xref: /freebsd/sys/dev/random/fenestrasX/fx_pool.c (revision e6bfd18d21b225af6a0ed67ceeaf1293b7b9eba5)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019 Conrad Meyer <cem@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/domainset.h>
33 #include <sys/fail.h>
34 #include <sys/limits.h>
35 #include <sys/lock.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mutex.h>
39 #include <sys/queue.h>
40 #include <sys/random.h>
41 #include <sys/sdt.h>
42 #include <sys/sysctl.h>
43 #include <sys/systm.h>
44 #include <sys/taskqueue.h>
45 
46 #include <machine/atomic.h>
47 #include <machine/smp.h>
48 
49 #include <dev/random/randomdev.h>
50 #include <dev/random/random_harvestq.h>
51 
52 #include <dev/random/fenestrasX/fx_brng.h>
53 #include <dev/random/fenestrasX/fx_hash.h>
54 #include <dev/random/fenestrasX/fx_pool.h>
55 #include <dev/random/fenestrasX/fx_priv.h>
56 #include <dev/random/fenestrasX/fx_pub.h>
57 
58 /*
59  * Timer-based reseed interval growth factor and limit in seconds. (§ 3.2)
60  */
61 #define	FXENT_RESSED_INTVL_GFACT	3
62 #define	FXENT_RESEED_INTVL_MAX		3600
63 
64 /*
65  * Pool reseed schedule.  Initially, only pool 0 is active.  Until the timer
66  * interval reaches INTVL_MAX, only pool 0 is used.
67  *
68  * After reaching INTVL_MAX, pool k is either activated (if inactive) or used
69  * (if active) every 3^k timer reseeds.  (§ 3.3)
70  *
71  * (Entropy harvesting only round robins across active pools.)
72  */
73 #define	FXENT_RESEED_BASE		3
74 
75 /*
76  * Number of bytes from high quality sources to allocate to pool 0 before
77  * normal round-robin allocation after each timer reseed. (§ 3.4)
78  */
79 #define	FXENT_HI_SRC_POOL0_BYTES	32
80 
81 /*
82  * § 3.1
83  *
84  * Low sources provide unconditioned entropy, such as mouse movements; high
85  * sources are assumed to provide high-quality random bytes.  Pull sources are
86  * those which can be polled, i.e., anything randomdev calls a "random_source."
87  *
88  * In the whitepaper, low sources are pull.  For us, at least in the existing
89  * design, low-quality sources push into some global ring buffer and then get
90  * forwarded into the RNG by a thread that continually polls.  Presumably their
91  * design batches low entopy signals in some way (SHA512?) and only requests
92  * them dynamically on reseed.  I'm not sure what the benefit is vs feeding
93  * into the pools directly.
94  */
95 enum fxrng_ent_access_cls {
96 	FXRNG_PUSH,
97 	FXRNG_PULL,
98 };
99 enum fxrng_ent_source_cls {
100 	FXRNG_HI,
101 	FXRNG_LO,
102 	FXRNG_GARBAGE,
103 };
104 struct fxrng_ent_cls {
105 	enum fxrng_ent_access_cls	entc_axx_cls;
106 	enum fxrng_ent_source_cls	entc_src_cls;
107 };
108 
109 static const struct fxrng_ent_cls fxrng_hi_pull = {
110 	.entc_axx_cls = FXRNG_PULL,
111 	.entc_src_cls = FXRNG_HI,
112 };
113 static const struct fxrng_ent_cls fxrng_hi_push = {
114 	.entc_axx_cls = FXRNG_PUSH,
115 	.entc_src_cls = FXRNG_HI,
116 };
117 static const struct fxrng_ent_cls fxrng_lo_push = {
118 	.entc_axx_cls = FXRNG_PUSH,
119 	.entc_src_cls = FXRNG_LO,
120 };
121 static const struct fxrng_ent_cls fxrng_garbage = {
122 	.entc_axx_cls = FXRNG_PUSH,
123 	.entc_src_cls = FXRNG_GARBAGE,
124 };
125 
126 /*
127  * This table is a mapping of randomdev's current source abstractions to the
128  * designations above; at some point, if the design seems reasonable, it would
129  * make more sense to pull this up into the abstraction layer instead.
130  */
131 static const struct fxrng_ent_char {
132 	const struct fxrng_ent_cls	*entc_cls;
133 } fxrng_ent_char[ENTROPYSOURCE] = {
134 	[RANDOM_CACHED] = {
135 		.entc_cls = &fxrng_hi_push,
136 	},
137 	[RANDOM_ATTACH] = {
138 		.entc_cls = &fxrng_lo_push,
139 	},
140 	[RANDOM_KEYBOARD] = {
141 		.entc_cls = &fxrng_lo_push,
142 	},
143 	[RANDOM_MOUSE] = {
144 		.entc_cls = &fxrng_lo_push,
145 	},
146 	[RANDOM_NET_TUN] = {
147 		.entc_cls = &fxrng_lo_push,
148 	},
149 	[RANDOM_NET_ETHER] = {
150 		.entc_cls = &fxrng_lo_push,
151 	},
152 	[RANDOM_NET_NG] = {
153 		.entc_cls = &fxrng_lo_push,
154 	},
155 	[RANDOM_INTERRUPT] = {
156 		.entc_cls = &fxrng_lo_push,
157 	},
158 	[RANDOM_SWI] = {
159 		.entc_cls = &fxrng_lo_push,
160 	},
161 	[RANDOM_FS_ATIME] = {
162 		.entc_cls = &fxrng_lo_push,
163 	},
164 	[RANDOM_UMA] = {
165 		.entc_cls = &fxrng_lo_push,
166 	},
167 	[RANDOM_CALLOUT] = {
168 		.entc_cls = &fxrng_lo_push,
169 	},
170 	[RANDOM_PURE_OCTEON] = {
171 		.entc_cls = &fxrng_hi_push,	/* Could be made pull. */
172 	},
173 	[RANDOM_PURE_SAFE] = {
174 		.entc_cls = &fxrng_hi_push,
175 	},
176 	[RANDOM_PURE_GLXSB] = {
177 		.entc_cls = &fxrng_hi_push,
178 	},
179 	[RANDOM_PURE_HIFN] = {
180 		.entc_cls = &fxrng_hi_push,
181 	},
182 	[RANDOM_PURE_RDRAND] = {
183 		.entc_cls = &fxrng_hi_pull,
184 	},
185 	[RANDOM_PURE_NEHEMIAH] = {
186 		.entc_cls = &fxrng_hi_pull,
187 	},
188 	[RANDOM_PURE_RNDTEST] = {
189 		.entc_cls = &fxrng_garbage,
190 	},
191 	[RANDOM_PURE_VIRTIO] = {
192 		.entc_cls = &fxrng_hi_pull,
193 	},
194 	[RANDOM_PURE_BROADCOM] = {
195 		.entc_cls = &fxrng_hi_push,
196 	},
197 	[RANDOM_PURE_CCP] = {
198 		.entc_cls = &fxrng_hi_pull,
199 	},
200 	[RANDOM_PURE_DARN] = {
201 		.entc_cls = &fxrng_hi_pull,
202 	},
203 	[RANDOM_PURE_TPM] = {
204 		.entc_cls = &fxrng_hi_push,
205 	},
206 	[RANDOM_PURE_VMGENID] = {
207 		.entc_cls = &fxrng_hi_push,
208 	},
209 };
210 
211 /* Useful for single-bit-per-source state. */
212 BITSET_DEFINE(fxrng_bits, ENTROPYSOURCE);
213 
214 /* XXX Borrowed from not-yet-committed D22702. */
215 #ifndef BIT_TEST_SET_ATOMIC_ACQ
216 #define	BIT_TEST_SET_ATOMIC_ACQ(_s, n, p)	\
217 	(atomic_testandset_acq_long(		\
218 	    &(p)->__bits[__bitset_word((_s), (n))], (n)) != 0)
219 #endif
220 #define	FXENT_TEST_SET_ATOMIC_ACQ(n, p) \
221 	BIT_TEST_SET_ATOMIC_ACQ(ENTROPYSOURCE, n, p)
222 
223 /* For special behavior on first-time entropy sources. (§ 3.1) */
224 static struct fxrng_bits __read_mostly fxrng_seen;
225 
226 /* For special behavior for high-entropy sources after a reseed. (§ 3.4) */
227 _Static_assert(FXENT_HI_SRC_POOL0_BYTES <= UINT8_MAX, "");
228 static uint8_t __read_mostly fxrng_reseed_seen[ENTROPYSOURCE];
229 
230 /* Entropy pools.  Lock order is ENT -> RNG(root) -> RNG(leaf). */
231 static struct mtx fxent_pool_lk;
232 MTX_SYSINIT(fx_pool, &fxent_pool_lk, "fx entropy pool lock", MTX_DEF);
233 #define	FXENT_LOCK()		mtx_lock(&fxent_pool_lk)
234 #define	FXENT_UNLOCK()		mtx_unlock(&fxent_pool_lk)
235 #define	FXENT_ASSERT(rng)	mtx_assert(&fxent_pool_lk, MA_OWNED)
236 #define	FXENT_ASSERT_NOT(rng)	mtx_assert(&fxent_pool_lk, MA_NOTOWNED)
237 static struct fxrng_hash fxent_pool[FXRNG_NPOOLS];
238 static unsigned __read_mostly fxent_nactpools = 1;
239 static struct timeout_task fxent_reseed_timer;
240 static int __read_mostly fxent_timer_ready;
241 
242 /*
243  * Track number of bytes of entropy harvested from high-quality sources prior
244  * to initial keying.  The idea is to collect more jitter entropy when fewer
245  * high-quality bytes were available and less if we had other good sources.  We
246  * want to provide always-on availability but don't necessarily have *any*
247  * great sources on some platforms.
248  *
249  * Like fxrng_ent_char: at some point, if the design seems reasonable, it would
250  * make more sense to pull this up into the abstraction layer instead.
251  *
252  * Jitter entropy is unimplemented for now.
253  */
254 static unsigned long fxrng_preseed_ent;
255 
256 void
257 fxrng_pools_init(void)
258 {
259 	size_t i;
260 
261 	for (i = 0; i < nitems(fxent_pool); i++)
262 		fxrng_hash_init(&fxent_pool[i]);
263 }
264 
265 static inline bool
266 fxrng_hi_source(enum random_entropy_source src)
267 {
268 	return (fxrng_ent_char[src].entc_cls->entc_src_cls == FXRNG_HI);
269 }
270 
271 /*
272  * A racy check that this high-entropy source's event should contribute to
273  * pool0 on the basis of per-source byte count.  The check is racy for two
274  * reasons:
275  *   - Performance: The vast majority of the time, we've already taken 32 bytes
276  *     from any present high quality source and the racy check lets us avoid
277  *     dirtying the cache for the global array.
278  *   - Correctness: It's fine that the check is racy.  The failure modes are:
279  *     • False positive: We will detect when we take the lock.
280  *     • False negative: We still collect the entropy; it just won't be
281  *       preferentially placed in pool0 in this case.
282  */
283 static inline bool
284 fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)
285 {
286 	return (atomic_load_acq_8(&fxrng_reseed_seen[src]) <
287 	    FXENT_HI_SRC_POOL0_BYTES);
288 }
289 
290 /*
291  * Top level entropy processing API from randomdev.
292  *
293  * Invoked by the core randomdev subsystem both for preload entropy, "push"
294  * sources (like interrupts, keyboard, etc) and pull sources (RDRAND, etc).
295  */
296 void
297 fxrng_event_processor(struct harvest_event *event)
298 {
299 	enum random_entropy_source src;
300 	unsigned pool;
301 	bool first_time, first_32;
302 
303 	src = event->he_source;
304 
305 	ASSERT_DEBUG(event->he_size <= sizeof(event->he_entropy),
306 	    "%s: he_size: %u > sizeof(he_entropy): %zu", __func__,
307 	    (unsigned)event->he_size, sizeof(event->he_entropy));
308 
309 	/*
310 	 * Zero bytes of source entropy doesn't count as observing this source
311 	 * for the first time.  We still harvest the counter entropy.
312 	 */
313 	first_time = event->he_size > 0 &&
314 	    !FXENT_TEST_SET_ATOMIC_ACQ(src, &fxrng_seen);
315 	if (__predict_false(first_time)) {
316 		/*
317 		 * "The first time [any source] provides entropy, it is used to
318 		 * directly reseed the root PRNG.  The entropy pools are
319 		 * bypassed." (§ 3.1)
320 		 *
321 		 * Unlike Windows, we cannot rely on loader(8) seed material
322 		 * being present, so we perform initial keying in the kernel.
323 		 * We use brng_generation 0 to represent an unkeyed state.
324 		 *
325 		 * Prior to initial keying, it doesn't make sense to try to mix
326 		 * the entropy directly with the root PRNG state, as the root
327 		 * PRNG is unkeyed.  Instead, we collect pre-keying dynamic
328 		 * entropy in pool0 and do not bump the root PRNG seed version
329 		 * or set its key.  Initial keying will incorporate pool0 and
330 		 * bump the brng_generation (seed version).
331 		 *
332 		 * After initial keying, we do directly mix in first-time
333 		 * entropy sources.  We use the root BRNG to generate 32 bytes
334 		 * and use fxrng_hash to mix it with the new entropy source and
335 		 * re-key with the first 256 bits of hash output.
336 		 */
337 		FXENT_LOCK();
338 		FXRNG_BRNG_LOCK(&fxrng_root);
339 		if (__predict_true(fxrng_root.brng_generation > 0)) {
340 			/* Bypass the pools: */
341 			FXENT_UNLOCK();
342 			fxrng_brng_src_reseed(event);
343 			FXRNG_BRNG_ASSERT_NOT(&fxrng_root);
344 			return;
345 		}
346 
347 		/*
348 		 * Keying the root PRNG requires both FXENT_LOCK and the PRNG's
349 		 * lock, so we only need to hold on to the pool lock to prevent
350 		 * initial keying without this entropy.
351 		 */
352 		FXRNG_BRNG_UNLOCK(&fxrng_root);
353 
354 		/* Root PRNG hasn't been keyed yet, just accumulate event. */
355 		fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
356 		    sizeof(event->he_somecounter));
357 		fxrng_hash_update(&fxent_pool[0], event->he_entropy,
358 		    event->he_size);
359 
360 		if (fxrng_hi_source(src)) {
361 			/* Prevent overflow. */
362 			if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
363 				fxrng_preseed_ent += event->he_size;
364 		}
365 		FXENT_UNLOCK();
366 		return;
367 	}
368 	/* !first_time */
369 
370 	/*
371 	 * "The first 32 bytes produced by a high entropy source after a reseed
372 	 * from the pools is always put in pool 0." (§ 3.4)
373 	 *
374 	 * The first-32-byte tracking data in fxrng_reseed_seen is reset in
375 	 * fxent_timer_reseed_npools() below.
376 	 */
377 	first_32 = event->he_size > 0 &&
378 	    fxrng_hi_source(src) &&
379 	    atomic_load_acq_int(&fxent_nactpools) > 1 &&
380 	    fxrng_hi_pool0_eligible_racy(src);
381 	if (__predict_false(first_32)) {
382 		unsigned rem, seen;
383 
384 		FXENT_LOCK();
385 		seen = fxrng_reseed_seen[src];
386 		if (seen == FXENT_HI_SRC_POOL0_BYTES)
387 			goto round_robin;
388 
389 		rem = FXENT_HI_SRC_POOL0_BYTES - seen;
390 		rem = MIN(rem, event->he_size);
391 
392 		fxrng_reseed_seen[src] = seen + rem;
393 
394 		/*
395 		 * We put 'rem' bytes in pool0, and any remaining bytes are
396 		 * round-robin'd across other pools.
397 		 */
398 		fxrng_hash_update(&fxent_pool[0],
399 		    ((uint8_t *)event->he_entropy) + event->he_size - rem,
400 		    rem);
401 		if (rem == event->he_size) {
402 			fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
403 			    sizeof(event->he_somecounter));
404 			FXENT_UNLOCK();
405 			return;
406 		}
407 
408 		/*
409 		 * If fewer bytes were needed than this even provied, We only
410 		 * take the last rem bytes of the entropy buffer and leave the
411 		 * timecounter to be round-robin'd with the remaining entropy.
412 		 */
413 		event->he_size -= rem;
414 		goto round_robin;
415 	}
416 	/* !first_32 */
417 
418 	FXENT_LOCK();
419 
420 round_robin:
421 	FXENT_ASSERT();
422 	pool = event->he_destination % fxent_nactpools;
423 	fxrng_hash_update(&fxent_pool[pool], event->he_entropy,
424 	    event->he_size);
425 	fxrng_hash_update(&fxent_pool[pool], &event->he_somecounter,
426 	    sizeof(event->he_somecounter));
427 
428 	if (__predict_false(fxrng_hi_source(src) &&
429 	    atomic_load_acq_64(&fxrng_root_generation) == 0)) {
430 		/* Prevent overflow. */
431 		if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
432 			fxrng_preseed_ent += event->he_size;
433 	}
434 	FXENT_UNLOCK();
435 }
436 
437 /*
438  * Top level "seeded" API/signal from randomdev.
439  *
440  * This is our warning that a request is coming: we need to be seeded.  In
441  * fenestrasX, a request for random bytes _never_ fails.  "We (ed: ditto) have
442  * observed that there are many callers that never check for the error code,
443  * even if they are generating cryptographic key material." (§ 1.6)
444  *
445  * If we returned 'false', both read_random(9) and chacha20_randomstir()
446  * (arc4random(9)) will blindly charge on with something almost certainly worse
447  * than what we've got, or are able to get quickly enough.
448  */
449 bool
450 fxrng_alg_seeded(void)
451 {
452 	uint8_t hash[FXRNG_HASH_SZ];
453 	sbintime_t sbt;
454 
455 	/* The vast majority of the time, we expect to already be seeded. */
456 	if (__predict_true(atomic_load_acq_64(&fxrng_root_generation) != 0))
457 		return (true);
458 
459 	/*
460 	 * Take the lock and recheck; only one thread needs to do the initial
461 	 * seeding work.
462 	 */
463 	FXENT_LOCK();
464 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
465 		FXENT_UNLOCK();
466 		return (true);
467 	}
468 	/* XXX Any one-off initial seeding goes here. */
469 
470 	fxrng_hash_finish(&fxent_pool[0], hash, sizeof(hash));
471 	fxrng_hash_init(&fxent_pool[0]);
472 
473 	fxrng_brng_reseed(hash, sizeof(hash));
474 	FXENT_UNLOCK();
475 
476 	randomdev_unblock();
477 	explicit_bzero(hash, sizeof(hash));
478 
479 	/*
480 	 * This may be called too early for taskqueue_thread to be initialized.
481 	 * fxent_pool_timer_init will detect if we've already unblocked and
482 	 * queue the first timer reseed at that point.
483 	 */
484 	if (atomic_load_acq_int(&fxent_timer_ready) != 0) {
485 		sbt = SBT_1S;
486 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
487 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
488 	}
489 	return (true);
490 }
491 
492 /*
493  * Timer-based reseeds and pool expansion.
494  */
495 static void
496 fxent_timer_reseed_npools(unsigned n)
497 {
498 	/*
499 	 * 64 * 8 => moderately large 512 bytes.  Could be static, as we are
500 	 * only used in a static context.  On the other hand, this is in
501 	 * threadqueue TASK context and we're likely nearly at top of stack
502 	 * already.
503 	 */
504 	uint8_t hash[FXRNG_HASH_SZ * FXRNG_NPOOLS];
505 	unsigned i;
506 
507 	ASSERT_DEBUG(n > 0 && n <= FXRNG_NPOOLS, "n:%u", n);
508 
509 	FXENT_ASSERT();
510 	/*
511 	 * Collect entropy from pools 0..n-1 by concatenating the output hashes
512 	 * and then feeding them into fxrng_brng_reseed, which will hash the
513 	 * aggregate together with the current root PRNG keystate to produce a
514 	 * new key.  It will also bump the global generation counter
515 	 * appropriately.
516 	 */
517 	for (i = 0; i < n; i++) {
518 		fxrng_hash_finish(&fxent_pool[i], hash + i * FXRNG_HASH_SZ,
519 		    FXRNG_HASH_SZ);
520 		fxrng_hash_init(&fxent_pool[i]);
521 	}
522 
523 	fxrng_brng_reseed(hash, n * FXRNG_HASH_SZ);
524 	explicit_bzero(hash, n * FXRNG_HASH_SZ);
525 
526 	/*
527 	 * "The first 32 bytes produced by a high entropy source after a reseed
528 	 * from the pools is always put in pool 0." (§ 3.4)
529 	 *
530 	 * So here we reset the tracking (somewhat naively given the majority
531 	 * of sources on most machines are not what we consider "high", but at
532 	 * 32 bytes it's smaller than a cache line), so the next 32 bytes are
533 	 * prioritized into pool0.
534 	 *
535 	 * See corresponding use of fxrng_reseed_seen in fxrng_event_processor.
536 	 */
537 	memset(fxrng_reseed_seen, 0, sizeof(fxrng_reseed_seen));
538 	FXENT_ASSERT();
539 }
540 
541 static void
542 fxent_timer_reseed(void *ctx __unused, int pending __unused)
543 {
544 	static unsigned reseed_intvl_sec = 1;
545 	/* Only reseeds after FXENT_RESEED_INTVL_MAX is achieved. */
546 	static uint64_t reseed_number = 1;
547 
548 	unsigned next_ival, i, k;
549 	sbintime_t sbt;
550 
551 	if (reseed_intvl_sec < FXENT_RESEED_INTVL_MAX) {
552 		next_ival = FXENT_RESSED_INTVL_GFACT * reseed_intvl_sec;
553 		if (next_ival > FXENT_RESEED_INTVL_MAX)
554 			next_ival = FXENT_RESEED_INTVL_MAX;
555 		FXENT_LOCK();
556 		fxent_timer_reseed_npools(1);
557 		FXENT_UNLOCK();
558 	} else {
559 		/*
560 		 * The creation of entropy pools beyond 0 is enabled when the
561 		 * reseed interval hits the maximum. (§ 3.3)
562 		 */
563 		next_ival = reseed_intvl_sec;
564 
565 		/*
566 		 * Pool 0 is used every reseed; pool 1..0 every 3rd reseed; and in
567 		 * general, pool n..0 every 3^n reseeds.
568 		 */
569 		k = reseed_number;
570 		reseed_number++;
571 
572 		/* Count how many pools, from [0, i), to use for reseed. */
573 		for (i = 1; i < MIN(fxent_nactpools + 1, FXRNG_NPOOLS); i++) {
574 			if ((k % FXENT_RESEED_BASE) != 0)
575 				break;
576 			k /= FXENT_RESEED_BASE;
577 		}
578 
579 		/*
580 		 * If we haven't activated pool i yet, activate it and only
581 		 * reseed from [0, i-1).  (§ 3.3)
582 		 */
583 		FXENT_LOCK();
584 		if (i == fxent_nactpools + 1) {
585 			fxent_timer_reseed_npools(fxent_nactpools);
586 			fxent_nactpools++;
587 		} else {
588 			/* Just reseed from [0, i). */
589 			fxent_timer_reseed_npools(i);
590 		}
591 		FXENT_UNLOCK();
592 	}
593 
594 	/* Schedule the next reseed. */
595 	sbt = next_ival * SBT_1S;
596 	taskqueue_enqueue_timeout_sbt(taskqueue_thread, &fxent_reseed_timer,
597 	    -sbt, (sbt / 3), C_PREL(2));
598 
599 	reseed_intvl_sec = next_ival;
600 }
601 
602 static void
603 fxent_pool_timer_init(void *dummy __unused)
604 {
605 	sbintime_t sbt;
606 
607 	TIMEOUT_TASK_INIT(taskqueue_thread, &fxent_reseed_timer, 0,
608 	    fxent_timer_reseed, NULL);
609 
610 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
611 		sbt = SBT_1S;
612 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
613 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
614 	}
615 	atomic_store_rel_int(&fxent_timer_ready, 1);
616 }
617 /* After taskqueue_thread is initialized in SI_SUB_TASKQ:SI_ORDER_SECOND. */
618 SYSINIT(fxent_pool_timer_init, SI_SUB_TASKQ, SI_ORDER_ANY,
619     fxent_pool_timer_init, NULL);
620