xref: /freebsd/sys/dev/ral/rt2661.c (revision f6c0136c7fb87ab8277221a306291e386fe944fb)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2561, RT2561S and RT2661 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_radiotap.h>
56 
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/in_var.h>
60 #include <netinet/ip.h>
61 #include <netinet/if_ether.h>
62 
63 #include <dev/ral/if_ralrate.h>
64 #include <dev/ral/rt2661reg.h>
65 #include <dev/ral/rt2661var.h>
66 #include <dev/ral/rt2661_ucode.h>
67 
68 #ifdef RAL_DEBUG
69 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
70 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
71 int ral_debug = 0;
72 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level");
73 #else
74 #define DPRINTF(x)
75 #define DPRINTFN(n, x)
76 #endif
77 
78 static void		rt2661_dma_map_addr(void *, bus_dma_segment_t *, int,
79 			    int);
80 static int		rt2661_alloc_tx_ring(struct rt2661_softc *,
81 			    struct rt2661_tx_ring *, int);
82 static void		rt2661_reset_tx_ring(struct rt2661_softc *,
83 			    struct rt2661_tx_ring *);
84 static void		rt2661_free_tx_ring(struct rt2661_softc *,
85 			    struct rt2661_tx_ring *);
86 static int		rt2661_alloc_rx_ring(struct rt2661_softc *,
87 			    struct rt2661_rx_ring *, int);
88 static void		rt2661_reset_rx_ring(struct rt2661_softc *,
89 			    struct rt2661_rx_ring *);
90 static void		rt2661_free_rx_ring(struct rt2661_softc *,
91 			    struct rt2661_rx_ring *);
92 static struct		ieee80211_node *rt2661_node_alloc(
93 			    struct ieee80211_node_table *);
94 static int		rt2661_media_change(struct ifnet *);
95 static void		rt2661_next_scan(void *);
96 static int		rt2661_newstate(struct ieee80211com *,
97 			    enum ieee80211_state, int);
98 static uint16_t		rt2661_eeprom_read(struct rt2661_softc *, uint8_t);
99 static void		rt2661_rx_intr(struct rt2661_softc *);
100 static void		rt2661_tx_intr(struct rt2661_softc *);
101 static void		rt2661_tx_dma_intr(struct rt2661_softc *,
102 			    struct rt2661_tx_ring *);
103 static void		rt2661_mcu_beacon_expire(struct rt2661_softc *);
104 static void		rt2661_mcu_wakeup(struct rt2661_softc *);
105 static void		rt2661_mcu_cmd_intr(struct rt2661_softc *);
106 static int		rt2661_ack_rate(struct ieee80211com *, int);
107 static uint16_t		rt2661_txtime(int, int, uint32_t);
108 static uint8_t		rt2661_rxrate(struct rt2661_rx_desc *);
109 static uint8_t		rt2661_plcp_signal(int);
110 static void		rt2661_setup_tx_desc(struct rt2661_softc *,
111 			    struct rt2661_tx_desc *, uint32_t, uint16_t, int,
112 			    int, const bus_dma_segment_t *, int, int);
113 static struct mbuf *	rt2661_get_rts(struct rt2661_softc *,
114 			    struct ieee80211_frame *, uint16_t);
115 static int		rt2661_tx_data(struct rt2661_softc *, struct mbuf *,
116 			    struct ieee80211_node *, int);
117 static int		rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *,
118 			    struct ieee80211_node *);
119 static void		rt2661_start(struct ifnet *);
120 static void		rt2661_watchdog(void *);
121 static int		rt2661_reset(struct ifnet *);
122 static int		rt2661_ioctl(struct ifnet *, u_long, caddr_t);
123 static void		rt2661_bbp_write(struct rt2661_softc *, uint8_t,
124 			    uint8_t);
125 static uint8_t		rt2661_bbp_read(struct rt2661_softc *, uint8_t);
126 static void		rt2661_rf_write(struct rt2661_softc *, uint8_t,
127 			    uint32_t);
128 static int		rt2661_tx_cmd(struct rt2661_softc *, uint8_t,
129 			    uint16_t);
130 static void		rt2661_select_antenna(struct rt2661_softc *);
131 static void		rt2661_enable_mrr(struct rt2661_softc *);
132 static void		rt2661_set_txpreamble(struct rt2661_softc *);
133 static void		rt2661_set_basicrates(struct rt2661_softc *,
134 			    const struct ieee80211_rateset *);
135 static void		rt2661_select_band(struct rt2661_softc *,
136 			    struct ieee80211_channel *);
137 static void		rt2661_set_chan(struct rt2661_softc *,
138 			    struct ieee80211_channel *);
139 static void		rt2661_set_bssid(struct rt2661_softc *,
140 			    const uint8_t *);
141 static void		rt2661_set_macaddr(struct rt2661_softc *,
142 			   const uint8_t *);
143 static void		rt2661_update_promisc(struct rt2661_softc *);
144 static int		rt2661_wme_update(struct ieee80211com *) __unused;
145 static void		rt2661_update_slot(struct ifnet *);
146 static const char	*rt2661_get_rf(int);
147 static void		rt2661_read_eeprom(struct rt2661_softc *);
148 static int		rt2661_bbp_init(struct rt2661_softc *);
149 static void		rt2661_init(void *);
150 static void		rt2661_stop(void *);
151 static int		rt2661_load_microcode(struct rt2661_softc *,
152 			    const uint8_t *, int);
153 #ifdef notyet
154 static void		rt2661_rx_tune(struct rt2661_softc *);
155 static void		rt2661_radar_start(struct rt2661_softc *);
156 static int		rt2661_radar_stop(struct rt2661_softc *);
157 #endif
158 static int		rt2661_prepare_beacon(struct rt2661_softc *);
159 static void		rt2661_enable_tsf_sync(struct rt2661_softc *);
160 static int		rt2661_get_rssi(struct rt2661_softc *, uint8_t);
161 
162 static const struct {
163 	uint32_t	reg;
164 	uint32_t	val;
165 } rt2661_def_mac[] = {
166 	RT2661_DEF_MAC
167 };
168 
169 static const struct {
170 	uint8_t	reg;
171 	uint8_t	val;
172 } rt2661_def_bbp[] = {
173 	RT2661_DEF_BBP
174 };
175 
176 static const struct rfprog {
177 	uint8_t		chan;
178 	uint32_t	r1, r2, r3, r4;
179 }  rt2661_rf5225_1[] = {
180 	RT2661_RF5225_1
181 }, rt2661_rf5225_2[] = {
182 	RT2661_RF5225_2
183 };
184 
185 int
186 rt2661_attach(device_t dev, int id)
187 {
188 	struct rt2661_softc *sc = device_get_softc(dev);
189 	struct ieee80211com *ic = &sc->sc_ic;
190 	struct ifnet *ifp;
191 	uint32_t val;
192 	const uint8_t *ucode = NULL;
193 	int error, i, ac, ntries, size = 0;
194 
195 	sc->sc_dev = dev;
196 
197 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
198 	    MTX_DEF | MTX_RECURSE);
199 
200 	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
201 	callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
202 	callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
203 
204 	/* wait for NIC to initialize */
205 	for (ntries = 0; ntries < 1000; ntries++) {
206 		if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0)
207 			break;
208 		DELAY(1000);
209 	}
210 	if (ntries == 1000) {
211 		device_printf(sc->sc_dev,
212 		    "timeout waiting for NIC to initialize\n");
213 		error = EIO;
214 		goto fail1;
215 	}
216 
217 	/* retrieve RF rev. no and various other things from EEPROM */
218 	rt2661_read_eeprom(sc);
219 
220 	device_printf(dev, "MAC/BBP RT%X, RF %s\n", val,
221 	    rt2661_get_rf(sc->rf_rev));
222 
223 	/*
224 	 * Load 8051 microcode into NIC.
225 	 */
226 	switch (id) {
227 	case 0x0301:
228 		ucode = rt2561s_ucode;
229 		size = sizeof rt2561s_ucode;
230 		break;
231 	case 0x0302:
232 		ucode = rt2561_ucode;
233 		size = sizeof rt2561_ucode;
234 		break;
235 	case 0x0401:
236 		ucode = rt2661_ucode;
237 		size = sizeof rt2661_ucode;
238 		break;
239 	}
240 
241 	error = rt2661_load_microcode(sc, ucode, size);
242 	if (error != 0) {
243 		device_printf(sc->sc_dev, "could not load 8051 microcode\n");
244 		goto fail1;
245 	}
246 
247 	/*
248 	 * Allocate Tx and Rx rings.
249 	 */
250 	for (ac = 0; ac < 4; ac++) {
251 		error = rt2661_alloc_tx_ring(sc, &sc->txq[ac],
252 		    RT2661_TX_RING_COUNT);
253 		if (error != 0) {
254 			device_printf(sc->sc_dev,
255 			    "could not allocate Tx ring %d\n", ac);
256 			goto fail2;
257 		}
258 	}
259 
260 	error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT);
261 	if (error != 0) {
262 		device_printf(sc->sc_dev, "could not allocate Mgt ring\n");
263 		goto fail2;
264 	}
265 
266 	error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT);
267 	if (error != 0) {
268 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
269 		goto fail3;
270 	}
271 
272 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
273 	if (ifp == NULL) {
274 		device_printf(sc->sc_dev, "can not if_alloc()\n");
275 		error = ENOMEM;
276 		goto fail4;
277 	}
278 
279 	ifp->if_softc = sc;
280 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
281 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
282 	ifp->if_init = rt2661_init;
283 	ifp->if_ioctl = rt2661_ioctl;
284 	ifp->if_start = rt2661_start;
285 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
286 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
287 	IFQ_SET_READY(&ifp->if_snd);
288 
289 	ic->ic_ifp = ifp;
290 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
291 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
292 	ic->ic_state = IEEE80211_S_INIT;
293 
294 	/* set device capabilities */
295 	ic->ic_caps =
296 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
297 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
298 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
299 	    IEEE80211_C_TXPMGT |	/* tx power management */
300 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
301 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
302 #ifdef notyet
303 	    IEEE80211_C_WME |		/* 802.11e */
304 #endif
305 	    IEEE80211_C_WPA;		/* 802.11i */
306 
307 	if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) {
308 		/* set supported .11a channels */
309 		for (i = 36; i <= 64; i += 4) {
310 			ic->ic_channels[i].ic_freq =
311 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
312 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
313 		}
314 		for (i = 100; i <= 140; i += 4) {
315 			ic->ic_channels[i].ic_freq =
316 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
317 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
318 		}
319 		for (i = 149; i <= 165; i += 4) {
320 			ic->ic_channels[i].ic_freq =
321 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
322 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
323 		}
324 	}
325 
326 	/* set supported .11b and .11g channels (1 through 14) */
327 	for (i = 1; i <= 14; i++) {
328 		ic->ic_channels[i].ic_freq =
329 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
330 		ic->ic_channels[i].ic_flags =
331 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
332 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
333 	}
334 
335 	ieee80211_ifattach(ic);
336 	ic->ic_node_alloc = rt2661_node_alloc;
337 /*	ic->ic_wme.wme_update = rt2661_wme_update;*/
338 	ic->ic_updateslot = rt2661_update_slot;
339 	ic->ic_reset = rt2661_reset;
340 	/* enable s/w bmiss handling in sta mode */
341 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
342 
343 	/* override state transition machine */
344 	sc->sc_newstate = ic->ic_newstate;
345 	ic->ic_newstate = rt2661_newstate;
346 	ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status);
347 
348 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
349 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
350 
351 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
352 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
353 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT);
354 
355 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
356 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
357 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT);
358 
359 	/*
360 	 * Add a few sysctl knobs.
361 	 */
362 	sc->dwelltime = 200;
363 
364 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
365 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
366 	    CTLFLAG_RW, &sc->dwelltime, 0,
367 	    "channel dwell time (ms) for AP/station scanning");
368 
369 	if (bootverbose)
370 		ieee80211_announce(ic);
371 
372 	return 0;
373 
374 fail4:	rt2661_free_rx_ring(sc, &sc->rxq);
375 fail3:	rt2661_free_tx_ring(sc, &sc->mgtq);
376 fail2:	while (--ac >= 0)
377 		rt2661_free_tx_ring(sc, &sc->txq[ac]);
378 fail1:	mtx_destroy(&sc->sc_mtx);
379 
380 	return error;
381 }
382 
383 int
384 rt2661_detach(void *xsc)
385 {
386 	struct rt2661_softc *sc = xsc;
387 	struct ieee80211com *ic = &sc->sc_ic;
388 	struct ifnet *ifp = ic->ic_ifp;
389 
390 	rt2661_stop(sc);
391 	callout_stop(&sc->watchdog_ch);
392 	callout_stop(&sc->scan_ch);
393 	callout_stop(&sc->rssadapt_ch);
394 
395 	bpfdetach(ifp);
396 	ieee80211_ifdetach(ic);
397 
398 	rt2661_free_tx_ring(sc, &sc->txq[0]);
399 	rt2661_free_tx_ring(sc, &sc->txq[1]);
400 	rt2661_free_tx_ring(sc, &sc->txq[2]);
401 	rt2661_free_tx_ring(sc, &sc->txq[3]);
402 	rt2661_free_tx_ring(sc, &sc->mgtq);
403 	rt2661_free_rx_ring(sc, &sc->rxq);
404 
405 	if_free(ifp);
406 
407 	mtx_destroy(&sc->sc_mtx);
408 
409 	return 0;
410 }
411 
412 void
413 rt2661_shutdown(void *xsc)
414 {
415 	struct rt2661_softc *sc = xsc;
416 
417 	rt2661_stop(sc);
418 }
419 
420 void
421 rt2661_suspend(void *xsc)
422 {
423 	struct rt2661_softc *sc = xsc;
424 
425 	rt2661_stop(sc);
426 }
427 
428 void
429 rt2661_resume(void *xsc)
430 {
431 	struct rt2661_softc *sc = xsc;
432 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
433 
434 	if (ifp->if_flags & IFF_UP) {
435 		ifp->if_init(ifp->if_softc);
436 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
437 			ifp->if_start(ifp);
438 	}
439 }
440 
441 static void
442 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
443 {
444 	if (error != 0)
445 		return;
446 
447 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
448 
449 	*(bus_addr_t *)arg = segs[0].ds_addr;
450 }
451 
452 static int
453 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring,
454     int count)
455 {
456 	int i, error;
457 
458 	ring->count = count;
459 	ring->queued = 0;
460 	ring->cur = ring->next = ring->stat = 0;
461 
462 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
463 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1,
464 	    count * RT2661_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
465 	if (error != 0) {
466 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
467 		goto fail;
468 	}
469 
470 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
471 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
472 	if (error != 0) {
473 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
474 		goto fail;
475 	}
476 
477 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
478 	    count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
479 	    0);
480 	if (error != 0) {
481 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
482 		goto fail;
483 	}
484 
485 	ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF,
486 	    M_NOWAIT | M_ZERO);
487 	if (ring->data == NULL) {
488 		device_printf(sc->sc_dev, "could not allocate soft data\n");
489 		error = ENOMEM;
490 		goto fail;
491 	}
492 
493 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
494 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2661_MAX_SCATTER,
495 	    MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
496 	if (error != 0) {
497 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
498 		goto fail;
499 	}
500 
501 	for (i = 0; i < count; i++) {
502 		error = bus_dmamap_create(ring->data_dmat, 0,
503 		    &ring->data[i].map);
504 		if (error != 0) {
505 			device_printf(sc->sc_dev, "could not create DMA map\n");
506 			goto fail;
507 		}
508 	}
509 
510 	return 0;
511 
512 fail:	rt2661_free_tx_ring(sc, ring);
513 	return error;
514 }
515 
516 static void
517 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
518 {
519 	struct rt2661_tx_desc *desc;
520 	struct rt2661_tx_data *data;
521 	int i;
522 
523 	for (i = 0; i < ring->count; i++) {
524 		desc = &ring->desc[i];
525 		data = &ring->data[i];
526 
527 		if (data->m != NULL) {
528 			bus_dmamap_sync(ring->data_dmat, data->map,
529 			    BUS_DMASYNC_POSTWRITE);
530 			bus_dmamap_unload(ring->data_dmat, data->map);
531 			m_freem(data->m);
532 			data->m = NULL;
533 		}
534 
535 		if (data->ni != NULL) {
536 			ieee80211_free_node(data->ni);
537 			data->ni = NULL;
538 		}
539 
540 		desc->flags = 0;
541 	}
542 
543 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
544 
545 	ring->queued = 0;
546 	ring->cur = ring->next = ring->stat = 0;
547 }
548 
549 static void
550 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring)
551 {
552 	struct rt2661_tx_data *data;
553 	int i;
554 
555 	if (ring->desc != NULL) {
556 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
557 		    BUS_DMASYNC_POSTWRITE);
558 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
559 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
560 	}
561 
562 	if (ring->desc_dmat != NULL)
563 		bus_dma_tag_destroy(ring->desc_dmat);
564 
565 	if (ring->data != NULL) {
566 		for (i = 0; i < ring->count; i++) {
567 			data = &ring->data[i];
568 
569 			if (data->m != NULL) {
570 				bus_dmamap_sync(ring->data_dmat, data->map,
571 				    BUS_DMASYNC_POSTWRITE);
572 				bus_dmamap_unload(ring->data_dmat, data->map);
573 				m_freem(data->m);
574 			}
575 
576 			if (data->ni != NULL)
577 				ieee80211_free_node(data->ni);
578 
579 			if (data->map != NULL)
580 				bus_dmamap_destroy(ring->data_dmat, data->map);
581 		}
582 
583 		free(ring->data, M_DEVBUF);
584 	}
585 
586 	if (ring->data_dmat != NULL)
587 		bus_dma_tag_destroy(ring->data_dmat);
588 }
589 
590 static int
591 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring,
592     int count)
593 {
594 	struct rt2661_rx_desc *desc;
595 	struct rt2661_rx_data *data;
596 	bus_addr_t physaddr;
597 	int i, error;
598 
599 	ring->count = count;
600 	ring->cur = ring->next = 0;
601 
602 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
603 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1,
604 	    count * RT2661_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
605 	if (error != 0) {
606 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
607 		goto fail;
608 	}
609 
610 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
611 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
612 	if (error != 0) {
613 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
614 		goto fail;
615 	}
616 
617 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
618 	    count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr,
619 	    0);
620 	if (error != 0) {
621 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
622 		goto fail;
623 	}
624 
625 	ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF,
626 	    M_NOWAIT | M_ZERO);
627 	if (ring->data == NULL) {
628 		device_printf(sc->sc_dev, "could not allocate soft data\n");
629 		error = ENOMEM;
630 		goto fail;
631 	}
632 
633 	/*
634 	 * Pre-allocate Rx buffers and populate Rx ring.
635 	 */
636 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
637 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
638 	    NULL, &ring->data_dmat);
639 	if (error != 0) {
640 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
641 		goto fail;
642 	}
643 
644 	for (i = 0; i < count; i++) {
645 		desc = &sc->rxq.desc[i];
646 		data = &sc->rxq.data[i];
647 
648 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
649 		if (error != 0) {
650 			device_printf(sc->sc_dev, "could not create DMA map\n");
651 			goto fail;
652 		}
653 
654 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
655 		if (data->m == NULL) {
656 			device_printf(sc->sc_dev,
657 			    "could not allocate rx mbuf\n");
658 			error = ENOMEM;
659 			goto fail;
660 		}
661 
662 		error = bus_dmamap_load(ring->data_dmat, data->map,
663 		    mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr,
664 		    &physaddr, 0);
665 		if (error != 0) {
666 			device_printf(sc->sc_dev,
667 			    "could not load rx buf DMA map");
668 			goto fail;
669 		}
670 
671 		desc->flags = htole32(RT2661_RX_BUSY);
672 		desc->physaddr = htole32(physaddr);
673 	}
674 
675 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
676 
677 	return 0;
678 
679 fail:	rt2661_free_rx_ring(sc, ring);
680 	return error;
681 }
682 
683 static void
684 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
685 {
686 	int i;
687 
688 	for (i = 0; i < ring->count; i++)
689 		ring->desc[i].flags = htole32(RT2661_RX_BUSY);
690 
691 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
692 
693 	ring->cur = ring->next = 0;
694 }
695 
696 static void
697 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring)
698 {
699 	struct rt2661_rx_data *data;
700 	int i;
701 
702 	if (ring->desc != NULL) {
703 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
704 		    BUS_DMASYNC_POSTWRITE);
705 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
706 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
707 	}
708 
709 	if (ring->desc_dmat != NULL)
710 		bus_dma_tag_destroy(ring->desc_dmat);
711 
712 	if (ring->data != NULL) {
713 		for (i = 0; i < ring->count; i++) {
714 			data = &ring->data[i];
715 
716 			if (data->m != NULL) {
717 				bus_dmamap_sync(ring->data_dmat, data->map,
718 				    BUS_DMASYNC_POSTREAD);
719 				bus_dmamap_unload(ring->data_dmat, data->map);
720 				m_freem(data->m);
721 			}
722 
723 			if (data->map != NULL)
724 				bus_dmamap_destroy(ring->data_dmat, data->map);
725 		}
726 
727 		free(ring->data, M_DEVBUF);
728 	}
729 
730 	if (ring->data_dmat != NULL)
731 		bus_dma_tag_destroy(ring->data_dmat);
732 }
733 
734 static struct ieee80211_node *
735 rt2661_node_alloc(struct ieee80211_node_table *nt)
736 {
737 	struct rt2661_node *rn;
738 
739 	rn = malloc(sizeof (struct rt2661_node), M_80211_NODE,
740 	    M_NOWAIT | M_ZERO);
741 
742 	return (rn != NULL) ? &rn->ni : NULL;
743 }
744 
745 static int
746 rt2661_media_change(struct ifnet *ifp)
747 {
748 	struct rt2661_softc *sc = ifp->if_softc;
749 	int error;
750 
751 	error = ieee80211_media_change(ifp);
752 	if (error != ENETRESET)
753 		return error;
754 
755 	if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
756 		rt2661_init(sc);
757 
758 	return 0;
759 }
760 
761 /*
762  * This function is called periodically (every 200ms) during scanning to
763  * switch from one channel to another.
764  */
765 static void
766 rt2661_next_scan(void *arg)
767 {
768 	struct rt2661_softc *sc = arg;
769 	struct ieee80211com *ic = &sc->sc_ic;
770 
771 	if (ic->ic_state == IEEE80211_S_SCAN)
772 		ieee80211_next_scan(ic);
773 }
774 
775 /*
776  * This function is called for each node present in the node station table.
777  */
778 static void
779 rt2661_iter_func(void *arg, struct ieee80211_node *ni)
780 {
781 	struct rt2661_node *rn = (struct rt2661_node *)ni;
782 
783 	ral_rssadapt_updatestats(&rn->rssadapt);
784 }
785 
786 /*
787  * This function is called periodically (every 100ms) in RUN state to update
788  * the rate adaptation statistics.
789  */
790 static void
791 rt2661_update_rssadapt(void *arg)
792 {
793 	struct rt2661_softc *sc = arg;
794 	struct ieee80211com *ic = &sc->sc_ic;
795 
796 	RAL_LOCK(sc);
797 
798 	ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg);
799 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_update_rssadapt, sc);
800 
801 	RAL_UNLOCK(sc);
802 }
803 
804 static int
805 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
806 {
807 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
808 	enum ieee80211_state ostate;
809 	struct ieee80211_node *ni;
810 	uint32_t tmp;
811 	int error = 0;
812 
813 	ostate = ic->ic_state;
814 	callout_stop(&sc->scan_ch);
815 
816 	switch (nstate) {
817 	case IEEE80211_S_INIT:
818 		callout_stop(&sc->rssadapt_ch);
819 
820 		if (ostate == IEEE80211_S_RUN) {
821 			/* abort TSF synchronization */
822 			tmp = RAL_READ(sc, RT2661_TXRX_CSR9);
823 			RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff);
824 		}
825 		break;
826 
827 	case IEEE80211_S_SCAN:
828 		rt2661_set_chan(sc, ic->ic_curchan);
829 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
830 		    rt2661_next_scan, sc);
831 		break;
832 
833 	case IEEE80211_S_AUTH:
834 	case IEEE80211_S_ASSOC:
835 		rt2661_set_chan(sc, ic->ic_curchan);
836 		break;
837 
838 	case IEEE80211_S_RUN:
839 		rt2661_set_chan(sc, ic->ic_curchan);
840 
841 		ni = ic->ic_bss;
842 
843 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
844 			rt2661_enable_mrr(sc);
845 			rt2661_set_txpreamble(sc);
846 			rt2661_set_basicrates(sc, &ni->ni_rates);
847 			rt2661_set_bssid(sc, ni->ni_bssid);
848 		}
849 
850 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
851 		    ic->ic_opmode == IEEE80211_M_IBSS) {
852 			if ((error = rt2661_prepare_beacon(sc)) != 0)
853 				break;
854 		}
855 
856 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
857 			callout_reset(&sc->rssadapt_ch, hz / 10,
858 			    rt2661_update_rssadapt, sc);
859 			rt2661_enable_tsf_sync(sc);
860 		}
861 		break;
862 	}
863 
864 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
865 }
866 
867 /*
868  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
869  * 93C66).
870  */
871 static uint16_t
872 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr)
873 {
874 	uint32_t tmp;
875 	uint16_t val;
876 	int n;
877 
878 	/* clock C once before the first command */
879 	RT2661_EEPROM_CTL(sc, 0);
880 
881 	RT2661_EEPROM_CTL(sc, RT2661_S);
882 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
883 	RT2661_EEPROM_CTL(sc, RT2661_S);
884 
885 	/* write start bit (1) */
886 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
887 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
888 
889 	/* write READ opcode (10) */
890 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D);
891 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C);
892 	RT2661_EEPROM_CTL(sc, RT2661_S);
893 	RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
894 
895 	/* write address (A5-A0 or A7-A0) */
896 	n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7;
897 	for (; n >= 0; n--) {
898 		RT2661_EEPROM_CTL(sc, RT2661_S |
899 		    (((addr >> n) & 1) << RT2661_SHIFT_D));
900 		RT2661_EEPROM_CTL(sc, RT2661_S |
901 		    (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C);
902 	}
903 
904 	RT2661_EEPROM_CTL(sc, RT2661_S);
905 
906 	/* read data Q15-Q0 */
907 	val = 0;
908 	for (n = 15; n >= 0; n--) {
909 		RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C);
910 		tmp = RAL_READ(sc, RT2661_E2PROM_CSR);
911 		val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n;
912 		RT2661_EEPROM_CTL(sc, RT2661_S);
913 	}
914 
915 	RT2661_EEPROM_CTL(sc, 0);
916 
917 	/* clear Chip Select and clock C */
918 	RT2661_EEPROM_CTL(sc, RT2661_S);
919 	RT2661_EEPROM_CTL(sc, 0);
920 	RT2661_EEPROM_CTL(sc, RT2661_C);
921 
922 	return val;
923 }
924 
925 static void
926 rt2661_tx_intr(struct rt2661_softc *sc)
927 {
928 	struct ieee80211com *ic = &sc->sc_ic;
929 	struct ifnet *ifp = ic->ic_ifp;
930 	struct rt2661_tx_ring *txq;
931 	struct rt2661_tx_data *data;
932 	struct rt2661_node *rn;
933 	uint32_t val;
934 	int qid, retrycnt;
935 
936 	for (;;) {
937 		val = RAL_READ(sc, RT2661_STA_CSR4);
938 		if (!(val & RT2661_TX_STAT_VALID))
939 			break;
940 
941 		/* retrieve the queue in which this frame was sent */
942 		qid = RT2661_TX_QID(val);
943 		txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq;
944 
945 		/* retrieve rate control algorithm context */
946 		data = &txq->data[txq->stat];
947 		rn = (struct rt2661_node *)data->ni;
948 
949 		/* if no frame has been sent, ignore */
950 		if (rn == NULL)
951 			continue;
952 
953 		switch (RT2661_TX_RESULT(val)) {
954 		case RT2661_TX_SUCCESS:
955 			retrycnt = RT2661_TX_RETRYCNT(val);
956 
957 			DPRINTFN(10, ("data frame sent successfully after "
958 			    "%d retries\n", retrycnt));
959 			if (retrycnt == 0 && data->id.id_node != NULL) {
960 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
961 				    &data->id);
962 			}
963 			ifp->if_opackets++;
964 			break;
965 
966 		case RT2661_TX_RETRY_FAIL:
967 			DPRINTFN(9, ("sending data frame failed (too much "
968 			    "retries)\n"));
969 			if (data->id.id_node != NULL) {
970 				ral_rssadapt_lower_rate(ic, data->ni,
971 				    &rn->rssadapt, &data->id);
972 			}
973 			ifp->if_oerrors++;
974 			break;
975 
976 		default:
977 			/* other failure */
978 			device_printf(sc->sc_dev,
979 			    "sending data frame failed 0x%08x\n", val);
980 			ifp->if_oerrors++;
981 		}
982 
983 		ieee80211_free_node(data->ni);
984 		data->ni = NULL;
985 
986 		DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat));
987 
988 		txq->queued--;
989 		if (++txq->stat >= txq->count)	/* faster than % count */
990 			txq->stat = 0;
991 	}
992 
993 	sc->sc_tx_timer = 0;
994 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
995 	rt2661_start(ifp);
996 }
997 
998 static void
999 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq)
1000 {
1001 	struct rt2661_tx_desc *desc;
1002 	struct rt2661_tx_data *data;
1003 
1004 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD);
1005 
1006 	for (;;) {
1007 		desc = &txq->desc[txq->next];
1008 		data = &txq->data[txq->next];
1009 
1010 		if ((le32toh(desc->flags) & RT2661_TX_BUSY) ||
1011 		    !(le32toh(desc->flags) & RT2661_TX_VALID))
1012 			break;
1013 
1014 		bus_dmamap_sync(txq->data_dmat, data->map,
1015 		    BUS_DMASYNC_POSTWRITE);
1016 		bus_dmamap_unload(txq->data_dmat, data->map);
1017 		m_freem(data->m);
1018 		data->m = NULL;
1019 		/* node reference is released in rt2661_tx_intr() */
1020 
1021 		/* descriptor is no longer valid */
1022 		desc->flags &= ~htole32(RT2661_TX_VALID);
1023 
1024 		DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next));
1025 
1026 		if (++txq->next >= txq->count)	/* faster than % count */
1027 			txq->next = 0;
1028 	}
1029 
1030 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1031 }
1032 
1033 static void
1034 rt2661_rx_intr(struct rt2661_softc *sc)
1035 {
1036 	struct ieee80211com *ic = &sc->sc_ic;
1037 	struct ifnet *ifp = ic->ic_ifp;
1038 	struct rt2661_rx_desc *desc;
1039 	struct rt2661_rx_data *data;
1040 	bus_addr_t physaddr;
1041 	struct ieee80211_frame *wh;
1042 	struct ieee80211_node *ni;
1043 	struct rt2661_node *rn;
1044 	struct mbuf *mnew, *m;
1045 	int error;
1046 
1047 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1048 	    BUS_DMASYNC_POSTREAD);
1049 
1050 	for (;;) {
1051 		desc = &sc->rxq.desc[sc->rxq.cur];
1052 		data = &sc->rxq.data[sc->rxq.cur];
1053 
1054 		if (le32toh(desc->flags) & RT2661_RX_BUSY)
1055 			break;
1056 
1057 		if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) ||
1058 		    (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) {
1059 			/*
1060 			 * This should not happen since we did not request
1061 			 * to receive those frames when we filled TXRX_CSR0.
1062 			 */
1063 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1064 			    le32toh(desc->flags)));
1065 			ifp->if_ierrors++;
1066 			goto skip;
1067 		}
1068 
1069 		if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) {
1070 			ifp->if_ierrors++;
1071 			goto skip;
1072 		}
1073 
1074 		/*
1075 		 * Try to allocate a new mbuf for this ring element and load it
1076 		 * before processing the current mbuf. If the ring element
1077 		 * cannot be loaded, drop the received packet and reuse the old
1078 		 * mbuf. In the unlikely case that the old mbuf can't be
1079 		 * reloaded either, explicitly panic.
1080 		 */
1081 		mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1082 		if (mnew == NULL) {
1083 			ifp->if_ierrors++;
1084 			goto skip;
1085 		}
1086 
1087 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1088 		    BUS_DMASYNC_POSTREAD);
1089 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1090 
1091 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1092 		    mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr,
1093 		    &physaddr, 0);
1094 		if (error != 0) {
1095 			m_freem(mnew);
1096 
1097 			/* try to reload the old mbuf */
1098 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1099 			    mtod(data->m, void *), MCLBYTES,
1100 			    rt2661_dma_map_addr, &physaddr, 0);
1101 			if (error != 0) {
1102 				/* very unlikely that it will fail... */
1103 				panic("%s: could not load old rx mbuf",
1104 				    device_get_name(sc->sc_dev));
1105 			}
1106 			ifp->if_ierrors++;
1107 			goto skip;
1108 		}
1109 
1110 		/*
1111 	 	 * New mbuf successfully loaded, update Rx ring and continue
1112 		 * processing.
1113 		 */
1114 		m = data->m;
1115 		data->m = mnew;
1116 		desc->physaddr = htole32(physaddr);
1117 
1118 		/* finalize mbuf */
1119 		m->m_pkthdr.rcvif = ifp;
1120 		m->m_pkthdr.len = m->m_len =
1121 		    (le32toh(desc->flags) >> 16) & 0xfff;
1122 
1123 		if (bpf_peers_present(sc->sc_drvbpf)) {
1124 			struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap;
1125 			uint32_t tsf_lo, tsf_hi;
1126 
1127 			/* get timestamp (low and high 32 bits) */
1128 			tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13);
1129 			tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12);
1130 
1131 			tap->wr_tsf =
1132 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1133 			tap->wr_flags = 0;
1134 			tap->wr_rate = rt2661_rxrate(desc);
1135 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1136 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1137 			tap->wr_antsignal = desc->rssi;
1138 
1139 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1140 		}
1141 
1142 		wh = mtod(m, struct ieee80211_frame *);
1143 		ni = ieee80211_find_rxnode(ic,
1144 		    (struct ieee80211_frame_min *)wh);
1145 
1146 		/* send the frame to the 802.11 layer */
1147 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1148 
1149 		/* give rssi to the rate adatation algorithm */
1150 		rn = (struct rt2661_node *)ni;
1151 		ral_rssadapt_input(ic, ni, &rn->rssadapt,
1152 		    rt2661_get_rssi(sc, desc->rssi));
1153 
1154 		/* node is no longer needed */
1155 		ieee80211_free_node(ni);
1156 
1157 skip:		desc->flags |= htole32(RT2661_RX_BUSY);
1158 
1159 		DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur));
1160 
1161 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT;
1162 	}
1163 
1164 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1165 	    BUS_DMASYNC_PREWRITE);
1166 }
1167 
1168 /* ARGSUSED */
1169 static void
1170 rt2661_mcu_beacon_expire(struct rt2661_softc *sc)
1171 {
1172 	/* do nothing */
1173 }
1174 
1175 static void
1176 rt2661_mcu_wakeup(struct rt2661_softc *sc)
1177 {
1178 	RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16);
1179 
1180 	RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7);
1181 	RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18);
1182 	RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20);
1183 
1184 	/* send wakeup command to MCU */
1185 	rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0);
1186 }
1187 
1188 static void
1189 rt2661_mcu_cmd_intr(struct rt2661_softc *sc)
1190 {
1191 	RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR);
1192 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
1193 }
1194 
1195 void
1196 rt2661_intr(void *arg)
1197 {
1198 	struct rt2661_softc *sc = arg;
1199 	struct ifnet *ifp = sc->sc_ifp;
1200 	uint32_t r1, r2;
1201 
1202 	RAL_LOCK(sc);
1203 
1204 	/* disable MAC and MCU interrupts */
1205 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f);
1206 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
1207 
1208 	/* don't re-enable interrupts if we're shutting down */
1209 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1210 		RAL_UNLOCK(sc);
1211 		return;
1212 	}
1213 
1214 	r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR);
1215 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1);
1216 
1217 	r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR);
1218 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2);
1219 
1220 	if (r1 & RT2661_MGT_DONE)
1221 		rt2661_tx_dma_intr(sc, &sc->mgtq);
1222 
1223 	if (r1 & RT2661_RX_DONE)
1224 		rt2661_rx_intr(sc);
1225 
1226 	if (r1 & RT2661_TX0_DMA_DONE)
1227 		rt2661_tx_dma_intr(sc, &sc->txq[0]);
1228 
1229 	if (r1 & RT2661_TX1_DMA_DONE)
1230 		rt2661_tx_dma_intr(sc, &sc->txq[1]);
1231 
1232 	if (r1 & RT2661_TX2_DMA_DONE)
1233 		rt2661_tx_dma_intr(sc, &sc->txq[2]);
1234 
1235 	if (r1 & RT2661_TX3_DMA_DONE)
1236 		rt2661_tx_dma_intr(sc, &sc->txq[3]);
1237 
1238 	if (r1 & RT2661_TX_DONE)
1239 		rt2661_tx_intr(sc);
1240 
1241 	if (r2 & RT2661_MCU_CMD_DONE)
1242 		rt2661_mcu_cmd_intr(sc);
1243 
1244 	if (r2 & RT2661_MCU_BEACON_EXPIRE)
1245 		rt2661_mcu_beacon_expire(sc);
1246 
1247 	if (r2 & RT2661_MCU_WAKEUP)
1248 		rt2661_mcu_wakeup(sc);
1249 
1250 	/* re-enable MAC and MCU interrupts */
1251 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
1252 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
1253 
1254 	RAL_UNLOCK(sc);
1255 }
1256 
1257 /* quickly determine if a given rate is CCK or OFDM */
1258 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1259 
1260 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1261 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1262 
1263 #define RAL_SIFS	10	/* us */
1264 
1265 /*
1266  * This function is only used by the Rx radiotap code. It returns the rate at
1267  * which a given frame was received.
1268  */
1269 static uint8_t
1270 rt2661_rxrate(struct rt2661_rx_desc *desc)
1271 {
1272 	if (le32toh(desc->flags) & RT2661_RX_OFDM) {
1273 		/* reverse function of rt2661_plcp_signal */
1274 		switch (desc->rate & 0xf) {
1275 		case 0xb:	return 12;
1276 		case 0xf:	return 18;
1277 		case 0xa:	return 24;
1278 		case 0xe:	return 36;
1279 		case 0x9:	return 48;
1280 		case 0xd:	return 72;
1281 		case 0x8:	return 96;
1282 		case 0xc:	return 108;
1283 		}
1284 	} else {
1285 		if (desc->rate == 10)
1286 			return 2;
1287 		if (desc->rate == 20)
1288 			return 4;
1289 		if (desc->rate == 55)
1290 			return 11;
1291 		if (desc->rate == 110)
1292 			return 22;
1293 	}
1294 	return 2;	/* should not get there */
1295 }
1296 
1297 /*
1298  * Return the expected ack rate for a frame transmitted at rate `rate'.
1299  * XXX: this should depend on the destination node basic rate set.
1300  */
1301 static int
1302 rt2661_ack_rate(struct ieee80211com *ic, int rate)
1303 {
1304 	switch (rate) {
1305 	/* CCK rates */
1306 	case 2:
1307 		return 2;
1308 	case 4:
1309 	case 11:
1310 	case 22:
1311 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1312 
1313 	/* OFDM rates */
1314 	case 12:
1315 	case 18:
1316 		return 12;
1317 	case 24:
1318 	case 36:
1319 		return 24;
1320 	case 48:
1321 	case 72:
1322 	case 96:
1323 	case 108:
1324 		return 48;
1325 	}
1326 
1327 	/* default to 1Mbps */
1328 	return 2;
1329 }
1330 
1331 /*
1332  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1333  * The function automatically determines the operating mode depending on the
1334  * given rate. `flags' indicates whether short preamble is in use or not.
1335  */
1336 static uint16_t
1337 rt2661_txtime(int len, int rate, uint32_t flags)
1338 {
1339 	uint16_t txtime;
1340 
1341 	if (RAL_RATE_IS_OFDM(rate)) {
1342 		/* IEEE Std 802.11a-1999, pp. 37 */
1343 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1344 		txtime = 16 + 4 + 4 * txtime + 6;
1345 	} else {
1346 		/* IEEE Std 802.11b-1999, pp. 28 */
1347 		txtime = (16 * len + rate - 1) / rate;
1348 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1349 			txtime +=  72 + 24;
1350 		else
1351 			txtime += 144 + 48;
1352 	}
1353 
1354 	return txtime;
1355 }
1356 
1357 static uint8_t
1358 rt2661_plcp_signal(int rate)
1359 {
1360 	switch (rate) {
1361 	/* CCK rates (returned values are device-dependent) */
1362 	case 2:		return 0x0;
1363 	case 4:		return 0x1;
1364 	case 11:	return 0x2;
1365 	case 22:	return 0x3;
1366 
1367 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1368 	case 12:	return 0xb;
1369 	case 18:	return 0xf;
1370 	case 24:	return 0xa;
1371 	case 36:	return 0xe;
1372 	case 48:	return 0x9;
1373 	case 72:	return 0xd;
1374 	case 96:	return 0x8;
1375 	case 108:	return 0xc;
1376 
1377 	/* unsupported rates (should not get there) */
1378 	default:	return 0xff;
1379 	}
1380 }
1381 
1382 static void
1383 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc,
1384     uint32_t flags, uint16_t xflags, int len, int rate,
1385     const bus_dma_segment_t *segs, int nsegs, int ac)
1386 {
1387 	struct ieee80211com *ic = &sc->sc_ic;
1388 	uint16_t plcp_length;
1389 	int i, remainder;
1390 
1391 	desc->flags = htole32(flags);
1392 	desc->flags |= htole32(len << 16);
1393 	desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID);
1394 
1395 	desc->xflags = htole16(xflags);
1396 	desc->xflags |= htole16(nsegs << 13);
1397 
1398 	desc->wme = htole16(
1399 	    RT2661_QID(ac) |
1400 	    RT2661_AIFSN(2) |
1401 	    RT2661_LOGCWMIN(4) |
1402 	    RT2661_LOGCWMAX(10));
1403 
1404 	/*
1405 	 * Remember in which queue this frame was sent. This field is driver
1406 	 * private data only. It will be made available by the NIC in STA_CSR4
1407 	 * on Tx interrupts.
1408 	 */
1409 	desc->qid = ac;
1410 
1411 	/* setup PLCP fields */
1412 	desc->plcp_signal  = rt2661_plcp_signal(rate);
1413 	desc->plcp_service = 4;
1414 
1415 	len += IEEE80211_CRC_LEN;
1416 	if (RAL_RATE_IS_OFDM(rate)) {
1417 		desc->flags |= htole32(RT2661_TX_OFDM);
1418 
1419 		plcp_length = len & 0xfff;
1420 		desc->plcp_length_hi = plcp_length >> 6;
1421 		desc->plcp_length_lo = plcp_length & 0x3f;
1422 	} else {
1423 		plcp_length = (16 * len + rate - 1) / rate;
1424 		if (rate == 22) {
1425 			remainder = (16 * len) % 22;
1426 			if (remainder != 0 && remainder < 7)
1427 				desc->plcp_service |= RT2661_PLCP_LENGEXT;
1428 		}
1429 		desc->plcp_length_hi = plcp_length >> 8;
1430 		desc->plcp_length_lo = plcp_length & 0xff;
1431 
1432 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1433 			desc->plcp_signal |= 0x08;
1434 	}
1435 
1436 	/* RT2x61 supports scatter with up to 5 segments */
1437 	for (i = 0; i < nsegs; i++) {
1438 		desc->addr[i] = htole32(segs[i].ds_addr);
1439 		desc->len [i] = htole16(segs[i].ds_len);
1440 	}
1441 }
1442 
1443 static int
1444 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0,
1445     struct ieee80211_node *ni)
1446 {
1447 	struct ieee80211com *ic = &sc->sc_ic;
1448 	struct rt2661_tx_desc *desc;
1449 	struct rt2661_tx_data *data;
1450 	struct ieee80211_frame *wh;
1451 	bus_dma_segment_t segs[RT2661_MAX_SCATTER];
1452 	uint16_t dur;
1453 	uint32_t flags = 0;	/* XXX HWSEQ */
1454 	int nsegs, rate, error;
1455 
1456 	desc = &sc->mgtq.desc[sc->mgtq.cur];
1457 	data = &sc->mgtq.data[sc->mgtq.cur];
1458 
1459 	/* send mgt frames at the lowest available rate */
1460 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1461 
1462 	error = bus_dmamap_load_mbuf_sg(sc->mgtq.data_dmat, data->map, m0,
1463 	    segs, &nsegs, 0);
1464 	if (error != 0) {
1465 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1466 		    error);
1467 		m_freem(m0);
1468 		return error;
1469 	}
1470 
1471 	if (bpf_peers_present(sc->sc_drvbpf)) {
1472 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1473 
1474 		tap->wt_flags = 0;
1475 		tap->wt_rate = rate;
1476 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1477 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1478 
1479 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1480 	}
1481 
1482 	data->m = m0;
1483 	data->ni = ni;
1484 
1485 	wh = mtod(m0, struct ieee80211_frame *);
1486 
1487 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1488 		flags |= RT2661_TX_NEED_ACK;
1489 
1490 		dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1491 		    RAL_SIFS;
1492 		*(uint16_t *)wh->i_dur = htole16(dur);
1493 
1494 		/* tell hardware to add timestamp in probe responses */
1495 		if ((wh->i_fc[0] &
1496 		    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1497 		    (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
1498 			flags |= RT2661_TX_TIMESTAMP;
1499 	}
1500 
1501 	rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */,
1502 	    m0->m_pkthdr.len, rate, segs, nsegs, RT2661_QID_MGT);
1503 
1504 	bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1505 	bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map,
1506 	    BUS_DMASYNC_PREWRITE);
1507 
1508 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1509 	    m0->m_pkthdr.len, sc->mgtq.cur, rate));
1510 
1511 	/* kick mgt */
1512 	sc->mgtq.queued++;
1513 	sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT;
1514 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT);
1515 
1516 	return 0;
1517 }
1518 
1519 /*
1520  * Build a RTS control frame.
1521  */
1522 static struct mbuf *
1523 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh,
1524     uint16_t dur)
1525 {
1526 	struct ieee80211_frame_rts *rts;
1527 	struct mbuf *m;
1528 
1529 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1530 	if (m == NULL) {
1531 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1532 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1533 		return NULL;
1534 	}
1535 
1536 	rts = mtod(m, struct ieee80211_frame_rts *);
1537 
1538 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1539 	    IEEE80211_FC0_SUBTYPE_RTS;
1540 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1541 	*(uint16_t *)rts->i_dur = htole16(dur);
1542 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1543 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1544 
1545 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1546 
1547 	return m;
1548 }
1549 
1550 static int
1551 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0,
1552     struct ieee80211_node *ni, int ac)
1553 {
1554 	struct ieee80211com *ic = &sc->sc_ic;
1555 	struct rt2661_tx_ring *txq = &sc->txq[ac];
1556 	struct rt2661_tx_desc *desc;
1557 	struct rt2661_tx_data *data;
1558 	struct rt2661_node *rn;
1559 	struct ieee80211_rateset *rs;
1560 	struct ieee80211_frame *wh;
1561 	struct ieee80211_key *k;
1562 	const struct chanAccParams *cap;
1563 	struct mbuf *mnew;
1564 	bus_dma_segment_t segs[RT2661_MAX_SCATTER];
1565 	uint16_t dur;
1566 	uint32_t flags = 0;
1567 	int error, nsegs, rate, noack = 0;
1568 
1569 	wh = mtod(m0, struct ieee80211_frame *);
1570 
1571 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1572 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1573 		rate = rs->rs_rates[ic->ic_fixed_rate];
1574 	} else {
1575 		rs = &ni->ni_rates;
1576 		rn = (struct rt2661_node *)ni;
1577 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs,
1578 		    wh, m0->m_pkthdr.len, NULL, 0);
1579 		rate = rs->rs_rates[ni->ni_txrate];
1580 	}
1581 	rate &= IEEE80211_RATE_VAL;
1582 
1583 	if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
1584 		cap = &ic->ic_wme.wme_chanParams;
1585 		noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
1586 	}
1587 
1588 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1589 		k = ieee80211_crypto_encap(ic, ni, m0);
1590 		if (k == NULL) {
1591 			m_freem(m0);
1592 			return ENOBUFS;
1593 		}
1594 
1595 		/* packet header may have moved, reset our local pointer */
1596 		wh = mtod(m0, struct ieee80211_frame *);
1597 	}
1598 
1599 	/*
1600 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1601 	 * for directed frames only when the length of the MPDU is greater
1602 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1603 	 */
1604 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1605 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1606 		struct mbuf *m;
1607 		uint16_t dur;
1608 		int rtsrate, ackrate;
1609 
1610 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1611 		ackrate = rt2661_ack_rate(ic, rate);
1612 
1613 		dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1614 		      rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1615 		      /* XXX: noack (QoS)? */
1616 		      rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1617 		      3 * RAL_SIFS;
1618 
1619 		m = rt2661_get_rts(sc, wh, dur);
1620 
1621 		desc = &txq->desc[txq->cur];
1622 		data = &txq->data[txq->cur];
1623 
1624 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m,
1625 		    segs, &nsegs, 0);
1626 		if (error != 0) {
1627 			device_printf(sc->sc_dev,
1628 			    "could not map mbuf (error %d)\n", error);
1629 			m_freem(m);
1630 			m_freem(m0);
1631 			return error;
1632 		}
1633 
1634 		/* avoid multiple free() of the same node for each fragment */
1635 		ieee80211_ref_node(ni);
1636 
1637 		data->m = m;
1638 		data->ni = ni;
1639 
1640 		/* RTS frames are not taken into account for rssadapt */
1641 		data->id.id_node = NULL;
1642 
1643 		rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK |
1644 		    RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, segs,
1645 		    nsegs, ac);
1646 
1647 		bus_dmamap_sync(txq->data_dmat, data->map,
1648 		    BUS_DMASYNC_PREWRITE);
1649 
1650 		txq->queued++;
1651 		txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1652 
1653 		/*
1654 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1655 		 * asynchronous data frame shall be transmitted after the CTS
1656 		 * frame and a SIFS period.
1657 		 */
1658 		flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS;
1659 	}
1660 
1661 	data = &txq->data[txq->cur];
1662 	desc = &txq->desc[txq->cur];
1663 
1664 	error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs,
1665 	    &nsegs, 0);
1666 	if (error != 0 && error != EFBIG) {
1667 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1668 		    error);
1669 		m_freem(m0);
1670 		return error;
1671 	}
1672 	if (error != 0) {
1673 		mnew = m_defrag(m0, M_DONTWAIT);
1674 		if (mnew == NULL) {
1675 			device_printf(sc->sc_dev,
1676 			    "could not defragment mbuf\n");
1677 			m_freem(m0);
1678 			return ENOBUFS;
1679 		}
1680 		m0 = mnew;
1681 
1682 		error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0,
1683 		    segs, &nsegs, 0);
1684 		if (error != 0) {
1685 			device_printf(sc->sc_dev,
1686 			    "could not map mbuf (error %d)\n", error);
1687 			m_freem(m0);
1688 			return error;
1689 		}
1690 
1691 		/* packet header have moved, reset our local pointer */
1692 		wh = mtod(m0, struct ieee80211_frame *);
1693 	}
1694 
1695 	if (bpf_peers_present(sc->sc_drvbpf)) {
1696 		struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap;
1697 
1698 		tap->wt_flags = 0;
1699 		tap->wt_rate = rate;
1700 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1701 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1702 
1703 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1704 	}
1705 
1706 	data->m = m0;
1707 	data->ni = ni;
1708 
1709 	/* remember link conditions for rate adaptation algorithm */
1710 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1711 		data->id.id_len = m0->m_pkthdr.len;
1712 		data->id.id_rateidx = ni->ni_txrate;
1713 		data->id.id_node = ni;
1714 		data->id.id_rssi = ni->ni_rssi;
1715 	} else
1716 		data->id.id_node = NULL;
1717 
1718 	if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1719 		flags |= RT2661_TX_NEED_ACK;
1720 
1721 		dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate),
1722 		    ic->ic_flags) + RAL_SIFS;
1723 		*(uint16_t *)wh->i_dur = htole16(dur);
1724 	}
1725 
1726 	rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, segs,
1727 	    nsegs, ac);
1728 
1729 	bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1730 	bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE);
1731 
1732 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1733 	    m0->m_pkthdr.len, txq->cur, rate));
1734 
1735 	/* kick Tx */
1736 	txq->queued++;
1737 	txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT;
1738 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac);
1739 
1740 	return 0;
1741 }
1742 
1743 static void
1744 rt2661_start(struct ifnet *ifp)
1745 {
1746 	struct rt2661_softc *sc = ifp->if_softc;
1747 	struct ieee80211com *ic = &sc->sc_ic;
1748 	struct mbuf *m0;
1749 	struct ether_header *eh;
1750 	struct ieee80211_node *ni;
1751 	int ac;
1752 
1753 	RAL_LOCK(sc);
1754 
1755 	/* prevent management frames from being sent if we're not ready */
1756 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1757 		RAL_UNLOCK(sc);
1758 		return;
1759 	}
1760 
1761 	for (;;) {
1762 		IF_POLL(&ic->ic_mgtq, m0);
1763 		if (m0 != NULL) {
1764 			if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) {
1765 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1766 				break;
1767 			}
1768 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1769 
1770 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1771 			m0->m_pkthdr.rcvif = NULL;
1772 
1773 			if (bpf_peers_present(ic->ic_rawbpf))
1774 				bpf_mtap(ic->ic_rawbpf, m0);
1775 
1776 			if (rt2661_tx_mgt(sc, m0, ni) != 0)
1777 				break;
1778 
1779 		} else {
1780 			if (ic->ic_state != IEEE80211_S_RUN)
1781 				break;
1782 
1783 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1784 			if (m0 == NULL)
1785 				break;
1786 
1787 			if (m0->m_len < sizeof (struct ether_header) &&
1788 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1789 				continue;
1790 
1791 			eh = mtod(m0, struct ether_header *);
1792 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1793 			if (ni == NULL) {
1794 				m_freem(m0);
1795 				ifp->if_oerrors++;
1796 				continue;
1797 			}
1798 
1799 			/* classify mbuf so we can find which tx ring to use */
1800 			if (ieee80211_classify(ic, m0, ni) != 0) {
1801 				m_freem(m0);
1802 				ieee80211_free_node(ni);
1803 				ifp->if_oerrors++;
1804 				continue;
1805 			}
1806 
1807 			/* no QoS encapsulation for EAPOL frames */
1808 			ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
1809 			    M_WME_GETAC(m0) : WME_AC_BE;
1810 
1811 			if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) {
1812 				/* there is no place left in this ring */
1813 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1814 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1815 				break;
1816 			}
1817 
1818 			BPF_MTAP(ifp, m0);
1819 
1820 			m0 = ieee80211_encap(ic, m0, ni);
1821 			if (m0 == NULL) {
1822 				ieee80211_free_node(ni);
1823 				ifp->if_oerrors++;
1824 				continue;
1825 			}
1826 
1827 			if (bpf_peers_present(ic->ic_rawbpf))
1828 				bpf_mtap(ic->ic_rawbpf, m0);
1829 
1830 			if (rt2661_tx_data(sc, m0, ni, ac) != 0) {
1831 				ieee80211_free_node(ni);
1832 				ifp->if_oerrors++;
1833 				break;
1834 			}
1835 		}
1836 
1837 		sc->sc_tx_timer = 5;
1838 		callout_reset(&sc->watchdog_ch, hz, rt2661_watchdog, sc);
1839 	}
1840 
1841 	RAL_UNLOCK(sc);
1842 }
1843 
1844 static void
1845 rt2661_watchdog(void *arg)
1846 {
1847 	struct rt2661_softc *sc = (struct rt2661_softc *)arg;
1848 	struct ieee80211com *ic = &sc->sc_ic;
1849 
1850 	if (sc->sc_tx_timer > 0) {
1851 		if (--sc->sc_tx_timer == 0) {
1852 			device_printf(sc->sc_dev, "device timeout\n");
1853 			rt2661_init(sc);
1854 			sc->sc_ifp->if_oerrors++;
1855 			return;
1856 		}
1857 		callout_reset(&sc->watchdog_ch, hz, rt2661_watchdog, sc);
1858 	}
1859 
1860 	ieee80211_watchdog(ic);
1861 }
1862 
1863 /*
1864  * This function allows for fast channel switching in monitor mode (used by
1865  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
1866  * generate a new beacon frame.
1867  */
1868 static int
1869 rt2661_reset(struct ifnet *ifp)
1870 {
1871 	struct rt2661_softc *sc = ifp->if_softc;
1872 	struct ieee80211com *ic = &sc->sc_ic;
1873 
1874 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
1875 		return ENETRESET;
1876 
1877 	rt2661_set_chan(sc, ic->ic_curchan);
1878 
1879 	return 0;
1880 }
1881 
1882 static int
1883 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1884 {
1885 	struct rt2661_softc *sc = ifp->if_softc;
1886 	struct ieee80211com *ic = &sc->sc_ic;
1887 	int error = 0;
1888 
1889 	RAL_LOCK(sc);
1890 
1891 	switch (cmd) {
1892 	case SIOCSIFFLAGS:
1893 		if (ifp->if_flags & IFF_UP) {
1894 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1895 				rt2661_update_promisc(sc);
1896 			else
1897 				rt2661_init(sc);
1898 		} else {
1899 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1900 				rt2661_stop(sc);
1901 		}
1902 		break;
1903 
1904 	default:
1905 		error = ieee80211_ioctl(ic, cmd, data);
1906 	}
1907 
1908 	if (error == ENETRESET) {
1909 		if ((ifp->if_flags & IFF_UP) &&
1910 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
1911 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
1912 			rt2661_init(sc);
1913 		error = 0;
1914 	}
1915 
1916 	RAL_UNLOCK(sc);
1917 
1918 	return error;
1919 }
1920 
1921 static void
1922 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val)
1923 {
1924 	uint32_t tmp;
1925 	int ntries;
1926 
1927 	for (ntries = 0; ntries < 100; ntries++) {
1928 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1929 			break;
1930 		DELAY(1);
1931 	}
1932 	if (ntries == 100) {
1933 		device_printf(sc->sc_dev, "could not write to BBP\n");
1934 		return;
1935 	}
1936 
1937 	tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val;
1938 	RAL_WRITE(sc, RT2661_PHY_CSR3, tmp);
1939 
1940 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
1941 }
1942 
1943 static uint8_t
1944 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg)
1945 {
1946 	uint32_t val;
1947 	int ntries;
1948 
1949 	for (ntries = 0; ntries < 100; ntries++) {
1950 		if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY))
1951 			break;
1952 		DELAY(1);
1953 	}
1954 	if (ntries == 100) {
1955 		device_printf(sc->sc_dev, "could not read from BBP\n");
1956 		return 0;
1957 	}
1958 
1959 	val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8;
1960 	RAL_WRITE(sc, RT2661_PHY_CSR3, val);
1961 
1962 	for (ntries = 0; ntries < 100; ntries++) {
1963 		val = RAL_READ(sc, RT2661_PHY_CSR3);
1964 		if (!(val & RT2661_BBP_BUSY))
1965 			return val & 0xff;
1966 		DELAY(1);
1967 	}
1968 
1969 	device_printf(sc->sc_dev, "could not read from BBP\n");
1970 	return 0;
1971 }
1972 
1973 static void
1974 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val)
1975 {
1976 	uint32_t tmp;
1977 	int ntries;
1978 
1979 	for (ntries = 0; ntries < 100; ntries++) {
1980 		if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY))
1981 			break;
1982 		DELAY(1);
1983 	}
1984 	if (ntries == 100) {
1985 		device_printf(sc->sc_dev, "could not write to RF\n");
1986 		return;
1987 	}
1988 
1989 	tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 |
1990 	    (reg & 3);
1991 	RAL_WRITE(sc, RT2661_PHY_CSR4, tmp);
1992 
1993 	/* remember last written value in sc */
1994 	sc->rf_regs[reg] = val;
1995 
1996 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff));
1997 }
1998 
1999 static int
2000 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg)
2001 {
2002 	if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY)
2003 		return EIO;	/* there is already a command pending */
2004 
2005 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR,
2006 	    RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg);
2007 
2008 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd);
2009 
2010 	return 0;
2011 }
2012 
2013 static void
2014 rt2661_select_antenna(struct rt2661_softc *sc)
2015 {
2016 	uint8_t bbp4, bbp77;
2017 	uint32_t tmp;
2018 
2019 	bbp4  = rt2661_bbp_read(sc,  4);
2020 	bbp77 = rt2661_bbp_read(sc, 77);
2021 
2022 	/* TBD */
2023 
2024 	/* make sure Rx is disabled before switching antenna */
2025 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2026 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2027 
2028 	rt2661_bbp_write(sc,  4, bbp4);
2029 	rt2661_bbp_write(sc, 77, bbp77);
2030 
2031 	/* restore Rx filter */
2032 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2033 }
2034 
2035 /*
2036  * Enable multi-rate retries for frames sent at OFDM rates.
2037  * In 802.11b/g mode, allow fallback to CCK rates.
2038  */
2039 static void
2040 rt2661_enable_mrr(struct rt2661_softc *sc)
2041 {
2042 	struct ieee80211com *ic = &sc->sc_ic;
2043 	uint32_t tmp;
2044 
2045 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2046 
2047 	tmp &= ~RT2661_MRR_CCK_FALLBACK;
2048 	if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan))
2049 		tmp |= RT2661_MRR_CCK_FALLBACK;
2050 	tmp |= RT2661_MRR_ENABLED;
2051 
2052 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2053 }
2054 
2055 static void
2056 rt2661_set_txpreamble(struct rt2661_softc *sc)
2057 {
2058 	uint32_t tmp;
2059 
2060 	tmp = RAL_READ(sc, RT2661_TXRX_CSR4);
2061 
2062 	tmp &= ~RT2661_SHORT_PREAMBLE;
2063 	if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE)
2064 		tmp |= RT2661_SHORT_PREAMBLE;
2065 
2066 	RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp);
2067 }
2068 
2069 static void
2070 rt2661_set_basicrates(struct rt2661_softc *sc,
2071     const struct ieee80211_rateset *rs)
2072 {
2073 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2074 	struct ieee80211com *ic = &sc->sc_ic;
2075 	uint32_t mask = 0;
2076 	uint8_t rate;
2077 	int i, j;
2078 
2079 	for (i = 0; i < rs->rs_nrates; i++) {
2080 		rate = rs->rs_rates[i];
2081 
2082 		if (!(rate & IEEE80211_RATE_BASIC))
2083 			continue;
2084 
2085 		/*
2086 		 * Find h/w rate index.  We know it exists because the rate
2087 		 * set has already been negotiated.
2088 		 */
2089 		for (j = 0; ic->ic_sup_rates[IEEE80211_MODE_11G].rs_rates[j] != RV(rate); j++);
2090 
2091 		mask |= 1 << j;
2092 	}
2093 
2094 	RAL_WRITE(sc, RT2661_TXRX_CSR5, mask);
2095 
2096 	DPRINTF(("Setting basic rate mask to 0x%x\n", mask));
2097 #undef RV
2098 }
2099 
2100 /*
2101  * Reprogram MAC/BBP to switch to a new band.  Values taken from the reference
2102  * driver.
2103  */
2104 static void
2105 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c)
2106 {
2107 	uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104;
2108 	uint32_t tmp;
2109 
2110 	/* update all BBP registers that depend on the band */
2111 	bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c;
2112 	bbp35 = 0x50; bbp97 = 0x48; bbp98  = 0x48;
2113 	if (IEEE80211_IS_CHAN_5GHZ(c)) {
2114 		bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c;
2115 		bbp35 += 0x10; bbp97 += 0x10; bbp98  += 0x10;
2116 	}
2117 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2118 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2119 		bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10;
2120 	}
2121 
2122 	rt2661_bbp_write(sc,  17, bbp17);
2123 	rt2661_bbp_write(sc,  96, bbp96);
2124 	rt2661_bbp_write(sc, 104, bbp104);
2125 
2126 	if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) ||
2127 	    (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) {
2128 		rt2661_bbp_write(sc, 75, 0x80);
2129 		rt2661_bbp_write(sc, 86, 0x80);
2130 		rt2661_bbp_write(sc, 88, 0x80);
2131 	}
2132 
2133 	rt2661_bbp_write(sc, 35, bbp35);
2134 	rt2661_bbp_write(sc, 97, bbp97);
2135 	rt2661_bbp_write(sc, 98, bbp98);
2136 
2137 	tmp = RAL_READ(sc, RT2661_PHY_CSR0);
2138 	tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ);
2139 	if (IEEE80211_IS_CHAN_2GHZ(c))
2140 		tmp |= RT2661_PA_PE_2GHZ;
2141 	else
2142 		tmp |= RT2661_PA_PE_5GHZ;
2143 	RAL_WRITE(sc, RT2661_PHY_CSR0, tmp);
2144 }
2145 
2146 static void
2147 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c)
2148 {
2149 	struct ieee80211com *ic = &sc->sc_ic;
2150 	const struct rfprog *rfprog;
2151 	uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT;
2152 	int8_t power;
2153 	u_int i, chan;
2154 
2155 	chan = ieee80211_chan2ieee(ic, c);
2156 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2157 		return;
2158 
2159 	/* select the appropriate RF settings based on what EEPROM says */
2160 	rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2;
2161 
2162 	/* find the settings for this channel (we know it exists) */
2163 	for (i = 0; rfprog[i].chan != chan; i++);
2164 
2165 	power = sc->txpow[i];
2166 	if (power < 0) {
2167 		bbp94 += power;
2168 		power = 0;
2169 	} else if (power > 31) {
2170 		bbp94 += power - 31;
2171 		power = 31;
2172 	}
2173 
2174 	/*
2175 	 * If we are switching from the 2GHz band to the 5GHz band or
2176 	 * vice-versa, BBP registers need to be reprogrammed.
2177 	 */
2178 	if (c->ic_flags != sc->sc_curchan->ic_flags) {
2179 		rt2661_select_band(sc, c);
2180 		rt2661_select_antenna(sc);
2181 	}
2182 	sc->sc_curchan = c;
2183 
2184 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2185 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2186 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2187 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2188 
2189 	DELAY(200);
2190 
2191 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2192 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2193 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1);
2194 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2195 
2196 	DELAY(200);
2197 
2198 	rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1);
2199 	rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2);
2200 	rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7);
2201 	rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10);
2202 
2203 	/* enable smart mode for MIMO-capable RFs */
2204 	bbp3 = rt2661_bbp_read(sc, 3);
2205 
2206 	bbp3 &= ~RT2661_SMART_MODE;
2207 	if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529)
2208 		bbp3 |= RT2661_SMART_MODE;
2209 
2210 	rt2661_bbp_write(sc, 3, bbp3);
2211 
2212 	if (bbp94 != RT2661_BBPR94_DEFAULT)
2213 		rt2661_bbp_write(sc, 94, bbp94);
2214 
2215 	/* 5GHz radio needs a 1ms delay here */
2216 	if (IEEE80211_IS_CHAN_5GHZ(c))
2217 		DELAY(1000);
2218 }
2219 
2220 static void
2221 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid)
2222 {
2223 	uint32_t tmp;
2224 
2225 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2226 	RAL_WRITE(sc, RT2661_MAC_CSR4, tmp);
2227 
2228 	tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16;
2229 	RAL_WRITE(sc, RT2661_MAC_CSR5, tmp);
2230 }
2231 
2232 static void
2233 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr)
2234 {
2235 	uint32_t tmp;
2236 
2237 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2238 	RAL_WRITE(sc, RT2661_MAC_CSR2, tmp);
2239 
2240 	tmp = addr[4] | addr[5] << 8;
2241 	RAL_WRITE(sc, RT2661_MAC_CSR3, tmp);
2242 }
2243 
2244 static void
2245 rt2661_update_promisc(struct rt2661_softc *sc)
2246 {
2247 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2248 	uint32_t tmp;
2249 
2250 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2251 
2252 	tmp &= ~RT2661_DROP_NOT_TO_ME;
2253 	if (!(ifp->if_flags & IFF_PROMISC))
2254 		tmp |= RT2661_DROP_NOT_TO_ME;
2255 
2256 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2257 
2258 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2259 	    "entering" : "leaving"));
2260 }
2261 
2262 /*
2263  * Update QoS (802.11e) settings for each h/w Tx ring.
2264  */
2265 static int
2266 rt2661_wme_update(struct ieee80211com *ic)
2267 {
2268 	struct rt2661_softc *sc = ic->ic_ifp->if_softc;
2269 	const struct wmeParams *wmep;
2270 
2271 	wmep = ic->ic_wme.wme_chanParams.cap_wmeParams;
2272 
2273 	/* XXX: not sure about shifts. */
2274 	/* XXX: the reference driver plays with AC_VI settings too. */
2275 
2276 	/* update TxOp */
2277 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR0,
2278 	    wmep[WME_AC_BE].wmep_txopLimit << 16 |
2279 	    wmep[WME_AC_BK].wmep_txopLimit);
2280 	RAL_WRITE(sc, RT2661_AC_TXOP_CSR1,
2281 	    wmep[WME_AC_VI].wmep_txopLimit << 16 |
2282 	    wmep[WME_AC_VO].wmep_txopLimit);
2283 
2284 	/* update CWmin */
2285 	RAL_WRITE(sc, RT2661_CWMIN_CSR,
2286 	    wmep[WME_AC_BE].wmep_logcwmin << 12 |
2287 	    wmep[WME_AC_BK].wmep_logcwmin <<  8 |
2288 	    wmep[WME_AC_VI].wmep_logcwmin <<  4 |
2289 	    wmep[WME_AC_VO].wmep_logcwmin);
2290 
2291 	/* update CWmax */
2292 	RAL_WRITE(sc, RT2661_CWMAX_CSR,
2293 	    wmep[WME_AC_BE].wmep_logcwmax << 12 |
2294 	    wmep[WME_AC_BK].wmep_logcwmax <<  8 |
2295 	    wmep[WME_AC_VI].wmep_logcwmax <<  4 |
2296 	    wmep[WME_AC_VO].wmep_logcwmax);
2297 
2298 	/* update Aifsn */
2299 	RAL_WRITE(sc, RT2661_AIFSN_CSR,
2300 	    wmep[WME_AC_BE].wmep_aifsn << 12 |
2301 	    wmep[WME_AC_BK].wmep_aifsn <<  8 |
2302 	    wmep[WME_AC_VI].wmep_aifsn <<  4 |
2303 	    wmep[WME_AC_VO].wmep_aifsn);
2304 
2305 	return 0;
2306 }
2307 
2308 static void
2309 rt2661_update_slot(struct ifnet *ifp)
2310 {
2311 	struct rt2661_softc *sc = ifp->if_softc;
2312 	struct ieee80211com *ic = &sc->sc_ic;
2313 	uint8_t slottime;
2314 	uint32_t tmp;
2315 
2316 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2317 
2318 	tmp = RAL_READ(sc, RT2661_MAC_CSR9);
2319 	tmp = (tmp & ~0xff) | slottime;
2320 	RAL_WRITE(sc, RT2661_MAC_CSR9, tmp);
2321 }
2322 
2323 static const char *
2324 rt2661_get_rf(int rev)
2325 {
2326 	switch (rev) {
2327 	case RT2661_RF_5225:	return "RT5225";
2328 	case RT2661_RF_5325:	return "RT5325 (MIMO XR)";
2329 	case RT2661_RF_2527:	return "RT2527";
2330 	case RT2661_RF_2529:	return "RT2529 (MIMO XR)";
2331 	default:		return "unknown";
2332 	}
2333 }
2334 
2335 static void
2336 rt2661_read_eeprom(struct rt2661_softc *sc)
2337 {
2338 	struct ieee80211com *ic = &sc->sc_ic;
2339 	uint16_t val;
2340 	int i;
2341 
2342 	/* read MAC address */
2343 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01);
2344 	ic->ic_myaddr[0] = val & 0xff;
2345 	ic->ic_myaddr[1] = val >> 8;
2346 
2347 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23);
2348 	ic->ic_myaddr[2] = val & 0xff;
2349 	ic->ic_myaddr[3] = val >> 8;
2350 
2351 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45);
2352 	ic->ic_myaddr[4] = val & 0xff;
2353 	ic->ic_myaddr[5] = val >> 8;
2354 
2355 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA);
2356 	/* XXX: test if different from 0xffff? */
2357 	sc->rf_rev   = (val >> 11) & 0x1f;
2358 	sc->hw_radio = (val >> 10) & 0x1;
2359 	sc->rx_ant   = (val >> 4)  & 0x3;
2360 	sc->tx_ant   = (val >> 2)  & 0x3;
2361 	sc->nb_ant   = val & 0x3;
2362 
2363 	DPRINTF(("RF revision=%d\n", sc->rf_rev));
2364 
2365 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2);
2366 	sc->ext_5ghz_lna = (val >> 6) & 0x1;
2367 	sc->ext_2ghz_lna = (val >> 4) & 0x1;
2368 
2369 	DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n",
2370 	    sc->ext_2ghz_lna, sc->ext_5ghz_lna));
2371 
2372 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET);
2373 	if ((val & 0xff) != 0xff)
2374 		sc->rssi_2ghz_corr = (int8_t)(val & 0xff);	/* signed */
2375 
2376 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET);
2377 	if ((val & 0xff) != 0xff)
2378 		sc->rssi_5ghz_corr = (int8_t)(val & 0xff);	/* signed */
2379 
2380 	/* adjust RSSI correction for external low-noise amplifier */
2381 	if (sc->ext_2ghz_lna)
2382 		sc->rssi_2ghz_corr -= 14;
2383 	if (sc->ext_5ghz_lna)
2384 		sc->rssi_5ghz_corr -= 14;
2385 
2386 	DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n",
2387 	    sc->rssi_2ghz_corr, sc->rssi_5ghz_corr));
2388 
2389 	val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET);
2390 	if ((val >> 8) != 0xff)
2391 		sc->rfprog = (val >> 8) & 0x3;
2392 	if ((val & 0xff) != 0xff)
2393 		sc->rffreq = val & 0xff;
2394 
2395 	DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq));
2396 
2397 	/* read Tx power for all a/b/g channels */
2398 	for (i = 0; i < 19; i++) {
2399 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i);
2400 		sc->txpow[i * 2] = (int8_t)(val >> 8);		/* signed */
2401 		DPRINTF(("Channel=%d Tx power=%d\n",
2402 		    rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2]));
2403 		sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff);	/* signed */
2404 		DPRINTF(("Channel=%d Tx power=%d\n",
2405 		    rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1]));
2406 	}
2407 
2408 	/* read vendor-specific BBP values */
2409 	for (i = 0; i < 16; i++) {
2410 		val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i);
2411 		if (val == 0 || val == 0xffff)
2412 			continue;	/* skip invalid entries */
2413 		sc->bbp_prom[i].reg = val >> 8;
2414 		sc->bbp_prom[i].val = val & 0xff;
2415 		DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg,
2416 		    sc->bbp_prom[i].val));
2417 	}
2418 }
2419 
2420 static int
2421 rt2661_bbp_init(struct rt2661_softc *sc)
2422 {
2423 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2424 	int i, ntries;
2425 	uint8_t val;
2426 
2427 	/* wait for BBP to be ready */
2428 	for (ntries = 0; ntries < 100; ntries++) {
2429 		val = rt2661_bbp_read(sc, 0);
2430 		if (val != 0 && val != 0xff)
2431 			break;
2432 		DELAY(100);
2433 	}
2434 	if (ntries == 100) {
2435 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2436 		return EIO;
2437 	}
2438 
2439 	/* initialize BBP registers to default values */
2440 	for (i = 0; i < N(rt2661_def_bbp); i++) {
2441 		rt2661_bbp_write(sc, rt2661_def_bbp[i].reg,
2442 		    rt2661_def_bbp[i].val);
2443 	}
2444 
2445 	/* write vendor-specific BBP values (from EEPROM) */
2446 	for (i = 0; i < 16; i++) {
2447 		if (sc->bbp_prom[i].reg == 0)
2448 			continue;
2449 		rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2450 	}
2451 
2452 	return 0;
2453 #undef N
2454 }
2455 
2456 static void
2457 rt2661_init(void *priv)
2458 {
2459 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2460 	struct rt2661_softc *sc = priv;
2461 	struct ieee80211com *ic = &sc->sc_ic;
2462 	struct ifnet *ifp = ic->ic_ifp;
2463 	uint32_t tmp, sta[3];
2464 	int i, ntries;
2465 
2466 	RAL_LOCK(sc);
2467 
2468 	rt2661_stop(sc);
2469 
2470 	/* initialize Tx rings */
2471 	RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr);
2472 	RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr);
2473 	RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr);
2474 	RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr);
2475 
2476 	/* initialize Mgt ring */
2477 	RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr);
2478 
2479 	/* initialize Rx ring */
2480 	RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr);
2481 
2482 	/* initialize Tx rings sizes */
2483 	RAL_WRITE(sc, RT2661_TX_RING_CSR0,
2484 	    RT2661_TX_RING_COUNT << 24 |
2485 	    RT2661_TX_RING_COUNT << 16 |
2486 	    RT2661_TX_RING_COUNT <<  8 |
2487 	    RT2661_TX_RING_COUNT);
2488 
2489 	RAL_WRITE(sc, RT2661_TX_RING_CSR1,
2490 	    RT2661_TX_DESC_WSIZE << 16 |
2491 	    RT2661_TX_RING_COUNT <<  8 |	/* XXX: HCCA ring unused */
2492 	    RT2661_MGT_RING_COUNT);
2493 
2494 	/* initialize Rx rings */
2495 	RAL_WRITE(sc, RT2661_RX_RING_CSR,
2496 	    RT2661_RX_DESC_BACK  << 16 |
2497 	    RT2661_RX_DESC_WSIZE <<  8 |
2498 	    RT2661_RX_RING_COUNT);
2499 
2500 	/* XXX: some magic here */
2501 	RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa);
2502 
2503 	/* load base addresses of all 5 Tx rings (4 data + 1 mgt) */
2504 	RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f);
2505 
2506 	/* load base address of Rx ring */
2507 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2);
2508 
2509 	/* initialize MAC registers to default values */
2510 	for (i = 0; i < N(rt2661_def_mac); i++)
2511 		RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val);
2512 
2513 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2514 	rt2661_set_macaddr(sc, ic->ic_myaddr);
2515 
2516 	/* set host ready */
2517 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2518 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2519 
2520 	/* wait for BBP/RF to wakeup */
2521 	for (ntries = 0; ntries < 1000; ntries++) {
2522 		if (RAL_READ(sc, RT2661_MAC_CSR12) & 8)
2523 			break;
2524 		DELAY(1000);
2525 	}
2526 	if (ntries == 1000) {
2527 		printf("timeout waiting for BBP/RF to wakeup\n");
2528 		rt2661_stop(sc);
2529 		RAL_UNLOCK(sc);
2530 		return;
2531 	}
2532 
2533 	if (rt2661_bbp_init(sc) != 0) {
2534 		rt2661_stop(sc);
2535 		RAL_UNLOCK(sc);
2536 		return;
2537 	}
2538 
2539 	/* select default channel */
2540 	sc->sc_curchan = ic->ic_curchan;
2541 	rt2661_select_band(sc, sc->sc_curchan);
2542 	rt2661_select_antenna(sc);
2543 	rt2661_set_chan(sc, sc->sc_curchan);
2544 
2545 	/* update Rx filter */
2546 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff;
2547 
2548 	tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR;
2549 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2550 		tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR |
2551 		       RT2661_DROP_ACKCTS;
2552 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2553 			tmp |= RT2661_DROP_TODS;
2554 		if (!(ifp->if_flags & IFF_PROMISC))
2555 			tmp |= RT2661_DROP_NOT_TO_ME;
2556 	}
2557 
2558 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2559 
2560 	/* clear STA registers */
2561 	RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta));
2562 
2563 	/* initialize ASIC */
2564 	RAL_WRITE(sc, RT2661_MAC_CSR1, 4);
2565 
2566 	/* clear any pending interrupt */
2567 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2568 
2569 	/* enable interrupts */
2570 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10);
2571 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0);
2572 
2573 	/* kick Rx */
2574 	RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1);
2575 
2576 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2577 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2578 
2579 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2580 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2581 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2582 	} else
2583 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2584 
2585 	RAL_UNLOCK(sc);
2586 #undef N
2587 }
2588 
2589 void
2590 rt2661_stop(void *priv)
2591 {
2592 	struct rt2661_softc *sc = priv;
2593 	struct ieee80211com *ic = &sc->sc_ic;
2594 	struct ifnet *ifp = ic->ic_ifp;
2595 	uint32_t tmp;
2596 
2597 	sc->sc_tx_timer = 0;
2598 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2599 
2600 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2601 
2602 	/* abort Tx (for all 5 Tx rings) */
2603 	RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16);
2604 
2605 	/* disable Rx (value remains after reset!) */
2606 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2607 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2608 
2609 	/* reset ASIC */
2610 	RAL_WRITE(sc, RT2661_MAC_CSR1, 3);
2611 	RAL_WRITE(sc, RT2661_MAC_CSR1, 0);
2612 
2613 	/* disable interrupts */
2614 	RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff);
2615 	RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff);
2616 
2617 	/* clear any pending interrupt */
2618 	RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff);
2619 	RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff);
2620 
2621 	/* reset Tx and Rx rings */
2622 	rt2661_reset_tx_ring(sc, &sc->txq[0]);
2623 	rt2661_reset_tx_ring(sc, &sc->txq[1]);
2624 	rt2661_reset_tx_ring(sc, &sc->txq[2]);
2625 	rt2661_reset_tx_ring(sc, &sc->txq[3]);
2626 	rt2661_reset_tx_ring(sc, &sc->mgtq);
2627 	rt2661_reset_rx_ring(sc, &sc->rxq);
2628 }
2629 
2630 static int
2631 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size)
2632 {
2633 	int ntries;
2634 
2635 	/* reset 8051 */
2636 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2637 
2638 	/* cancel any pending Host to MCU command */
2639 	RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0);
2640 	RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff);
2641 	RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0);
2642 
2643 	/* write 8051's microcode */
2644 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL);
2645 	RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size);
2646 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET);
2647 
2648 	/* kick 8051's ass */
2649 	RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0);
2650 
2651 	/* wait for 8051 to initialize */
2652 	for (ntries = 0; ntries < 500; ntries++) {
2653 		if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY)
2654 			break;
2655 		DELAY(100);
2656 	}
2657 	if (ntries == 500) {
2658 		printf("timeout waiting for MCU to initialize\n");
2659 		return EIO;
2660 	}
2661 	return 0;
2662 }
2663 
2664 #ifdef notyet
2665 /*
2666  * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and
2667  * false CCA count.  This function is called periodically (every seconds) when
2668  * in the RUN state.  Values taken from the reference driver.
2669  */
2670 static void
2671 rt2661_rx_tune(struct rt2661_softc *sc)
2672 {
2673 	uint8_t bbp17;
2674 	uint16_t cca;
2675 	int lo, hi, dbm;
2676 
2677 	/*
2678 	 * Tuning range depends on operating band and on the presence of an
2679 	 * external low-noise amplifier.
2680 	 */
2681 	lo = 0x20;
2682 	if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan))
2683 		lo += 0x08;
2684 	if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) ||
2685 	    (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna))
2686 		lo += 0x10;
2687 	hi = lo + 0x20;
2688 
2689 	/* retrieve false CCA count since last call (clear on read) */
2690 	cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff;
2691 
2692 	if (dbm >= -35) {
2693 		bbp17 = 0x60;
2694 	} else if (dbm >= -58) {
2695 		bbp17 = hi;
2696 	} else if (dbm >= -66) {
2697 		bbp17 = lo + 0x10;
2698 	} else if (dbm >= -74) {
2699 		bbp17 = lo + 0x08;
2700 	} else {
2701 		/* RSSI < -74dBm, tune using false CCA count */
2702 
2703 		bbp17 = sc->bbp17; /* current value */
2704 
2705 		hi -= 2 * (-74 - dbm);
2706 		if (hi < lo)
2707 			hi = lo;
2708 
2709 		if (bbp17 > hi) {
2710 			bbp17 = hi;
2711 
2712 		} else if (cca > 512) {
2713 			if (++bbp17 > hi)
2714 				bbp17 = hi;
2715 		} else if (cca < 100) {
2716 			if (--bbp17 < lo)
2717 				bbp17 = lo;
2718 		}
2719 	}
2720 
2721 	if (bbp17 != sc->bbp17) {
2722 		rt2661_bbp_write(sc, 17, bbp17);
2723 		sc->bbp17 = bbp17;
2724 	}
2725 }
2726 
2727 /*
2728  * Enter/Leave radar detection mode.
2729  * This is for 802.11h additional regulatory domains.
2730  */
2731 static void
2732 rt2661_radar_start(struct rt2661_softc *sc)
2733 {
2734 	uint32_t tmp;
2735 
2736 	/* disable Rx */
2737 	tmp = RAL_READ(sc, RT2661_TXRX_CSR0);
2738 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX);
2739 
2740 	rt2661_bbp_write(sc, 82, 0x20);
2741 	rt2661_bbp_write(sc, 83, 0x00);
2742 	rt2661_bbp_write(sc, 84, 0x40);
2743 
2744 	/* save current BBP registers values */
2745 	sc->bbp18 = rt2661_bbp_read(sc, 18);
2746 	sc->bbp21 = rt2661_bbp_read(sc, 21);
2747 	sc->bbp22 = rt2661_bbp_read(sc, 22);
2748 	sc->bbp16 = rt2661_bbp_read(sc, 16);
2749 	sc->bbp17 = rt2661_bbp_read(sc, 17);
2750 	sc->bbp64 = rt2661_bbp_read(sc, 64);
2751 
2752 	rt2661_bbp_write(sc, 18, 0xff);
2753 	rt2661_bbp_write(sc, 21, 0x3f);
2754 	rt2661_bbp_write(sc, 22, 0x3f);
2755 	rt2661_bbp_write(sc, 16, 0xbd);
2756 	rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34);
2757 	rt2661_bbp_write(sc, 64, 0x21);
2758 
2759 	/* restore Rx filter */
2760 	RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp);
2761 }
2762 
2763 static int
2764 rt2661_radar_stop(struct rt2661_softc *sc)
2765 {
2766 	uint8_t bbp66;
2767 
2768 	/* read radar detection result */
2769 	bbp66 = rt2661_bbp_read(sc, 66);
2770 
2771 	/* restore BBP registers values */
2772 	rt2661_bbp_write(sc, 16, sc->bbp16);
2773 	rt2661_bbp_write(sc, 17, sc->bbp17);
2774 	rt2661_bbp_write(sc, 18, sc->bbp18);
2775 	rt2661_bbp_write(sc, 21, sc->bbp21);
2776 	rt2661_bbp_write(sc, 22, sc->bbp22);
2777 	rt2661_bbp_write(sc, 64, sc->bbp64);
2778 
2779 	return bbp66 == 1;
2780 }
2781 #endif
2782 
2783 static int
2784 rt2661_prepare_beacon(struct rt2661_softc *sc)
2785 {
2786 	struct ieee80211com *ic = &sc->sc_ic;
2787 	struct ieee80211_beacon_offsets bo;
2788 	struct rt2661_tx_desc desc;
2789 	struct mbuf *m0;
2790 	int rate;
2791 
2792 	m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
2793 	if (m0 == NULL) {
2794 		device_printf(sc->sc_dev, "could not allocate beacon frame\n");
2795 		return ENOBUFS;
2796 	}
2797 
2798 	/* send beacons at the lowest available rate */
2799 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2;
2800 
2801 	rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ,
2802 	    m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT);
2803 
2804 	/* copy the first 24 bytes of Tx descriptor into NIC memory */
2805 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24);
2806 
2807 	/* copy beacon header and payload into NIC memory */
2808 	RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24,
2809 	    mtod(m0, uint8_t *), m0->m_pkthdr.len);
2810 
2811 	m_freem(m0);
2812 
2813 	return 0;
2814 }
2815 
2816 /*
2817  * Enable TSF synchronization and tell h/w to start sending beacons for IBSS
2818  * and HostAP operating modes.
2819  */
2820 static void
2821 rt2661_enable_tsf_sync(struct rt2661_softc *sc)
2822 {
2823 	struct ieee80211com *ic = &sc->sc_ic;
2824 	uint32_t tmp;
2825 
2826 	if (ic->ic_opmode != IEEE80211_M_STA) {
2827 		/*
2828 		 * Change default 16ms TBTT adjustment to 8ms.
2829 		 * Must be done before enabling beacon generation.
2830 		 */
2831 		RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8);
2832 	}
2833 
2834 	tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000;
2835 
2836 	/* set beacon interval (in 1/16ms unit) */
2837 	tmp |= ic->ic_bss->ni_intval * 16;
2838 
2839 	tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT;
2840 	if (ic->ic_opmode == IEEE80211_M_STA)
2841 		tmp |= RT2661_TSF_MODE(1);
2842 	else
2843 		tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON;
2844 
2845 	RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp);
2846 }
2847 
2848 /*
2849  * Retrieve the "Received Signal Strength Indicator" from the raw values
2850  * contained in Rx descriptors.  The computation depends on which band the
2851  * frame was received.  Correction values taken from the reference driver.
2852  */
2853 static int
2854 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw)
2855 {
2856 	int lna, agc, rssi;
2857 
2858 	lna = (raw >> 5) & 0x3;
2859 	agc = raw & 0x1f;
2860 
2861 	rssi = 2 * agc;
2862 
2863 	if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) {
2864 		rssi += sc->rssi_2ghz_corr;
2865 
2866 		if (lna == 1)
2867 			rssi -= 64;
2868 		else if (lna == 2)
2869 			rssi -= 74;
2870 		else if (lna == 3)
2871 			rssi -= 90;
2872 	} else {
2873 		rssi += sc->rssi_5ghz_corr;
2874 
2875 		if (lna == 1)
2876 			rssi -= 64;
2877 		else if (lna == 2)
2878 			rssi -= 86;
2879 		else if (lna == 3)
2880 			rssi -= 100;
2881 	}
2882 	return rssi;
2883 }
2884