1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /*- 24 * Ralink Technology RT2561, RT2561S and RT2661 chipset driver 25 * http://www.ralinktech.com/ 26 */ 27 28 #include <sys/param.h> 29 #include <sys/sysctl.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/module.h> 37 #include <sys/bus.h> 38 #include <sys/endian.h> 39 40 #include <machine/bus.h> 41 #include <machine/resource.h> 42 #include <machine/clock.h> 43 #include <sys/rman.h> 44 45 #include <net/bpf.h> 46 #include <net/if.h> 47 #include <net/if_arp.h> 48 #include <net/ethernet.h> 49 #include <net/if_dl.h> 50 #include <net/if_media.h> 51 #include <net/if_types.h> 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_radiotap.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 #include <netinet/if_ether.h> 61 62 #include <dev/ral/if_ralrate.h> 63 #include <dev/ral/rt2661reg.h> 64 #include <dev/ral/rt2661var.h> 65 #include <dev/ral/rt2661_ucode.h> 66 67 #ifdef RAL_DEBUG 68 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) 69 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) 70 int ral_debug = 0; 71 SYSCTL_INT(_debug, OID_AUTO, ral, CTLFLAG_RW, &ral_debug, 0, "ral debug level"); 72 #else 73 #define DPRINTF(x) 74 #define DPRINTFN(n, x) 75 #endif 76 77 static void rt2661_dma_map_addr(void *, bus_dma_segment_t *, int, 78 int); 79 static int rt2661_alloc_tx_ring(struct rt2661_softc *, 80 struct rt2661_tx_ring *, int); 81 static void rt2661_reset_tx_ring(struct rt2661_softc *, 82 struct rt2661_tx_ring *); 83 static void rt2661_free_tx_ring(struct rt2661_softc *, 84 struct rt2661_tx_ring *); 85 static int rt2661_alloc_rx_ring(struct rt2661_softc *, 86 struct rt2661_rx_ring *, int); 87 static void rt2661_reset_rx_ring(struct rt2661_softc *, 88 struct rt2661_rx_ring *); 89 static void rt2661_free_rx_ring(struct rt2661_softc *, 90 struct rt2661_rx_ring *); 91 static struct ieee80211_node *rt2661_node_alloc( 92 struct ieee80211_node_table *); 93 static int rt2661_media_change(struct ifnet *); 94 static void rt2661_next_scan(void *); 95 static int rt2661_newstate(struct ieee80211com *, 96 enum ieee80211_state, int); 97 static uint16_t rt2661_eeprom_read(struct rt2661_softc *, uint8_t); 98 static void rt2661_rx_intr(struct rt2661_softc *); 99 static void rt2661_tx_intr(struct rt2661_softc *); 100 static void rt2661_tx_dma_intr(struct rt2661_softc *, 101 struct rt2661_tx_ring *); 102 static void rt2661_mcu_beacon_expire(struct rt2661_softc *); 103 static void rt2661_mcu_wakeup(struct rt2661_softc *); 104 static void rt2661_mcu_cmd_intr(struct rt2661_softc *); 105 static int rt2661_ack_rate(struct ieee80211com *, int); 106 static uint16_t rt2661_txtime(int, int, uint32_t); 107 static uint8_t rt2661_rxrate(struct rt2661_rx_desc *); 108 static uint8_t rt2661_plcp_signal(int); 109 static void rt2661_setup_tx_desc(struct rt2661_softc *, 110 struct rt2661_tx_desc *, uint32_t, uint16_t, int, 111 int, const bus_dma_segment_t *, int, int); 112 static struct mbuf * rt2661_get_rts(struct rt2661_softc *, 113 struct ieee80211_frame *, uint16_t); 114 static int rt2661_tx_data(struct rt2661_softc *, struct mbuf *, 115 struct ieee80211_node *, int); 116 static int rt2661_tx_mgt(struct rt2661_softc *, struct mbuf *, 117 struct ieee80211_node *); 118 static void rt2661_start(struct ifnet *); 119 static void rt2661_watchdog(struct ifnet *); 120 static int rt2661_reset(struct ifnet *); 121 static int rt2661_ioctl(struct ifnet *, u_long, caddr_t); 122 static void rt2661_bbp_write(struct rt2661_softc *, uint8_t, 123 uint8_t); 124 static uint8_t rt2661_bbp_read(struct rt2661_softc *, uint8_t); 125 static void rt2661_rf_write(struct rt2661_softc *, uint8_t, 126 uint32_t); 127 static int rt2661_tx_cmd(struct rt2661_softc *, uint8_t, 128 uint16_t); 129 static void rt2661_select_antenna(struct rt2661_softc *); 130 static void rt2661_enable_mrr(struct rt2661_softc *); 131 static void rt2661_set_txpreamble(struct rt2661_softc *); 132 static void rt2661_set_basicrates(struct rt2661_softc *, 133 const struct ieee80211_rateset *); 134 static void rt2661_select_band(struct rt2661_softc *, 135 struct ieee80211_channel *); 136 static void rt2661_set_chan(struct rt2661_softc *, 137 struct ieee80211_channel *); 138 static void rt2661_set_bssid(struct rt2661_softc *, 139 const uint8_t *); 140 static void rt2661_set_macaddr(struct rt2661_softc *, 141 const uint8_t *); 142 static void rt2661_update_promisc(struct rt2661_softc *); 143 static int rt2661_wme_update(struct ieee80211com *) __unused; 144 static void rt2661_update_slot(struct ifnet *); 145 static const char *rt2661_get_rf(int); 146 static void rt2661_read_eeprom(struct rt2661_softc *); 147 static int rt2661_bbp_init(struct rt2661_softc *); 148 static void rt2661_init(void *); 149 static void rt2661_stop(void *); 150 static int rt2661_load_microcode(struct rt2661_softc *, 151 const uint8_t *, int); 152 #ifdef notyet 153 static void rt2661_rx_tune(struct rt2661_softc *); 154 static void rt2661_radar_start(struct rt2661_softc *); 155 static int rt2661_radar_stop(struct rt2661_softc *); 156 #endif 157 static int rt2661_prepare_beacon(struct rt2661_softc *); 158 static void rt2661_enable_tsf_sync(struct rt2661_softc *); 159 static int rt2661_get_rssi(struct rt2661_softc *, uint8_t); 160 161 /* 162 * Supported rates for 802.11a/b/g modes (in 500Kbps unit). 163 */ 164 static const struct ieee80211_rateset rt2661_rateset_11a = 165 { 8, { 12, 18, 24, 36, 48, 72, 96, 108 } }; 166 167 static const struct ieee80211_rateset rt2661_rateset_11b = 168 { 4, { 2, 4, 11, 22 } }; 169 170 static const struct ieee80211_rateset rt2661_rateset_11g = 171 { 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } }; 172 173 static const struct { 174 uint32_t reg; 175 uint32_t val; 176 } rt2661_def_mac[] = { 177 RT2661_DEF_MAC 178 }; 179 180 static const struct { 181 uint8_t reg; 182 uint8_t val; 183 } rt2661_def_bbp[] = { 184 RT2661_DEF_BBP 185 }; 186 187 static const struct rfprog { 188 uint8_t chan; 189 uint32_t r1, r2, r3, r4; 190 } rt2661_rf5225_1[] = { 191 RT2661_RF5225_1 192 }, rt2661_rf5225_2[] = { 193 RT2661_RF5225_2 194 }; 195 196 int 197 rt2661_attach(device_t dev, int id) 198 { 199 struct rt2661_softc *sc = device_get_softc(dev); 200 struct ieee80211com *ic = &sc->sc_ic; 201 struct ifnet *ifp; 202 uint32_t val; 203 const uint8_t *ucode = NULL; 204 int error, i, ac, ntries, size = 0; 205 206 sc->sc_dev = dev; 207 208 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 209 MTX_DEF | MTX_RECURSE); 210 211 callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 212 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE); 213 214 /* wait for NIC to initialize */ 215 for (ntries = 0; ntries < 1000; ntries++) { 216 if ((val = RAL_READ(sc, RT2661_MAC_CSR0)) != 0) 217 break; 218 DELAY(1000); 219 } 220 if (ntries == 1000) { 221 device_printf(sc->sc_dev, 222 "timeout waiting for NIC to initialize\n"); 223 error = EIO; 224 goto fail1; 225 } 226 227 /* retrieve RF rev. no and various other things from EEPROM */ 228 rt2661_read_eeprom(sc); 229 230 device_printf(dev, "MAC/BBP RT%X, RF %s\n", val, 231 rt2661_get_rf(sc->rf_rev)); 232 233 /* 234 * Load 8051 microcode into NIC. 235 */ 236 switch (id) { 237 case 0x0301: 238 ucode = rt2561s_ucode; 239 size = sizeof rt2561s_ucode; 240 break; 241 case 0x0302: 242 ucode = rt2561_ucode; 243 size = sizeof rt2561_ucode; 244 break; 245 case 0x0401: 246 ucode = rt2661_ucode; 247 size = sizeof rt2661_ucode; 248 break; 249 } 250 251 error = rt2661_load_microcode(sc, ucode, size); 252 if (error != 0) { 253 device_printf(sc->sc_dev, "could not load 8051 microcode\n"); 254 goto fail1; 255 } 256 257 /* 258 * Allocate Tx and Rx rings. 259 */ 260 for (ac = 0; ac < 4; ac++) { 261 error = rt2661_alloc_tx_ring(sc, &sc->txq[ac], 262 RT2661_TX_RING_COUNT); 263 if (error != 0) { 264 device_printf(sc->sc_dev, 265 "could not allocate Tx ring %d\n", ac); 266 goto fail2; 267 } 268 } 269 270 error = rt2661_alloc_tx_ring(sc, &sc->mgtq, RT2661_MGT_RING_COUNT); 271 if (error != 0) { 272 device_printf(sc->sc_dev, "could not allocate Mgt ring\n"); 273 goto fail2; 274 } 275 276 error = rt2661_alloc_rx_ring(sc, &sc->rxq, RT2661_RX_RING_COUNT); 277 if (error != 0) { 278 device_printf(sc->sc_dev, "could not allocate Rx ring\n"); 279 goto fail3; 280 } 281 282 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 283 if (ifp == NULL) { 284 device_printf(sc->sc_dev, "can not if_alloc()\n"); 285 error = ENOMEM; 286 goto fail4; 287 } 288 289 ifp->if_softc = sc; 290 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 291 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 292 ifp->if_init = rt2661_init; 293 ifp->if_ioctl = rt2661_ioctl; 294 ifp->if_start = rt2661_start; 295 ifp->if_watchdog = rt2661_watchdog; 296 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 297 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 298 IFQ_SET_READY(&ifp->if_snd); 299 300 ic->ic_ifp = ifp; 301 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 302 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 303 ic->ic_state = IEEE80211_S_INIT; 304 305 /* set device capabilities */ 306 ic->ic_caps = 307 IEEE80211_C_IBSS | /* IBSS mode supported */ 308 IEEE80211_C_MONITOR | /* monitor mode supported */ 309 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 310 IEEE80211_C_TXPMGT | /* tx power management */ 311 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 312 IEEE80211_C_SHSLOT | /* short slot time supported */ 313 #ifdef notyet 314 IEEE80211_C_WME | /* 802.11e */ 315 #endif 316 IEEE80211_C_WPA; /* 802.11i */ 317 318 if (sc->rf_rev == RT2661_RF_5225 || sc->rf_rev == RT2661_RF_5325) { 319 /* set supported .11a rates */ 320 ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2661_rateset_11a; 321 322 /* set supported .11a channels */ 323 for (i = 36; i <= 64; i += 4) { 324 ic->ic_channels[i].ic_freq = 325 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 326 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 327 } 328 for (i = 100; i <= 140; i += 4) { 329 ic->ic_channels[i].ic_freq = 330 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 331 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 332 } 333 for (i = 149; i <= 165; i += 4) { 334 ic->ic_channels[i].ic_freq = 335 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 336 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 337 } 338 } 339 340 /* set supported .11b and .11g rates */ 341 ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2661_rateset_11b; 342 ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2661_rateset_11g; 343 344 /* set supported .11b and .11g channels (1 through 14) */ 345 for (i = 1; i <= 14; i++) { 346 ic->ic_channels[i].ic_freq = 347 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 348 ic->ic_channels[i].ic_flags = 349 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 350 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 351 } 352 353 ieee80211_ifattach(ic); 354 ic->ic_node_alloc = rt2661_node_alloc; 355 /* ic->ic_wme.wme_update = rt2661_wme_update;*/ 356 ic->ic_updateslot = rt2661_update_slot; 357 ic->ic_reset = rt2661_reset; 358 /* enable s/w bmiss handling in sta mode */ 359 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 360 361 /* override state transition machine */ 362 sc->sc_newstate = ic->ic_newstate; 363 ic->ic_newstate = rt2661_newstate; 364 ieee80211_media_init(ic, rt2661_media_change, ieee80211_media_status); 365 366 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 367 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 368 369 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 370 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 371 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2661_RX_RADIOTAP_PRESENT); 372 373 sc->sc_txtap_len = sizeof sc->sc_txtapu; 374 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 375 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2661_TX_RADIOTAP_PRESENT); 376 377 /* 378 * Add a few sysctl knobs. 379 */ 380 sc->dwelltime = 200; 381 382 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 383 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", 384 CTLFLAG_RW, &sc->dwelltime, 0, 385 "channel dwell time (ms) for AP/station scanning"); 386 387 if (bootverbose) 388 ieee80211_announce(ic); 389 390 return 0; 391 392 fail4: rt2661_free_rx_ring(sc, &sc->rxq); 393 fail3: rt2661_free_tx_ring(sc, &sc->mgtq); 394 fail2: while (--ac >= 0) 395 rt2661_free_tx_ring(sc, &sc->txq[ac]); 396 fail1: mtx_destroy(&sc->sc_mtx); 397 398 return error; 399 } 400 401 int 402 rt2661_detach(void *xsc) 403 { 404 struct rt2661_softc *sc = xsc; 405 struct ieee80211com *ic = &sc->sc_ic; 406 struct ifnet *ifp = ic->ic_ifp; 407 408 rt2661_stop(sc); 409 callout_stop(&sc->scan_ch); 410 callout_stop(&sc->rssadapt_ch); 411 412 bpfdetach(ifp); 413 ieee80211_ifdetach(ic); 414 415 rt2661_free_tx_ring(sc, &sc->txq[0]); 416 rt2661_free_tx_ring(sc, &sc->txq[1]); 417 rt2661_free_tx_ring(sc, &sc->txq[2]); 418 rt2661_free_tx_ring(sc, &sc->txq[3]); 419 rt2661_free_tx_ring(sc, &sc->mgtq); 420 rt2661_free_rx_ring(sc, &sc->rxq); 421 422 if_free(ifp); 423 424 mtx_destroy(&sc->sc_mtx); 425 426 return 0; 427 } 428 429 void 430 rt2661_shutdown(void *xsc) 431 { 432 struct rt2661_softc *sc = xsc; 433 434 rt2661_stop(sc); 435 } 436 437 void 438 rt2661_suspend(void *xsc) 439 { 440 struct rt2661_softc *sc = xsc; 441 442 rt2661_stop(sc); 443 } 444 445 void 446 rt2661_resume(void *xsc) 447 { 448 struct rt2661_softc *sc = xsc; 449 struct ifnet *ifp = sc->sc_ic.ic_ifp; 450 451 if (ifp->if_flags & IFF_UP) { 452 ifp->if_init(ifp->if_softc); 453 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 454 ifp->if_start(ifp); 455 } 456 } 457 458 static void 459 rt2661_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 460 { 461 if (error != 0) 462 return; 463 464 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 465 466 *(bus_addr_t *)arg = segs[0].ds_addr; 467 } 468 469 static int 470 rt2661_alloc_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring, 471 int count) 472 { 473 int i, error; 474 475 ring->count = count; 476 ring->queued = 0; 477 ring->cur = ring->next = ring->stat = 0; 478 479 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 480 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_TX_DESC_SIZE, 1, 481 count * RT2661_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 482 if (error != 0) { 483 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 484 goto fail; 485 } 486 487 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 488 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 489 if (error != 0) { 490 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 491 goto fail; 492 } 493 494 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 495 count * RT2661_TX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 496 0); 497 if (error != 0) { 498 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 499 goto fail; 500 } 501 502 ring->data = malloc(count * sizeof (struct rt2661_tx_data), M_DEVBUF, 503 M_NOWAIT | M_ZERO); 504 if (ring->data == NULL) { 505 device_printf(sc->sc_dev, "could not allocate soft data\n"); 506 error = ENOMEM; 507 goto fail; 508 } 509 510 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 511 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2661_MAX_SCATTER, 512 MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 513 if (error != 0) { 514 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 515 goto fail; 516 } 517 518 for (i = 0; i < count; i++) { 519 error = bus_dmamap_create(ring->data_dmat, 0, 520 &ring->data[i].map); 521 if (error != 0) { 522 device_printf(sc->sc_dev, "could not create DMA map\n"); 523 goto fail; 524 } 525 } 526 527 return 0; 528 529 fail: rt2661_free_tx_ring(sc, ring); 530 return error; 531 } 532 533 static void 534 rt2661_reset_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 535 { 536 struct rt2661_tx_desc *desc; 537 struct rt2661_tx_data *data; 538 int i; 539 540 for (i = 0; i < ring->count; i++) { 541 desc = &ring->desc[i]; 542 data = &ring->data[i]; 543 544 if (data->m != NULL) { 545 bus_dmamap_sync(ring->data_dmat, data->map, 546 BUS_DMASYNC_POSTWRITE); 547 bus_dmamap_unload(ring->data_dmat, data->map); 548 m_freem(data->m); 549 data->m = NULL; 550 } 551 552 if (data->ni != NULL) { 553 ieee80211_free_node(data->ni); 554 data->ni = NULL; 555 } 556 557 desc->flags = 0; 558 } 559 560 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 561 562 ring->queued = 0; 563 ring->cur = ring->next = ring->stat = 0; 564 } 565 566 static void 567 rt2661_free_tx_ring(struct rt2661_softc *sc, struct rt2661_tx_ring *ring) 568 { 569 struct rt2661_tx_data *data; 570 int i; 571 572 if (ring->desc != NULL) { 573 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 574 BUS_DMASYNC_POSTWRITE); 575 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 576 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 577 } 578 579 if (ring->desc_dmat != NULL) 580 bus_dma_tag_destroy(ring->desc_dmat); 581 582 if (ring->data != NULL) { 583 for (i = 0; i < ring->count; i++) { 584 data = &ring->data[i]; 585 586 if (data->m != NULL) { 587 bus_dmamap_sync(ring->data_dmat, data->map, 588 BUS_DMASYNC_POSTWRITE); 589 bus_dmamap_unload(ring->data_dmat, data->map); 590 m_freem(data->m); 591 } 592 593 if (data->ni != NULL) 594 ieee80211_free_node(data->ni); 595 596 if (data->map != NULL) 597 bus_dmamap_destroy(ring->data_dmat, data->map); 598 } 599 600 free(ring->data, M_DEVBUF); 601 } 602 603 if (ring->data_dmat != NULL) 604 bus_dma_tag_destroy(ring->data_dmat); 605 } 606 607 static int 608 rt2661_alloc_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring, 609 int count) 610 { 611 struct rt2661_rx_desc *desc; 612 struct rt2661_rx_data *data; 613 bus_addr_t physaddr; 614 int i, error; 615 616 ring->count = count; 617 ring->cur = ring->next = 0; 618 619 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 620 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2661_RX_DESC_SIZE, 1, 621 count * RT2661_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 622 if (error != 0) { 623 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 624 goto fail; 625 } 626 627 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 628 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 629 if (error != 0) { 630 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 631 goto fail; 632 } 633 634 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 635 count * RT2661_RX_DESC_SIZE, rt2661_dma_map_addr, &ring->physaddr, 636 0); 637 if (error != 0) { 638 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 639 goto fail; 640 } 641 642 ring->data = malloc(count * sizeof (struct rt2661_rx_data), M_DEVBUF, 643 M_NOWAIT | M_ZERO); 644 if (ring->data == NULL) { 645 device_printf(sc->sc_dev, "could not allocate soft data\n"); 646 error = ENOMEM; 647 goto fail; 648 } 649 650 /* 651 * Pre-allocate Rx buffers and populate Rx ring. 652 */ 653 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 654 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 655 NULL, &ring->data_dmat); 656 if (error != 0) { 657 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 658 goto fail; 659 } 660 661 for (i = 0; i < count; i++) { 662 desc = &sc->rxq.desc[i]; 663 data = &sc->rxq.data[i]; 664 665 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 666 if (error != 0) { 667 device_printf(sc->sc_dev, "could not create DMA map\n"); 668 goto fail; 669 } 670 671 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 672 if (data->m == NULL) { 673 device_printf(sc->sc_dev, 674 "could not allocate rx mbuf\n"); 675 error = ENOMEM; 676 goto fail; 677 } 678 679 error = bus_dmamap_load(ring->data_dmat, data->map, 680 mtod(data->m, void *), MCLBYTES, rt2661_dma_map_addr, 681 &physaddr, 0); 682 if (error != 0) { 683 device_printf(sc->sc_dev, 684 "could not load rx buf DMA map"); 685 goto fail; 686 } 687 688 desc->flags = htole32(RT2661_RX_BUSY); 689 desc->physaddr = htole32(physaddr); 690 } 691 692 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 693 694 return 0; 695 696 fail: rt2661_free_rx_ring(sc, ring); 697 return error; 698 } 699 700 static void 701 rt2661_reset_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 702 { 703 int i; 704 705 for (i = 0; i < ring->count; i++) 706 ring->desc[i].flags = htole32(RT2661_RX_BUSY); 707 708 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 709 710 ring->cur = ring->next = 0; 711 } 712 713 static void 714 rt2661_free_rx_ring(struct rt2661_softc *sc, struct rt2661_rx_ring *ring) 715 { 716 struct rt2661_rx_data *data; 717 int i; 718 719 if (ring->desc != NULL) { 720 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 721 BUS_DMASYNC_POSTWRITE); 722 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 723 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 724 } 725 726 if (ring->desc_dmat != NULL) 727 bus_dma_tag_destroy(ring->desc_dmat); 728 729 if (ring->data != NULL) { 730 for (i = 0; i < ring->count; i++) { 731 data = &ring->data[i]; 732 733 if (data->m != NULL) { 734 bus_dmamap_sync(ring->data_dmat, data->map, 735 BUS_DMASYNC_POSTREAD); 736 bus_dmamap_unload(ring->data_dmat, data->map); 737 m_freem(data->m); 738 } 739 740 if (data->map != NULL) 741 bus_dmamap_destroy(ring->data_dmat, data->map); 742 } 743 744 free(ring->data, M_DEVBUF); 745 } 746 747 if (ring->data_dmat != NULL) 748 bus_dma_tag_destroy(ring->data_dmat); 749 } 750 751 static struct ieee80211_node * 752 rt2661_node_alloc(struct ieee80211_node_table *nt) 753 { 754 struct rt2661_node *rn; 755 756 rn = malloc(sizeof (struct rt2661_node), M_80211_NODE, 757 M_NOWAIT | M_ZERO); 758 759 return (rn != NULL) ? &rn->ni : NULL; 760 } 761 762 static int 763 rt2661_media_change(struct ifnet *ifp) 764 { 765 struct rt2661_softc *sc = ifp->if_softc; 766 int error; 767 768 error = ieee80211_media_change(ifp); 769 if (error != ENETRESET) 770 return error; 771 772 if ((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING)) 773 rt2661_init(sc); 774 775 return 0; 776 } 777 778 /* 779 * This function is called periodically (every 200ms) during scanning to 780 * switch from one channel to another. 781 */ 782 static void 783 rt2661_next_scan(void *arg) 784 { 785 struct rt2661_softc *sc = arg; 786 struct ieee80211com *ic = &sc->sc_ic; 787 788 if (ic->ic_state == IEEE80211_S_SCAN) 789 ieee80211_next_scan(ic); 790 } 791 792 /* 793 * This function is called for each node present in the node station table. 794 */ 795 static void 796 rt2661_iter_func(void *arg, struct ieee80211_node *ni) 797 { 798 struct rt2661_node *rn = (struct rt2661_node *)ni; 799 800 ral_rssadapt_updatestats(&rn->rssadapt); 801 } 802 803 /* 804 * This function is called periodically (every 100ms) in RUN state to update 805 * the rate adaptation statistics. 806 */ 807 static void 808 rt2661_update_rssadapt(void *arg) 809 { 810 struct rt2661_softc *sc = arg; 811 struct ieee80211com *ic = &sc->sc_ic; 812 813 RAL_LOCK(sc); 814 815 ieee80211_iterate_nodes(&ic->ic_sta, rt2661_iter_func, arg); 816 callout_reset(&sc->rssadapt_ch, hz / 10, rt2661_update_rssadapt, sc); 817 818 RAL_UNLOCK(sc); 819 } 820 821 static int 822 rt2661_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 823 { 824 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 825 enum ieee80211_state ostate; 826 struct ieee80211_node *ni; 827 uint32_t tmp; 828 int error = 0; 829 830 ostate = ic->ic_state; 831 callout_stop(&sc->scan_ch); 832 833 switch (nstate) { 834 case IEEE80211_S_INIT: 835 callout_stop(&sc->rssadapt_ch); 836 837 if (ostate == IEEE80211_S_RUN) { 838 /* abort TSF synchronization */ 839 tmp = RAL_READ(sc, RT2661_TXRX_CSR9); 840 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp & ~0x00ffffff); 841 } 842 break; 843 844 case IEEE80211_S_SCAN: 845 rt2661_set_chan(sc, ic->ic_curchan); 846 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000, 847 rt2661_next_scan, sc); 848 break; 849 850 case IEEE80211_S_AUTH: 851 case IEEE80211_S_ASSOC: 852 rt2661_set_chan(sc, ic->ic_curchan); 853 break; 854 855 case IEEE80211_S_RUN: 856 rt2661_set_chan(sc, ic->ic_curchan); 857 858 ni = ic->ic_bss; 859 860 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 861 rt2661_enable_mrr(sc); 862 rt2661_set_txpreamble(sc); 863 rt2661_set_basicrates(sc, &ni->ni_rates); 864 rt2661_set_bssid(sc, ni->ni_bssid); 865 } 866 867 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 868 ic->ic_opmode == IEEE80211_M_IBSS) { 869 if ((error = rt2661_prepare_beacon(sc)) != 0) 870 break; 871 } 872 873 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 874 callout_reset(&sc->rssadapt_ch, hz / 10, 875 rt2661_update_rssadapt, sc); 876 rt2661_enable_tsf_sync(sc); 877 } 878 break; 879 } 880 881 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 882 } 883 884 /* 885 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 886 * 93C66). 887 */ 888 static uint16_t 889 rt2661_eeprom_read(struct rt2661_softc *sc, uint8_t addr) 890 { 891 uint32_t tmp; 892 uint16_t val; 893 int n; 894 895 /* clock C once before the first command */ 896 RT2661_EEPROM_CTL(sc, 0); 897 898 RT2661_EEPROM_CTL(sc, RT2661_S); 899 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 900 RT2661_EEPROM_CTL(sc, RT2661_S); 901 902 /* write start bit (1) */ 903 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 904 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 905 906 /* write READ opcode (10) */ 907 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D); 908 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_D | RT2661_C); 909 RT2661_EEPROM_CTL(sc, RT2661_S); 910 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 911 912 /* write address (A5-A0 or A7-A0) */ 913 n = (RAL_READ(sc, RT2661_E2PROM_CSR) & RT2661_93C46) ? 5 : 7; 914 for (; n >= 0; n--) { 915 RT2661_EEPROM_CTL(sc, RT2661_S | 916 (((addr >> n) & 1) << RT2661_SHIFT_D)); 917 RT2661_EEPROM_CTL(sc, RT2661_S | 918 (((addr >> n) & 1) << RT2661_SHIFT_D) | RT2661_C); 919 } 920 921 RT2661_EEPROM_CTL(sc, RT2661_S); 922 923 /* read data Q15-Q0 */ 924 val = 0; 925 for (n = 15; n >= 0; n--) { 926 RT2661_EEPROM_CTL(sc, RT2661_S | RT2661_C); 927 tmp = RAL_READ(sc, RT2661_E2PROM_CSR); 928 val |= ((tmp & RT2661_Q) >> RT2661_SHIFT_Q) << n; 929 RT2661_EEPROM_CTL(sc, RT2661_S); 930 } 931 932 RT2661_EEPROM_CTL(sc, 0); 933 934 /* clear Chip Select and clock C */ 935 RT2661_EEPROM_CTL(sc, RT2661_S); 936 RT2661_EEPROM_CTL(sc, 0); 937 RT2661_EEPROM_CTL(sc, RT2661_C); 938 939 return val; 940 } 941 942 static void 943 rt2661_tx_intr(struct rt2661_softc *sc) 944 { 945 struct ieee80211com *ic = &sc->sc_ic; 946 struct ifnet *ifp = ic->ic_ifp; 947 struct rt2661_tx_ring *txq; 948 struct rt2661_tx_data *data; 949 struct rt2661_node *rn; 950 uint32_t val; 951 int qid, retrycnt; 952 953 for (;;) { 954 val = RAL_READ(sc, RT2661_STA_CSR4); 955 if (!(val & RT2661_TX_STAT_VALID)) 956 break; 957 958 /* retrieve the queue in which this frame was sent */ 959 qid = RT2661_TX_QID(val); 960 txq = (qid <= 3) ? &sc->txq[qid] : &sc->mgtq; 961 962 /* retrieve rate control algorithm context */ 963 data = &txq->data[txq->stat]; 964 rn = (struct rt2661_node *)data->ni; 965 966 switch (RT2661_TX_RESULT(val)) { 967 case RT2661_TX_SUCCESS: 968 retrycnt = RT2661_TX_RETRYCNT(val); 969 970 DPRINTFN(10, ("data frame sent successfully after " 971 "%d retries\n", retrycnt)); 972 if (retrycnt == 0 && data->id.id_node != NULL) { 973 ral_rssadapt_raise_rate(ic, &rn->rssadapt, 974 &data->id); 975 } 976 ifp->if_opackets++; 977 break; 978 979 case RT2661_TX_RETRY_FAIL: 980 DPRINTFN(9, ("sending data frame failed (too much " 981 "retries)\n")); 982 if (data->id.id_node != NULL) { 983 ral_rssadapt_lower_rate(ic, data->ni, 984 &rn->rssadapt, &data->id); 985 } 986 ifp->if_oerrors++; 987 break; 988 989 default: 990 /* other failure */ 991 device_printf(sc->sc_dev, 992 "sending data frame failed 0x%08x\n", val); 993 ifp->if_oerrors++; 994 } 995 996 ieee80211_free_node(data->ni); 997 data->ni = NULL; 998 999 DPRINTFN(15, ("tx done q=%d idx=%u\n", qid, txq->stat)); 1000 1001 txq->queued--; 1002 if (++txq->stat >= txq->count) /* faster than % count */ 1003 txq->stat = 0; 1004 } 1005 1006 sc->sc_tx_timer = 0; 1007 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1008 rt2661_start(ifp); 1009 } 1010 1011 static void 1012 rt2661_tx_dma_intr(struct rt2661_softc *sc, struct rt2661_tx_ring *txq) 1013 { 1014 struct rt2661_tx_desc *desc; 1015 struct rt2661_tx_data *data; 1016 1017 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_POSTREAD); 1018 1019 for (;;) { 1020 desc = &txq->desc[txq->next]; 1021 data = &txq->data[txq->next]; 1022 1023 if ((le32toh(desc->flags) & RT2661_TX_BUSY) || 1024 !(le32toh(desc->flags) & RT2661_TX_VALID)) 1025 break; 1026 1027 bus_dmamap_sync(txq->data_dmat, data->map, 1028 BUS_DMASYNC_POSTWRITE); 1029 bus_dmamap_unload(txq->data_dmat, data->map); 1030 m_freem(data->m); 1031 data->m = NULL; 1032 /* node reference is released in rt2661_tx_intr() */ 1033 1034 /* descriptor is no longer valid */ 1035 desc->flags &= ~htole32(RT2661_TX_VALID); 1036 1037 DPRINTFN(15, ("tx dma done q=%p idx=%u\n", txq, txq->next)); 1038 1039 if (++txq->next >= txq->count) /* faster than % count */ 1040 txq->next = 0; 1041 } 1042 1043 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1044 } 1045 1046 static void 1047 rt2661_rx_intr(struct rt2661_softc *sc) 1048 { 1049 struct ieee80211com *ic = &sc->sc_ic; 1050 struct ifnet *ifp = ic->ic_ifp; 1051 struct rt2661_rx_desc *desc; 1052 struct rt2661_rx_data *data; 1053 bus_addr_t physaddr; 1054 struct ieee80211_frame *wh; 1055 struct ieee80211_node *ni; 1056 struct rt2661_node *rn; 1057 struct mbuf *mnew, *m; 1058 int error; 1059 1060 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1061 BUS_DMASYNC_POSTREAD); 1062 1063 for (;;) { 1064 desc = &sc->rxq.desc[sc->rxq.cur]; 1065 data = &sc->rxq.data[sc->rxq.cur]; 1066 1067 if (le32toh(desc->flags) & RT2661_RX_BUSY) 1068 break; 1069 1070 if ((le32toh(desc->flags) & RT2661_RX_PHY_ERROR) || 1071 (le32toh(desc->flags) & RT2661_RX_CRC_ERROR)) { 1072 /* 1073 * This should not happen since we did not request 1074 * to receive those frames when we filled TXRX_CSR0. 1075 */ 1076 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1077 le32toh(desc->flags))); 1078 ifp->if_ierrors++; 1079 goto skip; 1080 } 1081 1082 if ((le32toh(desc->flags) & RT2661_RX_CIPHER_MASK) != 0) { 1083 ifp->if_ierrors++; 1084 goto skip; 1085 } 1086 1087 /* 1088 * Try to allocate a new mbuf for this ring element and load it 1089 * before processing the current mbuf. If the ring element 1090 * cannot be loaded, drop the received packet and reuse the old 1091 * mbuf. In the unlikely case that the old mbuf can't be 1092 * reloaded either, explicitly panic. 1093 */ 1094 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1095 if (mnew == NULL) { 1096 ifp->if_ierrors++; 1097 goto skip; 1098 } 1099 1100 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1101 BUS_DMASYNC_POSTREAD); 1102 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1103 1104 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1105 mtod(mnew, void *), MCLBYTES, rt2661_dma_map_addr, 1106 &physaddr, 0); 1107 if (error != 0) { 1108 m_freem(mnew); 1109 1110 /* try to reload the old mbuf */ 1111 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1112 mtod(data->m, void *), MCLBYTES, 1113 rt2661_dma_map_addr, &physaddr, 0); 1114 if (error != 0) { 1115 /* very unlikely that it will fail... */ 1116 panic("%s: could not load old rx mbuf", 1117 device_get_name(sc->sc_dev)); 1118 } 1119 ifp->if_ierrors++; 1120 goto skip; 1121 } 1122 1123 /* 1124 * New mbuf successfully loaded, update Rx ring and continue 1125 * processing. 1126 */ 1127 m = data->m; 1128 data->m = mnew; 1129 desc->physaddr = htole32(physaddr); 1130 1131 /* finalize mbuf */ 1132 m->m_pkthdr.rcvif = ifp; 1133 m->m_pkthdr.len = m->m_len = 1134 (le32toh(desc->flags) >> 16) & 0xfff; 1135 1136 if (sc->sc_drvbpf != NULL) { 1137 struct rt2661_rx_radiotap_header *tap = &sc->sc_rxtap; 1138 uint32_t tsf_lo, tsf_hi; 1139 1140 /* get timestamp (low and high 32 bits) */ 1141 tsf_hi = RAL_READ(sc, RT2661_TXRX_CSR13); 1142 tsf_lo = RAL_READ(sc, RT2661_TXRX_CSR12); 1143 1144 tap->wr_tsf = 1145 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1146 tap->wr_flags = 0; 1147 tap->wr_rate = rt2661_rxrate(desc); 1148 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1149 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1150 tap->wr_antsignal = desc->rssi; 1151 1152 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1153 } 1154 1155 wh = mtod(m, struct ieee80211_frame *); 1156 ni = ieee80211_find_rxnode(ic, 1157 (struct ieee80211_frame_min *)wh); 1158 1159 /* send the frame to the 802.11 layer */ 1160 ieee80211_input(ic, m, ni, desc->rssi, 0); 1161 1162 /* give rssi to the rate adatation algorithm */ 1163 rn = (struct rt2661_node *)ni; 1164 ral_rssadapt_input(ic, ni, &rn->rssadapt, 1165 rt2661_get_rssi(sc, desc->rssi)); 1166 1167 /* node is no longer needed */ 1168 ieee80211_free_node(ni); 1169 1170 skip: desc->flags |= htole32(RT2661_RX_BUSY); 1171 1172 DPRINTFN(15, ("rx intr idx=%u\n", sc->rxq.cur)); 1173 1174 sc->rxq.cur = (sc->rxq.cur + 1) % RT2661_RX_RING_COUNT; 1175 } 1176 1177 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1178 BUS_DMASYNC_PREWRITE); 1179 } 1180 1181 /* ARGSUSED */ 1182 static void 1183 rt2661_mcu_beacon_expire(struct rt2661_softc *sc) 1184 { 1185 /* do nothing */ 1186 } 1187 1188 static void 1189 rt2661_mcu_wakeup(struct rt2661_softc *sc) 1190 { 1191 RAL_WRITE(sc, RT2661_MAC_CSR11, 5 << 16); 1192 1193 RAL_WRITE(sc, RT2661_SOFT_RESET_CSR, 0x7); 1194 RAL_WRITE(sc, RT2661_IO_CNTL_CSR, 0x18); 1195 RAL_WRITE(sc, RT2661_PCI_USEC_CSR, 0x20); 1196 1197 /* send wakeup command to MCU */ 1198 rt2661_tx_cmd(sc, RT2661_MCU_CMD_WAKEUP, 0); 1199 } 1200 1201 static void 1202 rt2661_mcu_cmd_intr(struct rt2661_softc *sc) 1203 { 1204 RAL_READ(sc, RT2661_M2H_CMD_DONE_CSR); 1205 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 1206 } 1207 1208 void 1209 rt2661_intr(void *arg) 1210 { 1211 struct rt2661_softc *sc = arg; 1212 uint32_t r1, r2; 1213 1214 RAL_LOCK(sc); 1215 1216 /* disable MAC and MCU interrupts */ 1217 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 1218 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 1219 1220 r1 = RAL_READ(sc, RT2661_INT_SOURCE_CSR); 1221 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, r1); 1222 1223 r2 = RAL_READ(sc, RT2661_MCU_INT_SOURCE_CSR); 1224 RAL_WRITE(sc, RT2661_MCU_INT_SOURCE_CSR, r2); 1225 1226 if (r1 & RT2661_MGT_DONE) 1227 rt2661_tx_dma_intr(sc, &sc->mgtq); 1228 1229 if (r1 & RT2661_RX_DONE) 1230 rt2661_rx_intr(sc); 1231 1232 if (r1 & RT2661_TX0_DMA_DONE) 1233 rt2661_tx_dma_intr(sc, &sc->txq[0]); 1234 1235 if (r1 & RT2661_TX1_DMA_DONE) 1236 rt2661_tx_dma_intr(sc, &sc->txq[1]); 1237 1238 if (r1 & RT2661_TX2_DMA_DONE) 1239 rt2661_tx_dma_intr(sc, &sc->txq[2]); 1240 1241 if (r1 & RT2661_TX3_DMA_DONE) 1242 rt2661_tx_dma_intr(sc, &sc->txq[3]); 1243 1244 if (r1 & RT2661_TX_DONE) 1245 rt2661_tx_intr(sc); 1246 1247 if (r2 & RT2661_MCU_CMD_DONE) 1248 rt2661_mcu_cmd_intr(sc); 1249 1250 if (r2 & RT2661_MCU_BEACON_EXPIRE) 1251 rt2661_mcu_beacon_expire(sc); 1252 1253 if (r2 & RT2661_MCU_WAKEUP) 1254 rt2661_mcu_wakeup(sc); 1255 1256 /* re-enable MAC and MCU interrupts */ 1257 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 1258 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 1259 1260 RAL_UNLOCK(sc); 1261 } 1262 1263 /* quickly determine if a given rate is CCK or OFDM */ 1264 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1265 1266 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1267 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1268 1269 #define RAL_SIFS 10 /* us */ 1270 1271 /* 1272 * This function is only used by the Rx radiotap code. It returns the rate at 1273 * which a given frame was received. 1274 */ 1275 static uint8_t 1276 rt2661_rxrate(struct rt2661_rx_desc *desc) 1277 { 1278 if (le32toh(desc->flags) & RT2661_RX_OFDM) { 1279 /* reverse function of rt2661_plcp_signal */ 1280 switch (desc->rate & 0xf) { 1281 case 0xb: return 12; 1282 case 0xf: return 18; 1283 case 0xa: return 24; 1284 case 0xe: return 36; 1285 case 0x9: return 48; 1286 case 0xd: return 72; 1287 case 0x8: return 96; 1288 case 0xc: return 108; 1289 } 1290 } else { 1291 if (desc->rate == 10) 1292 return 2; 1293 if (desc->rate == 20) 1294 return 4; 1295 if (desc->rate == 55) 1296 return 11; 1297 if (desc->rate == 110) 1298 return 22; 1299 } 1300 return 2; /* should not get there */ 1301 } 1302 1303 /* 1304 * Return the expected ack rate for a frame transmitted at rate `rate'. 1305 * XXX: this should depend on the destination node basic rate set. 1306 */ 1307 static int 1308 rt2661_ack_rate(struct ieee80211com *ic, int rate) 1309 { 1310 switch (rate) { 1311 /* CCK rates */ 1312 case 2: 1313 return 2; 1314 case 4: 1315 case 11: 1316 case 22: 1317 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1318 1319 /* OFDM rates */ 1320 case 12: 1321 case 18: 1322 return 12; 1323 case 24: 1324 case 36: 1325 return 24; 1326 case 48: 1327 case 72: 1328 case 96: 1329 case 108: 1330 return 48; 1331 } 1332 1333 /* default to 1Mbps */ 1334 return 2; 1335 } 1336 1337 /* 1338 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1339 * The function automatically determines the operating mode depending on the 1340 * given rate. `flags' indicates whether short preamble is in use or not. 1341 */ 1342 static uint16_t 1343 rt2661_txtime(int len, int rate, uint32_t flags) 1344 { 1345 uint16_t txtime; 1346 1347 if (RAL_RATE_IS_OFDM(rate)) { 1348 /* IEEE Std 802.11a-1999, pp. 37 */ 1349 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1350 txtime = 16 + 4 + 4 * txtime + 6; 1351 } else { 1352 /* IEEE Std 802.11b-1999, pp. 28 */ 1353 txtime = (16 * len + rate - 1) / rate; 1354 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1355 txtime += 72 + 24; 1356 else 1357 txtime += 144 + 48; 1358 } 1359 1360 return txtime; 1361 } 1362 1363 static uint8_t 1364 rt2661_plcp_signal(int rate) 1365 { 1366 switch (rate) { 1367 /* CCK rates (returned values are device-dependent) */ 1368 case 2: return 0x0; 1369 case 4: return 0x1; 1370 case 11: return 0x2; 1371 case 22: return 0x3; 1372 1373 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1374 case 12: return 0xb; 1375 case 18: return 0xf; 1376 case 24: return 0xa; 1377 case 36: return 0xe; 1378 case 48: return 0x9; 1379 case 72: return 0xd; 1380 case 96: return 0x8; 1381 case 108: return 0xc; 1382 1383 /* unsupported rates (should not get there) */ 1384 default: return 0xff; 1385 } 1386 } 1387 1388 static void 1389 rt2661_setup_tx_desc(struct rt2661_softc *sc, struct rt2661_tx_desc *desc, 1390 uint32_t flags, uint16_t xflags, int len, int rate, 1391 const bus_dma_segment_t *segs, int nsegs, int ac) 1392 { 1393 struct ieee80211com *ic = &sc->sc_ic; 1394 uint16_t plcp_length; 1395 int i, remainder; 1396 1397 desc->flags = htole32(flags); 1398 desc->flags |= htole32(len << 16); 1399 desc->flags |= htole32(RT2661_TX_BUSY | RT2661_TX_VALID); 1400 1401 desc->xflags = htole16(xflags); 1402 desc->xflags |= htole16(nsegs << 13); 1403 1404 desc->wme = htole16( 1405 RT2661_QID(ac) | 1406 RT2661_AIFSN(2) | 1407 RT2661_LOGCWMIN(4) | 1408 RT2661_LOGCWMAX(10)); 1409 1410 /* 1411 * Remember in which queue this frame was sent. This field is driver 1412 * private data only. It will be made available by the NIC in STA_CSR4 1413 * on Tx interrupts. 1414 */ 1415 desc->qid = ac; 1416 1417 /* setup PLCP fields */ 1418 desc->plcp_signal = rt2661_plcp_signal(rate); 1419 desc->plcp_service = 4; 1420 1421 len += IEEE80211_CRC_LEN; 1422 if (RAL_RATE_IS_OFDM(rate)) { 1423 desc->flags |= htole32(RT2661_TX_OFDM); 1424 1425 plcp_length = len & 0xfff; 1426 desc->plcp_length_hi = plcp_length >> 6; 1427 desc->plcp_length_lo = plcp_length & 0x3f; 1428 } else { 1429 plcp_length = (16 * len + rate - 1) / rate; 1430 if (rate == 22) { 1431 remainder = (16 * len) % 22; 1432 if (remainder != 0 && remainder < 7) 1433 desc->plcp_service |= RT2661_PLCP_LENGEXT; 1434 } 1435 desc->plcp_length_hi = plcp_length >> 8; 1436 desc->plcp_length_lo = plcp_length & 0xff; 1437 1438 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1439 desc->plcp_signal |= 0x08; 1440 } 1441 1442 /* RT2x61 supports scatter with up to 5 segments */ 1443 for (i = 0; i < nsegs; i++) { 1444 desc->addr[i] = htole32(segs[i].ds_addr); 1445 desc->len [i] = htole16(segs[i].ds_len); 1446 } 1447 } 1448 1449 static int 1450 rt2661_tx_mgt(struct rt2661_softc *sc, struct mbuf *m0, 1451 struct ieee80211_node *ni) 1452 { 1453 struct ieee80211com *ic = &sc->sc_ic; 1454 struct rt2661_tx_desc *desc; 1455 struct rt2661_tx_data *data; 1456 struct ieee80211_frame *wh; 1457 bus_dma_segment_t segs[RT2661_MAX_SCATTER]; 1458 uint16_t dur; 1459 uint32_t flags = 0; /* XXX HWSEQ */ 1460 int nsegs, rate, error; 1461 1462 desc = &sc->mgtq.desc[sc->mgtq.cur]; 1463 data = &sc->mgtq.data[sc->mgtq.cur]; 1464 1465 /* send mgt frames at the lowest available rate */ 1466 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1467 1468 error = bus_dmamap_load_mbuf_sg(sc->mgtq.data_dmat, data->map, m0, 1469 segs, &nsegs, 0); 1470 if (error != 0) { 1471 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1472 error); 1473 m_freem(m0); 1474 return error; 1475 } 1476 1477 if (sc->sc_drvbpf != NULL) { 1478 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1479 1480 tap->wt_flags = 0; 1481 tap->wt_rate = rate; 1482 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1483 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1484 1485 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1486 } 1487 1488 data->m = m0; 1489 data->ni = ni; 1490 1491 wh = mtod(m0, struct ieee80211_frame *); 1492 1493 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1494 flags |= RT2661_TX_NEED_ACK; 1495 1496 dur = rt2661_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1497 RAL_SIFS; 1498 *(uint16_t *)wh->i_dur = htole16(dur); 1499 1500 /* tell hardware to add timestamp in probe responses */ 1501 if ((wh->i_fc[0] & 1502 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 1503 (IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP)) 1504 flags |= RT2661_TX_TIMESTAMP; 1505 } 1506 1507 rt2661_setup_tx_desc(sc, desc, flags, 0 /* XXX HWSEQ */, 1508 m0->m_pkthdr.len, rate, segs, nsegs, RT2661_QID_MGT); 1509 1510 bus_dmamap_sync(sc->mgtq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1511 bus_dmamap_sync(sc->mgtq.desc_dmat, sc->mgtq.desc_map, 1512 BUS_DMASYNC_PREWRITE); 1513 1514 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1515 m0->m_pkthdr.len, sc->mgtq.cur, rate)); 1516 1517 /* kick mgt */ 1518 sc->mgtq.queued++; 1519 sc->mgtq.cur = (sc->mgtq.cur + 1) % RT2661_MGT_RING_COUNT; 1520 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, RT2661_KICK_MGT); 1521 1522 return 0; 1523 } 1524 1525 /* 1526 * Build a RTS control frame. 1527 */ 1528 static struct mbuf * 1529 rt2661_get_rts(struct rt2661_softc *sc, struct ieee80211_frame *wh, 1530 uint16_t dur) 1531 { 1532 struct ieee80211_frame_rts *rts; 1533 struct mbuf *m; 1534 1535 MGETHDR(m, M_DONTWAIT, MT_DATA); 1536 if (m == NULL) { 1537 sc->sc_ic.ic_stats.is_tx_nobuf++; 1538 device_printf(sc->sc_dev, "could not allocate RTS frame\n"); 1539 return NULL; 1540 } 1541 1542 rts = mtod(m, struct ieee80211_frame_rts *); 1543 1544 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1545 IEEE80211_FC0_SUBTYPE_RTS; 1546 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1547 *(uint16_t *)rts->i_dur = htole16(dur); 1548 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1549 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1550 1551 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1552 1553 return m; 1554 } 1555 1556 static int 1557 rt2661_tx_data(struct rt2661_softc *sc, struct mbuf *m0, 1558 struct ieee80211_node *ni, int ac) 1559 { 1560 struct ieee80211com *ic = &sc->sc_ic; 1561 struct rt2661_tx_ring *txq = &sc->txq[ac]; 1562 struct rt2661_tx_desc *desc; 1563 struct rt2661_tx_data *data; 1564 struct rt2661_node *rn; 1565 struct ieee80211_rateset *rs; 1566 struct ieee80211_frame *wh; 1567 struct ieee80211_key *k; 1568 const struct chanAccParams *cap; 1569 struct mbuf *mnew; 1570 bus_dma_segment_t segs[RT2661_MAX_SCATTER]; 1571 uint16_t dur; 1572 uint32_t flags = 0; 1573 int error, nsegs, rate, noack = 0; 1574 1575 wh = mtod(m0, struct ieee80211_frame *); 1576 1577 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1578 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1579 rate = rs->rs_rates[ic->ic_fixed_rate]; 1580 } else { 1581 rs = &ni->ni_rates; 1582 rn = (struct rt2661_node *)ni; 1583 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, 1584 wh, m0->m_pkthdr.len, NULL, 0); 1585 rate = rs->rs_rates[ni->ni_txrate]; 1586 } 1587 rate &= IEEE80211_RATE_VAL; 1588 1589 if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) { 1590 cap = &ic->ic_wme.wme_chanParams; 1591 noack = cap->cap_wmeParams[ac].wmep_noackPolicy; 1592 } 1593 1594 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1595 k = ieee80211_crypto_encap(ic, ni, m0); 1596 if (k == NULL) { 1597 m_freem(m0); 1598 return ENOBUFS; 1599 } 1600 1601 /* packet header may have moved, reset our local pointer */ 1602 wh = mtod(m0, struct ieee80211_frame *); 1603 } 1604 1605 /* 1606 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1607 * for directed frames only when the length of the MPDU is greater 1608 * than the length threshold indicated by [...]" ic_rtsthreshold. 1609 */ 1610 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1611 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1612 struct mbuf *m; 1613 uint16_t dur; 1614 int rtsrate, ackrate; 1615 1616 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1617 ackrate = rt2661_ack_rate(ic, rate); 1618 1619 dur = rt2661_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1620 rt2661_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1621 /* XXX: noack (QoS)? */ 1622 rt2661_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1623 3 * RAL_SIFS; 1624 1625 m = rt2661_get_rts(sc, wh, dur); 1626 1627 desc = &txq->desc[txq->cur]; 1628 data = &txq->data[txq->cur]; 1629 1630 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m, 1631 segs, &nsegs, 0); 1632 if (error != 0) { 1633 device_printf(sc->sc_dev, 1634 "could not map mbuf (error %d)\n", error); 1635 m_freem(m); 1636 m_freem(m0); 1637 return error; 1638 } 1639 1640 /* avoid multiple free() of the same node for each fragment */ 1641 ieee80211_ref_node(ni); 1642 1643 data->m = m; 1644 data->ni = ni; 1645 1646 /* RTS frames are not taken into account for rssadapt */ 1647 data->id.id_node = NULL; 1648 1649 rt2661_setup_tx_desc(sc, desc, RT2661_TX_NEED_ACK | 1650 RT2661_TX_MORE_FRAG, 0, m->m_pkthdr.len, rtsrate, segs, 1651 nsegs, ac); 1652 1653 bus_dmamap_sync(txq->data_dmat, data->map, 1654 BUS_DMASYNC_PREWRITE); 1655 1656 txq->queued++; 1657 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1658 1659 /* 1660 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1661 * asynchronous data frame shall be transmitted after the CTS 1662 * frame and a SIFS period. 1663 */ 1664 flags |= RT2661_TX_LONG_RETRY | RT2661_TX_IFS; 1665 } 1666 1667 data = &txq->data[txq->cur]; 1668 desc = &txq->desc[txq->cur]; 1669 1670 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, segs, 1671 &nsegs, 0); 1672 if (error != 0 && error != EFBIG) { 1673 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1674 error); 1675 m_freem(m0); 1676 return error; 1677 } 1678 if (error != 0) { 1679 mnew = m_defrag(m0, M_DONTWAIT); 1680 if (mnew == NULL) { 1681 device_printf(sc->sc_dev, 1682 "could not defragment mbuf\n"); 1683 m_freem(m0); 1684 return ENOBUFS; 1685 } 1686 m0 = mnew; 1687 1688 error = bus_dmamap_load_mbuf_sg(txq->data_dmat, data->map, m0, 1689 segs, &nsegs, 0); 1690 if (error != 0) { 1691 device_printf(sc->sc_dev, 1692 "could not map mbuf (error %d)\n", error); 1693 m_freem(m0); 1694 return error; 1695 } 1696 1697 /* packet header have moved, reset our local pointer */ 1698 wh = mtod(m0, struct ieee80211_frame *); 1699 } 1700 1701 if (sc->sc_drvbpf != NULL) { 1702 struct rt2661_tx_radiotap_header *tap = &sc->sc_txtap; 1703 1704 tap->wt_flags = 0; 1705 tap->wt_rate = rate; 1706 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1707 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1708 1709 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1710 } 1711 1712 data->m = m0; 1713 data->ni = ni; 1714 1715 /* remember link conditions for rate adaptation algorithm */ 1716 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1717 data->id.id_len = m0->m_pkthdr.len; 1718 data->id.id_rateidx = ni->ni_txrate; 1719 data->id.id_node = ni; 1720 data->id.id_rssi = ni->ni_rssi; 1721 } else 1722 data->id.id_node = NULL; 1723 1724 if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1725 flags |= RT2661_TX_NEED_ACK; 1726 1727 dur = rt2661_txtime(RAL_ACK_SIZE, rt2661_ack_rate(ic, rate), 1728 ic->ic_flags) + RAL_SIFS; 1729 *(uint16_t *)wh->i_dur = htole16(dur); 1730 } 1731 1732 rt2661_setup_tx_desc(sc, desc, flags, 0, m0->m_pkthdr.len, rate, segs, 1733 nsegs, ac); 1734 1735 bus_dmamap_sync(txq->data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1736 bus_dmamap_sync(txq->desc_dmat, txq->desc_map, BUS_DMASYNC_PREWRITE); 1737 1738 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1739 m0->m_pkthdr.len, txq->cur, rate)); 1740 1741 /* kick Tx */ 1742 txq->queued++; 1743 txq->cur = (txq->cur + 1) % RT2661_TX_RING_COUNT; 1744 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 1 << ac); 1745 1746 return 0; 1747 } 1748 1749 static void 1750 rt2661_start(struct ifnet *ifp) 1751 { 1752 struct rt2661_softc *sc = ifp->if_softc; 1753 struct ieee80211com *ic = &sc->sc_ic; 1754 struct mbuf *m0; 1755 struct ether_header *eh; 1756 struct ieee80211_node *ni; 1757 int ac; 1758 1759 RAL_LOCK(sc); 1760 1761 for (;;) { 1762 IF_POLL(&ic->ic_mgtq, m0); 1763 if (m0 != NULL) { 1764 if (sc->mgtq.queued >= RT2661_MGT_RING_COUNT) { 1765 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1766 break; 1767 } 1768 IF_DEQUEUE(&ic->ic_mgtq, m0); 1769 1770 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1771 m0->m_pkthdr.rcvif = NULL; 1772 1773 if (ic->ic_rawbpf != NULL) 1774 bpf_mtap(ic->ic_rawbpf, m0); 1775 1776 if (rt2661_tx_mgt(sc, m0, ni) != 0) 1777 break; 1778 1779 } else { 1780 if (ic->ic_state != IEEE80211_S_RUN) 1781 break; 1782 1783 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1784 if (m0 == NULL) 1785 break; 1786 1787 if (m0->m_len < sizeof (struct ether_header) && 1788 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 1789 continue; 1790 1791 eh = mtod(m0, struct ether_header *); 1792 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 1793 if (ni == NULL) { 1794 m_freem(m0); 1795 ifp->if_oerrors++; 1796 continue; 1797 } 1798 1799 /* classify mbuf so we can find which tx ring to use */ 1800 if (ieee80211_classify(ic, m0, ni) != 0) { 1801 m_freem(m0); 1802 ieee80211_free_node(ni); 1803 ifp->if_oerrors++; 1804 continue; 1805 } 1806 1807 /* no QoS encapsulation for EAPOL frames */ 1808 ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? 1809 M_WME_GETAC(m0) : WME_AC_BE; 1810 1811 if (sc->txq[ac].queued >= RT2661_TX_RING_COUNT - 1) { 1812 /* there is no place left in this ring */ 1813 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 1814 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1815 break; 1816 } 1817 1818 BPF_MTAP(ifp, m0); 1819 1820 m0 = ieee80211_encap(ic, m0, ni); 1821 if (m0 == NULL) { 1822 ieee80211_free_node(ni); 1823 ifp->if_oerrors++; 1824 continue; 1825 } 1826 1827 if (ic->ic_rawbpf != NULL) 1828 bpf_mtap(ic->ic_rawbpf, m0); 1829 1830 if (rt2661_tx_data(sc, m0, ni, ac) != 0) { 1831 ieee80211_free_node(ni); 1832 ifp->if_oerrors++; 1833 break; 1834 } 1835 } 1836 1837 sc->sc_tx_timer = 5; 1838 ifp->if_timer = 1; 1839 } 1840 1841 RAL_UNLOCK(sc); 1842 } 1843 1844 static void 1845 rt2661_watchdog(struct ifnet *ifp) 1846 { 1847 struct rt2661_softc *sc = ifp->if_softc; 1848 struct ieee80211com *ic = &sc->sc_ic; 1849 1850 RAL_LOCK(sc); 1851 1852 ifp->if_timer = 0; 1853 1854 if (sc->sc_tx_timer > 0) { 1855 if (--sc->sc_tx_timer == 0) { 1856 device_printf(sc->sc_dev, "device timeout\n"); 1857 rt2661_init(sc); 1858 ifp->if_oerrors++; 1859 RAL_UNLOCK(sc); 1860 return; 1861 } 1862 ifp->if_timer = 1; 1863 } 1864 1865 ieee80211_watchdog(ic); 1866 1867 RAL_UNLOCK(sc); 1868 } 1869 1870 /* 1871 * This function allows for fast channel switching in monitor mode (used by 1872 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 1873 * generate a new beacon frame. 1874 */ 1875 static int 1876 rt2661_reset(struct ifnet *ifp) 1877 { 1878 struct rt2661_softc *sc = ifp->if_softc; 1879 struct ieee80211com *ic = &sc->sc_ic; 1880 1881 if (ic->ic_opmode != IEEE80211_M_MONITOR) 1882 return ENETRESET; 1883 1884 rt2661_set_chan(sc, ic->ic_curchan); 1885 1886 return 0; 1887 } 1888 1889 static int 1890 rt2661_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 1891 { 1892 struct rt2661_softc *sc = ifp->if_softc; 1893 struct ieee80211com *ic = &sc->sc_ic; 1894 int error = 0; 1895 1896 RAL_LOCK(sc); 1897 1898 switch (cmd) { 1899 case SIOCSIFFLAGS: 1900 if (ifp->if_flags & IFF_UP) { 1901 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1902 rt2661_update_promisc(sc); 1903 else 1904 rt2661_init(sc); 1905 } else { 1906 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 1907 rt2661_stop(sc); 1908 } 1909 break; 1910 1911 default: 1912 error = ieee80211_ioctl(ic, cmd, data); 1913 } 1914 1915 if (error == ENETRESET) { 1916 if ((ifp->if_flags & IFF_UP) && 1917 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 1918 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 1919 rt2661_init(sc); 1920 error = 0; 1921 } 1922 1923 RAL_UNLOCK(sc); 1924 1925 return error; 1926 } 1927 1928 static void 1929 rt2661_bbp_write(struct rt2661_softc *sc, uint8_t reg, uint8_t val) 1930 { 1931 uint32_t tmp; 1932 int ntries; 1933 1934 for (ntries = 0; ntries < 100; ntries++) { 1935 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 1936 break; 1937 DELAY(1); 1938 } 1939 if (ntries == 100) { 1940 device_printf(sc->sc_dev, "could not write to BBP\n"); 1941 return; 1942 } 1943 1944 tmp = RT2661_BBP_BUSY | (reg & 0x7f) << 8 | val; 1945 RAL_WRITE(sc, RT2661_PHY_CSR3, tmp); 1946 1947 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 1948 } 1949 1950 static uint8_t 1951 rt2661_bbp_read(struct rt2661_softc *sc, uint8_t reg) 1952 { 1953 uint32_t val; 1954 int ntries; 1955 1956 for (ntries = 0; ntries < 100; ntries++) { 1957 if (!(RAL_READ(sc, RT2661_PHY_CSR3) & RT2661_BBP_BUSY)) 1958 break; 1959 DELAY(1); 1960 } 1961 if (ntries == 100) { 1962 device_printf(sc->sc_dev, "could not read from BBP\n"); 1963 return 0; 1964 } 1965 1966 val = RT2661_BBP_BUSY | RT2661_BBP_READ | reg << 8; 1967 RAL_WRITE(sc, RT2661_PHY_CSR3, val); 1968 1969 for (ntries = 0; ntries < 100; ntries++) { 1970 val = RAL_READ(sc, RT2661_PHY_CSR3); 1971 if (!(val & RT2661_BBP_BUSY)) 1972 return val & 0xff; 1973 DELAY(1); 1974 } 1975 1976 device_printf(sc->sc_dev, "could not read from BBP\n"); 1977 return 0; 1978 } 1979 1980 static void 1981 rt2661_rf_write(struct rt2661_softc *sc, uint8_t reg, uint32_t val) 1982 { 1983 uint32_t tmp; 1984 int ntries; 1985 1986 for (ntries = 0; ntries < 100; ntries++) { 1987 if (!(RAL_READ(sc, RT2661_PHY_CSR4) & RT2661_RF_BUSY)) 1988 break; 1989 DELAY(1); 1990 } 1991 if (ntries == 100) { 1992 device_printf(sc->sc_dev, "could not write to RF\n"); 1993 return; 1994 } 1995 1996 tmp = RT2661_RF_BUSY | RT2661_RF_21BIT | (val & 0x1fffff) << 2 | 1997 (reg & 3); 1998 RAL_WRITE(sc, RT2661_PHY_CSR4, tmp); 1999 2000 /* remember last written value in sc */ 2001 sc->rf_regs[reg] = val; 2002 2003 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 3, val & 0x1fffff)); 2004 } 2005 2006 static int 2007 rt2661_tx_cmd(struct rt2661_softc *sc, uint8_t cmd, uint16_t arg) 2008 { 2009 if (RAL_READ(sc, RT2661_H2M_MAILBOX_CSR) & RT2661_H2M_BUSY) 2010 return EIO; /* there is already a command pending */ 2011 2012 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 2013 RT2661_H2M_BUSY | RT2661_TOKEN_NO_INTR << 16 | arg); 2014 2015 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, RT2661_KICK_CMD | cmd); 2016 2017 return 0; 2018 } 2019 2020 static void 2021 rt2661_select_antenna(struct rt2661_softc *sc) 2022 { 2023 uint8_t bbp4, bbp77; 2024 uint32_t tmp; 2025 2026 bbp4 = rt2661_bbp_read(sc, 4); 2027 bbp77 = rt2661_bbp_read(sc, 77); 2028 2029 /* TBD */ 2030 2031 /* make sure Rx is disabled before switching antenna */ 2032 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2033 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2034 2035 rt2661_bbp_write(sc, 4, bbp4); 2036 rt2661_bbp_write(sc, 77, bbp77); 2037 2038 /* restore Rx filter */ 2039 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2040 } 2041 2042 /* 2043 * Enable multi-rate retries for frames sent at OFDM rates. 2044 * In 802.11b/g mode, allow fallback to CCK rates. 2045 */ 2046 static void 2047 rt2661_enable_mrr(struct rt2661_softc *sc) 2048 { 2049 struct ieee80211com *ic = &sc->sc_ic; 2050 uint32_t tmp; 2051 2052 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2053 2054 tmp &= ~RT2661_MRR_CCK_FALLBACK; 2055 if (!IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan)) 2056 tmp |= RT2661_MRR_CCK_FALLBACK; 2057 tmp |= RT2661_MRR_ENABLED; 2058 2059 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2060 } 2061 2062 static void 2063 rt2661_set_txpreamble(struct rt2661_softc *sc) 2064 { 2065 uint32_t tmp; 2066 2067 tmp = RAL_READ(sc, RT2661_TXRX_CSR4); 2068 2069 tmp &= ~RT2661_SHORT_PREAMBLE; 2070 if (sc->sc_ic.ic_flags & IEEE80211_F_SHPREAMBLE) 2071 tmp |= RT2661_SHORT_PREAMBLE; 2072 2073 RAL_WRITE(sc, RT2661_TXRX_CSR4, tmp); 2074 } 2075 2076 static void 2077 rt2661_set_basicrates(struct rt2661_softc *sc, 2078 const struct ieee80211_rateset *rs) 2079 { 2080 #define RV(r) ((r) & IEEE80211_RATE_VAL) 2081 uint32_t mask = 0; 2082 uint8_t rate; 2083 int i, j; 2084 2085 for (i = 0; i < rs->rs_nrates; i++) { 2086 rate = rs->rs_rates[i]; 2087 2088 if (!(rate & IEEE80211_RATE_BASIC)) 2089 continue; 2090 2091 /* 2092 * Find h/w rate index. We know it exists because the rate 2093 * set has already been negotiated. 2094 */ 2095 for (j = 0; rt2661_rateset_11g.rs_rates[j] != RV(rate); j++); 2096 2097 mask |= 1 << j; 2098 } 2099 2100 RAL_WRITE(sc, RT2661_TXRX_CSR5, mask); 2101 2102 DPRINTF(("Setting basic rate mask to 0x%x\n", mask)); 2103 #undef RV 2104 } 2105 2106 /* 2107 * Reprogram MAC/BBP to switch to a new band. Values taken from the reference 2108 * driver. 2109 */ 2110 static void 2111 rt2661_select_band(struct rt2661_softc *sc, struct ieee80211_channel *c) 2112 { 2113 uint8_t bbp17, bbp35, bbp96, bbp97, bbp98, bbp104; 2114 uint32_t tmp; 2115 2116 /* update all BBP registers that depend on the band */ 2117 bbp17 = 0x20; bbp96 = 0x48; bbp104 = 0x2c; 2118 bbp35 = 0x50; bbp97 = 0x48; bbp98 = 0x48; 2119 if (IEEE80211_IS_CHAN_5GHZ(c)) { 2120 bbp17 += 0x08; bbp96 += 0x10; bbp104 += 0x0c; 2121 bbp35 += 0x10; bbp97 += 0x10; bbp98 += 0x10; 2122 } 2123 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2124 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2125 bbp17 += 0x10; bbp96 += 0x10; bbp104 += 0x10; 2126 } 2127 2128 rt2661_bbp_write(sc, 17, bbp17); 2129 rt2661_bbp_write(sc, 96, bbp96); 2130 rt2661_bbp_write(sc, 104, bbp104); 2131 2132 if ((IEEE80211_IS_CHAN_2GHZ(c) && sc->ext_2ghz_lna) || 2133 (IEEE80211_IS_CHAN_5GHZ(c) && sc->ext_5ghz_lna)) { 2134 rt2661_bbp_write(sc, 75, 0x80); 2135 rt2661_bbp_write(sc, 86, 0x80); 2136 rt2661_bbp_write(sc, 88, 0x80); 2137 } 2138 2139 rt2661_bbp_write(sc, 35, bbp35); 2140 rt2661_bbp_write(sc, 97, bbp97); 2141 rt2661_bbp_write(sc, 98, bbp98); 2142 2143 tmp = RAL_READ(sc, RT2661_PHY_CSR0); 2144 tmp &= ~(RT2661_PA_PE_2GHZ | RT2661_PA_PE_5GHZ); 2145 if (IEEE80211_IS_CHAN_2GHZ(c)) 2146 tmp |= RT2661_PA_PE_2GHZ; 2147 else 2148 tmp |= RT2661_PA_PE_5GHZ; 2149 RAL_WRITE(sc, RT2661_PHY_CSR0, tmp); 2150 } 2151 2152 static void 2153 rt2661_set_chan(struct rt2661_softc *sc, struct ieee80211_channel *c) 2154 { 2155 struct ieee80211com *ic = &sc->sc_ic; 2156 const struct rfprog *rfprog; 2157 uint8_t bbp3, bbp94 = RT2661_BBPR94_DEFAULT; 2158 int8_t power; 2159 u_int i, chan; 2160 2161 chan = ieee80211_chan2ieee(ic, c); 2162 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2163 return; 2164 2165 /* select the appropriate RF settings based on what EEPROM says */ 2166 rfprog = (sc->rfprog == 0) ? rt2661_rf5225_1 : rt2661_rf5225_2; 2167 2168 /* find the settings for this channel (we know it exists) */ 2169 for (i = 0; rfprog[i].chan != chan; i++); 2170 2171 power = sc->txpow[i]; 2172 if (power < 0) { 2173 bbp94 += power; 2174 power = 0; 2175 } else if (power > 31) { 2176 bbp94 += power - 31; 2177 power = 31; 2178 } 2179 2180 /* 2181 * If we are switching from the 2GHz band to the 5GHz band or 2182 * vice-versa, BBP registers need to be reprogrammed. 2183 */ 2184 if (c->ic_flags != sc->sc_curchan->ic_flags) { 2185 rt2661_select_band(sc, c); 2186 rt2661_select_antenna(sc); 2187 } 2188 sc->sc_curchan = c; 2189 2190 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2191 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2192 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2193 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2194 2195 DELAY(200); 2196 2197 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2198 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2199 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7 | 1); 2200 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2201 2202 DELAY(200); 2203 2204 rt2661_rf_write(sc, RAL_RF1, rfprog[i].r1); 2205 rt2661_rf_write(sc, RAL_RF2, rfprog[i].r2); 2206 rt2661_rf_write(sc, RAL_RF3, rfprog[i].r3 | power << 7); 2207 rt2661_rf_write(sc, RAL_RF4, rfprog[i].r4 | sc->rffreq << 10); 2208 2209 /* enable smart mode for MIMO-capable RFs */ 2210 bbp3 = rt2661_bbp_read(sc, 3); 2211 2212 bbp3 &= ~RT2661_SMART_MODE; 2213 if (sc->rf_rev == RT2661_RF_5325 || sc->rf_rev == RT2661_RF_2529) 2214 bbp3 |= RT2661_SMART_MODE; 2215 2216 rt2661_bbp_write(sc, 3, bbp3); 2217 2218 if (bbp94 != RT2661_BBPR94_DEFAULT) 2219 rt2661_bbp_write(sc, 94, bbp94); 2220 2221 /* 5GHz radio needs a 1ms delay here */ 2222 if (IEEE80211_IS_CHAN_5GHZ(c)) 2223 DELAY(1000); 2224 } 2225 2226 static void 2227 rt2661_set_bssid(struct rt2661_softc *sc, const uint8_t *bssid) 2228 { 2229 uint32_t tmp; 2230 2231 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2232 RAL_WRITE(sc, RT2661_MAC_CSR4, tmp); 2233 2234 tmp = bssid[4] | bssid[5] << 8 | RT2661_ONE_BSSID << 16; 2235 RAL_WRITE(sc, RT2661_MAC_CSR5, tmp); 2236 } 2237 2238 static void 2239 rt2661_set_macaddr(struct rt2661_softc *sc, const uint8_t *addr) 2240 { 2241 uint32_t tmp; 2242 2243 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2244 RAL_WRITE(sc, RT2661_MAC_CSR2, tmp); 2245 2246 tmp = addr[4] | addr[5] << 8; 2247 RAL_WRITE(sc, RT2661_MAC_CSR3, tmp); 2248 } 2249 2250 static void 2251 rt2661_update_promisc(struct rt2661_softc *sc) 2252 { 2253 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2254 uint32_t tmp; 2255 2256 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2257 2258 tmp &= ~RT2661_DROP_NOT_TO_ME; 2259 if (!(ifp->if_flags & IFF_PROMISC)) 2260 tmp |= RT2661_DROP_NOT_TO_ME; 2261 2262 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2263 2264 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2265 "entering" : "leaving")); 2266 } 2267 2268 /* 2269 * Update QoS (802.11e) settings for each h/w Tx ring. 2270 */ 2271 static int 2272 rt2661_wme_update(struct ieee80211com *ic) 2273 { 2274 struct rt2661_softc *sc = ic->ic_ifp->if_softc; 2275 const struct wmeParams *wmep; 2276 2277 wmep = ic->ic_wme.wme_chanParams.cap_wmeParams; 2278 2279 /* XXX: not sure about shifts. */ 2280 /* XXX: the reference driver plays with AC_VI settings too. */ 2281 2282 /* update TxOp */ 2283 RAL_WRITE(sc, RT2661_AC_TXOP_CSR0, 2284 wmep[WME_AC_BE].wmep_txopLimit << 16 | 2285 wmep[WME_AC_BK].wmep_txopLimit); 2286 RAL_WRITE(sc, RT2661_AC_TXOP_CSR1, 2287 wmep[WME_AC_VI].wmep_txopLimit << 16 | 2288 wmep[WME_AC_VO].wmep_txopLimit); 2289 2290 /* update CWmin */ 2291 RAL_WRITE(sc, RT2661_CWMIN_CSR, 2292 wmep[WME_AC_BE].wmep_logcwmin << 12 | 2293 wmep[WME_AC_BK].wmep_logcwmin << 8 | 2294 wmep[WME_AC_VI].wmep_logcwmin << 4 | 2295 wmep[WME_AC_VO].wmep_logcwmin); 2296 2297 /* update CWmax */ 2298 RAL_WRITE(sc, RT2661_CWMAX_CSR, 2299 wmep[WME_AC_BE].wmep_logcwmax << 12 | 2300 wmep[WME_AC_BK].wmep_logcwmax << 8 | 2301 wmep[WME_AC_VI].wmep_logcwmax << 4 | 2302 wmep[WME_AC_VO].wmep_logcwmax); 2303 2304 /* update Aifsn */ 2305 RAL_WRITE(sc, RT2661_AIFSN_CSR, 2306 wmep[WME_AC_BE].wmep_aifsn << 12 | 2307 wmep[WME_AC_BK].wmep_aifsn << 8 | 2308 wmep[WME_AC_VI].wmep_aifsn << 4 | 2309 wmep[WME_AC_VO].wmep_aifsn); 2310 2311 return 0; 2312 } 2313 2314 static void 2315 rt2661_update_slot(struct ifnet *ifp) 2316 { 2317 struct rt2661_softc *sc = ifp->if_softc; 2318 struct ieee80211com *ic = &sc->sc_ic; 2319 uint8_t slottime; 2320 uint32_t tmp; 2321 2322 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2323 2324 tmp = RAL_READ(sc, RT2661_MAC_CSR9); 2325 tmp = (tmp & ~0xff) | slottime; 2326 RAL_WRITE(sc, RT2661_MAC_CSR9, tmp); 2327 } 2328 2329 static const char * 2330 rt2661_get_rf(int rev) 2331 { 2332 switch (rev) { 2333 case RT2661_RF_5225: return "RT5225"; 2334 case RT2661_RF_5325: return "RT5325 (MIMO XR)"; 2335 case RT2661_RF_2527: return "RT2527"; 2336 case RT2661_RF_2529: return "RT2529 (MIMO XR)"; 2337 default: return "unknown"; 2338 } 2339 } 2340 2341 static void 2342 rt2661_read_eeprom(struct rt2661_softc *sc) 2343 { 2344 struct ieee80211com *ic = &sc->sc_ic; 2345 uint16_t val; 2346 int i; 2347 2348 /* read MAC address */ 2349 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC01); 2350 ic->ic_myaddr[0] = val & 0xff; 2351 ic->ic_myaddr[1] = val >> 8; 2352 2353 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC23); 2354 ic->ic_myaddr[2] = val & 0xff; 2355 ic->ic_myaddr[3] = val >> 8; 2356 2357 val = rt2661_eeprom_read(sc, RT2661_EEPROM_MAC45); 2358 ic->ic_myaddr[4] = val & 0xff; 2359 ic->ic_myaddr[5] = val >> 8; 2360 2361 val = rt2661_eeprom_read(sc, RT2661_EEPROM_ANTENNA); 2362 /* XXX: test if different from 0xffff? */ 2363 sc->rf_rev = (val >> 11) & 0x1f; 2364 sc->hw_radio = (val >> 10) & 0x1; 2365 sc->rx_ant = (val >> 4) & 0x3; 2366 sc->tx_ant = (val >> 2) & 0x3; 2367 sc->nb_ant = val & 0x3; 2368 2369 DPRINTF(("RF revision=%d\n", sc->rf_rev)); 2370 2371 val = rt2661_eeprom_read(sc, RT2661_EEPROM_CONFIG2); 2372 sc->ext_5ghz_lna = (val >> 6) & 0x1; 2373 sc->ext_2ghz_lna = (val >> 4) & 0x1; 2374 2375 DPRINTF(("External 2GHz LNA=%d\nExternal 5GHz LNA=%d\n", 2376 sc->ext_2ghz_lna, sc->ext_5ghz_lna)); 2377 2378 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_2GHZ_OFFSET); 2379 if ((val & 0xff) != 0xff) 2380 sc->rssi_2ghz_corr = (int8_t)(val & 0xff); /* signed */ 2381 2382 val = rt2661_eeprom_read(sc, RT2661_EEPROM_RSSI_5GHZ_OFFSET); 2383 if ((val & 0xff) != 0xff) 2384 sc->rssi_5ghz_corr = (int8_t)(val & 0xff); /* signed */ 2385 2386 /* adjust RSSI correction for external low-noise amplifier */ 2387 if (sc->ext_2ghz_lna) 2388 sc->rssi_2ghz_corr -= 14; 2389 if (sc->ext_5ghz_lna) 2390 sc->rssi_5ghz_corr -= 14; 2391 2392 DPRINTF(("RSSI 2GHz corr=%d\nRSSI 5GHz corr=%d\n", 2393 sc->rssi_2ghz_corr, sc->rssi_5ghz_corr)); 2394 2395 val = rt2661_eeprom_read(sc, RT2661_EEPROM_FREQ_OFFSET); 2396 if ((val >> 8) != 0xff) 2397 sc->rfprog = (val >> 8) & 0x3; 2398 if ((val & 0xff) != 0xff) 2399 sc->rffreq = val & 0xff; 2400 2401 DPRINTF(("RF prog=%d\nRF freq=%d\n", sc->rfprog, sc->rffreq)); 2402 2403 /* read Tx power for all a/b/g channels */ 2404 for (i = 0; i < 19; i++) { 2405 val = rt2661_eeprom_read(sc, RT2661_EEPROM_TXPOWER + i); 2406 sc->txpow[i * 2] = (int8_t)(val >> 8); /* signed */ 2407 DPRINTF(("Channel=%d Tx power=%d\n", 2408 rt2661_rf5225_1[i * 2].chan, sc->txpow[i * 2])); 2409 sc->txpow[i * 2 + 1] = (int8_t)(val & 0xff); /* signed */ 2410 DPRINTF(("Channel=%d Tx power=%d\n", 2411 rt2661_rf5225_1[i * 2 + 1].chan, sc->txpow[i * 2 + 1])); 2412 } 2413 2414 /* read vendor-specific BBP values */ 2415 for (i = 0; i < 16; i++) { 2416 val = rt2661_eeprom_read(sc, RT2661_EEPROM_BBP_BASE + i); 2417 if (val == 0 || val == 0xffff) 2418 continue; /* skip invalid entries */ 2419 sc->bbp_prom[i].reg = val >> 8; 2420 sc->bbp_prom[i].val = val & 0xff; 2421 DPRINTF(("BBP R%d=%02x\n", sc->bbp_prom[i].reg, 2422 sc->bbp_prom[i].val)); 2423 } 2424 } 2425 2426 static int 2427 rt2661_bbp_init(struct rt2661_softc *sc) 2428 { 2429 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2430 int i, ntries; 2431 uint8_t val; 2432 2433 /* wait for BBP to be ready */ 2434 for (ntries = 0; ntries < 100; ntries++) { 2435 val = rt2661_bbp_read(sc, 0); 2436 if (val != 0 && val != 0xff) 2437 break; 2438 DELAY(100); 2439 } 2440 if (ntries == 100) { 2441 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2442 return EIO; 2443 } 2444 2445 /* initialize BBP registers to default values */ 2446 for (i = 0; i < N(rt2661_def_bbp); i++) { 2447 rt2661_bbp_write(sc, rt2661_def_bbp[i].reg, 2448 rt2661_def_bbp[i].val); 2449 } 2450 2451 /* write vendor-specific BBP values (from EEPROM) */ 2452 for (i = 0; i < 16; i++) { 2453 if (sc->bbp_prom[i].reg == 0) 2454 continue; 2455 rt2661_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2456 } 2457 2458 return 0; 2459 #undef N 2460 } 2461 2462 static void 2463 rt2661_init(void *priv) 2464 { 2465 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2466 struct rt2661_softc *sc = priv; 2467 struct ieee80211com *ic = &sc->sc_ic; 2468 struct ifnet *ifp = ic->ic_ifp; 2469 uint32_t tmp, sta[3]; 2470 int i, ntries; 2471 2472 rt2661_stop(sc); 2473 2474 /* initialize Tx rings */ 2475 RAL_WRITE(sc, RT2661_AC1_BASE_CSR, sc->txq[1].physaddr); 2476 RAL_WRITE(sc, RT2661_AC0_BASE_CSR, sc->txq[0].physaddr); 2477 RAL_WRITE(sc, RT2661_AC2_BASE_CSR, sc->txq[2].physaddr); 2478 RAL_WRITE(sc, RT2661_AC3_BASE_CSR, sc->txq[3].physaddr); 2479 2480 /* initialize Mgt ring */ 2481 RAL_WRITE(sc, RT2661_MGT_BASE_CSR, sc->mgtq.physaddr); 2482 2483 /* initialize Rx ring */ 2484 RAL_WRITE(sc, RT2661_RX_BASE_CSR, sc->rxq.physaddr); 2485 2486 /* initialize Tx rings sizes */ 2487 RAL_WRITE(sc, RT2661_TX_RING_CSR0, 2488 RT2661_TX_RING_COUNT << 24 | 2489 RT2661_TX_RING_COUNT << 16 | 2490 RT2661_TX_RING_COUNT << 8 | 2491 RT2661_TX_RING_COUNT); 2492 2493 RAL_WRITE(sc, RT2661_TX_RING_CSR1, 2494 RT2661_TX_DESC_WSIZE << 16 | 2495 RT2661_TX_RING_COUNT << 8 | /* XXX: HCCA ring unused */ 2496 RT2661_MGT_RING_COUNT); 2497 2498 /* initialize Rx rings */ 2499 RAL_WRITE(sc, RT2661_RX_RING_CSR, 2500 RT2661_RX_DESC_BACK << 16 | 2501 RT2661_RX_DESC_WSIZE << 8 | 2502 RT2661_RX_RING_COUNT); 2503 2504 /* XXX: some magic here */ 2505 RAL_WRITE(sc, RT2661_TX_DMA_DST_CSR, 0xaa); 2506 2507 /* load base addresses of all 5 Tx rings (4 data + 1 mgt) */ 2508 RAL_WRITE(sc, RT2661_LOAD_TX_RING_CSR, 0x1f); 2509 2510 /* load base address of Rx ring */ 2511 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 2); 2512 2513 /* initialize MAC registers to default values */ 2514 for (i = 0; i < N(rt2661_def_mac); i++) 2515 RAL_WRITE(sc, rt2661_def_mac[i].reg, rt2661_def_mac[i].val); 2516 2517 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2518 rt2661_set_macaddr(sc, ic->ic_myaddr); 2519 2520 /* set host ready */ 2521 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2522 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2523 2524 /* wait for BBP/RF to wakeup */ 2525 for (ntries = 0; ntries < 1000; ntries++) { 2526 if (RAL_READ(sc, RT2661_MAC_CSR12) & 8) 2527 break; 2528 DELAY(1000); 2529 } 2530 if (ntries == 1000) { 2531 printf("timeout waiting for BBP/RF to wakeup\n"); 2532 rt2661_stop(sc); 2533 return; 2534 } 2535 2536 if (rt2661_bbp_init(sc) != 0) { 2537 rt2661_stop(sc); 2538 return; 2539 } 2540 2541 /* select default channel */ 2542 sc->sc_curchan = ic->ic_curchan; 2543 rt2661_select_band(sc, sc->sc_curchan); 2544 rt2661_select_antenna(sc); 2545 rt2661_set_chan(sc, sc->sc_curchan); 2546 2547 /* update Rx filter */ 2548 tmp = RAL_READ(sc, RT2661_TXRX_CSR0) & 0xffff; 2549 2550 tmp |= RT2661_DROP_PHY_ERROR | RT2661_DROP_CRC_ERROR; 2551 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2552 tmp |= RT2661_DROP_CTL | RT2661_DROP_VER_ERROR | 2553 RT2661_DROP_ACKCTS; 2554 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2555 tmp |= RT2661_DROP_TODS; 2556 if (!(ifp->if_flags & IFF_PROMISC)) 2557 tmp |= RT2661_DROP_NOT_TO_ME; 2558 } 2559 2560 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2561 2562 /* clear STA registers */ 2563 RAL_READ_REGION_4(sc, RT2661_STA_CSR0, sta, N(sta)); 2564 2565 /* initialize ASIC */ 2566 RAL_WRITE(sc, RT2661_MAC_CSR1, 4); 2567 2568 /* clear any pending interrupt */ 2569 RAL_WRITE(sc, RT2661_INT_SOURCE_CSR, 0xffffffff); 2570 2571 /* enable interrupts */ 2572 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0x0000ff10); 2573 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0); 2574 2575 /* kick Rx */ 2576 RAL_WRITE(sc, RT2661_RX_CNTL_CSR, 1); 2577 2578 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2579 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2580 2581 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2582 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2583 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2584 } else 2585 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2586 } 2587 2588 void 2589 rt2661_stop(void *priv) 2590 { 2591 struct rt2661_softc *sc = priv; 2592 struct ieee80211com *ic = &sc->sc_ic; 2593 struct ifnet *ifp = ic->ic_ifp; 2594 uint32_t tmp; 2595 2596 sc->sc_tx_timer = 0; 2597 ifp->if_timer = 0; 2598 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2599 2600 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2601 2602 /* abort Tx (for all 5 Tx rings) */ 2603 RAL_WRITE(sc, RT2661_TX_CNTL_CSR, 0x1f << 16); 2604 2605 /* disable Rx (value remains after reset!) */ 2606 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2607 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2608 2609 /* reset ASIC */ 2610 RAL_WRITE(sc, RT2661_MAC_CSR1, 3); 2611 RAL_WRITE(sc, RT2661_MAC_CSR1, 0); 2612 2613 /* disable interrupts */ 2614 RAL_WRITE(sc, RT2661_INT_MASK_CSR, 0xffffff7f); 2615 RAL_WRITE(sc, RT2661_MCU_INT_MASK_CSR, 0xffffffff); 2616 2617 /* reset Tx and Rx rings */ 2618 rt2661_reset_tx_ring(sc, &sc->txq[0]); 2619 rt2661_reset_tx_ring(sc, &sc->txq[1]); 2620 rt2661_reset_tx_ring(sc, &sc->txq[2]); 2621 rt2661_reset_tx_ring(sc, &sc->txq[3]); 2622 rt2661_reset_tx_ring(sc, &sc->mgtq); 2623 rt2661_reset_rx_ring(sc, &sc->rxq); 2624 } 2625 2626 static int 2627 rt2661_load_microcode(struct rt2661_softc *sc, const uint8_t *ucode, int size) 2628 { 2629 int ntries; 2630 2631 /* reset 8051 */ 2632 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2633 2634 /* cancel any pending Host to MCU command */ 2635 RAL_WRITE(sc, RT2661_H2M_MAILBOX_CSR, 0); 2636 RAL_WRITE(sc, RT2661_M2H_CMD_DONE_CSR, 0xffffffff); 2637 RAL_WRITE(sc, RT2661_HOST_CMD_CSR, 0); 2638 2639 /* write 8051's microcode */ 2640 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET | RT2661_MCU_SEL); 2641 RAL_WRITE_REGION_1(sc, RT2661_MCU_CODE_BASE, ucode, size); 2642 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, RT2661_MCU_RESET); 2643 2644 /* kick 8051's ass */ 2645 RAL_WRITE(sc, RT2661_MCU_CNTL_CSR, 0); 2646 2647 /* wait for 8051 to initialize */ 2648 for (ntries = 0; ntries < 500; ntries++) { 2649 if (RAL_READ(sc, RT2661_MCU_CNTL_CSR) & RT2661_MCU_READY) 2650 break; 2651 DELAY(100); 2652 } 2653 if (ntries == 500) { 2654 printf("timeout waiting for MCU to initialize\n"); 2655 return EIO; 2656 } 2657 return 0; 2658 } 2659 2660 #ifdef notyet 2661 /* 2662 * Dynamically tune Rx sensitivity (BBP register 17) based on average RSSI and 2663 * false CCA count. This function is called periodically (every seconds) when 2664 * in the RUN state. Values taken from the reference driver. 2665 */ 2666 static void 2667 rt2661_rx_tune(struct rt2661_softc *sc) 2668 { 2669 uint8_t bbp17; 2670 uint16_t cca; 2671 int lo, hi, dbm; 2672 2673 /* 2674 * Tuning range depends on operating band and on the presence of an 2675 * external low-noise amplifier. 2676 */ 2677 lo = 0x20; 2678 if (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan)) 2679 lo += 0x08; 2680 if ((IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) && sc->ext_2ghz_lna) || 2681 (IEEE80211_IS_CHAN_5GHZ(sc->sc_curchan) && sc->ext_5ghz_lna)) 2682 lo += 0x10; 2683 hi = lo + 0x20; 2684 2685 /* retrieve false CCA count since last call (clear on read) */ 2686 cca = RAL_READ(sc, RT2661_STA_CSR1) & 0xffff; 2687 2688 if (dbm >= -35) { 2689 bbp17 = 0x60; 2690 } else if (dbm >= -58) { 2691 bbp17 = hi; 2692 } else if (dbm >= -66) { 2693 bbp17 = lo + 0x10; 2694 } else if (dbm >= -74) { 2695 bbp17 = lo + 0x08; 2696 } else { 2697 /* RSSI < -74dBm, tune using false CCA count */ 2698 2699 bbp17 = sc->bbp17; /* current value */ 2700 2701 hi -= 2 * (-74 - dbm); 2702 if (hi < lo) 2703 hi = lo; 2704 2705 if (bbp17 > hi) { 2706 bbp17 = hi; 2707 2708 } else if (cca > 512) { 2709 if (++bbp17 > hi) 2710 bbp17 = hi; 2711 } else if (cca < 100) { 2712 if (--bbp17 < lo) 2713 bbp17 = lo; 2714 } 2715 } 2716 2717 if (bbp17 != sc->bbp17) { 2718 rt2661_bbp_write(sc, 17, bbp17); 2719 sc->bbp17 = bbp17; 2720 } 2721 } 2722 2723 /* 2724 * Enter/Leave radar detection mode. 2725 * This is for 802.11h additional regulatory domains. 2726 */ 2727 static void 2728 rt2661_radar_start(struct rt2661_softc *sc) 2729 { 2730 uint32_t tmp; 2731 2732 /* disable Rx */ 2733 tmp = RAL_READ(sc, RT2661_TXRX_CSR0); 2734 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp | RT2661_DISABLE_RX); 2735 2736 rt2661_bbp_write(sc, 82, 0x20); 2737 rt2661_bbp_write(sc, 83, 0x00); 2738 rt2661_bbp_write(sc, 84, 0x40); 2739 2740 /* save current BBP registers values */ 2741 sc->bbp18 = rt2661_bbp_read(sc, 18); 2742 sc->bbp21 = rt2661_bbp_read(sc, 21); 2743 sc->bbp22 = rt2661_bbp_read(sc, 22); 2744 sc->bbp16 = rt2661_bbp_read(sc, 16); 2745 sc->bbp17 = rt2661_bbp_read(sc, 17); 2746 sc->bbp64 = rt2661_bbp_read(sc, 64); 2747 2748 rt2661_bbp_write(sc, 18, 0xff); 2749 rt2661_bbp_write(sc, 21, 0x3f); 2750 rt2661_bbp_write(sc, 22, 0x3f); 2751 rt2661_bbp_write(sc, 16, 0xbd); 2752 rt2661_bbp_write(sc, 17, sc->ext_5ghz_lna ? 0x44 : 0x34); 2753 rt2661_bbp_write(sc, 64, 0x21); 2754 2755 /* restore Rx filter */ 2756 RAL_WRITE(sc, RT2661_TXRX_CSR0, tmp); 2757 } 2758 2759 static int 2760 rt2661_radar_stop(struct rt2661_softc *sc) 2761 { 2762 uint8_t bbp66; 2763 2764 /* read radar detection result */ 2765 bbp66 = rt2661_bbp_read(sc, 66); 2766 2767 /* restore BBP registers values */ 2768 rt2661_bbp_write(sc, 16, sc->bbp16); 2769 rt2661_bbp_write(sc, 17, sc->bbp17); 2770 rt2661_bbp_write(sc, 18, sc->bbp18); 2771 rt2661_bbp_write(sc, 21, sc->bbp21); 2772 rt2661_bbp_write(sc, 22, sc->bbp22); 2773 rt2661_bbp_write(sc, 64, sc->bbp64); 2774 2775 return bbp66 == 1; 2776 } 2777 #endif 2778 2779 static int 2780 rt2661_prepare_beacon(struct rt2661_softc *sc) 2781 { 2782 struct ieee80211com *ic = &sc->sc_ic; 2783 struct ieee80211_beacon_offsets bo; 2784 struct rt2661_tx_desc desc; 2785 struct mbuf *m0; 2786 int rate; 2787 2788 m0 = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo); 2789 if (m0 == NULL) { 2790 device_printf(sc->sc_dev, "could not allocate beacon frame\n"); 2791 return ENOBUFS; 2792 } 2793 2794 /* send beacons at the lowest available rate */ 2795 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_bss->ni_chan) ? 12 : 2; 2796 2797 rt2661_setup_tx_desc(sc, &desc, RT2661_TX_TIMESTAMP, RT2661_TX_HWSEQ, 2798 m0->m_pkthdr.len, rate, NULL, 0, RT2661_QID_MGT); 2799 2800 /* copy the first 24 bytes of Tx descriptor into NIC memory */ 2801 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0, (uint8_t *)&desc, 24); 2802 2803 /* copy beacon header and payload into NIC memory */ 2804 RAL_WRITE_REGION_1(sc, RT2661_HW_BEACON_BASE0 + 24, 2805 mtod(m0, uint8_t *), m0->m_pkthdr.len); 2806 2807 m_freem(m0); 2808 2809 return 0; 2810 } 2811 2812 /* 2813 * Enable TSF synchronization and tell h/w to start sending beacons for IBSS 2814 * and HostAP operating modes. 2815 */ 2816 static void 2817 rt2661_enable_tsf_sync(struct rt2661_softc *sc) 2818 { 2819 struct ieee80211com *ic = &sc->sc_ic; 2820 uint32_t tmp; 2821 2822 if (ic->ic_opmode != IEEE80211_M_STA) { 2823 /* 2824 * Change default 16ms TBTT adjustment to 8ms. 2825 * Must be done before enabling beacon generation. 2826 */ 2827 RAL_WRITE(sc, RT2661_TXRX_CSR10, 1 << 12 | 8); 2828 } 2829 2830 tmp = RAL_READ(sc, RT2661_TXRX_CSR9) & 0xff000000; 2831 2832 /* set beacon interval (in 1/16ms unit) */ 2833 tmp |= ic->ic_bss->ni_intval * 16; 2834 2835 tmp |= RT2661_TSF_TICKING | RT2661_ENABLE_TBTT; 2836 if (ic->ic_opmode == IEEE80211_M_STA) 2837 tmp |= RT2661_TSF_MODE(1); 2838 else 2839 tmp |= RT2661_TSF_MODE(2) | RT2661_GENERATE_BEACON; 2840 2841 RAL_WRITE(sc, RT2661_TXRX_CSR9, tmp); 2842 } 2843 2844 /* 2845 * Retrieve the "Received Signal Strength Indicator" from the raw values 2846 * contained in Rx descriptors. The computation depends on which band the 2847 * frame was received. Correction values taken from the reference driver. 2848 */ 2849 static int 2850 rt2661_get_rssi(struct rt2661_softc *sc, uint8_t raw) 2851 { 2852 int lna, agc, rssi; 2853 2854 lna = (raw >> 5) & 0x3; 2855 agc = raw & 0x1f; 2856 2857 rssi = 2 * agc; 2858 2859 if (IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan)) { 2860 rssi += sc->rssi_2ghz_corr; 2861 2862 if (lna == 1) 2863 rssi -= 64; 2864 else if (lna == 2) 2865 rssi -= 74; 2866 else if (lna == 3) 2867 rssi -= 90; 2868 } else { 2869 rssi += sc->rssi_5ghz_corr; 2870 2871 if (lna == 1) 2872 rssi -= 64; 2873 else if (lna == 2) 2874 rssi -= 86; 2875 else if (lna == 3) 2876 rssi -= 100; 2877 } 2878 return rssi; 2879 } 2880