  *
220  * C'''' == (C_0 + N + 1) + M + 1      C'''' == (C_0 + N + 1) + M + 1
221  * K'' == keystream generated from     K'' == keystream generated from
222  *        C_0 + N + 1 + M, K'.                C_0 + N + 1 + M, K'.
223  * K' has been erased.                 K' has been erased.
224  *
225  * Finally, in the new design, the two consumer threads can finish the
226  * remainder of the generation at any time (including simultaneously):
227  *
228  *                                     1:  GenBytes()
229  *                                     1:    Keystream(stack_C, stack_K, N)
230  *                                     1:      <N blocks generated>**
231  *                                     1:    <- Keystream
232  *                                     1:  <- GenBytes
233  *                                     1:ExplicitBzero(stack_C, stack_K)
234  *
235  *                                     2:  GenBytes()
236  *                                     2:    Keystream(stack_C', stack_K', M)
237  *                                     2:      <M blocks generated>**
238  *                                     2:    <- Keystream
239  *                                     2:  <- GenBytes
240  *                                     2:ExplicitBzero(stack_C', stack_K')
241  *
242  * The generated user keystream for both threads is identical between the two
243  * implementations:
244  *
245  * 1: Keystream(C_0, K_0, N)           1: Keystream(stack_C, stack_K, N)
246  * 2: Keystream(C'', K', M)            2: Keystream(stack_C', stack_K', M)
247  *
248  * (stack_C == C_0; stack_K == K_0; stack_C' == C''; stack_K' == K'.)
249  */
250 static bool fortuna_concurrent_read __read_frequently = true;
251 
252 #ifdef _KERNEL
253 static struct sysctl_ctx_list random_clist;
254 RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE);
255 #else
256 static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE];
257 #endif
258 
259 static void random_fortuna_pre_read(void);
260 static void random_fortuna_read(uint8_t *, size_t);
261 static bool random_fortuna_seeded(void);
262 static bool random_fortuna_seeded_internal(void);
263 static void random_fortuna_process_event(struct harvest_event *);
264 
265 static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount);
266 
267 #ifdef RANDOM_LOADABLE
268 static
269 #endif
270 const struct random_algorithm random_alg_context = {
271 	.ra_ident = "Fortuna",
272 	.ra_pre_read = random_fortuna_pre_read,
273 	.ra_read = random_fortuna_read,
274 	.ra_seeded = random_fortuna_seeded,
275 	.ra_event_processor = random_fortuna_process_event,
276 	.ra_poolcount = RANDOM_FORTUNA_NPOOLS,
277 };
278 
279 /* ARGSUSED */
280 static void
281 random_fortuna_init_alg(void *unused __unused)
282 {
283 	int i;
284 #ifdef _KERNEL
285 	struct sysctl_oid *random_fortuna_o;
286 #endif
287 
288 #ifdef RANDOM_LOADABLE
289 	p_random_alg_context = &random_alg_context;
290 #endif
291 
292 	RANDOM_RESEED_INIT_LOCK();
293 	/*
294 	 * Fortuna parameters. Do not adjust these unless you have
295 	 * have a very good clue about what they do!
296 	 */
297 	fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE;
298 #ifdef _KERNEL
299 	fortuna_state.fs_lasttime = 0;
300 	random_fortuna_o = SYSCTL_ADD_NODE(&random_clist,
301 		SYSCTL_STATIC_CHILDREN(_kern_random),
302 		OID_AUTO, "fortuna", CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
303 		"Fortuna Parameters");
304 	SYSCTL_ADD_PROC(&random_clist,
305 	    SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO, "minpoolsize",
306 	    CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE,
307 	    &fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE,
308 	    random_check_uint_fs_minpoolsize, "IU",
309 	    "Minimum pool size necessary to cause a reseed");
310 	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup"));
311 
312 	SYSCTL_ADD_BOOL(&random_clist, SYSCTL_CHILDREN(random_fortuna_o),
313 	    OID_AUTO, "concurrent_read", CTLFLAG_RDTUN,
314 	    &fortuna_concurrent_read, 0, "If non-zero, enable "
315 	    "feature to improve concurrent Fortuna performance.");
316 #endif
317 
318 	/*-
319 	 * FS&K - InitializePRNG()
320 	 *      - P_i = \epsilon
321 	 *      - ReseedCNT = 0
322 	 */
323 	for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
324 		randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
325 		fortuna_state.fs_pool[i].fsp_length = 0;
326 	}
327 	fortuna_state.fs_reseedcount = 0;
328 	/*-
329 	 * FS&K - InitializeGenerator()
330 	 *      - C = 0
331 	 *      - K = 0
332 	 */
333 	fortuna_state.fs_counter = UINT128_ZERO;
334 	explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key));
335 }
336 SYSINIT(random_alg, SI_SUB_RANDOM, SI_ORDER_SECOND, random_fortuna_init_alg,
337     NULL);
338 
339 /*-
340  * FS&K - AddRandomEvent()
341  * Process a single stochastic event off the harvest queue
342  */
343 static void
344 random_fortuna_process_event(struct harvest_event *event)
345 {
346 	u_int pl;
347 
348 	RANDOM_RESEED_LOCK();
349 	/*-
350 	 * FS&K - P_i = P_i|<harvested stuff>
351 	 * Accumulate the event into the appropriate pool
352 	 * where each event carries the destination information.
353 	 *
354 	 * The hash_init() and hash_finish() calls are done in
355 	 * random_fortuna_pre_read().
356 	 *
357 	 * We must be locked against pool state modification which can happen
358 	 * during accumulation/reseeding and reading/regating.
359 	 */
360 	pl = event->he_destination % RANDOM_FORTUNA_NPOOLS;
361 	/*
362 	 * If a VM generation ID changes (clone and play or VM rewind), we want
363 	 * to incorporate that as soon as possible.  Override destingation pool
364 	 * for immediate next use.
365 	 */
366 	if (event->he_source == RANDOM_PURE_VMGENID)
367 		pl = 0;
368 	/*
369 	 * We ignore low entropy static/counter fields towards the end of the
370 	 * he_event structure in order to increase measurable entropy when
371 	 * conducting SP800-90B entropy analysis measurements of seed material
372 	 * fed into PRNG.
373 	 * -- wdf
374 	 */
375 	KASSERT(event->he_size <= sizeof(event->he_entropy),
376 	    ("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n",
377 	    __func__, event->he_size, sizeof(event->he_entropy)));
378 	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
379 	    &event->he_somecounter, sizeof(event->he_somecounter));
380 	randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash,
381 	    event->he_entropy, event->he_size);
382 
383 	/*-
384 	 * Don't wrap the length.  This is a "saturating" add.
385 	 * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0],
386 	 * but it's been useful debugging to see them all.
387 	 */
388 	fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE,
389 	    fortuna_state.fs_pool[pl].fsp_length +
390 	    sizeof(event->he_somecounter) + event->he_size);
391 	RANDOM_RESEED_UNLOCK();
392 }
393 
394 /*-
395  * FS&K - Reseed()
396  * This introduces new key material into the output generator.
397  * Additionally it increments the output generator's counter
398  * variable C. When C > 0, the output generator is seeded and
399  * will deliver output.
400  * The entropy_data buffer passed is a very specific size; the
401  * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE.
402  */
403 static void
404 random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount)
405 {
406 	struct randomdev_hash context;
407 	uint8_t hash[RANDOM_KEYSIZE];
408 	const void *keymaterial;
409 	size_t keysz;
410 	bool seeded;
411 
412 	RANDOM_RESEED_ASSERT_LOCK_OWNED();
413 
414 	seeded = random_fortuna_seeded_internal();
415 	if (seeded) {
416 		randomdev_getkey(&fortuna_state.fs_key, &keymaterial, &keysz);
417 		KASSERT(keysz == RANDOM_KEYSIZE, ("%s: key size %zu not %u",
418 			__func__, keysz, (unsigned)RANDOM_KEYSIZE));
419 	}
420 
421 	/*-
422 	 * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m))
423 	 *      - C = C + 1
424 	 */
425 	randomdev_hash_init(&context);
426 	randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE);
427 	if (seeded)
428 		randomdev_hash_iterate(&context, keymaterial, keysz);
429 	randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount);
430 	randomdev_hash_finish(&context, hash);
431 	randomdev_hash_init(&context);
432 	randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE);
433 	randomdev_hash_finish(&context, hash);
434 	randomdev_encrypt_init(&fortuna_state.fs_key, hash);
435 	explicit_bzero(hash, sizeof(hash));
436 	/* Unblock the device if this is the first time we are reseeding. */
437 	if (uint128_is_zero(fortuna_state.fs_counter))
438 		randomdev_unblock();
439 	uint128_increment(&fortuna_state.fs_counter);
440 }
441 
442 /*-
443  * FS&K - RandomData() (Part 1)
444  * Used to return processed entropy from the PRNG. There is a pre_read
445  * required to be present (but it can be a stub) in order to allow
446  * specific actions at the begin of the read.
447  */
448 void
449 random_fortuna_pre_read(void)
450 {
451 #ifdef _KERNEL
452 	sbintime_t now;
453 #endif
454 	struct randomdev_hash context;
455 	uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS];
456 	uint8_t temp[RANDOM_KEYSIZE];
457 	u_int i;
458 
459 	KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0"));
460 	RANDOM_RESEED_LOCK();
461 #ifdef _KERNEL
462 	/* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */
463 	now = getsbinuptime();
464 #endif
465 
466 	if (fortuna_state.fs_pool[0].fsp_length < fortuna_state.fs_minpoolsize
467 #ifdef _KERNEL
468 	    /*
469 	     * FS&K - Use 'getsbinuptime()' to prevent reseed-spamming, but do
470 	     * not block initial seeding (fs_lasttime == 0).
471 	     */
472 	    || (__predict_true(fortuna_state.fs_lasttime != 0) &&
473 		now - fortuna_state.fs_lasttime <= SBT_1S/10)
474 #endif
475 	) {
476 		RANDOM_RESEED_UNLOCK();
477 		return;
478 	}
479 
480 #ifdef _KERNEL
481 	/*
482 	 * When set, pretend we do not have enough entropy to reseed yet.
483 	 */
484 	KFAIL_POINT_CODE(DEBUG_FP, random_fortuna_pre_read, {
485 		if (RETURN_VALUE != 0) {
486 			RANDOM_RESEED_UNLOCK();
487 			return;
488 		}
489 	});
490 #endif
491 
492 #ifdef _KERNEL
493 	fortuna_state.fs_lasttime = now;
494 #endif
495 
496 	/* FS&K - ReseedCNT = ReseedCNT + 1 */
497 	fortuna_state.fs_reseedcount++;
498 	/* s = \epsilon at start */
499 	for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) {
500 		/* FS&K - if Divides(ReseedCnt, 2^i) ... */
501 		if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) {
502 			/*-
503 			    * FS&K - temp = (P_i)
504 			    *      - P_i = \epsilon
505 			    *      - s = s|H(temp)
506 			    */
507 			randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp);
508 			randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash);
509 			fortuna_state.fs_pool[i].fsp_length = 0;
510 			randomdev_hash_init(&context);
511 			randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE);
512 			randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS);
513 		} else
514 			break;
515 	}
516 #ifdef _KERNEL
517 	SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool);
518 #endif
519 	/* FS&K */
520 	random_fortuna_reseed_internal(s, i);
521 	RANDOM_RESEED_UNLOCK();
522 
523 	/* Clean up and secure */
524 	explicit_bzero(s, sizeof(s));
525 	explicit_bzero(temp, sizeof(temp));
526 }
527 
528 /*
529  * This is basically GenerateBlocks() from FS&K.
530  *
531  * It differs in two ways:
532  *
533  * 1. Chacha20 is tolerant of non-block-multiple request sizes, so we do not
534  * need to handle any remainder bytes specially and can just pass the length
535  * directly to the PRF construction; and
536  *
537  * 2. Chacha20 is a 512-bit block size cipher (whereas AES has 128-bit block
538  * size, regardless of key size).  This means Chacha does not require re-keying
539  * every 1MiB.  This is implied by the math in FS&K 9.4 and mentioned
540  * explicitly in the conclusion, "If we had a block cipher with a 256-bit [or
541  * greater] block size, then the collisions would not have been an issue at
542  * all" (p. 144).
543  *
544  * 3. In conventional ("locked") mode, we produce a maximum of PAGE_SIZE output
545  * at a time before dropping the lock, to not bully the lock especially.  This
546  * has been the status quo since 2015 (r284959).
547  *
548  * The upstream caller random_fortuna_read is responsible for zeroing out
549  * sensitive buffers provided as parameters to this routine.
550  */
551 enum {
552 	FORTUNA_UNLOCKED = false,
553 	FORTUNA_LOCKED = true
554 };
555 static void
556 random_fortuna_genbytes(uint8_t *buf, size_t bytecount,
557     uint8_t newkey[static RANDOM_KEYSIZE], uint128_t *p_counter,
558     union randomdev_key *p_key, bool locked)
559 {
560 	uint8_t remainder_buf[RANDOM_BLOCKSIZE];
561 	size_t chunk_size;
562 
563 	if (locked)
564 		RANDOM_RESEED_ASSERT_LOCK_OWNED();
565 	else
566 		RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
567 
568 	/*
569 	 * Easy case: don't have to worry about bullying the global mutex,
570 	 * don't have to worry about rekeying Chacha; API is byte-oriented.
571 	 */
572 	if (!locked && random_chachamode) {
573 		randomdev_keystream(p_key, p_counter, buf, bytecount);
574 		return;
575 	}
576 
577 	if (locked) {
578 		/*
579 		 * While holding the global lock, limit PRF generation to
580 		 * mitigate, but not eliminate, bullying symptoms.
581 		 */
582 		chunk_size = PAGE_SIZE;
583 	} else {
584 		/*
585 		* 128-bit block ciphers like AES must be re-keyed at 1MB
586 		* intervals to avoid unacceptable statistical differentiation
587 		* from true random data (FS&K 9.4, p. 143-144).
588 		*/
589 		MPASS(!random_chachamode);
590 		chunk_size = RANDOM_FORTUNA_MAX_READ;
591 	}
592 
593 	chunk_size = MIN(bytecount, chunk_size);
594 	if (!random_chachamode)
595 		chunk_size = rounddown(chunk_size, RANDOM_BLOCKSIZE);
596 
597 	while (bytecount >= chunk_size && chunk_size > 0) {
598 		randomdev_keystream(p_key, p_counter, buf, chunk_size);
599 
600 		buf += chunk_size;
601 		bytecount -= chunk_size;
602 
603 		/* We have to rekey if there is any data remaining to be
604 		 * generated, in two scenarios:
605 		 *
606 		 * locked: we need to rekey before we unlock and release the
607 		 * global state to another consumer; or
608 		 *
609 		 * unlocked: we need to rekey because we're in AES mode and are
610 		 * required to rekey at chunk_size==1MB.  But we do not need to
611 		 * rekey during the last trailing <1MB chunk.
612 		 */
613 		if (bytecount > 0) {
614 			if (locked || chunk_size == RANDOM_FORTUNA_MAX_READ) {
615 				randomdev_keystream(p_key, p_counter, newkey,
616 				    RANDOM_KEYSIZE);
617 				randomdev_encrypt_init(p_key, newkey);
618 			}
619 
620 			/*
621 			 * If we're holding the global lock, yield it briefly
622 			 * now.
623 			 */
624 			if (locked) {
625 				RANDOM_RESEED_UNLOCK();
626 				RANDOM_RESEED_LOCK();
627 			}
628 
629 			/*
630 			 * At the trailing end, scale down chunk_size from 1MB or
631 			 * PAGE_SIZE to all remaining full blocks (AES) or all
632 			 * remaining bytes (Chacha).
633 			 */
634 			if (bytecount < chunk_size) {
635 				if (random_chachamode)
636 					chunk_size = bytecount;
637 				else if (bytecount >= RANDOM_BLOCKSIZE)
638 					chunk_size = rounddown(bytecount,
639 					    RANDOM_BLOCKSIZE);
640 				else
641 					break;
642 			}
643 		}
644 	}
645 
646 	/*
647 	 * Generate any partial AES block remaining into a temporary buffer and
648 	 * copy the desired substring out.
649 	 */
650 	if (bytecount > 0) {
651 		MPASS(!random_chachamode);
652 
653 		randomdev_keystream(p_key, p_counter, remainder_buf,
654 		    sizeof(remainder_buf));
655 	}
656 
657 	/*
658 	 * In locked mode, re-key global K before dropping the lock, which we
659 	 * don't need for memcpy/bzero below.
660 	 */
661 	if (locked) {
662 		randomdev_keystream(p_key, p_counter, newkey, RANDOM_KEYSIZE);
663 		randomdev_encrypt_init(p_key, newkey);
664 		RANDOM_RESEED_UNLOCK();
665 	}
666 
667 	if (bytecount > 0) {
668 		memcpy(buf, remainder_buf, bytecount);
669 		explicit_bzero(remainder_buf, sizeof(remainder_buf));
670 	}
671 }
672 
673 
674 /*
675  * Handle only "concurrency-enabled" Fortuna reads to simplify logic.
676  *
677  * Caller (random_fortuna_read) is responsible for zeroing out sensitive
678  * buffers provided as parameters to this routine.
679  */
680 static void
681 random_fortuna_read_concurrent(uint8_t *buf, size_t bytecount,
682     uint8_t newkey[static RANDOM_KEYSIZE])
683 {
684 	union randomdev_key key_copy;
685 	uint128_t counter_copy;
686 	size_t blockcount;
687 
688 	MPASS(fortuna_concurrent_read);
689 
690 	/*
691 	 * Compute number of blocks required for the PRF request ('delta C').
692 	 * We will step the global counter 'C' by this number under lock, and
693 	 * then actually consume the counter values outside the lock.
694 	 *
695 	 * This ensures that contemporaneous but independent requests for
696 	 * randomness receive distinct 'C' values and thus independent PRF
697 	 * results.
698 	 */
699 	if (random_chachamode) {
700 		blockcount = howmany(bytecount, CHACHA_BLOCKLEN);
701 	} else {
702 		blockcount = howmany(bytecount, RANDOM_BLOCKSIZE);
703 
704 		/*
705 		 * Need to account for the additional blocks generated by
706 		 * rekeying when updating the global fs_counter.
707 		 */
708 		blockcount += RANDOM_KEYS_PER_BLOCK *
709 		    (blockcount / RANDOM_FORTUNA_BLOCKS_PER_KEY);
710 	}
711 
712 	RANDOM_RESEED_LOCK();
713 	KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
714 
715 	/*
716 	 * Save the original counter and key values that will be used as the
717 	 * PRF for this particular consumer.
718 	 */
719 	memcpy(&counter_copy, &fortuna_state.fs_counter, sizeof(counter_copy));
720 	memcpy(&key_copy, &fortuna_state.fs_key, sizeof(key_copy));
721 
722 	/*
723 	 * Step the counter as if we had generated 'bytecount' blocks for this
724 	 * consumer.  I.e., ensure that the next consumer gets an independent
725 	 * range of counter values once we drop the global lock.
726 	 */
727 	uint128_add64(&fortuna_state.fs_counter, blockcount);
728 
729 	/*
730 	 * We still need to Rekey the global 'K' between independent calls;
731 	 * this is no different from conventional Fortuna.  Note that
732 	 * 'randomdev_keystream()' will step the fs_counter 'C' appropriately
733 	 * for the blocks needed for the 'newkey'.
734 	 *
735 	 * (This is part of PseudoRandomData() in FS&K, 9.4.4.)
736 	 */
737 	randomdev_keystream(&fortuna_state.fs_key, &fortuna_state.fs_counter,
738 	    newkey, RANDOM_KEYSIZE);
739 	randomdev_encrypt_init(&fortuna_state.fs_key, newkey);
740 
741 	/*
742 	 * We have everything we need to generate a unique PRF for this
743 	 * consumer without touching global state.
744 	 */
745 	RANDOM_RESEED_UNLOCK();
746 
747 	random_fortuna_genbytes(buf, bytecount, newkey, &counter_copy,
748 	    &key_copy, FORTUNA_UNLOCKED);
749 	RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
750 
751 	explicit_bzero(&counter_copy, sizeof(counter_copy));
752 	explicit_bzero(&key_copy, sizeof(key_copy));
753 }
754 
755 /*-
756  * FS&K - RandomData() (Part 2)
757  * Main read from Fortuna, continued. May be called multiple times after
758  * the random_fortuna_pre_read() above.
759  *
760  * The supplied buf MAY not be a multiple of RANDOM_BLOCKSIZE in size; it is
761  * the responsibility of the algorithm to accommodate partial block reads, if a
762  * block output mode is used.
763  */
764 void
765 random_fortuna_read(uint8_t *buf, size_t bytecount)
766 {
767 	uint8_t newkey[RANDOM_KEYSIZE];
768 
769 	if (fortuna_concurrent_read) {
770 		random_fortuna_read_concurrent(buf, bytecount, newkey);
771 		goto out;
772 	}
773 
774 	RANDOM_RESEED_LOCK();
775 	KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0"));
776 
777 	random_fortuna_genbytes(buf, bytecount, newkey,
778 	    &fortuna_state.fs_counter, &fortuna_state.fs_key, FORTUNA_LOCKED);
779 	/* Returns unlocked */
780 	RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED();
781 
782 out:
783 	explicit_bzero(newkey, sizeof(newkey));
784 }
785 
786 #ifdef _KERNEL
787 static bool block_seeded_status = false;
788 SYSCTL_BOOL(_kern_random, OID_AUTO, block_seeded_status, CTLFLAG_RWTUN,
789     &block_seeded_status, 0,
790     "If non-zero, pretend Fortuna is in an unseeded state.  By setting "
791     "this as a tunable, boot can be tested as if the random device is "
792     "unavailable.");
793 #endif
794 
795 static bool
796 random_fortuna_seeded_internal(void)
797 {
798 	return (!uint128_is_zero(fortuna_state.fs_counter));
799 }
800 
801 static bool
802 random_fortuna_seeded(void)
803 {
804 
805 #ifdef _KERNEL
806 	if (block_seeded_status)
807 		return (false);
808 #endif
809 
810 	if (__predict_true(random_fortuna_seeded_internal()))
811 		return (true);
812 
813 	/*
814 	 * Maybe we have enough entropy in the zeroth pool but just haven't
815 	 * kicked the initial seed step.  Do so now.
816 	 */
817 	random_fortuna_pre_read();
818 
819 	return (random_fortuna_seeded_internal());
820 }
821