1 /*- 2 * Copyright (c) 2017 W. Dean Freeman 3 * Copyright (c) 2013-2015 Mark R V Murray 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer 11 * in this position and unchanged. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * 27 */ 28 29 /* 30 * This implementation of Fortuna is based on the descriptions found in 31 * ISBN 978-0-470-47424-2 "Cryptography Engineering" by Ferguson, Schneier 32 * and Kohno ("FS&K"). 33 */ 34 35 #include <sys/param.h> 36 #include <sys/limits.h> 37 38 #ifdef _KERNEL 39 #include <sys/fail.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/random.h> 45 #include <sys/sdt.h> 46 #include <sys/sysctl.h> 47 #include <sys/systm.h> 48 49 #include <machine/cpu.h> 50 #else /* !_KERNEL */ 51 #include <inttypes.h> 52 #include <stdbool.h> 53 #include <stdio.h> 54 #include <stdlib.h> 55 #include <string.h> 56 #include <threads.h> 57 58 #include "unit_test.h" 59 #endif /* _KERNEL */ 60 61 #include <crypto/chacha20/chacha.h> 62 #include <crypto/rijndael/rijndael-api-fst.h> 63 #include <crypto/sha2/sha256.h> 64 65 #include <dev/random/hash.h> 66 #include <dev/random/randomdev.h> 67 #ifdef _KERNEL 68 #include <dev/random/random_harvestq.h> 69 #endif 70 #include <dev/random/uint128.h> 71 #include <dev/random/fortuna.h> 72 73 /* Defined in FS&K */ 74 #define RANDOM_FORTUNA_MAX_READ (1 << 20) /* Max bytes from AES before rekeying */ 75 #define RANDOM_FORTUNA_BLOCKS_PER_KEY (1 << 16) /* Max blocks from AES before rekeying */ 76 CTASSERT(RANDOM_FORTUNA_BLOCKS_PER_KEY * RANDOM_BLOCKSIZE == 77 RANDOM_FORTUNA_MAX_READ); 78 79 /* 80 * The allowable range of RANDOM_FORTUNA_DEFPOOLSIZE. The default value is above. 81 * Making RANDOM_FORTUNA_DEFPOOLSIZE too large will mean a long time between reseeds, 82 * and too small may compromise initial security but get faster reseeds. 83 */ 84 #define RANDOM_FORTUNA_MINPOOLSIZE 16 85 #define RANDOM_FORTUNA_MAXPOOLSIZE INT_MAX 86 CTASSERT(RANDOM_FORTUNA_MINPOOLSIZE <= RANDOM_FORTUNA_DEFPOOLSIZE); 87 CTASSERT(RANDOM_FORTUNA_DEFPOOLSIZE <= RANDOM_FORTUNA_MAXPOOLSIZE); 88 89 /* This algorithm (and code) presumes that RANDOM_KEYSIZE is twice as large as RANDOM_BLOCKSIZE */ 90 CTASSERT(RANDOM_BLOCKSIZE == sizeof(uint128_t)); 91 CTASSERT(RANDOM_KEYSIZE == 2*RANDOM_BLOCKSIZE); 92 93 /* Probes for dtrace(1) */ 94 #ifdef _KERNEL 95 SDT_PROVIDER_DECLARE(random); 96 SDT_PROVIDER_DEFINE(random); 97 SDT_PROBE_DEFINE2(random, fortuna, event_processor, debug, "u_int", "struct fs_pool *"); 98 #endif /* _KERNEL */ 99 100 /* 101 * This is the beastie that needs protecting. It contains all of the 102 * state that we are excited about. Exactly one is instantiated. 103 */ 104 static struct fortuna_state { 105 struct fs_pool { /* P_i */ 106 u_int fsp_length; /* Only the first one is used by Fortuna */ 107 struct randomdev_hash fsp_hash; 108 } fs_pool[RANDOM_FORTUNA_NPOOLS]; 109 u_int fs_reseedcount; /* ReseedCnt */ 110 uint128_t fs_counter; /* C */ 111 union randomdev_key fs_key; /* K */ 112 u_int fs_minpoolsize; /* Extras */ 113 /* Extras for the OS */ 114 #ifdef _KERNEL 115 /* For use when 'pacing' the reseeds */ 116 sbintime_t fs_lasttime; 117 #endif 118 /* Reseed lock */ 119 mtx_t fs_mtx; 120 } fortuna_state; 121 122 /* 123 * This knob enables or disables the "Concurrent Reads" Fortuna feature. 124 * 125 * The benefit of Concurrent Reads is improved concurrency in Fortuna. That is 126 * reflected in two related aspects: 127 * 128 * 1. Concurrent full-rate devrandom readers can achieve similar throughput to 129 * a single reader thread (at least up to a modest number of cores; the 130 * non-concurrent design falls over at 2 readers). 131 * 132 * 2. The rand_harvestq process spends much less time spinning when one or more 133 * readers is processing a large request. Partially this is due to 134 * rand_harvestq / ra_event_processor design, which only passes one event at 135 * a time to the underlying algorithm. Each time, Fortuna must take its 136 * global state mutex, potentially blocking on a reader. Our adaptive 137 * mutexes assume that a lock holder currently on CPU will release the lock 138 * quickly, and spin if the owning thread is currently running. 139 * 140 * (There is no reason rand_harvestq necessarily has to use the same lock as 141 * the generator, or that it must necessarily drop and retake locks 142 * repeatedly, but that is the current status quo.) 143 * 144 * The concern is that the reduced lock scope might results in a less safe 145 * random(4) design. However, the reduced-lock scope design is still 146 * fundamentally Fortuna. This is discussed below. 147 * 148 * Fortuna Read() only needs mutual exclusion between readers to correctly 149 * update the shared read-side state: C, the 128-bit counter; and K, the 150 * current cipher/PRF key. 151 * 152 * In the Fortuna design, the global counter C should provide an independent 153 * range of values per request. 154 * 155 * Under lock, we can save a copy of C on the stack, and increment the global C 156 * by the number of blocks a Read request will require. 157 * 158 * Still under lock, we can save a copy of the key K on the stack, and then 159 * perform the usual key erasure K' <- Keystream(C, K, ...). This does require 160 * generating 256 bits (32 bytes) of cryptographic keystream output with the 161 * global lock held, but that's all; none of the API keystream generation must 162 * be performed under lock. 163 * 164 * At this point, we may unlock. 165 * 166 * Some example timelines below (to oversimplify, all requests are in units of 167 * native blocks, and the keysize happens to be equal or less to the native 168 * blocksize of the underlying cipher, and the same sequence of two requests 169 * arrive in the same order). The possibly expensive consumer keystream 170 * generation portion is marked with '**'. 171 * 172 * Status Quo fortuna_read() Reduced-scope locking 173 * ------------------------- --------------------- 174 * C=C_0, K=K_0 C=C_0, K=K_0 175 * <Thr 1 requests N blocks> <Thr 1 requests N blocks> 176 * 1:Lock() 1:Lock() 177 * <Thr 2 requests M blocks> <Thr 2 requests M blocks> 178 * 1:GenBytes() 1:stack_C := C_0 179 * 1: Keystream(C_0, K_0, N) 1:stack_K := K_0 180 * 1: <N blocks generated>** 1:C' := C_0 + N 181 * 1: C' := C_0 + N 1:K' := Keystream(C', K_0, 1) 182 * 1: <- Keystream 1: <1 block generated> 183 * 1: K' := Keystream(C', K_0, 1) 1: C'' := C' + 1 184 * 1: <1 block generated> 1: <- Keystream 185 * 1: C'' := C' + 1 1:Unlock() 186 * 1: <- Keystream 187 * 1: <- GenBytes() 188 * 1:Unlock() 189 * 190 * Just prior to unlock, shared state is identical: 191 * ------------------------------------------------ 192 * C'' == C_0 + N + 1 C'' == C_0 + N + 1 193 * K' == keystream generated from K' == keystream generated from 194 * C_0 + N, K_0. C_0 + N, K_0. 195 * K_0 has been erased. K_0 has been erased. 196 * 197 * After both designs unlock, the 2nd reader is unblocked. 198 * 199 * 2:Lock() 2:Lock() 200 * 2:GenBytes() 2:stack_C' := C'' 201 * 2: Keystream(C'', K', M) 2:stack_K' := K' 202 * 2: <M blocks generated>** 2:C''' := C'' + M 203 * 2: C''' := C'' + M 2:K'' := Keystream(C''', K', 1) 204 * 2: <- Keystream 2: <1 block generated> 205 * 2: K'' := Keystream(C''', K', 1) 2: C'''' := C''' + 1 206 * 2: <1 block generated> 2: <- Keystream 207 * 2: C'''' := C''' + 1 2:Unlock() 208 * 2: <- Keystream 209 * 2: <- GenBytes() 210 * 2:Unlock() 211 * 212 * Just prior to unlock, global state is identical: 213 * ------------------------------------------------------ 214 * 215 * C'''' == (C_0 + N + 1) + M + 1 C'''' == (C_0 + N + 1) + M + 1 216 * K'' == keystream generated from K'' == keystream generated from 217 * C_0 + N + 1 + M, K'. C_0 + N + 1 + M, K'. 218 * K' has been erased. K' has been erased. 219 * 220 * Finally, in the new design, the two consumer threads can finish the 221 * remainder of the generation at any time (including simultaneously): 222 * 223 * 1: GenBytes() 224 * 1: Keystream(stack_C, stack_K, N) 225 * 1: <N blocks generated>** 226 * 1: <- Keystream 227 * 1: <- GenBytes 228 * 1:ExplicitBzero(stack_C, stack_K) 229 * 230 * 2: GenBytes() 231 * 2: Keystream(stack_C', stack_K', M) 232 * 2: <M blocks generated>** 233 * 2: <- Keystream 234 * 2: <- GenBytes 235 * 2:ExplicitBzero(stack_C', stack_K') 236 * 237 * The generated user keystream for both threads is identical between the two 238 * implementations: 239 * 240 * 1: Keystream(C_0, K_0, N) 1: Keystream(stack_C, stack_K, N) 241 * 2: Keystream(C'', K', M) 2: Keystream(stack_C', stack_K', M) 242 * 243 * (stack_C == C_0; stack_K == K_0; stack_C' == C''; stack_K' == K'.) 244 */ 245 static bool fortuna_concurrent_read __read_frequently = true; 246 247 #ifdef _KERNEL 248 static struct sysctl_ctx_list random_clist; 249 RANDOM_CHECK_UINT(fs_minpoolsize, RANDOM_FORTUNA_MINPOOLSIZE, RANDOM_FORTUNA_MAXPOOLSIZE); 250 #else 251 static uint8_t zero_region[RANDOM_ZERO_BLOCKSIZE]; 252 #endif 253 254 static void random_fortuna_pre_read(void); 255 static void random_fortuna_read(uint8_t *, size_t); 256 static bool random_fortuna_seeded(void); 257 static bool random_fortuna_seeded_internal(void); 258 static void random_fortuna_process_event(struct harvest_event *); 259 260 static void random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount); 261 262 #ifdef RANDOM_LOADABLE 263 static 264 #endif 265 const struct random_algorithm random_alg_context = { 266 .ra_ident = "Fortuna", 267 .ra_pre_read = random_fortuna_pre_read, 268 .ra_read = random_fortuna_read, 269 .ra_seeded = random_fortuna_seeded, 270 .ra_event_processor = random_fortuna_process_event, 271 .ra_poolcount = RANDOM_FORTUNA_NPOOLS, 272 }; 273 274 /* ARGSUSED */ 275 static void 276 random_fortuna_init_alg(void *unused __unused) 277 { 278 int i; 279 #ifdef _KERNEL 280 struct sysctl_oid *random_fortuna_o; 281 #endif 282 283 #ifdef RANDOM_LOADABLE 284 p_random_alg_context = &random_alg_context; 285 #endif 286 287 RANDOM_RESEED_INIT_LOCK(); 288 /* 289 * Fortuna parameters. Do not adjust these unless you have 290 * have a very good clue about what they do! 291 */ 292 fortuna_state.fs_minpoolsize = RANDOM_FORTUNA_DEFPOOLSIZE; 293 #ifdef _KERNEL 294 fortuna_state.fs_lasttime = 0; 295 random_fortuna_o = SYSCTL_ADD_NODE(&random_clist, 296 SYSCTL_STATIC_CHILDREN(_kern_random), 297 OID_AUTO, "fortuna", CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 298 "Fortuna Parameters"); 299 SYSCTL_ADD_PROC(&random_clist, 300 SYSCTL_CHILDREN(random_fortuna_o), OID_AUTO, "minpoolsize", 301 CTLTYPE_UINT | CTLFLAG_RWTUN | CTLFLAG_MPSAFE, 302 &fortuna_state.fs_minpoolsize, RANDOM_FORTUNA_DEFPOOLSIZE, 303 random_check_uint_fs_minpoolsize, "IU", 304 "Minimum pool size necessary to cause a reseed"); 305 KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0 at startup")); 306 307 SYSCTL_ADD_BOOL(&random_clist, SYSCTL_CHILDREN(random_fortuna_o), 308 OID_AUTO, "concurrent_read", CTLFLAG_RDTUN, 309 &fortuna_concurrent_read, 0, "If non-zero, enable " 310 "feature to improve concurrent Fortuna performance."); 311 #endif 312 313 /*- 314 * FS&K - InitializePRNG() 315 * - P_i = \epsilon 316 * - ReseedCNT = 0 317 */ 318 for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) { 319 randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash); 320 fortuna_state.fs_pool[i].fsp_length = 0; 321 } 322 fortuna_state.fs_reseedcount = 0; 323 /*- 324 * FS&K - InitializeGenerator() 325 * - C = 0 326 * - K = 0 327 */ 328 fortuna_state.fs_counter = UINT128_ZERO; 329 explicit_bzero(&fortuna_state.fs_key, sizeof(fortuna_state.fs_key)); 330 } 331 SYSINIT(random_alg, SI_SUB_RANDOM, SI_ORDER_SECOND, random_fortuna_init_alg, 332 NULL); 333 334 /*- 335 * FS&K - AddRandomEvent() 336 * Process a single stochastic event off the harvest queue 337 */ 338 static void 339 random_fortuna_process_event(struct harvest_event *event) 340 { 341 u_int pl; 342 343 RANDOM_RESEED_LOCK(); 344 /*- 345 * FS&K - P_i = P_i|<harvested stuff> 346 * Accumulate the event into the appropriate pool 347 * where each event carries the destination information. 348 * 349 * The hash_init() and hash_finish() calls are done in 350 * random_fortuna_pre_read(). 351 * 352 * We must be locked against pool state modification which can happen 353 * during accumulation/reseeding and reading/regating. 354 */ 355 pl = event->he_destination % RANDOM_FORTUNA_NPOOLS; 356 /* 357 * If a VM generation ID changes (clone and play or VM rewind), we want 358 * to incorporate that as soon as possible. Override destingation pool 359 * for immediate next use. 360 */ 361 if (event->he_source == RANDOM_PURE_VMGENID) 362 pl = 0; 363 /* 364 * We ignore low entropy static/counter fields towards the end of the 365 * he_event structure in order to increase measurable entropy when 366 * conducting SP800-90B entropy analysis measurements of seed material 367 * fed into PRNG. 368 * -- wdf 369 */ 370 KASSERT(event->he_size <= sizeof(event->he_entropy), 371 ("%s: event->he_size: %hhu > sizeof(event->he_entropy): %zu\n", 372 __func__, event->he_size, sizeof(event->he_entropy))); 373 randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash, 374 &event->he_somecounter, sizeof(event->he_somecounter)); 375 randomdev_hash_iterate(&fortuna_state.fs_pool[pl].fsp_hash, 376 event->he_entropy, event->he_size); 377 378 /*- 379 * Don't wrap the length. This is a "saturating" add. 380 * XXX: FIX!!: We don't actually need lengths for anything but fs_pool[0], 381 * but it's been useful debugging to see them all. 382 */ 383 fortuna_state.fs_pool[pl].fsp_length = MIN(RANDOM_FORTUNA_MAXPOOLSIZE, 384 fortuna_state.fs_pool[pl].fsp_length + 385 sizeof(event->he_somecounter) + event->he_size); 386 RANDOM_RESEED_UNLOCK(); 387 } 388 389 /*- 390 * FS&K - Reseed() 391 * This introduces new key material into the output generator. 392 * Additionally it increments the output generator's counter 393 * variable C. When C > 0, the output generator is seeded and 394 * will deliver output. 395 * The entropy_data buffer passed is a very specific size; the 396 * product of RANDOM_FORTUNA_NPOOLS and RANDOM_KEYSIZE. 397 */ 398 static void 399 random_fortuna_reseed_internal(uint32_t *entropy_data, u_int blockcount) 400 { 401 struct randomdev_hash context; 402 uint8_t hash[RANDOM_KEYSIZE]; 403 const void *keymaterial; 404 size_t keysz; 405 bool seeded; 406 407 RANDOM_RESEED_ASSERT_LOCK_OWNED(); 408 409 seeded = random_fortuna_seeded_internal(); 410 if (seeded) { 411 randomdev_getkey(&fortuna_state.fs_key, &keymaterial, &keysz); 412 KASSERT(keysz == RANDOM_KEYSIZE, ("%s: key size %zu not %u", 413 __func__, keysz, (unsigned)RANDOM_KEYSIZE)); 414 } 415 416 /*- 417 * FS&K - K = Hd(K|s) where Hd(m) is H(H(0^512|m)) 418 * - C = C + 1 419 */ 420 randomdev_hash_init(&context); 421 randomdev_hash_iterate(&context, zero_region, RANDOM_ZERO_BLOCKSIZE); 422 if (seeded) 423 randomdev_hash_iterate(&context, keymaterial, keysz); 424 randomdev_hash_iterate(&context, entropy_data, RANDOM_KEYSIZE*blockcount); 425 randomdev_hash_finish(&context, hash); 426 randomdev_hash_init(&context); 427 randomdev_hash_iterate(&context, hash, RANDOM_KEYSIZE); 428 randomdev_hash_finish(&context, hash); 429 randomdev_encrypt_init(&fortuna_state.fs_key, hash); 430 explicit_bzero(hash, sizeof(hash)); 431 /* Unblock the device if this is the first time we are reseeding. */ 432 if (uint128_is_zero(fortuna_state.fs_counter)) 433 randomdev_unblock(); 434 uint128_increment(&fortuna_state.fs_counter); 435 } 436 437 /*- 438 * FS&K - RandomData() (Part 1) 439 * Used to return processed entropy from the PRNG. There is a pre_read 440 * required to be present (but it can be a stub) in order to allow 441 * specific actions at the begin of the read. 442 */ 443 void 444 random_fortuna_pre_read(void) 445 { 446 #ifdef _KERNEL 447 sbintime_t now; 448 #endif 449 struct randomdev_hash context; 450 uint32_t s[RANDOM_FORTUNA_NPOOLS*RANDOM_KEYSIZE_WORDS]; 451 uint8_t temp[RANDOM_KEYSIZE]; 452 u_int i; 453 454 KASSERT(fortuna_state.fs_minpoolsize > 0, ("random: Fortuna threshold must be > 0")); 455 RANDOM_RESEED_LOCK(); 456 #ifdef _KERNEL 457 /* FS&K - Use 'getsbinuptime()' to prevent reseed-spamming. */ 458 now = getsbinuptime(); 459 #endif 460 461 if (fortuna_state.fs_pool[0].fsp_length < fortuna_state.fs_minpoolsize 462 #ifdef _KERNEL 463 /* 464 * FS&K - Use 'getsbinuptime()' to prevent reseed-spamming, but do 465 * not block initial seeding (fs_lasttime == 0). 466 */ 467 || (__predict_true(fortuna_state.fs_lasttime != 0) && 468 now - fortuna_state.fs_lasttime <= SBT_1S/10) 469 #endif 470 ) { 471 RANDOM_RESEED_UNLOCK(); 472 return; 473 } 474 475 #ifdef _KERNEL 476 /* 477 * When set, pretend we do not have enough entropy to reseed yet. 478 */ 479 KFAIL_POINT_CODE(DEBUG_FP, random_fortuna_pre_read, { 480 if (RETURN_VALUE != 0) { 481 RANDOM_RESEED_UNLOCK(); 482 return; 483 } 484 }); 485 #endif 486 487 #ifdef _KERNEL 488 fortuna_state.fs_lasttime = now; 489 #endif 490 491 /* FS&K - ReseedCNT = ReseedCNT + 1 */ 492 fortuna_state.fs_reseedcount++; 493 /* s = \epsilon at start */ 494 for (i = 0; i < RANDOM_FORTUNA_NPOOLS; i++) { 495 /* FS&K - if Divides(ReseedCnt, 2^i) ... */ 496 if ((fortuna_state.fs_reseedcount % (1 << i)) == 0) { 497 /*- 498 * FS&K - temp = (P_i) 499 * - P_i = \epsilon 500 * - s = s|H(temp) 501 */ 502 randomdev_hash_finish(&fortuna_state.fs_pool[i].fsp_hash, temp); 503 randomdev_hash_init(&fortuna_state.fs_pool[i].fsp_hash); 504 fortuna_state.fs_pool[i].fsp_length = 0; 505 randomdev_hash_init(&context); 506 randomdev_hash_iterate(&context, temp, RANDOM_KEYSIZE); 507 randomdev_hash_finish(&context, s + i*RANDOM_KEYSIZE_WORDS); 508 } else 509 break; 510 } 511 #ifdef _KERNEL 512 SDT_PROBE2(random, fortuna, event_processor, debug, fortuna_state.fs_reseedcount, fortuna_state.fs_pool); 513 #endif 514 /* FS&K */ 515 random_fortuna_reseed_internal(s, i); 516 RANDOM_RESEED_UNLOCK(); 517 518 /* Clean up and secure */ 519 explicit_bzero(s, sizeof(s)); 520 explicit_bzero(temp, sizeof(temp)); 521 } 522 523 /* 524 * This is basically GenerateBlocks() from FS&K. 525 * 526 * It differs in two ways: 527 * 528 * 1. Chacha20 is tolerant of non-block-multiple request sizes, so we do not 529 * need to handle any remainder bytes specially and can just pass the length 530 * directly to the PRF construction; and 531 * 532 * 2. Chacha20 is a 512-bit block size cipher (whereas AES has 128-bit block 533 * size, regardless of key size). This means Chacha does not require re-keying 534 * every 1MiB. This is implied by the math in FS&K 9.4 and mentioned 535 * explicitly in the conclusion, "If we had a block cipher with a 256-bit [or 536 * greater] block size, then the collisions would not have been an issue at 537 * all" (p. 144). 538 * 539 * 3. In conventional ("locked") mode, we produce a maximum of PAGE_SIZE output 540 * at a time before dropping the lock, to not bully the lock especially. This 541 * has been the status quo since 2015 (r284959). 542 * 543 * The upstream caller random_fortuna_read is responsible for zeroing out 544 * sensitive buffers provided as parameters to this routine. 545 */ 546 enum { 547 FORTUNA_UNLOCKED = false, 548 FORTUNA_LOCKED = true 549 }; 550 static void 551 random_fortuna_genbytes(uint8_t *buf, size_t bytecount, 552 uint8_t newkey[static RANDOM_KEYSIZE], uint128_t *p_counter, 553 union randomdev_key *p_key, bool locked) 554 { 555 uint8_t remainder_buf[RANDOM_BLOCKSIZE]; 556 size_t chunk_size; 557 558 if (locked) 559 RANDOM_RESEED_ASSERT_LOCK_OWNED(); 560 else 561 RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED(); 562 563 /* 564 * Easy case: don't have to worry about bullying the global mutex, 565 * don't have to worry about rekeying Chacha; API is byte-oriented. 566 */ 567 if (!locked && random_chachamode) { 568 randomdev_keystream(p_key, p_counter, buf, bytecount); 569 return; 570 } 571 572 if (locked) { 573 /* 574 * While holding the global lock, limit PRF generation to 575 * mitigate, but not eliminate, bullying symptoms. 576 */ 577 chunk_size = PAGE_SIZE; 578 } else { 579 /* 580 * 128-bit block ciphers like AES must be re-keyed at 1MB 581 * intervals to avoid unacceptable statistical differentiation 582 * from true random data (FS&K 9.4, p. 143-144). 583 */ 584 MPASS(!random_chachamode); 585 chunk_size = RANDOM_FORTUNA_MAX_READ; 586 } 587 588 chunk_size = MIN(bytecount, chunk_size); 589 if (!random_chachamode) 590 chunk_size = rounddown(chunk_size, RANDOM_BLOCKSIZE); 591 592 while (bytecount >= chunk_size && chunk_size > 0) { 593 randomdev_keystream(p_key, p_counter, buf, chunk_size); 594 595 buf += chunk_size; 596 bytecount -= chunk_size; 597 598 /* We have to rekey if there is any data remaining to be 599 * generated, in two scenarios: 600 * 601 * locked: we need to rekey before we unlock and release the 602 * global state to another consumer; or 603 * 604 * unlocked: we need to rekey because we're in AES mode and are 605 * required to rekey at chunk_size==1MB. But we do not need to 606 * rekey during the last trailing <1MB chunk. 607 */ 608 if (bytecount > 0) { 609 if (locked || chunk_size == RANDOM_FORTUNA_MAX_READ) { 610 randomdev_keystream(p_key, p_counter, newkey, 611 RANDOM_KEYSIZE); 612 randomdev_encrypt_init(p_key, newkey); 613 } 614 615 /* 616 * If we're holding the global lock, yield it briefly 617 * now. 618 */ 619 if (locked) { 620 RANDOM_RESEED_UNLOCK(); 621 RANDOM_RESEED_LOCK(); 622 } 623 624 /* 625 * At the trailing end, scale down chunk_size from 1MB or 626 * PAGE_SIZE to all remaining full blocks (AES) or all 627 * remaining bytes (Chacha). 628 */ 629 if (bytecount < chunk_size) { 630 if (random_chachamode) 631 chunk_size = bytecount; 632 else if (bytecount >= RANDOM_BLOCKSIZE) 633 chunk_size = rounddown(bytecount, 634 RANDOM_BLOCKSIZE); 635 else 636 break; 637 } 638 } 639 } 640 641 /* 642 * Generate any partial AES block remaining into a temporary buffer and 643 * copy the desired substring out. 644 */ 645 if (bytecount > 0) { 646 MPASS(!random_chachamode); 647 648 randomdev_keystream(p_key, p_counter, remainder_buf, 649 sizeof(remainder_buf)); 650 } 651 652 /* 653 * In locked mode, re-key global K before dropping the lock, which we 654 * don't need for memcpy/bzero below. 655 */ 656 if (locked) { 657 randomdev_keystream(p_key, p_counter, newkey, RANDOM_KEYSIZE); 658 randomdev_encrypt_init(p_key, newkey); 659 RANDOM_RESEED_UNLOCK(); 660 } 661 662 if (bytecount > 0) { 663 memcpy(buf, remainder_buf, bytecount); 664 explicit_bzero(remainder_buf, sizeof(remainder_buf)); 665 } 666 } 667 668 669 /* 670 * Handle only "concurrency-enabled" Fortuna reads to simplify logic. 671 * 672 * Caller (random_fortuna_read) is responsible for zeroing out sensitive 673 * buffers provided as parameters to this routine. 674 */ 675 static void 676 random_fortuna_read_concurrent(uint8_t *buf, size_t bytecount, 677 uint8_t newkey[static RANDOM_KEYSIZE]) 678 { 679 union randomdev_key key_copy; 680 uint128_t counter_copy; 681 size_t blockcount; 682 683 MPASS(fortuna_concurrent_read); 684 685 /* 686 * Compute number of blocks required for the PRF request ('delta C'). 687 * We will step the global counter 'C' by this number under lock, and 688 * then actually consume the counter values outside the lock. 689 * 690 * This ensures that contemporaneous but independent requests for 691 * randomness receive distinct 'C' values and thus independent PRF 692 * results. 693 */ 694 if (random_chachamode) { 695 blockcount = howmany(bytecount, CHACHA_BLOCKLEN); 696 } else { 697 blockcount = howmany(bytecount, RANDOM_BLOCKSIZE); 698 699 /* 700 * Need to account for the additional blocks generated by 701 * rekeying when updating the global fs_counter. 702 */ 703 blockcount += RANDOM_KEYS_PER_BLOCK * 704 (blockcount / RANDOM_FORTUNA_BLOCKS_PER_KEY); 705 } 706 707 RANDOM_RESEED_LOCK(); 708 KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0")); 709 710 /* 711 * Save the original counter and key values that will be used as the 712 * PRF for this particular consumer. 713 */ 714 memcpy(&counter_copy, &fortuna_state.fs_counter, sizeof(counter_copy)); 715 memcpy(&key_copy, &fortuna_state.fs_key, sizeof(key_copy)); 716 717 /* 718 * Step the counter as if we had generated 'bytecount' blocks for this 719 * consumer. I.e., ensure that the next consumer gets an independent 720 * range of counter values once we drop the global lock. 721 */ 722 uint128_add64(&fortuna_state.fs_counter, blockcount); 723 724 /* 725 * We still need to Rekey the global 'K' between independent calls; 726 * this is no different from conventional Fortuna. Note that 727 * 'randomdev_keystream()' will step the fs_counter 'C' appropriately 728 * for the blocks needed for the 'newkey'. 729 * 730 * (This is part of PseudoRandomData() in FS&K, 9.4.4.) 731 */ 732 randomdev_keystream(&fortuna_state.fs_key, &fortuna_state.fs_counter, 733 newkey, RANDOM_KEYSIZE); 734 randomdev_encrypt_init(&fortuna_state.fs_key, newkey); 735 736 /* 737 * We have everything we need to generate a unique PRF for this 738 * consumer without touching global state. 739 */ 740 RANDOM_RESEED_UNLOCK(); 741 742 random_fortuna_genbytes(buf, bytecount, newkey, &counter_copy, 743 &key_copy, FORTUNA_UNLOCKED); 744 RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED(); 745 746 explicit_bzero(&counter_copy, sizeof(counter_copy)); 747 explicit_bzero(&key_copy, sizeof(key_copy)); 748 } 749 750 /*- 751 * FS&K - RandomData() (Part 2) 752 * Main read from Fortuna, continued. May be called multiple times after 753 * the random_fortuna_pre_read() above. 754 * 755 * The supplied buf MAY not be a multiple of RANDOM_BLOCKSIZE in size; it is 756 * the responsibility of the algorithm to accommodate partial block reads, if a 757 * block output mode is used. 758 */ 759 void 760 random_fortuna_read(uint8_t *buf, size_t bytecount) 761 { 762 uint8_t newkey[RANDOM_KEYSIZE]; 763 764 if (fortuna_concurrent_read) { 765 random_fortuna_read_concurrent(buf, bytecount, newkey); 766 goto out; 767 } 768 769 RANDOM_RESEED_LOCK(); 770 KASSERT(!uint128_is_zero(fortuna_state.fs_counter), ("FS&K: C != 0")); 771 772 random_fortuna_genbytes(buf, bytecount, newkey, 773 &fortuna_state.fs_counter, &fortuna_state.fs_key, FORTUNA_LOCKED); 774 /* Returns unlocked */ 775 RANDOM_RESEED_ASSERT_LOCK_NOT_OWNED(); 776 777 out: 778 explicit_bzero(newkey, sizeof(newkey)); 779 } 780 781 #ifdef _KERNEL 782 static bool block_seeded_status = false; 783 SYSCTL_BOOL(_kern_random, OID_AUTO, block_seeded_status, CTLFLAG_RWTUN, 784 &block_seeded_status, 0, 785 "If non-zero, pretend Fortuna is in an unseeded state. By setting " 786 "this as a tunable, boot can be tested as if the random device is " 787 "unavailable."); 788 #endif 789 790 static bool 791 random_fortuna_seeded_internal(void) 792 { 793 return (!uint128_is_zero(fortuna_state.fs_counter)); 794 } 795 796 static bool 797 random_fortuna_seeded(void) 798 { 799 800 #ifdef _KERNEL 801 if (block_seeded_status) 802 return (false); 803 #endif 804 805 if (__predict_true(random_fortuna_seeded_internal())) 806 return (true); 807 808 /* 809 * Maybe we have enough entropy in the zeroth pool but just haven't 810 * kicked the initial seed step. Do so now. 811 */ 812 random_fortuna_pre_read(); 813 814 return (random_fortuna_seeded_internal()); 815 } 816