xref: /freebsd/sys/dev/random/fenestrasX/fx_pool.c (revision 5ca8e32633c4ffbbcd6762e5888b6a4ba0708c6c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2019 Conrad Meyer <cem@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/param.h>
29 #include <sys/domainset.h>
30 #include <sys/fail.h>
31 #include <sys/limits.h>
32 #include <sys/lock.h>
33 #include <sys/kernel.h>
34 #include <sys/malloc.h>
35 #include <sys/mutex.h>
36 #include <sys/queue.h>
37 #include <sys/random.h>
38 #include <sys/sdt.h>
39 #include <sys/sysctl.h>
40 #include <sys/systm.h>
41 #include <sys/taskqueue.h>
42 
43 #include <machine/atomic.h>
44 #include <machine/smp.h>
45 
46 #include <dev/random/randomdev.h>
47 #include <dev/random/random_harvestq.h>
48 
49 #include <dev/random/fenestrasX/fx_brng.h>
50 #include <dev/random/fenestrasX/fx_hash.h>
51 #include <dev/random/fenestrasX/fx_pool.h>
52 #include <dev/random/fenestrasX/fx_priv.h>
53 #include <dev/random/fenestrasX/fx_pub.h>
54 
55 /*
56  * Timer-based reseed interval growth factor and limit in seconds. (§ 3.2)
57  */
58 #define	FXENT_RESSED_INTVL_GFACT	3
59 #define	FXENT_RESEED_INTVL_MAX		3600
60 
61 /*
62  * Pool reseed schedule.  Initially, only pool 0 is active.  Until the timer
63  * interval reaches INTVL_MAX, only pool 0 is used.
64  *
65  * After reaching INTVL_MAX, pool k is either activated (if inactive) or used
66  * (if active) every 3^k timer reseeds.  (§ 3.3)
67  *
68  * (Entropy harvesting only round robins across active pools.)
69  */
70 #define	FXENT_RESEED_BASE		3
71 
72 /*
73  * Number of bytes from high quality sources to allocate to pool 0 before
74  * normal round-robin allocation after each timer reseed. (§ 3.4)
75  */
76 #define	FXENT_HI_SRC_POOL0_BYTES	32
77 
78 /*
79  * § 3.1
80  *
81  * Low sources provide unconditioned entropy, such as mouse movements; high
82  * sources are assumed to provide high-quality random bytes.  Pull sources are
83  * those which can be polled, i.e., anything randomdev calls a "random_source."
84  *
85  * In the whitepaper, low sources are pull.  For us, at least in the existing
86  * design, low-quality sources push into some global ring buffer and then get
87  * forwarded into the RNG by a thread that continually polls.  Presumably their
88  * design batches low entopy signals in some way (SHA512?) and only requests
89  * them dynamically on reseed.  I'm not sure what the benefit is vs feeding
90  * into the pools directly.
91  */
92 enum fxrng_ent_access_cls {
93 	FXRNG_PUSH,
94 	FXRNG_PULL,
95 };
96 enum fxrng_ent_source_cls {
97 	FXRNG_HI,
98 	FXRNG_LO,
99 	FXRNG_GARBAGE,
100 };
101 struct fxrng_ent_cls {
102 	enum fxrng_ent_access_cls	entc_axx_cls;
103 	enum fxrng_ent_source_cls	entc_src_cls;
104 };
105 
106 static const struct fxrng_ent_cls fxrng_hi_pull = {
107 	.entc_axx_cls = FXRNG_PULL,
108 	.entc_src_cls = FXRNG_HI,
109 };
110 static const struct fxrng_ent_cls fxrng_hi_push = {
111 	.entc_axx_cls = FXRNG_PUSH,
112 	.entc_src_cls = FXRNG_HI,
113 };
114 static const struct fxrng_ent_cls fxrng_lo_push = {
115 	.entc_axx_cls = FXRNG_PUSH,
116 	.entc_src_cls = FXRNG_LO,
117 };
118 static const struct fxrng_ent_cls fxrng_garbage = {
119 	.entc_axx_cls = FXRNG_PUSH,
120 	.entc_src_cls = FXRNG_GARBAGE,
121 };
122 
123 /*
124  * This table is a mapping of randomdev's current source abstractions to the
125  * designations above; at some point, if the design seems reasonable, it would
126  * make more sense to pull this up into the abstraction layer instead.
127  */
128 static const struct fxrng_ent_char {
129 	const struct fxrng_ent_cls	*entc_cls;
130 } fxrng_ent_char[ENTROPYSOURCE] = {
131 	[RANDOM_CACHED] = {
132 		.entc_cls = &fxrng_hi_push,
133 	},
134 	[RANDOM_ATTACH] = {
135 		.entc_cls = &fxrng_lo_push,
136 	},
137 	[RANDOM_KEYBOARD] = {
138 		.entc_cls = &fxrng_lo_push,
139 	},
140 	[RANDOM_MOUSE] = {
141 		.entc_cls = &fxrng_lo_push,
142 	},
143 	[RANDOM_NET_TUN] = {
144 		.entc_cls = &fxrng_lo_push,
145 	},
146 	[RANDOM_NET_ETHER] = {
147 		.entc_cls = &fxrng_lo_push,
148 	},
149 	[RANDOM_NET_NG] = {
150 		.entc_cls = &fxrng_lo_push,
151 	},
152 	[RANDOM_INTERRUPT] = {
153 		.entc_cls = &fxrng_lo_push,
154 	},
155 	[RANDOM_SWI] = {
156 		.entc_cls = &fxrng_lo_push,
157 	},
158 	[RANDOM_FS_ATIME] = {
159 		.entc_cls = &fxrng_lo_push,
160 	},
161 	[RANDOM_UMA] = {
162 		.entc_cls = &fxrng_lo_push,
163 	},
164 	[RANDOM_CALLOUT] = {
165 		.entc_cls = &fxrng_lo_push,
166 	},
167 	[RANDOM_PURE_OCTEON] = {
168 		.entc_cls = &fxrng_hi_push,	/* Could be made pull. */
169 	},
170 	[RANDOM_PURE_SAFE] = {
171 		.entc_cls = &fxrng_hi_push,
172 	},
173 	[RANDOM_PURE_GLXSB] = {
174 		.entc_cls = &fxrng_hi_push,
175 	},
176 	[RANDOM_PURE_HIFN] = {
177 		.entc_cls = &fxrng_hi_push,
178 	},
179 	[RANDOM_PURE_RDRAND] = {
180 		.entc_cls = &fxrng_hi_pull,
181 	},
182 	[RANDOM_PURE_NEHEMIAH] = {
183 		.entc_cls = &fxrng_hi_pull,
184 	},
185 	[RANDOM_PURE_RNDTEST] = {
186 		.entc_cls = &fxrng_garbage,
187 	},
188 	[RANDOM_PURE_VIRTIO] = {
189 		.entc_cls = &fxrng_hi_pull,
190 	},
191 	[RANDOM_PURE_BROADCOM] = {
192 		.entc_cls = &fxrng_hi_push,
193 	},
194 	[RANDOM_PURE_CCP] = {
195 		.entc_cls = &fxrng_hi_pull,
196 	},
197 	[RANDOM_PURE_DARN] = {
198 		.entc_cls = &fxrng_hi_pull,
199 	},
200 	[RANDOM_PURE_TPM] = {
201 		.entc_cls = &fxrng_hi_push,
202 	},
203 	[RANDOM_PURE_VMGENID] = {
204 		.entc_cls = &fxrng_hi_push,
205 	},
206 };
207 
208 /* Useful for single-bit-per-source state. */
209 BITSET_DEFINE(fxrng_bits, ENTROPYSOURCE);
210 
211 /* XXX Borrowed from not-yet-committed D22702. */
212 #ifndef BIT_TEST_SET_ATOMIC_ACQ
213 #define	BIT_TEST_SET_ATOMIC_ACQ(_s, n, p)	\
214 	(atomic_testandset_acq_long(		\
215 	    &(p)->__bits[__bitset_word((_s), (n))], (n)) != 0)
216 #endif
217 #define	FXENT_TEST_SET_ATOMIC_ACQ(n, p) \
218 	BIT_TEST_SET_ATOMIC_ACQ(ENTROPYSOURCE, n, p)
219 
220 /* For special behavior on first-time entropy sources. (§ 3.1) */
221 static struct fxrng_bits __read_mostly fxrng_seen;
222 
223 /* For special behavior for high-entropy sources after a reseed. (§ 3.4) */
224 _Static_assert(FXENT_HI_SRC_POOL0_BYTES <= UINT8_MAX, "");
225 static uint8_t __read_mostly fxrng_reseed_seen[ENTROPYSOURCE];
226 
227 /* Entropy pools.  Lock order is ENT -> RNG(root) -> RNG(leaf). */
228 static struct mtx fxent_pool_lk;
229 MTX_SYSINIT(fx_pool, &fxent_pool_lk, "fx entropy pool lock", MTX_DEF);
230 #define	FXENT_LOCK()		mtx_lock(&fxent_pool_lk)
231 #define	FXENT_UNLOCK()		mtx_unlock(&fxent_pool_lk)
232 #define	FXENT_ASSERT(rng)	mtx_assert(&fxent_pool_lk, MA_OWNED)
233 #define	FXENT_ASSERT_NOT(rng)	mtx_assert(&fxent_pool_lk, MA_NOTOWNED)
234 static struct fxrng_hash fxent_pool[FXRNG_NPOOLS];
235 static unsigned __read_mostly fxent_nactpools = 1;
236 static struct timeout_task fxent_reseed_timer;
237 static int __read_mostly fxent_timer_ready;
238 
239 /*
240  * Track number of bytes of entropy harvested from high-quality sources prior
241  * to initial keying.  The idea is to collect more jitter entropy when fewer
242  * high-quality bytes were available and less if we had other good sources.  We
243  * want to provide always-on availability but don't necessarily have *any*
244  * great sources on some platforms.
245  *
246  * Like fxrng_ent_char: at some point, if the design seems reasonable, it would
247  * make more sense to pull this up into the abstraction layer instead.
248  *
249  * Jitter entropy is unimplemented for now.
250  */
251 static unsigned long fxrng_preseed_ent;
252 
253 void
254 fxrng_pools_init(void)
255 {
256 	size_t i;
257 
258 	for (i = 0; i < nitems(fxent_pool); i++)
259 		fxrng_hash_init(&fxent_pool[i]);
260 }
261 
262 static inline bool
263 fxrng_hi_source(enum random_entropy_source src)
264 {
265 	return (fxrng_ent_char[src].entc_cls->entc_src_cls == FXRNG_HI);
266 }
267 
268 /*
269  * A racy check that this high-entropy source's event should contribute to
270  * pool0 on the basis of per-source byte count.  The check is racy for two
271  * reasons:
272  *   - Performance: The vast majority of the time, we've already taken 32 bytes
273  *     from any present high quality source and the racy check lets us avoid
274  *     dirtying the cache for the global array.
275  *   - Correctness: It's fine that the check is racy.  The failure modes are:
276  *     • False positive: We will detect when we take the lock.
277  *     • False negative: We still collect the entropy; it just won't be
278  *       preferentially placed in pool0 in this case.
279  */
280 static inline bool
281 fxrng_hi_pool0_eligible_racy(enum random_entropy_source src)
282 {
283 	return (atomic_load_acq_8(&fxrng_reseed_seen[src]) <
284 	    FXENT_HI_SRC_POOL0_BYTES);
285 }
286 
287 /*
288  * Top level entropy processing API from randomdev.
289  *
290  * Invoked by the core randomdev subsystem both for preload entropy, "push"
291  * sources (like interrupts, keyboard, etc) and pull sources (RDRAND, etc).
292  */
293 void
294 fxrng_event_processor(struct harvest_event *event)
295 {
296 	enum random_entropy_source src;
297 	unsigned pool;
298 	bool first_time, first_32;
299 
300 	src = event->he_source;
301 
302 	ASSERT_DEBUG(event->he_size <= sizeof(event->he_entropy),
303 	    "%s: he_size: %u > sizeof(he_entropy): %zu", __func__,
304 	    (unsigned)event->he_size, sizeof(event->he_entropy));
305 
306 	/*
307 	 * Zero bytes of source entropy doesn't count as observing this source
308 	 * for the first time.  We still harvest the counter entropy.
309 	 */
310 	first_time = event->he_size > 0 &&
311 	    !FXENT_TEST_SET_ATOMIC_ACQ(src, &fxrng_seen);
312 	if (__predict_false(first_time)) {
313 		/*
314 		 * "The first time [any source] provides entropy, it is used to
315 		 * directly reseed the root PRNG.  The entropy pools are
316 		 * bypassed." (§ 3.1)
317 		 *
318 		 * Unlike Windows, we cannot rely on loader(8) seed material
319 		 * being present, so we perform initial keying in the kernel.
320 		 * We use brng_generation 0 to represent an unkeyed state.
321 		 *
322 		 * Prior to initial keying, it doesn't make sense to try to mix
323 		 * the entropy directly with the root PRNG state, as the root
324 		 * PRNG is unkeyed.  Instead, we collect pre-keying dynamic
325 		 * entropy in pool0 and do not bump the root PRNG seed version
326 		 * or set its key.  Initial keying will incorporate pool0 and
327 		 * bump the brng_generation (seed version).
328 		 *
329 		 * After initial keying, we do directly mix in first-time
330 		 * entropy sources.  We use the root BRNG to generate 32 bytes
331 		 * and use fxrng_hash to mix it with the new entropy source and
332 		 * re-key with the first 256 bits of hash output.
333 		 */
334 		FXENT_LOCK();
335 		FXRNG_BRNG_LOCK(&fxrng_root);
336 		if (__predict_true(fxrng_root.brng_generation > 0)) {
337 			/* Bypass the pools: */
338 			FXENT_UNLOCK();
339 			fxrng_brng_src_reseed(event);
340 			FXRNG_BRNG_ASSERT_NOT(&fxrng_root);
341 			return;
342 		}
343 
344 		/*
345 		 * Keying the root PRNG requires both FXENT_LOCK and the PRNG's
346 		 * lock, so we only need to hold on to the pool lock to prevent
347 		 * initial keying without this entropy.
348 		 */
349 		FXRNG_BRNG_UNLOCK(&fxrng_root);
350 
351 		/* Root PRNG hasn't been keyed yet, just accumulate event. */
352 		fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
353 		    sizeof(event->he_somecounter));
354 		fxrng_hash_update(&fxent_pool[0], event->he_entropy,
355 		    event->he_size);
356 
357 		if (fxrng_hi_source(src)) {
358 			/* Prevent overflow. */
359 			if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
360 				fxrng_preseed_ent += event->he_size;
361 		}
362 		FXENT_UNLOCK();
363 		return;
364 	}
365 	/* !first_time */
366 
367 	/*
368 	 * "The first 32 bytes produced by a high entropy source after a reseed
369 	 * from the pools is always put in pool 0." (§ 3.4)
370 	 *
371 	 * The first-32-byte tracking data in fxrng_reseed_seen is reset in
372 	 * fxent_timer_reseed_npools() below.
373 	 */
374 	first_32 = event->he_size > 0 &&
375 	    fxrng_hi_source(src) &&
376 	    atomic_load_acq_int(&fxent_nactpools) > 1 &&
377 	    fxrng_hi_pool0_eligible_racy(src);
378 	if (__predict_false(first_32)) {
379 		unsigned rem, seen;
380 
381 		FXENT_LOCK();
382 		seen = fxrng_reseed_seen[src];
383 		if (seen == FXENT_HI_SRC_POOL0_BYTES)
384 			goto round_robin;
385 
386 		rem = FXENT_HI_SRC_POOL0_BYTES - seen;
387 		rem = MIN(rem, event->he_size);
388 
389 		fxrng_reseed_seen[src] = seen + rem;
390 
391 		/*
392 		 * We put 'rem' bytes in pool0, and any remaining bytes are
393 		 * round-robin'd across other pools.
394 		 */
395 		fxrng_hash_update(&fxent_pool[0],
396 		    ((uint8_t *)event->he_entropy) + event->he_size - rem,
397 		    rem);
398 		if (rem == event->he_size) {
399 			fxrng_hash_update(&fxent_pool[0], &event->he_somecounter,
400 			    sizeof(event->he_somecounter));
401 			FXENT_UNLOCK();
402 			return;
403 		}
404 
405 		/*
406 		 * If fewer bytes were needed than this even provied, We only
407 		 * take the last rem bytes of the entropy buffer and leave the
408 		 * timecounter to be round-robin'd with the remaining entropy.
409 		 */
410 		event->he_size -= rem;
411 		goto round_robin;
412 	}
413 	/* !first_32 */
414 
415 	FXENT_LOCK();
416 
417 round_robin:
418 	FXENT_ASSERT();
419 	pool = event->he_destination % fxent_nactpools;
420 	fxrng_hash_update(&fxent_pool[pool], event->he_entropy,
421 	    event->he_size);
422 	fxrng_hash_update(&fxent_pool[pool], &event->he_somecounter,
423 	    sizeof(event->he_somecounter));
424 
425 	if (__predict_false(fxrng_hi_source(src) &&
426 	    atomic_load_acq_64(&fxrng_root_generation) == 0)) {
427 		/* Prevent overflow. */
428 		if (fxrng_preseed_ent <= ULONG_MAX - event->he_size)
429 			fxrng_preseed_ent += event->he_size;
430 	}
431 	FXENT_UNLOCK();
432 }
433 
434 /*
435  * Top level "seeded" API/signal from randomdev.
436  *
437  * This is our warning that a request is coming: we need to be seeded.  In
438  * fenestrasX, a request for random bytes _never_ fails.  "We (ed: ditto) have
439  * observed that there are many callers that never check for the error code,
440  * even if they are generating cryptographic key material." (§ 1.6)
441  *
442  * If we returned 'false', both read_random(9) and chacha20_randomstir()
443  * (arc4random(9)) will blindly charge on with something almost certainly worse
444  * than what we've got, or are able to get quickly enough.
445  */
446 bool
447 fxrng_alg_seeded(void)
448 {
449 	uint8_t hash[FXRNG_HASH_SZ];
450 	sbintime_t sbt;
451 
452 	/* The vast majority of the time, we expect to already be seeded. */
453 	if (__predict_true(atomic_load_acq_64(&fxrng_root_generation) != 0))
454 		return (true);
455 
456 	/*
457 	 * Take the lock and recheck; only one thread needs to do the initial
458 	 * seeding work.
459 	 */
460 	FXENT_LOCK();
461 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
462 		FXENT_UNLOCK();
463 		return (true);
464 	}
465 	/* XXX Any one-off initial seeding goes here. */
466 
467 	fxrng_hash_finish(&fxent_pool[0], hash, sizeof(hash));
468 	fxrng_hash_init(&fxent_pool[0]);
469 
470 	fxrng_brng_reseed(hash, sizeof(hash));
471 	FXENT_UNLOCK();
472 
473 	randomdev_unblock();
474 	explicit_bzero(hash, sizeof(hash));
475 
476 	/*
477 	 * This may be called too early for taskqueue_thread to be initialized.
478 	 * fxent_pool_timer_init will detect if we've already unblocked and
479 	 * queue the first timer reseed at that point.
480 	 */
481 	if (atomic_load_acq_int(&fxent_timer_ready) != 0) {
482 		sbt = SBT_1S;
483 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
484 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
485 	}
486 	return (true);
487 }
488 
489 /*
490  * Timer-based reseeds and pool expansion.
491  */
492 static void
493 fxent_timer_reseed_npools(unsigned n)
494 {
495 	/*
496 	 * 64 * 8 => moderately large 512 bytes.  Could be static, as we are
497 	 * only used in a static context.  On the other hand, this is in
498 	 * threadqueue TASK context and we're likely nearly at top of stack
499 	 * already.
500 	 */
501 	uint8_t hash[FXRNG_HASH_SZ * FXRNG_NPOOLS];
502 	unsigned i;
503 
504 	ASSERT_DEBUG(n > 0 && n <= FXRNG_NPOOLS, "n:%u", n);
505 
506 	FXENT_ASSERT();
507 	/*
508 	 * Collect entropy from pools 0..n-1 by concatenating the output hashes
509 	 * and then feeding them into fxrng_brng_reseed, which will hash the
510 	 * aggregate together with the current root PRNG keystate to produce a
511 	 * new key.  It will also bump the global generation counter
512 	 * appropriately.
513 	 */
514 	for (i = 0; i < n; i++) {
515 		fxrng_hash_finish(&fxent_pool[i], hash + i * FXRNG_HASH_SZ,
516 		    FXRNG_HASH_SZ);
517 		fxrng_hash_init(&fxent_pool[i]);
518 	}
519 
520 	fxrng_brng_reseed(hash, n * FXRNG_HASH_SZ);
521 	explicit_bzero(hash, n * FXRNG_HASH_SZ);
522 
523 	/*
524 	 * "The first 32 bytes produced by a high entropy source after a reseed
525 	 * from the pools is always put in pool 0." (§ 3.4)
526 	 *
527 	 * So here we reset the tracking (somewhat naively given the majority
528 	 * of sources on most machines are not what we consider "high", but at
529 	 * 32 bytes it's smaller than a cache line), so the next 32 bytes are
530 	 * prioritized into pool0.
531 	 *
532 	 * See corresponding use of fxrng_reseed_seen in fxrng_event_processor.
533 	 */
534 	memset(fxrng_reseed_seen, 0, sizeof(fxrng_reseed_seen));
535 	FXENT_ASSERT();
536 }
537 
538 static void
539 fxent_timer_reseed(void *ctx __unused, int pending __unused)
540 {
541 	static unsigned reseed_intvl_sec = 1;
542 	/* Only reseeds after FXENT_RESEED_INTVL_MAX is achieved. */
543 	static uint64_t reseed_number = 1;
544 
545 	unsigned next_ival, i, k;
546 	sbintime_t sbt;
547 
548 	if (reseed_intvl_sec < FXENT_RESEED_INTVL_MAX) {
549 		next_ival = FXENT_RESSED_INTVL_GFACT * reseed_intvl_sec;
550 		if (next_ival > FXENT_RESEED_INTVL_MAX)
551 			next_ival = FXENT_RESEED_INTVL_MAX;
552 		FXENT_LOCK();
553 		fxent_timer_reseed_npools(1);
554 		FXENT_UNLOCK();
555 	} else {
556 		/*
557 		 * The creation of entropy pools beyond 0 is enabled when the
558 		 * reseed interval hits the maximum. (§ 3.3)
559 		 */
560 		next_ival = reseed_intvl_sec;
561 
562 		/*
563 		 * Pool 0 is used every reseed; pool 1..0 every 3rd reseed; and in
564 		 * general, pool n..0 every 3^n reseeds.
565 		 */
566 		k = reseed_number;
567 		reseed_number++;
568 
569 		/* Count how many pools, from [0, i), to use for reseed. */
570 		for (i = 1; i < MIN(fxent_nactpools + 1, FXRNG_NPOOLS); i++) {
571 			if ((k % FXENT_RESEED_BASE) != 0)
572 				break;
573 			k /= FXENT_RESEED_BASE;
574 		}
575 
576 		/*
577 		 * If we haven't activated pool i yet, activate it and only
578 		 * reseed from [0, i-1).  (§ 3.3)
579 		 */
580 		FXENT_LOCK();
581 		if (i == fxent_nactpools + 1) {
582 			fxent_timer_reseed_npools(fxent_nactpools);
583 			fxent_nactpools++;
584 		} else {
585 			/* Just reseed from [0, i). */
586 			fxent_timer_reseed_npools(i);
587 		}
588 		FXENT_UNLOCK();
589 	}
590 
591 	/* Schedule the next reseed. */
592 	sbt = next_ival * SBT_1S;
593 	taskqueue_enqueue_timeout_sbt(taskqueue_thread, &fxent_reseed_timer,
594 	    -sbt, (sbt / 3), C_PREL(2));
595 
596 	reseed_intvl_sec = next_ival;
597 }
598 
599 static void
600 fxent_pool_timer_init(void *dummy __unused)
601 {
602 	sbintime_t sbt;
603 
604 	TIMEOUT_TASK_INIT(taskqueue_thread, &fxent_reseed_timer, 0,
605 	    fxent_timer_reseed, NULL);
606 
607 	if (atomic_load_acq_64(&fxrng_root_generation) != 0) {
608 		sbt = SBT_1S;
609 		taskqueue_enqueue_timeout_sbt(taskqueue_thread,
610 		    &fxent_reseed_timer, -sbt, (sbt / 3), C_PREL(2));
611 	}
612 	atomic_store_rel_int(&fxent_timer_ready, 1);
613 }
614 /* After taskqueue_thread is initialized in SI_SUB_TASKQ:SI_ORDER_SECOND. */
615 SYSINIT(fxent_pool_timer_init, SI_SUB_TASKQ, SI_ORDER_ANY,
616     fxent_pool_timer_init, NULL);
617