1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /*- 24 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver 25 * http://www.ralinktech.com/ 26 */ 27 28 #include <sys/param.h> 29 #include <sys/sysctl.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/endian.h> 39 40 #include <machine/bus.h> 41 #include <machine/resource.h> 42 #include <sys/rman.h> 43 44 #include <net/bpf.h> 45 #include <net/if.h> 46 #include <net/if_arp.h> 47 #include <net/ethernet.h> 48 #include <net/if_dl.h> 49 #include <net/if_media.h> 50 #include <net/if_types.h> 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_radiotap.h> 54 55 #include <netinet/in.h> 56 #include <netinet/in_systm.h> 57 #include <netinet/in_var.h> 58 #include <netinet/ip.h> 59 #include <netinet/if_ether.h> 60 61 #include <dev/ral/if_ralrate.h> 62 #include <dev/ral/rt2661reg.h> 63 #include <dev/ral/rt2661var.h> 64 #include <dev/ral/rt2661_ucode.h> 65 66 #ifdef RAL_DEBUG 67 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) 68 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) 69 int ral_debug = 0; 70 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level"); 71 #else 72 #define DPRINTF(x) 73 #define DPRINTFN(n, x) 74 #endif 75 76 static void rt2661_dma_map_addr(void *, bus_dma_segment_t *, int, 77 int); 78 static int rt2661_alloc_tx_ring(struct rt2661_softc *, 79 struct rt2661_tx_ring *, int); 80 static void rt2661_reset_tx_ring(struct rt2661_softc *, 81 struct rt2661_tx_ring *); 82 static void rt2661_free_tx_ring(struct rt2661_softc *, 83 struct rt2661_tx_ring *); 84 static int rt2661_alloc_rx_ring(struct rt2661_softc *, 85 struct rt2661_rx_ring *, int); 86 static void rt2661_reset_rx_ring(struct rt2661_softc *, 87 struct rt2661_rx_ring *); 88 static void rt2661_free_rx_ring(struct rt2661_softc *, 89 struct rt2661_rx_ring *); 90 static struct ieee80211_node *rt2661_node_alloc( 91 struct ieee80211_node_table *); 92 static int rt2661_media_change(struct ifnet *); 93 static void rt2661_next_scan(void *); 94 static int rt2661_newstate(struct ieee80211com *, 95 enum ieee80211_state, int); 96 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); 97 static void rt2661_rx_intr(struct rt2661_softc *); 98 static void rt2661_tx_intr(struct rt2661_softc *); 99 static void rt2661_tx_dma_intr(struct rt2661_softc *, 100 struct rt2661_tx_ring *); 101 static void rt2661_mcu_beacon_expire(struct rt2661_softc *); 102 static void rt2661_mcu_wakeup(struct rt2661_softc *); 103 static void rt2661_mcu_cmd_intr(struct rt2661_softc *); 104 static int rt2661_ack_rate(struct ieee80211com *, int); 105 static uint16_t rt2661_txtime(int, int, uint32_t); 106 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *); 107 static uint8_t rt2661_plcp_signal(int); 108 static void rt2661_setup_tx_desc(struct rt2661_softc *, 109 struct rt2661_tx_desc *, uint32_t, uint16_t, int, 110 int, const bus_dma_segment_t *, int, int); 111 static struct mbuf * rt2661_get_rts(struct rt2661_softc *, 112 struct ieee80211_frame *, uint16_t); 113 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, 114 struct ieee80211_node *, int); 115 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, 116 struct ieee80211_node *); 117 static void rt2661_start(struct ifnet *); 118 static void rt2661_watchdog(struct ifnet *); 119 static int rt2661_reset(struct ifnet *); 120 static int rt2661_ioctl(struct ifnet *, u_long, caddr_t); 121 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, 122 uint8_t); 123 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); 124 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, 125 uint32_t); 126 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, 127 uint16_t); 128 static void rt2661_select_antenna(struct rt2661_softc *); 129 static void rt2661_enable_mrr(struct rt2661_softc *); 130 static void rt2661_set_txpreamble(struct rt2661_softc *); 131 static void rt2661_set_basicrates(struct rt2661_softc *, 132 const struct ieee80211_rateset *); 133 static void rt2661_select_band(struct rt2661_softc *, 134 struct ieee80211_channel *); 135 static void rt2661_set_chan(struct rt2661_softc *, 136 struct ieee80211_channel *); 137 static void rt2661_set_bssid(struct rt2661_softc *, 138 const uint8_t *); 139 static void rt2661_set_macaddr(struct rt2661_softc *, 140 const uint8_t *); 141 static void rt2661_update_promisc(struct rt2661_softc *); 142 static int rt2661_wme_update(struct ieee80211com *) __unused; 143 static void rt2661_update_slot(struct ifnet *); 144 static const char *rt2661_get_rf(int); 145 static void rt2661_read_eeprom(struct rt2661_softc *); 146 static int rt2661_bbp_init(struct rt2661_softc *); 147 static void rt2661_init(void *); 148 static void rt2661_stop(void *); 149 static int rt2661_load_microcode(struct rt2661_softc *, 150 const uint8_t *, int); 151 #ifdef notyet 152 static void rt2661_rx_tune(struct rt2661_softc *); 153 static void rt2661_radar_start(struct rt2661_softc *); 154 static int rt2661_radar_stop(struct rt2661_softc *); 155 #endif 156 static int rt2661_prepare_beacon(struct rt2661_softc *); 157 static void rt2661_enable_tsf_sync(struct rt2661_softc *); 158 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); 159 160 /* 161 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 162 */ 163 static const struct ieee80211_rateset rt2661_rateset_11a = 164 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 165 166 static const struct ieee80211_rateset rt2661_rateset_11b = 167 { 4, { 2, 4, 11, 22 } }; 168 169 static const struct ieee80211_rateset rt2661_rateset_11g = 170 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 171 172 static const struct { 173 uint32_t reg; 174 uint32_t val; 175 } rt2661_def_mac[] = { 176 RT2661_DEF_MAC 177 }; 178 179 static const struct { 180 uint8_t reg; 181 uint8_t val; 182 } rt2661_def_bbp[] = { 183 RT2661_DEF_BBP 184 }; 185 186 static const struct rfprog { 187 uint8_t chan; 188 uint32_t r1, r2, r3, r4; 189 } rt2661_rf5225_1[] = { 190 RT2661_RF5225_1 191 }, rt2661_rf5225_2[] = { 192 RT2661_RF5225_2 193 }; 194 195 int 196 rt2661_attach(device_t dev, int id) 197 { 198 struct rt2661_softc *sc = device_get_softc(dev); 199 struct ieee80211com *ic = &sc->sc_ic; 200 struct ifnet *ifp; 201 uint32_t val; 202 const uint8_t *ucode = NULL; 203 int error, i, ac, ntries, size = 0; 204 205 sc->sc_dev = dev; 206 207 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 208 MTX_DEF | MTX_RECURSE); 209 210 callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 211 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE); 212 213 /* wait for NIC to initialize */ 214 for (ntries = 0; ntries < 1000; ntries++) { 215 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) 216 break; 217 DELAY(1000); 218 } 219 if (ntries == 1000) { 220 device_printf(sc->sc_dev, 221 "timeout waiting for NIC to initialize\n"); 222 error = EIO; 223 goto fail1; 224 } 225 226 /* retrieve RF rev. no and various other things from EEPROM */ 227 rt2661_read_eeprom(sc); 228 229 device_printf(dev, "MAC/BBP RT%X, RF %s\n", val, 230 rt2661_get_rf(sc->rf_rev)); 231 232 /* 233 * Load 8051 microcode into NIC. 234 */ 235 switch (id) { 236 case 0x0301: 237 ucode = rt2561s_ucode; 238 size = sizeof rt2561s_ucode; 239 break; 240 case 0x0302: 241 ucode = rt2561_ucode; 242 size = sizeof rt2561_ucode; 243 break; 244 case 0x0401: 245 ucode = rt2661_ucode; 246 size = sizeof rt2661_ucode; 247 break; 248 } 249 250 error = rt2661_load_microcode(sc, ucode, size); 251 if (error != 0) { 252 device_printf(sc->sc_dev, "could not load 8051 microcode\n"); 253 goto fail1; 254 } 255 256 /* 257 * Allocate Tx and Rx rings. 258 */ 259 for (ac = 0; ac < 4; ac++) { 260 error = rt2661_alloc_tx_ring(sc, &sc->txq[ac], 261 RT2661_TX_RING_COUNT); 262 if (error != 0) { 263 device_printf(sc->sc_dev, 264 "could not allocate Tx ring %d\n", ac); 265 goto fail2; 266 } 267 } 268 269 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); 270 if (error != 0) { 271 device_printf(sc->sc_dev, "could not allocate Mgt ring\n"); 272 goto fail2; 273 } 274 275 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); 276 if (error != 0) { 277 device_printf(sc->sc_dev, "could not allocate Rx ring\n"); 278 goto fail3; 279 } 280 281 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 282 if (ifp == NULL) { 283 device_printf(sc->sc_dev, "can not if_alloc()\n"); 284 error = ENOMEM; 285 goto fail4; 286 } 287 288 ifp->if_softc = sc; 289 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 290 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 291 ifp->if_init = rt2661_init; 292 ifp->if_ioctl = rt2661_ioctl; 293 ifp->if_start = rt2661_start; 294 ifp->if_watchdog = rt2661_watchdog; 295 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 296 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 297 IFQ_SET_READY(&ifp->if_snd); 298 299 ic->ic_ifp = ifp; 300 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 301 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 302 ic->ic_state = IEEE80211_S_INIT; 303 304 /* set device capabilities */ 305 ic->ic_caps = 306 IEEE80211_C_IBSS | /* IBSS mode supported */ 307 IEEE80211_C_MONITOR | /* monitor mode supported */ 308 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 309 IEEE80211_C_TXPMGT | /* tx power management */ 310 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 311 IEEE80211_C_SHSLOT | /* short slot time supported */ 312 #ifdef notyet 313 IEEE80211_C_WME | /* 802.11e */ 314 #endif 315 IEEE80211_C_WPA; /* 802.11i */ 316 317 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) { 318 /* set supported .11a rates */ 319 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a; 320 321 /* set supported .11a channels */ 322 for (i = 36; i <= 64; i += 4) { 323 ic->ic_channels[i].ic_freq = 324 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 325 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 326 } 327 for (i = 100; i <= 140; i += 4) { 328 ic->ic_channels[i].ic_freq = 329 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 330 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 331 } 332 for (i = 149; i <= 165; i += 4) { 333 ic->ic_channels[i].ic_freq = 334 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 335 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 336 } 337 } 338 339 /* set supported .11b and .11g rates */ 340 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b; 341 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g; 342 343 /* set supported .11b and .11g channels (1 through 14) */ 344 for (i = 1; i <= 14; i++) { 345 ic->ic_channels[i].ic_freq = 346 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 347 ic->ic_channels[i].ic_flags = 348 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 349 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 350 } 351 352 ieee80211_ifattach(ic); 353 ic->ic_node_alloc = rt2661_node_alloc; 354 /* ic->ic_wme.wme_update = rt2661_wme_update;*/ 355 ic->ic_updateslot = rt2661_update_slot; 356 ic->ic_reset = rt2661_reset; 357 /* enable s/w bmiss handling in sta mode */ 358 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 359 360 /* override state transition machine */ 361 sc->sc_newstate = ic->ic_newstate; 362 ic->ic_newstate = rt2661_newstate; 363 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status); 364 365 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 366 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 367 368 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 369 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 370 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT); 371 372 sc->sc_txtap_len = sizeof sc->sc_txtapu; 373 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 374 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT); 375 376 /* 377 * Add a few sysctl knobs. 378 */ 379 sc->dwelltime = 200; 380 381 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 382 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", 383 CTLFLAG_RW, &sc->dwelltime, 0, 384 "channel dwell time (ms) for AP/station scanning"); 385 386 if (bootverbose) 387 ieee80211_announce(ic); 388 389 return 0; 390 391 fail4: rt2661_free_rx_ring(sc, &sc->rxq); 392 fail3: rt2661_free_tx_ring(sc, &sc->mgtq); 393 fail2: while (--ac >= 0) 394 rt2661_free_tx_ring(sc, &sc->txq[ac]); 395 fail1: mtx_destroy(&sc->sc_mtx); 396 397 return error; 398 } 399 400 int 401 rt2661_detach(void *xsc) 402 { 403 struct rt2661_softc *sc = xsc; 404 struct ieee80211com *ic = &sc->sc_ic; 405 struct ifnet *ifp = ic->ic_ifp; 406 407 rt2661_stop(sc); 408 callout_stop(&sc->scan_ch); 409 callout_stop(&sc->rssadapt_ch); 410 411 bpfdetach(ifp); 412 ieee80211_ifdetach(ic); 413 414 rt2661_free_tx_ring(sc, &sc->txq[0]); 415 rt2661_free_tx_ring(sc, &sc->txq[1]); 416 rt2661_free_tx_ring(sc, &sc->txq[2]); 417 rt2661_free_tx_ring(sc, &sc->txq[3]); 418 rt2661_free_tx_ring(sc, &sc->mgtq); 419 rt2661_free_rx_ring(sc, &sc->rxq); 420 421 if_free(ifp); 422 423 mtx_destroy(&sc->sc_mtx); 424 425 return 0; 426 } 427 428 void 429 rt2661_shutdown(void *xsc) 430 { 431 struct rt2661_softc *sc = xsc; 432 433 rt2661_stop(sc); 434 } 435 436 void 437 rt2661_suspend(void *xsc) 438 { 439 struct rt2661_softc *sc = xsc; 440 441 rt2661_stop(sc); 442 } 443 444 void 445 rt2661_resume(void *xsc) 446 { 447 struct rt2661_softc *sc = xsc; 448 struct ifnet *ifp = sc->sc_ic.ic_ifp; 449 450 if (ifp->if_flags & IFF_UP) { 451 ifp->if_init(ifp->if_softc); 452 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 453 ifp->if_start(ifp); 454 } 455 } 456 457 static void 458 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 459 { 460 if (error != 0) 461 return; 462 463 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 464 465 *(bus_addr_t *)arg = segs[0].ds_addr; 466 } 467 468 static int 469 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, 470 int count) 471 { 472 int i, error; 473 474 ring->count = count; 475 ring->queued = 0; 476 ring->cur = ring->next = ring->stat = 0; 477 478 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 479 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1, 480 count * RT2661_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 481 if (error != 0) { 482 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 483 goto fail; 484 } 485 486 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 487 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 488 if (error != 0) { 489 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 490 goto fail; 491 } 492 493 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 494 count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 495 0); 496 if (error != 0) { 497 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 498 goto fail; 499 } 500 501 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, 502 M_NOWAIT | M_ZERO); 503 if (ring->data == NULL) { 504 device_printf(sc->sc_dev, "could not allocate soft data\n"); 505 error = ENOMEM; 506 goto fail; 507 } 508 509 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 510 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2661_MAX_SCATTER, 511 MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 512 if (error != 0) { 513 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 514 goto fail; 515 } 516 517 for (i = 0; i < count; i++) { 518 error = bus_dmamap_create(ring->data_dmat, 0, 519 &ring->data[i].map); 520 if (error != 0) { 521 device_printf(sc->sc_dev, "could not create DMA map\n"); 522 goto fail; 523 } 524 } 525 526 return 0; 527 528 fail: rt2661_free_tx_ring(sc, ring); 529 return error; 530 } 531 532 static void 533 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 534 { 535 struct rt2661_tx_desc *desc; 536 struct rt2661_tx_data *data; 537 int i; 538 539 for (i = 0; i < ring->count; i++) { 540 desc = &ring->desc[i]; 541 data = &ring->data[i]; 542 543 if (data->m != NULL) { 544 bus_dmamap_sync(ring->data_dmat, data->map, 545 BUS_DMASYNC_POSTWRITE); 546 bus_dmamap_unload(ring->data_dmat, data->map); 547 m_freem(data->m); 548 data->m = NULL; 549 } 550 551 if (data->ni != NULL) { 552 ieee80211_free_node(data->ni); 553 data->ni = NULL; 554 } 555 556 desc->flags = 0; 557 } 558 559 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 560 561 ring->queued = 0; 562 ring->cur = ring->next = ring->stat = 0; 563 } 564 565 static void 566 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 567 { 568 struct rt2661_tx_data *data; 569 int i; 570 571 if (ring->desc != NULL) { 572 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 573 BUS_DMASYNC_POSTWRITE); 574 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 575 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 576 } 577 578 if (ring->desc_dmat != NULL) 579 bus_dma_tag_destroy(ring->desc_dmat); 580 581 if (ring->data != NULL) { 582 for (i = 0; i < ring->count; i++) { 583 data = &ring->data[i]; 584 585 if (data->m != NULL) { 586 bus_dmamap_sync(ring->data_dmat, data->map, 587 BUS_DMASYNC_POSTWRITE); 588 bus_dmamap_unload(ring->data_dmat, data->map); 589 m_freem(data->m); 590 } 591 592 if (data->ni != NULL) 593 ieee80211_free_node(data->ni); 594 595 if (data->map != NULL) 596 bus_dmamap_destroy(ring->data_dmat, data->map); 597 } 598 599 free(ring->data, M_DEVBUF); 600 } 601 602 if (ring->data_dmat != NULL) 603 bus_dma_tag_destroy(ring->data_dmat); 604 } 605 606 static int 607 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, 608 int count) 609 { 610 struct rt2661_rx_desc *desc; 611 struct rt2661_rx_data *data; 612 bus_addr_t physaddr; 613 int i, error; 614 615 ring->count = count; 616 ring->cur = ring->next = 0; 617 618 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 619 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1, 620 count * RT2661_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 621 if (error != 0) { 622 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 623 goto fail; 624 } 625 626 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 627 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 628 if (error != 0) { 629 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 630 goto fail; 631 } 632 633 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 634 count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 635 0); 636 if (error != 0) { 637 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 638 goto fail; 639 } 640 641 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, 642 M_NOWAIT | M_ZERO); 643 if (ring->data == NULL) { 644 device_printf(sc->sc_dev, "could not allocate soft data\n"); 645 error = ENOMEM; 646 goto fail; 647 } 648 649 /* 650 * Pre-allocate Rx buffers and populate Rx ring. 651 */ 652 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 653 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 654 NULL, &ring->data_dmat); 655 if (error != 0) { 656 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 657 goto fail; 658 } 659 660 for (i = 0; i < count; i++) { 661 desc = &sc->rxq.desc[i]; 662 data = &sc->rxq.data[i]; 663 664 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 665 if (error != 0) { 666 device_printf(sc->sc_dev, "could not create DMA map\n"); 667 goto fail; 668 } 669 670 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 671 if (data->m == NULL) { 672 device_printf(sc->sc_dev, 673 "could not allocate rx mbuf\n"); 674 error = ENOMEM; 675 goto fail; 676 } 677 678 error = bus_dmamap_load(ring->data_dmat, data->map, 679 mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr, 680 &physaddr, 0); 681 if (error != 0) { 682 device_printf(sc->sc_dev, 683 "could not load rx buf DMA map"); 684 goto fail; 685 } 686 687 desc->flags = htole32(RT2661_RX_BUSY); 688 desc->physaddr = htole32(physaddr); 689 } 690 691 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 692 693 return 0; 694 695 fail: rt2661_free_rx_ring(sc, ring); 696 return error; 697 } 698 699 static void 700 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 701 { 702 int i; 703 704 for (i = 0; i < ring->count; i++) 705 ring->desc[i].flags = htole32(RT2661_RX_BUSY); 706 707 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 708 709 ring->cur = ring->next = 0; 710 } 711 712 static void 713 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 714 { 715 struct rt2661_rx_data *data; 716 int i; 717 718 if (ring->desc != NULL) { 719 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 720 BUS_DMASYNC_POSTWRITE); 721 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 722 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 723 } 724 725 if (ring->desc_dmat != NULL) 726 bus_dma_tag_destroy(ring->desc_dmat); 727 728 if (ring->data != NULL) { 729 for (i = 0; i < ring->count; i++) { 730 data = &ring->data[i]; 731 732 if (data->m != NULL) { 733 bus_dmamap_sync(ring->data_dmat, data->map, 734 BUS_DMASYNC_POSTREAD); 735 bus_dmamap_unload(ring->data_dmat, data->map); 736 m_freem(data->m); 737 } 738 739 if (data->map != NULL) 740 bus_dmamap_destroy(ring->data_dmat, data->map); 741 } 742 743 free(ring->data, M_DEVBUF); 744 } 745 746 if (ring->data_dmat != NULL) 747 bus_dma_tag_destroy(ring->data_dmat); 748 } 749 750 static struct ieee80211_node * 751 rt2661_node_alloc(struct ieee80211_node_table *nt) 752 { 753 struct rt2661_node *rn; 754 755 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE, 756 M_NOWAIT | M_ZERO); 757 758 return (rn != NULL) ? &rn->ni : NULL; 759 } 760 761 static int 762 rt2661_media_change(struct ifnet *ifp) 763 { 764 struct rt2661_softc *sc = ifp->if_softc; 765 int error; 766 767 error = ieee80211_media_change(ifp); 768 if (error != ENETRESET) 769 return error; 770 771 if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 772 rt2661_init(sc); 773 774 return 0; 775 } 776 777 /* 778 * This function is called periodically (every 200ms) during scanning to 779 * switch from one channel to another. 780 */ 781 static void 782 rt2661_next_scan(void *arg) 783 { 784 struct rt2661_softc *sc = arg; 785 struct ieee80211com *ic = &sc->sc_ic; 786 787 if (ic->ic_state == IEEE80211_S_SCAN) 788 ieee80211_next_scan(ic); 789 } 790 791 /* 792 * This function is called for each node present in the node station table. 793 */ 794 static void 795 rt2661_iter_func(void *arg, struct ieee80211_node *ni) 796 { 797 struct rt2661_node *rn = (struct rt2661_node *)ni; 798 799 ral_rssadapt_updatestats(&rn->rssadapt); 800 } 801 802 /* 803 * This function is called periodically (every 100ms) in RUN state to update 804 * the rate adaptation statistics. 805 */ 806 static void 807 rt2661_update_rssadapt(void *arg) 808 { 809 struct rt2661_softc *sc = arg; 810 struct ieee80211com *ic = &sc->sc_ic; 811 812 RAL_LOCK(sc); 813 814 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg); 815 callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_update_rssadapt, sc); 816 817 RAL_UNLOCK(sc); 818 } 819 820 static int 821 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 822 { 823 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 824 enum ieee80211_state ostate; 825 struct ieee80211_node *ni; 826 uint32_t tmp; 827 int error = 0; 828 829 ostate = ic->ic_state; 830 callout_stop(&sc->scan_ch); 831 832 switch (nstate) { 833 case IEEE80211_S_INIT: 834 callout_stop(&sc->rssadapt_ch); 835 836 if (ostate == IEEE80211_S_RUN) { 837 /* abort TSF synchronization */ 838 tmp = RAL_READ(sc, RT2661_TXRX_CSR9); 839 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); 840 } 841 break; 842 843 case IEEE80211_S_SCAN: 844 rt2661_set_chan(sc, ic->ic_curchan); 845 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000, 846 rt2661_next_scan, sc); 847 break; 848 849 case IEEE80211_S_AUTH: 850 case IEEE80211_S_ASSOC: 851 rt2661_set_chan(sc, ic->ic_curchan); 852 break; 853 854 case IEEE80211_S_RUN: 855 rt2661_set_chan(sc, ic->ic_curchan); 856 857 ni = ic->ic_bss; 858 859 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 860 rt2661_enable_mrr(sc); 861 rt2661_set_txpreamble(sc); 862 rt2661_set_basicrates(sc, &ni->ni_rates); 863 rt2661_set_bssid(sc, ni->ni_bssid); 864 } 865 866 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 867 ic->ic_opmode == IEEE80211_M_IBSS) { 868 if ((error = rt2661_prepare_beacon(sc)) != 0) 869 break; 870 } 871 872 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 873 callout_reset(&sc->rssadapt_ch, hz / 10, 874 rt2661_update_rssadapt, sc); 875 rt2661_enable_tsf_sync(sc); 876 } 877 break; 878 } 879 880 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 881 } 882 883 /* 884 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 885 * 93C66). 886 */ 887 static uint16_t 888 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) 889 { 890 uint32_t tmp; 891 uint16_t val; 892 int n; 893 894 /* clock C once before the first command */ 895 RT2661_EEPROM_CTL(sc, 0); 896 897 RT2661_EEPROM_CTL(sc, RT2661_S); 898 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 899 RT2661_EEPROM_CTL(sc, RT2661_S); 900 901 /* write start bit (1) */ 902 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 903 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 904 905 /* write READ opcode (10) */ 906 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 907 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 908 RT2661_EEPROM_CTL(sc, RT2661_S); 909 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 910 911 /* write address (A5-A0 or A7-A0) */ 912 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; 913 for (; n >= 0; n--) { 914 RT2661_EEPROM_CTL(sc, RT2661_S | 915 (((addr >> n) & 1) << RT2661_SHIFT_D)); 916 RT2661_EEPROM_CTL(sc, RT2661_S | 917 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); 918 } 919 920 RT2661_EEPROM_CTL(sc, RT2661_S); 921 922 /* read data Q15-Q0 */ 923 val = 0; 924 for (n = 15; n >= 0; n--) { 925 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 926 tmp = RAL_READ(sc, RT2661_E2PROM_CSR); 927 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; 928 RT2661_EEPROM_CTL(sc, RT2661_S); 929 } 930 931 RT2661_EEPROM_CTL(sc, 0); 932 933 /* clear Chip Select and clock C */ 934 RT2661_EEPROM_CTL(sc, RT2661_S); 935 RT2661_EEPROM_CTL(sc, 0); 936 RT2661_EEPROM_CTL(sc, RT2661_C); 937 938 return val; 939 } 940 941 static void 942 rt2661_tx_intr(struct rt2661_softc *sc) 943 { 944 struct ieee80211com *ic = &sc->sc_ic; 945 struct ifnet *ifp = ic->ic_ifp; 946 struct rt2661_tx_ring *txq; 947 struct rt2661_tx_data *data; 948 struct rt2661_node *rn; 949 uint32_t val; 950 int qid, retrycnt; 951 952 for (;;) { 953 val = RAL_READ(sc, RT2661_STA_CSR4); 954 if (!(val & RT2661_TX_STAT_VALID)) 955 break; 956 957 /* retrieve the queue in which this frame was sent */ 958 qid = RT2661_TX_QID(val); 959 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; 960 961 /* retrieve rate control algorithm context */ 962 data = &txq->data[txq->stat]; 963 rn = (struct rt2661_node *)data->ni; 964 965 /* if no frame has been sent, ignore */ 966 if (rn == NULL) 967 continue; 968 969 switch (RT2661_TX_RESULT(val)) { 970 case RT2661_TX_SUCCESS: 971 retrycnt = RT2661_TX_RETRYCNT(val); 972 973 DPRINTFN(10, ("data frame sent successfully after " 974 "%d retries\n", retrycnt)); 975 if (retrycnt == 0 && data->id.id_node != NULL) { 976 ral_rssadapt_raise_rate(ic, &rn->rssadapt, 977 &data->id); 978 } 979 ifp->if_opackets++; 980 break; 981 982 case RT2661_TX_RETRY_FAIL: 983 DPRINTFN(9, ("sending data frame failed (too much " 984 "retries)\n")); 985 if (data->id.id_node != NULL) { 986 ral_rssadapt_lower_rate(ic, data->ni, 987 &rn->rssadapt, &data->id); 988 } 989 ifp->if_oerrors++; 990 break; 991 992 default: 993 /* other failure */ 994 device_printf(sc->sc_dev, 995 "sending data frame failed 0x%08x\n", val); 996 ifp->if_oerrors++; 997 } 998 999 ieee80211_free_node(data->ni); 1000 data->ni = NULL; 1001 1002 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat)); 1003 1004 txq->queued--; 1005 if (++txq->stat >= txq->count) /* faster than % count */ 1006 txq->stat = 0; 1007 } 1008 1009 sc->sc_tx_timer = 0; 1010 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1011 rt2661_start(ifp); 1012 } 1013 1014 static void 1015 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) 1016 { 1017 struct rt2661_tx_desc *desc; 1018 struct rt2661_tx_data *data; 1019 1020 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD); 1021 1022 for (;;) { 1023 desc = &txq->desc[txq->next]; 1024 data = &txq->data[txq->next]; 1025 1026 if ((le32toh(desc->flags) & RT2661_TX_BUSY) || 1027 !(le32toh(desc->flags) & RT2661_TX_VALID)) 1028 break; 1029 1030 bus_dmamap_sync(txq->data_dmat, data->map, 1031 BUS_DMASYNC_POSTWRITE); 1032 bus_dmamap_unload(txq->data_dmat, data->map); 1033 m_freem(data->m); 1034 data->m = NULL; 1035 /* node reference is released in rt2661_tx_intr() */ 1036 1037 /* descriptor is no longer valid */ 1038 desc->flags &= ~htole32(RT2661_TX_VALID); 1039 1040 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next)); 1041 1042 if (++txq->next >= txq->count) /* faster than % count */ 1043 txq->next = 0; 1044 } 1045 1046 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1047 } 1048 1049 static void 1050 rt2661_rx_intr(struct rt2661_softc *sc) 1051 { 1052 struct ieee80211com *ic = &sc->sc_ic; 1053 struct ifnet *ifp = ic->ic_ifp; 1054 struct rt2661_rx_desc *desc; 1055 struct rt2661_rx_data *data; 1056 bus_addr_t physaddr; 1057 struct ieee80211_frame *wh; 1058 struct ieee80211_node *ni; 1059 struct rt2661_node *rn; 1060 struct mbuf *mnew, *m; 1061 int error; 1062 1063 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1064 BUS_DMASYNC_POSTREAD); 1065 1066 for (;;) { 1067 desc = &sc->rxq.desc[sc->rxq.cur]; 1068 data = &sc->rxq.data[sc->rxq.cur]; 1069 1070 if (le32toh(desc->flags) & RT2661_RX_BUSY) 1071 break; 1072 1073 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || 1074 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { 1075 /* 1076 * This should not happen since we did not request 1077 * to receive those frames when we filled TXRX_CSR0. 1078 */ 1079 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1080 le32toh(desc->flags))); 1081 ifp->if_ierrors++; 1082 goto skip; 1083 } 1084 1085 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { 1086 ifp->if_ierrors++; 1087 goto skip; 1088 } 1089 1090 /* 1091 * Try to allocate a new mbuf for this ring element and load it 1092 * before processing the current mbuf. If the ring element 1093 * cannot be loaded, drop the received packet and reuse the old 1094 * mbuf. In the unlikely case that the old mbuf can't be 1095 * reloaded either, explicitly panic. 1096 */ 1097 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1098 if (mnew == NULL) { 1099 ifp->if_ierrors++; 1100 goto skip; 1101 } 1102 1103 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1104 BUS_DMASYNC_POSTREAD); 1105 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1106 1107 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1108 mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr, 1109 &physaddr, 0); 1110 if (error != 0) { 1111 m_freem(mnew); 1112 1113 /* try to reload the old mbuf */ 1114 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1115 mtod(data->m, void *), MCLBYTES, 1116 rt2661_dma_map_addr, &physaddr, 0); 1117 if (error != 0) { 1118 /* very unlikely that it will fail... */ 1119 panic("%s: could not load old rx mbuf", 1120 device_get_name(sc->sc_dev)); 1121 } 1122 ifp->if_ierrors++; 1123 goto skip; 1124 } 1125 1126 /* 1127 * New mbuf successfully loaded, update Rx ring and continue 1128 * processing. 1129 */ 1130 m = data->m; 1131 data->m = mnew; 1132 desc->physaddr = htole32(physaddr); 1133 1134 /* finalize mbuf */ 1135 m->m_pkthdr.rcvif = ifp; 1136 m->m_pkthdr.len = m->m_len = 1137 (le32toh(desc->flags) >> 16) & 0xfff; 1138 1139 if (bpf_peers_present(sc->sc_drvbpf)) { 1140 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; 1141 uint32_t tsf_lo, tsf_hi; 1142 1143 /* get timestamp (low and high 32 bits) */ 1144 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); 1145 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); 1146 1147 tap->wr_tsf = 1148 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1149 tap->wr_flags = 0; 1150 tap->wr_rate = rt2661_rxrate(desc); 1151 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1152 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1153 tap->wr_antsignal = desc->rssi; 1154 1155 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1156 } 1157 1158 wh = mtod(m, struct ieee80211_frame *); 1159 ni = ieee80211_find_rxnode(ic, 1160 (struct ieee80211_frame_min *)wh); 1161 1162 /* send the frame to the 802.11 layer */ 1163 ieee80211_input(ic, m, ni, desc->rssi, 0); 1164 1165 /* give rssi to the rate adatation algorithm */ 1166 rn = (struct rt2661_node *)ni; 1167 ral_rssadapt_input(ic, ni, &rn->rssadapt, 1168 rt2661_get_rssi(sc, desc->rssi)); 1169 1170 /* node is no longer needed */ 1171 ieee80211_free_node(ni); 1172 1173 skip: desc->flags |= htole32(RT2661_RX_BUSY); 1174 1175 DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur)); 1176 1177 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; 1178 } 1179 1180 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1181 BUS_DMASYNC_PREWRITE); 1182 } 1183 1184 /* ARGSUSED */ 1185 static void 1186 rt2661_mcu_beacon_expire(struct rt2661_softc *sc) 1187 { 1188 /* do nothing */ 1189 } 1190 1191 static void 1192 rt2661_mcu_wakeup(struct rt2661_softc *sc) 1193 { 1194 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); 1195 1196 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); 1197 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); 1198 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); 1199 1200 /* send wakeup command to MCU */ 1201 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); 1202 } 1203 1204 static void 1205 rt2661_mcu_cmd_intr(struct rt2661_softc *sc) 1206 { 1207 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); 1208 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 1209 } 1210 1211 void 1212 rt2661_intr(void *arg) 1213 { 1214 struct rt2661_softc *sc = arg; 1215 struct ifnet *ifp = sc->sc_ifp; 1216 uint32_t r1, r2; 1217 1218 RAL_LOCK(sc); 1219 1220 /* disable MAC and MCU interrupts */ 1221 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 1222 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 1223 1224 /* don't re-enable interrupts if we're shutting down */ 1225 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1226 RAL_UNLOCK(sc); 1227 return; 1228 } 1229 1230 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); 1231 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); 1232 1233 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); 1234 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); 1235 1236 if (r1 & RT2661_MGT_DONE) 1237 rt2661_tx_dma_intr(sc, &sc->mgtq); 1238 1239 if (r1 & RT2661_RX_DONE) 1240 rt2661_rx_intr(sc); 1241 1242 if (r1 & RT2661_TX0_DMA_DONE) 1243 rt2661_tx_dma_intr(sc, &sc->txq[0]); 1244 1245 if (r1 & RT2661_TX1_DMA_DONE) 1246 rt2661_tx_dma_intr(sc, &sc->txq[1]); 1247 1248 if (r1 & RT2661_TX2_DMA_DONE) 1249 rt2661_tx_dma_intr(sc, &sc->txq[2]); 1250 1251 if (r1 & RT2661_TX3_DMA_DONE) 1252 rt2661_tx_dma_intr(sc, &sc->txq[3]); 1253 1254 if (r1 & RT2661_TX_DONE) 1255 rt2661_tx_intr(sc); 1256 1257 if (r2 & RT2661_MCU_CMD_DONE) 1258 rt2661_mcu_cmd_intr(sc); 1259 1260 if (r2 & RT2661_MCU_BEACON_EXPIRE) 1261 rt2661_mcu_beacon_expire(sc); 1262 1263 if (r2 & RT2661_MCU_WAKEUP) 1264 rt2661_mcu_wakeup(sc); 1265 1266 /* re-enable MAC and MCU interrupts */ 1267 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 1268 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 1269 1270 RAL_UNLOCK(sc); 1271 } 1272 1273 /* quickly determine if a given rate is CCK or OFDM */ 1274 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1275 1276 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1277 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1278 1279 #define RAL_SIFS 10 /* us */ 1280 1281 /* 1282 * This function is only used by the Rx radiotap code. It returns the rate at 1283 * which a given frame was received. 1284 */ 1285 static uint8_t 1286 rt2661_rxrate(struct rt2661_rx_desc *desc) 1287 { 1288 if (le32toh(desc->flags) & RT2661_RX_OFDM) { 1289 /* reverse function of rt2661_plcp_signal */ 1290 switch (desc->rate & 0xf) { 1291 case 0xb: return 12; 1292 case 0xf: return 18; 1293 case 0xa: return 24; 1294 case 0xe: return 36; 1295 case 0x9: return 48; 1296 case 0xd: return 72; 1297 case 0x8: return 96; 1298 case 0xc: return 108; 1299 } 1300 } else { 1301 if (desc->rate == 10) 1302 return 2; 1303 if (desc->rate == 20) 1304 return 4; 1305 if (desc->rate == 55) 1306 return 11; 1307 if (desc->rate == 110) 1308 return 22; 1309 } 1310 return 2; /* should not get there */ 1311 } 1312 1313 /* 1314 * Return the expected ack rate for a frame transmitted at rate `rate'. 1315 * XXX: this should depend on the destination node basic rate set. 1316 */ 1317 static int 1318 rt2661_ack_rate(struct ieee80211com *ic, int rate) 1319 { 1320 switch (rate) { 1321 /* CCK rates */ 1322 case 2: 1323 return 2; 1324 case 4: 1325 case 11: 1326 case 22: 1327 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1328 1329 /* OFDM rates */ 1330 case 12: 1331 case 18: 1332 return 12; 1333 case 24: 1334 case 36: 1335 return 24; 1336 case 48: 1337 case 72: 1338 case 96: 1339 case 108: 1340 return 48; 1341 } 1342 1343 /* default to 1Mbps */ 1344 return 2; 1345 } 1346 1347 /* 1348 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1349 * The function automatically determines the operating mode depending on the 1350 * given rate. `flags' indicates whether short preamble is in use or not. 1351 */ 1352 static uint16_t 1353 rt2661_txtime(int len, int rate, uint32_t flags) 1354 { 1355 uint16_t txtime; 1356 1357 if (RAL_RATE_IS_OFDM(rate)) { 1358 /* IEEE Std 802.11a-1999, pp. 37 */ 1359 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1360 txtime = 16 + 4 + 4 * txtime + 6; 1361 } else { 1362 /* IEEE Std 802.11b-1999, pp. 28 */ 1363 txtime = (16 * len + rate - 1) / rate; 1364 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1365 txtime += 72 + 24; 1366 else 1367 txtime += 144 + 48; 1368 } 1369 1370 return txtime; 1371 } 1372 1373 static uint8_t 1374 rt2661_plcp_signal(int rate) 1375 { 1376 switch (rate) { 1377 /* CCK rates (returned values are device-dependent) */ 1378 case 2: return 0x0; 1379 case 4: return 0x1; 1380 case 11: return 0x2; 1381 case 22: return 0x3; 1382 1383 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1384 case 12: return 0xb; 1385 case 18: return 0xf; 1386 case 24: return 0xa; 1387 case 36: return 0xe; 1388 case 48: return 0x9; 1389 case 72: return 0xd; 1390 case 96: return 0x8; 1391 case 108: return 0xc; 1392 1393 /* unsupported rates (should not get there) */ 1394 default: return 0xff; 1395 } 1396 } 1397 1398 static void 1399 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, 1400 uint32_t flags, uint16_t xflags, int len, int rate, 1401 const bus_dma_segment_t *segs, int nsegs, int ac) 1402 { 1403 struct ieee80211com *ic = &sc->sc_ic; 1404 uint16_t plcp_length; 1405 int i, remainder; 1406 1407 desc->flags = htole32(flags); 1408 desc->flags |= htole32(len << 16); 1409 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); 1410 1411 desc->xflags = htole16(xflags); 1412 desc->xflags |= htole16(nsegs << 13); 1413 1414 desc->wme = htole16( 1415 RT2661_QID(ac) | 1416 RT2661_AIFSN(2) | 1417 RT2661_LOGCWMIN(4) | 1418 RT2661_LOGCWMAX(10)); 1419 1420 /* 1421 * Remember in which queue this frame was sent. This field is driver 1422 * private data only. It will be made available by the NIC in STA_CSR4 1423 * on Tx interrupts. 1424 */ 1425 desc->qid = ac; 1426 1427 /* setup PLCP fields */ 1428 desc->plcp_signal = rt2661_plcp_signal(rate); 1429 desc->plcp_service = 4; 1430 1431 len += IEEE80211_CRC_LEN; 1432 if (RAL_RATE_IS_OFDM(rate)) { 1433 desc->flags |= htole32(RT2661_TX_OFDM); 1434 1435 plcp_length = len & 0xfff; 1436 desc->plcp_length_hi = plcp_length >> 6; 1437 desc->plcp_length_lo = plcp_length & 0x3f; 1438 } else { 1439 plcp_length = (16 * len + rate - 1) / rate; 1440 if (rate == 22) { 1441 remainder = (16 * len) % 22; 1442 if (remainder != 0 && remainder < 7) 1443 desc->plcp_service |= RT2661_PLCP_LENGEXT; 1444 } 1445 desc->plcp_length_hi = plcp_length >> 8; 1446 desc->plcp_length_lo = plcp_length & 0xff; 1447 1448 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1449 desc->plcp_signal |= 0x08; 1450 } 1451 1452 /* RT2x61 supports scatter with up to 5 segments */ 1453 for (i = 0; i < nsegs; i++) { 1454 desc->addr[i] = htole32(segs[i].ds_addr); 1455 desc->len [i] = htole16(segs[i].ds_len); 1456 } 1457 } 1458 1459 static int 1460 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, 1461 struct ieee80211_node *ni) 1462 { 1463 struct ieee80211com *ic = &sc->sc_ic; 1464 struct rt2661_tx_desc *desc; 1465 struct rt2661_tx_data *data; 1466 struct ieee80211_frame *wh; 1467 bus_dma_segment_t segs[RT2661_MAX_SCATTER]; 1468 uint16_t dur; 1469 uint32_t flags = 0; /* XXX HWSEQ */ 1470 int nsegs, rate, error; 1471 1472 desc = &sc->mgtq.desc[sc->mgtq.cur]; 1473 data = &sc->mgtq.data[sc->mgtq.cur]; 1474 1475 /* send mgt frames at the lowest available rate */ 1476 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1477 1478 error = bus_dmamap_load_mbuf_sg(sc->mgtq.data_dmat, data->map, m0, 1479 segs, &nsegs, 0); 1480 if (error != 0) { 1481 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1482 error); 1483 m_freem(m0); 1484 return error; 1485 } 1486 1487 if (bpf_peers_present(sc->sc_drvbpf)) { 1488 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1489 1490 tap->wt_flags = 0; 1491 tap->wt_rate = rate; 1492 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1493 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1494 1495 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1496 } 1497 1498 data->m = m0; 1499 data->ni = ni; 1500 1501 wh = mtod(m0, struct ieee80211_frame *); 1502 1503 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1504 flags |= RT2661_TX_NEED_ACK; 1505 1506 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1507 RAL_SIFS; 1508 *(uint16_t *)wh->i_dur = htole16(dur); 1509 1510 /* tell hardware to add timestamp in probe responses */ 1511 if ((wh->i_fc[0] & 1512 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1513 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1514 flags |= RT2661_TX_TIMESTAMP; 1515 } 1516 1517 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, 1518 m0->m_pkthdr.len, rate, segs, nsegs, RT2661_QID_MGT); 1519 1520 bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1521 bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map, 1522 BUS_DMASYNC_PREWRITE); 1523 1524 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1525 m0->m_pkthdr.len, sc->mgtq.cur, rate)); 1526 1527 /* kick mgt */ 1528 sc->mgtq.queued++; 1529 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; 1530 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); 1531 1532 return 0; 1533 } 1534 1535 /* 1536 * Build a RTS control frame. 1537 */ 1538 static struct mbuf * 1539 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh, 1540 uint16_t dur) 1541 { 1542 struct ieee80211_frame_rts *rts; 1543 struct mbuf *m; 1544 1545 MGETHDR(m, M_DONTWAIT, MT_DATA); 1546 if (m == NULL) { 1547 sc->sc_ic.ic_stats.is_tx_nobuf++; 1548 device_printf(sc->sc_dev, "could not allocate RTS frame\n"); 1549 return NULL; 1550 } 1551 1552 rts = mtod(m, struct ieee80211_frame_rts *); 1553 1554 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1555 IEEE80211_FC0_SUBTYPE_RTS; 1556 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1557 *(uint16_t *)rts->i_dur = htole16(dur); 1558 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1559 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1560 1561 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1562 1563 return m; 1564 } 1565 1566 static int 1567 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, 1568 struct ieee80211_node *ni, int ac) 1569 { 1570 struct ieee80211com *ic = &sc->sc_ic; 1571 struct rt2661_tx_ring *txq = &sc->txq[ac]; 1572 struct rt2661_tx_desc *desc; 1573 struct rt2661_tx_data *data; 1574 struct rt2661_node *rn; 1575 struct ieee80211_rateset *rs; 1576 struct ieee80211_frame *wh; 1577 struct ieee80211_key *k; 1578 const struct chanAccParams *cap; 1579 struct mbuf *mnew; 1580 bus_dma_segment_t segs[RT2661_MAX_SCATTER]; 1581 uint16_t dur; 1582 uint32_t flags = 0; 1583 int error, nsegs, rate, noack = 0; 1584 1585 wh = mtod(m0, struct ieee80211_frame *); 1586 1587 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1588 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1589 rate = rs->rs_rates[ic->ic_fixed_rate]; 1590 } else { 1591 rs = &ni->ni_rates; 1592 rn = (struct rt2661_node *)ni; 1593 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, 1594 wh, m0->m_pkthdr.len, NULL, 0); 1595 rate = rs->rs_rates[ni->ni_txrate]; 1596 } 1597 rate &= IEEE80211_RATE_VAL; 1598 1599 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 1600 cap = &ic->ic_wme.wme_chanParams; 1601 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1602 } 1603 1604 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1605 k = ieee80211_crypto_encap(ic, ni, m0); 1606 if (k == NULL) { 1607 m_freem(m0); 1608 return ENOBUFS; 1609 } 1610 1611 /* packet header may have moved, reset our local pointer */ 1612 wh = mtod(m0, struct ieee80211_frame *); 1613 } 1614 1615 /* 1616 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1617 * for directed frames only when the length of the MPDU is greater 1618 * than the length threshold indicated by [...]" ic_rtsthreshold. 1619 */ 1620 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1621 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1622 struct mbuf *m; 1623 uint16_t dur; 1624 int rtsrate, ackrate; 1625 1626 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1627 ackrate = rt2661_ack_rate(ic, rate); 1628 1629 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1630 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1631 /* XXX: noack (QoS)? */ 1632 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1633 3 * RAL_SIFS; 1634 1635 m = rt2661_get_rts(sc, wh, dur); 1636 1637 desc = &txq->desc[txq->cur]; 1638 data = &txq->data[txq->cur]; 1639 1640 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m, 1641 segs, &nsegs, 0); 1642 if (error != 0) { 1643 device_printf(sc->sc_dev, 1644 "could not map mbuf (error %d)\n", error); 1645 m_freem(m); 1646 m_freem(m0); 1647 return error; 1648 } 1649 1650 /* avoid multiple free() of the same node for each fragment */ 1651 ieee80211_ref_node(ni); 1652 1653 data->m = m; 1654 data->ni = ni; 1655 1656 /* RTS frames are not taken into account for rssadapt */ 1657 data->id.id_node = NULL; 1658 1659 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK | 1660 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, segs, 1661 nsegs, ac); 1662 1663 bus_dmamap_sync(txq->data_dmat, data->map, 1664 BUS_DMASYNC_PREWRITE); 1665 1666 txq->queued++; 1667 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1668 1669 /* 1670 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1671 * asynchronous data frame shall be transmitted after the CTS 1672 * frame and a SIFS period. 1673 */ 1674 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS; 1675 } 1676 1677 data = &txq->data[txq->cur]; 1678 desc = &txq->desc[txq->cur]; 1679 1680 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1681 &nsegs, 0); 1682 if (error != 0 && error != EFBIG) { 1683 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1684 error); 1685 m_freem(m0); 1686 return error; 1687 } 1688 if (error != 0) { 1689 mnew = m_defrag(m0, M_DONTWAIT); 1690 if (mnew == NULL) { 1691 device_printf(sc->sc_dev, 1692 "could not defragment mbuf\n"); 1693 m_freem(m0); 1694 return ENOBUFS; 1695 } 1696 m0 = mnew; 1697 1698 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, 1699 segs, &nsegs, 0); 1700 if (error != 0) { 1701 device_printf(sc->sc_dev, 1702 "could not map mbuf (error %d)\n", error); 1703 m_freem(m0); 1704 return error; 1705 } 1706 1707 /* packet header have moved, reset our local pointer */ 1708 wh = mtod(m0, struct ieee80211_frame *); 1709 } 1710 1711 if (bpf_peers_present(sc->sc_drvbpf)) { 1712 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1713 1714 tap->wt_flags = 0; 1715 tap->wt_rate = rate; 1716 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1717 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1718 1719 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1720 } 1721 1722 data->m = m0; 1723 data->ni = ni; 1724 1725 /* remember link conditions for rate adaptation algorithm */ 1726 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1727 data->id.id_len = m0->m_pkthdr.len; 1728 data->id.id_rateidx = ni->ni_txrate; 1729 data->id.id_node = ni; 1730 data->id.id_rssi = ni->ni_rssi; 1731 } else 1732 data->id.id_node = NULL; 1733 1734 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1735 flags |= RT2661_TX_NEED_ACK; 1736 1737 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate), 1738 ic->ic_flags) + RAL_SIFS; 1739 *(uint16_t *)wh->i_dur = htole16(dur); 1740 } 1741 1742 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, segs, 1743 nsegs, ac); 1744 1745 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1746 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1747 1748 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1749 m0->m_pkthdr.len, txq->cur, rate)); 1750 1751 /* kick Tx */ 1752 txq->queued++; 1753 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1754 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac); 1755 1756 return 0; 1757 } 1758 1759 static void 1760 rt2661_start(struct ifnet *ifp) 1761 { 1762 struct rt2661_softc *sc = ifp->if_softc; 1763 struct ieee80211com *ic = &sc->sc_ic; 1764 struct mbuf *m0; 1765 struct ether_header *eh; 1766 struct ieee80211_node *ni; 1767 int ac; 1768 1769 RAL_LOCK(sc); 1770 1771 /* prevent management frames from being sent if we're not ready */ 1772 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1773 RAL_UNLOCK(sc); 1774 return; 1775 } 1776 1777 for (;;) { 1778 IF_POLL(&ic->ic_mgtq, m0); 1779 if (m0 != NULL) { 1780 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { 1781 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1782 break; 1783 } 1784 IF_DEQUEUE(&ic->ic_mgtq, m0); 1785 1786 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1787 m0->m_pkthdr.rcvif = NULL; 1788 1789 if (bpf_peers_present(ic->ic_rawbpf)) 1790 bpf_mtap(ic->ic_rawbpf, m0); 1791 1792 if (rt2661_tx_mgt(sc, m0, ni) != 0) 1793 break; 1794 1795 } else { 1796 if (ic->ic_state != IEEE80211_S_RUN) 1797 break; 1798 1799 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1800 if (m0 == NULL) 1801 break; 1802 1803 if (m0->m_len < sizeof (struct ether_header) && 1804 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1805 continue; 1806 1807 eh = mtod(m0, struct ether_header *); 1808 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1809 if (ni == NULL) { 1810 m_freem(m0); 1811 ifp->if_oerrors++; 1812 continue; 1813 } 1814 1815 /* classify mbuf so we can find which tx ring to use */ 1816 if (ieee80211_classify(ic, m0, ni) != 0) { 1817 m_freem(m0); 1818 ieee80211_free_node(ni); 1819 ifp->if_oerrors++; 1820 continue; 1821 } 1822 1823 /* no QoS encapsulation for EAPOL frames */ 1824 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 1825 M_WME_GETAC(m0) : WME_AC_BE; 1826 1827 if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) { 1828 /* there is no place left in this ring */ 1829 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 1830 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1831 break; 1832 } 1833 1834 BPF_MTAP(ifp, m0); 1835 1836 m0 = ieee80211_encap(ic, m0, ni); 1837 if (m0 == NULL) { 1838 ieee80211_free_node(ni); 1839 ifp->if_oerrors++; 1840 continue; 1841 } 1842 1843 if (bpf_peers_present(ic->ic_rawbpf)) 1844 bpf_mtap(ic->ic_rawbpf, m0); 1845 1846 if (rt2661_tx_data(sc, m0, ni, ac) != 0) { 1847 ieee80211_free_node(ni); 1848 ifp->if_oerrors++; 1849 break; 1850 } 1851 } 1852 1853 sc->sc_tx_timer = 5; 1854 ifp->if_timer = 1; 1855 } 1856 1857 RAL_UNLOCK(sc); 1858 } 1859 1860 static void 1861 rt2661_watchdog(struct ifnet *ifp) 1862 { 1863 struct rt2661_softc *sc = ifp->if_softc; 1864 struct ieee80211com *ic = &sc->sc_ic; 1865 1866 RAL_LOCK(sc); 1867 1868 ifp->if_timer = 0; 1869 1870 if (sc->sc_tx_timer > 0) { 1871 if (--sc->sc_tx_timer == 0) { 1872 device_printf(sc->sc_dev, "device timeout\n"); 1873 rt2661_init(sc); 1874 ifp->if_oerrors++; 1875 RAL_UNLOCK(sc); 1876 return; 1877 } 1878 ifp->if_timer = 1; 1879 } 1880 1881 ieee80211_watchdog(ic); 1882 1883 RAL_UNLOCK(sc); 1884 } 1885 1886 /* 1887 * This function allows for fast channel switching in monitor mode (used by 1888 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 1889 * generate a new beacon frame. 1890 */ 1891 static int 1892 rt2661_reset(struct ifnet *ifp) 1893 { 1894 struct rt2661_softc *sc = ifp->if_softc; 1895 struct ieee80211com *ic = &sc->sc_ic; 1896 1897 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1898 return ENETRESET; 1899 1900 rt2661_set_chan(sc, ic->ic_curchan); 1901 1902 return 0; 1903 } 1904 1905 static int 1906 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1907 { 1908 struct rt2661_softc *sc = ifp->if_softc; 1909 struct ieee80211com *ic = &sc->sc_ic; 1910 int error = 0; 1911 1912 RAL_LOCK(sc); 1913 1914 switch (cmd) { 1915 case SIOCSIFFLAGS: 1916 if (ifp->if_flags & IFF_UP) { 1917 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1918 rt2661_update_promisc(sc); 1919 else 1920 rt2661_init(sc); 1921 } else { 1922 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1923 rt2661_stop(sc); 1924 } 1925 break; 1926 1927 default: 1928 error = ieee80211_ioctl(ic, cmd, data); 1929 } 1930 1931 if (error == ENETRESET) { 1932 if ((ifp->if_flags & IFF_UP) && 1933 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 1934 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1935 rt2661_init(sc); 1936 error = 0; 1937 } 1938 1939 RAL_UNLOCK(sc); 1940 1941 return error; 1942 } 1943 1944 static void 1945 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) 1946 { 1947 uint32_t tmp; 1948 int ntries; 1949 1950 for (ntries = 0; ntries < 100; ntries++) { 1951 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 1952 break; 1953 DELAY(1); 1954 } 1955 if (ntries == 100) { 1956 device_printf(sc->sc_dev, "could not write to BBP\n"); 1957 return; 1958 } 1959 1960 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; 1961 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); 1962 1963 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 1964 } 1965 1966 static uint8_t 1967 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) 1968 { 1969 uint32_t val; 1970 int ntries; 1971 1972 for (ntries = 0; ntries < 100; ntries++) { 1973 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 1974 break; 1975 DELAY(1); 1976 } 1977 if (ntries == 100) { 1978 device_printf(sc->sc_dev, "could not read from BBP\n"); 1979 return 0; 1980 } 1981 1982 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; 1983 RAL_WRITE(sc, RT2661_PHY_CSR3, val); 1984 1985 for (ntries = 0; ntries < 100; ntries++) { 1986 val = RAL_READ(sc, RT2661_PHY_CSR3); 1987 if (!(val & RT2661_BBP_BUSY)) 1988 return val & 0xff; 1989 DELAY(1); 1990 } 1991 1992 device_printf(sc->sc_dev, "could not read from BBP\n"); 1993 return 0; 1994 } 1995 1996 static void 1997 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) 1998 { 1999 uint32_t tmp; 2000 int ntries; 2001 2002 for (ntries = 0; ntries < 100; ntries++) { 2003 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) 2004 break; 2005 DELAY(1); 2006 } 2007 if (ntries == 100) { 2008 device_printf(sc->sc_dev, "could not write to RF\n"); 2009 return; 2010 } 2011 2012 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | 2013 (reg & 3); 2014 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); 2015 2016 /* remember last written value in sc */ 2017 sc->rf_regs[reg] = val; 2018 2019 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff)); 2020 } 2021 2022 static int 2023 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) 2024 { 2025 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) 2026 return EIO; /* there is already a command pending */ 2027 2028 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 2029 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); 2030 2031 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); 2032 2033 return 0; 2034 } 2035 2036 static void 2037 rt2661_select_antenna(struct rt2661_softc *sc) 2038 { 2039 uint8_t bbp4, bbp77; 2040 uint32_t tmp; 2041 2042 bbp4 = rt2661_bbp_read(sc, 4); 2043 bbp77 = rt2661_bbp_read(sc, 77); 2044 2045 /* TBD */ 2046 2047 /* make sure Rx is disabled before switching antenna */ 2048 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2049 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2050 2051 rt2661_bbp_write(sc, 4, bbp4); 2052 rt2661_bbp_write(sc, 77, bbp77); 2053 2054 /* restore Rx filter */ 2055 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2056 } 2057 2058 /* 2059 * Enable multi-rate retries for frames sent at OFDM rates. 2060 * In 802.11b/g mode, allow fallback to CCK rates. 2061 */ 2062 static void 2063 rt2661_enable_mrr(struct rt2661_softc *sc) 2064 { 2065 struct ieee80211com *ic = &sc->sc_ic; 2066 uint32_t tmp; 2067 2068 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2069 2070 tmp &= ~RT2661_MRR_CCK_FALLBACK; 2071 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 2072 tmp |= RT2661_MRR_CCK_FALLBACK; 2073 tmp |= RT2661_MRR_ENABLED; 2074 2075 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2076 } 2077 2078 static void 2079 rt2661_set_txpreamble(struct rt2661_softc *sc) 2080 { 2081 uint32_t tmp; 2082 2083 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2084 2085 tmp &= ~RT2661_SHORT_PREAMBLE; 2086 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 2087 tmp |= RT2661_SHORT_PREAMBLE; 2088 2089 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2090 } 2091 2092 static void 2093 rt2661_set_basicrates(struct rt2661_softc *sc, 2094 const struct ieee80211_rateset *rs) 2095 { 2096 #define RV(r) ((r) & IEEE80211_RATE_VAL) 2097 uint32_t mask = 0; 2098 uint8_t rate; 2099 int i, j; 2100 2101 for (i = 0; i < rs->rs_nrates; i++) { 2102 rate = rs->rs_rates[i]; 2103 2104 if (!(rate & IEEE80211_RATE_BASIC)) 2105 continue; 2106 2107 /* 2108 * Find h/w rate index. We know it exists because the rate 2109 * set has already been negotiated. 2110 */ 2111 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++); 2112 2113 mask |= 1 << j; 2114 } 2115 2116 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); 2117 2118 DPRINTF(("Setting basic rate mask to 0x%x\n", mask)); 2119 #undef RV 2120 } 2121 2122 /* 2123 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2124 * driver. 2125 */ 2126 static void 2127 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) 2128 { 2129 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2130 uint32_t tmp; 2131 2132 /* update all BBP registers that depend on the band */ 2133 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2134 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2135 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2136 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2137 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2138 } 2139 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2140 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2141 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2142 } 2143 2144 rt2661_bbp_write(sc, 17, bbp17); 2145 rt2661_bbp_write(sc, 96, bbp96); 2146 rt2661_bbp_write(sc, 104, bbp104); 2147 2148 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2149 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2150 rt2661_bbp_write(sc, 75, 0x80); 2151 rt2661_bbp_write(sc, 86, 0x80); 2152 rt2661_bbp_write(sc, 88, 0x80); 2153 } 2154 2155 rt2661_bbp_write(sc, 35, bbp35); 2156 rt2661_bbp_write(sc, 97, bbp97); 2157 rt2661_bbp_write(sc, 98, bbp98); 2158 2159 tmp = RAL_READ(sc, RT2661_PHY_CSR0); 2160 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); 2161 if (IEEE80211_IS_CHAN_2GHZ(c)) 2162 tmp |= RT2661_PA_PE_2GHZ; 2163 else 2164 tmp |= RT2661_PA_PE_5GHZ; 2165 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); 2166 } 2167 2168 static void 2169 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) 2170 { 2171 struct ieee80211com *ic = &sc->sc_ic; 2172 const struct rfprog *rfprog; 2173 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; 2174 int8_t power; 2175 u_int i, chan; 2176 2177 chan = ieee80211_chan2ieee(ic, c); 2178 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2179 return; 2180 2181 /* select the appropriate RF settings based on what EEPROM says */ 2182 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; 2183 2184 /* find the settings for this channel (we know it exists) */ 2185 for (i = 0; rfprog[i].chan != chan; i++); 2186 2187 power = sc->txpow[i]; 2188 if (power < 0) { 2189 bbp94 += power; 2190 power = 0; 2191 } else if (power > 31) { 2192 bbp94 += power - 31; 2193 power = 31; 2194 } 2195 2196 /* 2197 * If we are switching from the 2GHz band to the 5GHz band or 2198 * vice-versa, BBP registers need to be reprogrammed. 2199 */ 2200 if (c->ic_flags != sc->sc_curchan->ic_flags) { 2201 rt2661_select_band(sc, c); 2202 rt2661_select_antenna(sc); 2203 } 2204 sc->sc_curchan = c; 2205 2206 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2207 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2208 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2209 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2210 2211 DELAY(200); 2212 2213 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2214 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2215 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); 2216 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2217 2218 DELAY(200); 2219 2220 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2221 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2222 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2223 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2224 2225 /* enable smart mode for MIMO-capable RFs */ 2226 bbp3 = rt2661_bbp_read(sc, 3); 2227 2228 bbp3 &= ~RT2661_SMART_MODE; 2229 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) 2230 bbp3 |= RT2661_SMART_MODE; 2231 2232 rt2661_bbp_write(sc, 3, bbp3); 2233 2234 if (bbp94 != RT2661_BBPR94_DEFAULT) 2235 rt2661_bbp_write(sc, 94, bbp94); 2236 2237 /* 5GHz radio needs a 1ms delay here */ 2238 if (IEEE80211_IS_CHAN_5GHZ(c)) 2239 DELAY(1000); 2240 } 2241 2242 static void 2243 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) 2244 { 2245 uint32_t tmp; 2246 2247 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2248 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); 2249 2250 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; 2251 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); 2252 } 2253 2254 static void 2255 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) 2256 { 2257 uint32_t tmp; 2258 2259 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2260 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); 2261 2262 tmp = addr[4] | addr[5] << 8; 2263 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); 2264 } 2265 2266 static void 2267 rt2661_update_promisc(struct rt2661_softc *sc) 2268 { 2269 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2270 uint32_t tmp; 2271 2272 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2273 2274 tmp &= ~RT2661_DROP_NOT_TO_ME; 2275 if (!(ifp->if_flags & IFF_PROMISC)) 2276 tmp |= RT2661_DROP_NOT_TO_ME; 2277 2278 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2279 2280 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2281 "entering" : "leaving")); 2282 } 2283 2284 /* 2285 * Update QoS (802.11e) settings for each h/w Tx ring. 2286 */ 2287 static int 2288 rt2661_wme_update(struct ieee80211com *ic) 2289 { 2290 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 2291 const struct wmeParams *wmep; 2292 2293 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; 2294 2295 /* XXX: not sure about shifts. */ 2296 /* XXX: the reference driver plays with AC_VI settings too. */ 2297 2298 /* update TxOp */ 2299 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, 2300 wmep[WME_AC_BE].wmep_txopLimit << 16 | 2301 wmep[WME_AC_BK].wmep_txopLimit); 2302 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, 2303 wmep[WME_AC_VI].wmep_txopLimit << 16 | 2304 wmep[WME_AC_VO].wmep_txopLimit); 2305 2306 /* update CWmin */ 2307 RAL_WRITE(sc, RT2661_CWMIN_CSR, 2308 wmep[WME_AC_BE].wmep_logcwmin << 12 | 2309 wmep[WME_AC_BK].wmep_logcwmin << 8 | 2310 wmep[WME_AC_VI].wmep_logcwmin << 4 | 2311 wmep[WME_AC_VO].wmep_logcwmin); 2312 2313 /* update CWmax */ 2314 RAL_WRITE(sc, RT2661_CWMAX_CSR, 2315 wmep[WME_AC_BE].wmep_logcwmax << 12 | 2316 wmep[WME_AC_BK].wmep_logcwmax << 8 | 2317 wmep[WME_AC_VI].wmep_logcwmax << 4 | 2318 wmep[WME_AC_VO].wmep_logcwmax); 2319 2320 /* update Aifsn */ 2321 RAL_WRITE(sc, RT2661_AIFSN_CSR, 2322 wmep[WME_AC_BE].wmep_aifsn << 12 | 2323 wmep[WME_AC_BK].wmep_aifsn << 8 | 2324 wmep[WME_AC_VI].wmep_aifsn << 4 | 2325 wmep[WME_AC_VO].wmep_aifsn); 2326 2327 return 0; 2328 } 2329 2330 static void 2331 rt2661_update_slot(struct ifnet *ifp) 2332 { 2333 struct rt2661_softc *sc = ifp->if_softc; 2334 struct ieee80211com *ic = &sc->sc_ic; 2335 uint8_t slottime; 2336 uint32_t tmp; 2337 2338 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2339 2340 tmp = RAL_READ(sc, RT2661_MAC_CSR9); 2341 tmp = (tmp & ~0xff) | slottime; 2342 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); 2343 } 2344 2345 static const char * 2346 rt2661_get_rf(int rev) 2347 { 2348 switch (rev) { 2349 case RT2661_RF_5225: return "RT5225"; 2350 case RT2661_RF_5325: return "RT5325 (MIMO XR)"; 2351 case RT2661_RF_2527: return "RT2527"; 2352 case RT2661_RF_2529: return "RT2529 (MIMO XR)"; 2353 default: return "unknown"; 2354 } 2355 } 2356 2357 static void 2358 rt2661_read_eeprom(struct rt2661_softc *sc) 2359 { 2360 struct ieee80211com *ic = &sc->sc_ic; 2361 uint16_t val; 2362 int i; 2363 2364 /* read MAC address */ 2365 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); 2366 ic->ic_myaddr[0] = val & 0xff; 2367 ic->ic_myaddr[1] = val >> 8; 2368 2369 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); 2370 ic->ic_myaddr[2] = val & 0xff; 2371 ic->ic_myaddr[3] = val >> 8; 2372 2373 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); 2374 ic->ic_myaddr[4] = val & 0xff; 2375 ic->ic_myaddr[5] = val >> 8; 2376 2377 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); 2378 /* XXX: test if different from 0xffff? */ 2379 sc->rf_rev = (val >> 11) & 0x1f; 2380 sc->hw_radio = (val >> 10) & 0x1; 2381 sc->rx_ant = (val >> 4) & 0x3; 2382 sc->tx_ant = (val >> 2) & 0x3; 2383 sc->nb_ant = val & 0x3; 2384 2385 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 2386 2387 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); 2388 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2389 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2390 2391 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2392 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 2393 2394 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); 2395 if ((val & 0xff) != 0xff) 2396 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2397 2398 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); 2399 if ((val & 0xff) != 0xff) 2400 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2401 2402 /* adjust RSSI correction for external low-noise amplifier */ 2403 if (sc->ext_2ghz_lna) 2404 sc->rssi_2ghz_corr -= 14; 2405 if (sc->ext_5ghz_lna) 2406 sc->rssi_5ghz_corr -= 14; 2407 2408 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2409 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 2410 2411 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); 2412 if ((val >> 8) != 0xff) 2413 sc->rfprog = (val >> 8) & 0x3; 2414 if ((val & 0xff) != 0xff) 2415 sc->rffreq = val & 0xff; 2416 2417 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq)); 2418 2419 /* read Tx power for all a/b/g channels */ 2420 for (i = 0; i < 19; i++) { 2421 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); 2422 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ 2423 DPRINTF(("Channel=%d Tx power=%d\n", 2424 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2])); 2425 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ 2426 DPRINTF(("Channel=%d Tx power=%d\n", 2427 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1])); 2428 } 2429 2430 /* read vendor-specific BBP values */ 2431 for (i = 0; i < 16; i++) { 2432 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); 2433 if (val == 0 || val == 0xffff) 2434 continue; /* skip invalid entries */ 2435 sc->bbp_prom[i].reg = val >> 8; 2436 sc->bbp_prom[i].val = val & 0xff; 2437 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2438 sc->bbp_prom[i].val)); 2439 } 2440 } 2441 2442 static int 2443 rt2661_bbp_init(struct rt2661_softc *sc) 2444 { 2445 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2446 int i, ntries; 2447 uint8_t val; 2448 2449 /* wait for BBP to be ready */ 2450 for (ntries = 0; ntries < 100; ntries++) { 2451 val = rt2661_bbp_read(sc, 0); 2452 if (val != 0 && val != 0xff) 2453 break; 2454 DELAY(100); 2455 } 2456 if (ntries == 100) { 2457 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2458 return EIO; 2459 } 2460 2461 /* initialize BBP registers to default values */ 2462 for (i = 0; i < N(rt2661_def_bbp); i++) { 2463 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, 2464 rt2661_def_bbp[i].val); 2465 } 2466 2467 /* write vendor-specific BBP values (from EEPROM) */ 2468 for (i = 0; i < 16; i++) { 2469 if (sc->bbp_prom[i].reg == 0) 2470 continue; 2471 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2472 } 2473 2474 return 0; 2475 #undef N 2476 } 2477 2478 static void 2479 rt2661_init(void *priv) 2480 { 2481 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2482 struct rt2661_softc *sc = priv; 2483 struct ieee80211com *ic = &sc->sc_ic; 2484 struct ifnet *ifp = ic->ic_ifp; 2485 uint32_t tmp, sta[3]; 2486 int i, ntries; 2487 2488 RAL_LOCK(sc); 2489 2490 rt2661_stop(sc); 2491 2492 /* initialize Tx rings */ 2493 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); 2494 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); 2495 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); 2496 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); 2497 2498 /* initialize Mgt ring */ 2499 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); 2500 2501 /* initialize Rx ring */ 2502 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); 2503 2504 /* initialize Tx rings sizes */ 2505 RAL_WRITE(sc, RT2661_TX_RING_CSR0, 2506 RT2661_TX_RING_COUNT << 24 | 2507 RT2661_TX_RING_COUNT << 16 | 2508 RT2661_TX_RING_COUNT << 8 | 2509 RT2661_TX_RING_COUNT); 2510 2511 RAL_WRITE(sc, RT2661_TX_RING_CSR1, 2512 RT2661_TX_DESC_WSIZE << 16 | 2513 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ 2514 RT2661_MGT_RING_COUNT); 2515 2516 /* initialize Rx rings */ 2517 RAL_WRITE(sc, RT2661_RX_RING_CSR, 2518 RT2661_RX_DESC_BACK << 16 | 2519 RT2661_RX_DESC_WSIZE << 8 | 2520 RT2661_RX_RING_COUNT); 2521 2522 /* XXX: some magic here */ 2523 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); 2524 2525 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ 2526 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); 2527 2528 /* load base address of Rx ring */ 2529 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); 2530 2531 /* initialize MAC registers to default values */ 2532 for (i = 0; i < N(rt2661_def_mac); i++) 2533 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); 2534 2535 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2536 rt2661_set_macaddr(sc, ic->ic_myaddr); 2537 2538 /* set host ready */ 2539 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2540 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2541 2542 /* wait for BBP/RF to wakeup */ 2543 for (ntries = 0; ntries < 1000; ntries++) { 2544 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) 2545 break; 2546 DELAY(1000); 2547 } 2548 if (ntries == 1000) { 2549 printf("timeout waiting for BBP/RF to wakeup\n"); 2550 rt2661_stop(sc); 2551 RAL_UNLOCK(sc); 2552 return; 2553 } 2554 2555 if (rt2661_bbp_init(sc) != 0) { 2556 rt2661_stop(sc); 2557 RAL_UNLOCK(sc); 2558 return; 2559 } 2560 2561 /* select default channel */ 2562 sc->sc_curchan = ic->ic_curchan; 2563 rt2661_select_band(sc, sc->sc_curchan); 2564 rt2661_select_antenna(sc); 2565 rt2661_set_chan(sc, sc->sc_curchan); 2566 2567 /* update Rx filter */ 2568 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; 2569 2570 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; 2571 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2572 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | 2573 RT2661_DROP_ACKCTS; 2574 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2575 tmp |= RT2661_DROP_TODS; 2576 if (!(ifp->if_flags & IFF_PROMISC)) 2577 tmp |= RT2661_DROP_NOT_TO_ME; 2578 } 2579 2580 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2581 2582 /* clear STA registers */ 2583 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta)); 2584 2585 /* initialize ASIC */ 2586 RAL_WRITE(sc, RT2661_MAC_CSR1, 4); 2587 2588 /* clear any pending interrupt */ 2589 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2590 2591 /* enable interrupts */ 2592 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 2593 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 2594 2595 /* kick Rx */ 2596 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); 2597 2598 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2599 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2600 2601 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2602 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2603 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2604 } else 2605 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2606 2607 RAL_UNLOCK(sc); 2608 #undef N 2609 } 2610 2611 void 2612 rt2661_stop(void *priv) 2613 { 2614 struct rt2661_softc *sc = priv; 2615 struct ieee80211com *ic = &sc->sc_ic; 2616 struct ifnet *ifp = ic->ic_ifp; 2617 uint32_t tmp; 2618 2619 sc->sc_tx_timer = 0; 2620 ifp->if_timer = 0; 2621 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2622 2623 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2624 2625 /* abort Tx (for all 5 Tx rings) */ 2626 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); 2627 2628 /* disable Rx (value remains after reset!) */ 2629 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2630 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2631 2632 /* reset ASIC */ 2633 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2634 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2635 2636 /* disable interrupts */ 2637 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffffff); 2638 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 2639 2640 /* clear any pending interrupt */ 2641 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2642 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, 0xffffffff); 2643 2644 /* reset Tx and Rx rings */ 2645 rt2661_reset_tx_ring(sc, &sc->txq[0]); 2646 rt2661_reset_tx_ring(sc, &sc->txq[1]); 2647 rt2661_reset_tx_ring(sc, &sc->txq[2]); 2648 rt2661_reset_tx_ring(sc, &sc->txq[3]); 2649 rt2661_reset_tx_ring(sc, &sc->mgtq); 2650 rt2661_reset_rx_ring(sc, &sc->rxq); 2651 } 2652 2653 static int 2654 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size) 2655 { 2656 int ntries; 2657 2658 /* reset 8051 */ 2659 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2660 2661 /* cancel any pending Host to MCU command */ 2662 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); 2663 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 2664 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); 2665 2666 /* write 8051's microcode */ 2667 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); 2668 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size); 2669 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2670 2671 /* kick 8051's ass */ 2672 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); 2673 2674 /* wait for 8051 to initialize */ 2675 for (ntries = 0; ntries < 500; ntries++) { 2676 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) 2677 break; 2678 DELAY(100); 2679 } 2680 if (ntries == 500) { 2681 printf("timeout waiting for MCU to initialize\n"); 2682 return EIO; 2683 } 2684 return 0; 2685 } 2686 2687 #ifdef notyet 2688 /* 2689 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and 2690 * false CCA count. This function is called periodically (every seconds) when 2691 * in the RUN state. Values taken from the reference driver. 2692 */ 2693 static void 2694 rt2661_rx_tune(struct rt2661_softc *sc) 2695 { 2696 uint8_t bbp17; 2697 uint16_t cca; 2698 int lo, hi, dbm; 2699 2700 /* 2701 * Tuning range depends on operating band and on the presence of an 2702 * external low-noise amplifier. 2703 */ 2704 lo = 0x20; 2705 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) 2706 lo += 0x08; 2707 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || 2708 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) 2709 lo += 0x10; 2710 hi = lo + 0x20; 2711 2712 /* retrieve false CCA count since last call (clear on read) */ 2713 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; 2714 2715 if (dbm >= -35) { 2716 bbp17 = 0x60; 2717 } else if (dbm >= -58) { 2718 bbp17 = hi; 2719 } else if (dbm >= -66) { 2720 bbp17 = lo + 0x10; 2721 } else if (dbm >= -74) { 2722 bbp17 = lo + 0x08; 2723 } else { 2724 /* RSSI < -74dBm, tune using false CCA count */ 2725 2726 bbp17 = sc->bbp17; /* current value */ 2727 2728 hi -= 2 * (-74 - dbm); 2729 if (hi < lo) 2730 hi = lo; 2731 2732 if (bbp17 > hi) { 2733 bbp17 = hi; 2734 2735 } else if (cca > 512) { 2736 if (++bbp17 > hi) 2737 bbp17 = hi; 2738 } else if (cca < 100) { 2739 if (--bbp17 < lo) 2740 bbp17 = lo; 2741 } 2742 } 2743 2744 if (bbp17 != sc->bbp17) { 2745 rt2661_bbp_write(sc, 17, bbp17); 2746 sc->bbp17 = bbp17; 2747 } 2748 } 2749 2750 /* 2751 * Enter/Leave radar detection mode. 2752 * This is for 802.11h additional regulatory domains. 2753 */ 2754 static void 2755 rt2661_radar_start(struct rt2661_softc *sc) 2756 { 2757 uint32_t tmp; 2758 2759 /* disable Rx */ 2760 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2761 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2762 2763 rt2661_bbp_write(sc, 82, 0x20); 2764 rt2661_bbp_write(sc, 83, 0x00); 2765 rt2661_bbp_write(sc, 84, 0x40); 2766 2767 /* save current BBP registers values */ 2768 sc->bbp18 = rt2661_bbp_read(sc, 18); 2769 sc->bbp21 = rt2661_bbp_read(sc, 21); 2770 sc->bbp22 = rt2661_bbp_read(sc, 22); 2771 sc->bbp16 = rt2661_bbp_read(sc, 16); 2772 sc->bbp17 = rt2661_bbp_read(sc, 17); 2773 sc->bbp64 = rt2661_bbp_read(sc, 64); 2774 2775 rt2661_bbp_write(sc, 18, 0xff); 2776 rt2661_bbp_write(sc, 21, 0x3f); 2777 rt2661_bbp_write(sc, 22, 0x3f); 2778 rt2661_bbp_write(sc, 16, 0xbd); 2779 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); 2780 rt2661_bbp_write(sc, 64, 0x21); 2781 2782 /* restore Rx filter */ 2783 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2784 } 2785 2786 static int 2787 rt2661_radar_stop(struct rt2661_softc *sc) 2788 { 2789 uint8_t bbp66; 2790 2791 /* read radar detection result */ 2792 bbp66 = rt2661_bbp_read(sc, 66); 2793 2794 /* restore BBP registers values */ 2795 rt2661_bbp_write(sc, 16, sc->bbp16); 2796 rt2661_bbp_write(sc, 17, sc->bbp17); 2797 rt2661_bbp_write(sc, 18, sc->bbp18); 2798 rt2661_bbp_write(sc, 21, sc->bbp21); 2799 rt2661_bbp_write(sc, 22, sc->bbp22); 2800 rt2661_bbp_write(sc, 64, sc->bbp64); 2801 2802 return bbp66 == 1; 2803 } 2804 #endif 2805 2806 static int 2807 rt2661_prepare_beacon(struct rt2661_softc *sc) 2808 { 2809 struct ieee80211com *ic = &sc->sc_ic; 2810 struct ieee80211_beacon_offsets bo; 2811 struct rt2661_tx_desc desc; 2812 struct mbuf *m0; 2813 int rate; 2814 2815 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); 2816 if (m0 == NULL) { 2817 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2818 return ENOBUFS; 2819 } 2820 2821 /* send beacons at the lowest available rate */ 2822 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; 2823 2824 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, 2825 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); 2826 2827 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2828 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2829 2830 /* copy beacon header and payload into NIC memory */ 2831 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, 2832 mtod(m0, uint8_t *), m0->m_pkthdr.len); 2833 2834 m_freem(m0); 2835 2836 return 0; 2837 } 2838 2839 /* 2840 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2841 * and HostAP operating modes. 2842 */ 2843 static void 2844 rt2661_enable_tsf_sync(struct rt2661_softc *sc) 2845 { 2846 struct ieee80211com *ic = &sc->sc_ic; 2847 uint32_t tmp; 2848 2849 if (ic->ic_opmode != IEEE80211_M_STA) { 2850 /* 2851 * Change default 16ms TBTT adjustment to 8ms. 2852 * Must be done before enabling beacon generation. 2853 */ 2854 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); 2855 } 2856 2857 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; 2858 2859 /* set beacon interval (in 1/16ms unit) */ 2860 tmp |= ic->ic_bss->ni_intval * 16; 2861 2862 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; 2863 if (ic->ic_opmode == IEEE80211_M_STA) 2864 tmp |= RT2661_TSF_MODE(1); 2865 else 2866 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; 2867 2868 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); 2869 } 2870 2871 /* 2872 * Retrieve the "Received Signal Strength Indicator" from the raw values 2873 * contained in Rx descriptors. The computation depends on which band the 2874 * frame was received. Correction values taken from the reference driver. 2875 */ 2876 static int 2877 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) 2878 { 2879 int lna, agc, rssi; 2880 2881 lna = (raw >> 5) & 0x3; 2882 agc = raw & 0x1f; 2883 2884 rssi = 2 * agc; 2885 2886 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { 2887 rssi += sc->rssi_2ghz_corr; 2888 2889 if (lna == 1) 2890 rssi -= 64; 2891 else if (lna == 2) 2892 rssi -= 74; 2893 else if (lna == 3) 2894 rssi -= 90; 2895 } else { 2896 rssi += sc->rssi_5ghz_corr; 2897 2898 if (lna == 1) 2899 rssi -= 64; 2900 else if (lna == 2) 2901 rssi -= 86; 2902 else if (lna == 3) 2903 rssi -= 100; 2904 } 2905 return rssi; 2906 } 2907