1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /*- 24 * Ralink Technology RT2560 chipset driver 25 * http://www.ralinktech.com/ 26 */ 27 28 #include <sys/param.h> 29 #include <sys/sysctl.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 42 #include <machine/bus.h> 43 #include <machine/resource.h> 44 #include <sys/rman.h> 45 46 #include <net/bpf.h> 47 #include <net/if.h> 48 #include <net/if_arp.h> 49 #include <net/ethernet.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 #include <net/if_types.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_radiotap.h> 56 #include <net80211/ieee80211_regdomain.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/if_ether.h> 63 64 #include <dev/ral/if_ralrate.h> 65 #include <dev/ral/rt2560reg.h> 66 #include <dev/ral/rt2560var.h> 67 68 #define RT2560_RSSI(sc, rssi) \ 69 ((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ? \ 70 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0) 71 72 #ifdef RAL_DEBUG 73 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) 74 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) 75 extern int ral_debug; 76 #else 77 #define DPRINTF(x) 78 #define DPRINTFN(n, x) 79 #endif 80 81 static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int, 82 int); 83 static int rt2560_alloc_tx_ring(struct rt2560_softc *, 84 struct rt2560_tx_ring *, int); 85 static void rt2560_reset_tx_ring(struct rt2560_softc *, 86 struct rt2560_tx_ring *); 87 static void rt2560_free_tx_ring(struct rt2560_softc *, 88 struct rt2560_tx_ring *); 89 static int rt2560_alloc_rx_ring(struct rt2560_softc *, 90 struct rt2560_rx_ring *, int); 91 static void rt2560_reset_rx_ring(struct rt2560_softc *, 92 struct rt2560_rx_ring *); 93 static void rt2560_free_rx_ring(struct rt2560_softc *, 94 struct rt2560_rx_ring *); 95 static struct ieee80211_node *rt2560_node_alloc( 96 struct ieee80211_node_table *); 97 static int rt2560_media_change(struct ifnet *); 98 static void rt2560_iter_func(void *, struct ieee80211_node *); 99 static void rt2560_update_rssadapt(void *); 100 static int rt2560_newstate(struct ieee80211com *, 101 enum ieee80211_state, int); 102 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); 103 static void rt2560_encryption_intr(struct rt2560_softc *); 104 static void rt2560_tx_intr(struct rt2560_softc *); 105 static void rt2560_prio_intr(struct rt2560_softc *); 106 static void rt2560_decryption_intr(struct rt2560_softc *); 107 static void rt2560_rx_intr(struct rt2560_softc *); 108 static void rt2560_beacon_update(struct ieee80211com *, int item); 109 static void rt2560_beacon_expire(struct rt2560_softc *); 110 static void rt2560_wakeup_expire(struct rt2560_softc *); 111 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *); 112 static int rt2560_ack_rate(struct ieee80211com *, int); 113 static void rt2560_scan_start(struct ieee80211com *); 114 static void rt2560_scan_end(struct ieee80211com *); 115 static void rt2560_set_channel(struct ieee80211com *); 116 static uint16_t rt2560_txtime(int, int, uint32_t); 117 static uint8_t rt2560_plcp_signal(int); 118 static void rt2560_setup_tx_desc(struct rt2560_softc *, 119 struct rt2560_tx_desc *, uint32_t, int, int, int, 120 bus_addr_t); 121 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, 122 struct ieee80211_node *); 123 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, 124 struct ieee80211_node *); 125 static struct mbuf *rt2560_get_rts(struct rt2560_softc *, 126 struct ieee80211_frame *, uint16_t); 127 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, 128 struct ieee80211_node *); 129 static void rt2560_start(struct ifnet *); 130 static void rt2560_watchdog(void *); 131 static int rt2560_reset(struct ifnet *); 132 static int rt2560_ioctl(struct ifnet *, u_long, caddr_t); 133 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, 134 uint8_t); 135 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); 136 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, 137 uint32_t); 138 static void rt2560_set_chan(struct rt2560_softc *, 139 struct ieee80211_channel *); 140 #if 0 141 static void rt2560_disable_rf_tune(struct rt2560_softc *); 142 #endif 143 static void rt2560_enable_tsf_sync(struct rt2560_softc *); 144 static void rt2560_update_plcp(struct rt2560_softc *); 145 static void rt2560_update_slot(struct ifnet *); 146 static void rt2560_set_basicrates(struct rt2560_softc *); 147 static void rt2560_update_led(struct rt2560_softc *, int, int); 148 static void rt2560_set_bssid(struct rt2560_softc *, const uint8_t *); 149 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *); 150 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); 151 static void rt2560_update_promisc(struct rt2560_softc *); 152 static const char *rt2560_get_rf(int); 153 static void rt2560_read_eeprom(struct rt2560_softc *); 154 static int rt2560_bbp_init(struct rt2560_softc *); 155 static void rt2560_set_txantenna(struct rt2560_softc *, int); 156 static void rt2560_set_rxantenna(struct rt2560_softc *, int); 157 static void rt2560_init(void *); 158 static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *, 159 const struct ieee80211_bpf_params *); 160 161 static const struct { 162 uint32_t reg; 163 uint32_t val; 164 } rt2560_def_mac[] = { 165 RT2560_DEF_MAC 166 }; 167 168 static const struct { 169 uint8_t reg; 170 uint8_t val; 171 } rt2560_def_bbp[] = { 172 RT2560_DEF_BBP 173 }; 174 175 static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; 176 static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; 177 static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; 178 static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; 179 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; 180 static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; 181 static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; 182 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; 183 184 static const struct { 185 uint8_t chan; 186 uint32_t r1, r2, r4; 187 } rt2560_rf5222[] = { 188 RT2560_RF5222 189 }; 190 191 int 192 rt2560_attach(device_t dev, int id) 193 { 194 struct rt2560_softc *sc = device_get_softc(dev); 195 struct ieee80211com *ic = &sc->sc_ic; 196 struct ifnet *ifp; 197 int error, bands; 198 199 sc->sc_dev = dev; 200 201 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 202 MTX_DEF | MTX_RECURSE); 203 204 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 205 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE); 206 207 /* retrieve RT2560 rev. no */ 208 sc->asic_rev = RAL_READ(sc, RT2560_CSR0); 209 210 /* retrieve MAC address */ 211 rt2560_get_macaddr(sc, ic->ic_myaddr); 212 213 /* retrieve RF rev. no and various other things from EEPROM */ 214 rt2560_read_eeprom(sc); 215 216 device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", 217 sc->asic_rev, rt2560_get_rf(sc->rf_rev)); 218 219 /* 220 * Allocate Tx and Rx rings. 221 */ 222 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); 223 if (error != 0) { 224 device_printf(sc->sc_dev, "could not allocate Tx ring\n"); 225 goto fail1; 226 } 227 228 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); 229 if (error != 0) { 230 device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); 231 goto fail2; 232 } 233 234 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); 235 if (error != 0) { 236 device_printf(sc->sc_dev, "could not allocate Prio ring\n"); 237 goto fail3; 238 } 239 240 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); 241 if (error != 0) { 242 device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); 243 goto fail4; 244 } 245 246 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); 247 if (error != 0) { 248 device_printf(sc->sc_dev, "could not allocate Rx ring\n"); 249 goto fail5; 250 } 251 252 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 253 if (ifp == NULL) { 254 device_printf(sc->sc_dev, "can not if_alloc()\n"); 255 goto fail6; 256 } 257 258 ifp->if_softc = sc; 259 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 260 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 261 ifp->if_init = rt2560_init; 262 ifp->if_ioctl = rt2560_ioctl; 263 ifp->if_start = rt2560_start; 264 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 265 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 266 IFQ_SET_READY(&ifp->if_snd); 267 268 ic->ic_ifp = ifp; 269 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 270 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 271 ic->ic_state = IEEE80211_S_INIT; 272 273 /* set device capabilities */ 274 ic->ic_caps = 275 IEEE80211_C_IBSS | /* IBSS mode supported */ 276 IEEE80211_C_MONITOR | /* monitor mode supported */ 277 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 278 IEEE80211_C_TXPMGT | /* tx power management */ 279 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 280 IEEE80211_C_SHSLOT | /* short slot time supported */ 281 IEEE80211_C_BGSCAN | /* bg scanning support */ 282 IEEE80211_C_WPA; /* 802.11i */ 283 284 bands = 0; 285 setbit(&bands, IEEE80211_MODE_11B); 286 setbit(&bands, IEEE80211_MODE_11G); 287 if (sc->rf_rev == RT2560_RF_5222) 288 setbit(&bands, IEEE80211_MODE_11A); 289 ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1); 290 291 ieee80211_ifattach(ic); 292 ic->ic_scan_start = rt2560_scan_start; 293 ic->ic_scan_end = rt2560_scan_end; 294 ic->ic_set_channel = rt2560_set_channel; 295 ic->ic_node_alloc = rt2560_node_alloc; 296 ic->ic_updateslot = rt2560_update_slot; 297 ic->ic_reset = rt2560_reset; 298 /* enable s/w bmiss handling in sta mode */ 299 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 300 301 /* override state transition machine */ 302 sc->sc_newstate = ic->ic_newstate; 303 ic->ic_newstate = rt2560_newstate; 304 ic->ic_raw_xmit = rt2560_raw_xmit; 305 ic->ic_update_beacon = rt2560_beacon_update; 306 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status); 307 308 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 309 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap), 310 &sc->sc_drvbpf); 311 312 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 313 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 314 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT); 315 316 sc->sc_txtap_len = sizeof sc->sc_txtap; 317 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 318 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT); 319 320 /* 321 * Add a few sysctl knobs. 322 */ 323 sc->dwelltime = 200; 324 325 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 326 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 327 "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); 328 329 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 330 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 331 "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); 332 333 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 334 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", 335 CTLFLAG_RW, &sc->dwelltime, 0, 336 "channel dwell time (ms) for AP/station scanning"); 337 338 if (bootverbose) 339 ieee80211_announce(ic); 340 341 return 0; 342 343 fail6: rt2560_free_rx_ring(sc, &sc->rxq); 344 fail5: rt2560_free_tx_ring(sc, &sc->bcnq); 345 fail4: rt2560_free_tx_ring(sc, &sc->prioq); 346 fail3: rt2560_free_tx_ring(sc, &sc->atimq); 347 fail2: rt2560_free_tx_ring(sc, &sc->txq); 348 fail1: mtx_destroy(&sc->sc_mtx); 349 350 return ENXIO; 351 } 352 353 int 354 rt2560_detach(void *xsc) 355 { 356 struct rt2560_softc *sc = xsc; 357 struct ieee80211com *ic = &sc->sc_ic; 358 struct ifnet *ifp = ic->ic_ifp; 359 360 rt2560_stop(sc); 361 callout_stop(&sc->watchdog_ch); 362 callout_stop(&sc->rssadapt_ch); 363 364 bpfdetach(ifp); 365 ieee80211_ifdetach(ic); 366 367 rt2560_free_tx_ring(sc, &sc->txq); 368 rt2560_free_tx_ring(sc, &sc->atimq); 369 rt2560_free_tx_ring(sc, &sc->prioq); 370 rt2560_free_tx_ring(sc, &sc->bcnq); 371 rt2560_free_rx_ring(sc, &sc->rxq); 372 373 if_free(ifp); 374 375 mtx_destroy(&sc->sc_mtx); 376 377 return 0; 378 } 379 380 void 381 rt2560_resume(void *xsc) 382 { 383 struct rt2560_softc *sc = xsc; 384 struct ifnet *ifp = sc->sc_ic.ic_ifp; 385 386 if (ifp->if_flags & IFF_UP) { 387 ifp->if_init(ifp->if_softc); 388 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 389 ifp->if_start(ifp); 390 } 391 } 392 393 static void 394 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 395 { 396 if (error != 0) 397 return; 398 399 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 400 401 *(bus_addr_t *)arg = segs[0].ds_addr; 402 } 403 404 static int 405 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, 406 int count) 407 { 408 int i, error; 409 410 ring->count = count; 411 ring->queued = 0; 412 ring->cur = ring->next = 0; 413 ring->cur_encrypt = ring->next_encrypt = 0; 414 415 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 416 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 417 count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE, 418 0, NULL, NULL, &ring->desc_dmat); 419 if (error != 0) { 420 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 421 goto fail; 422 } 423 424 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 425 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 426 if (error != 0) { 427 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 428 goto fail; 429 } 430 431 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 432 count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 433 0); 434 if (error != 0) { 435 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 436 goto fail; 437 } 438 439 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, 440 M_NOWAIT | M_ZERO); 441 if (ring->data == NULL) { 442 device_printf(sc->sc_dev, "could not allocate soft data\n"); 443 error = ENOMEM; 444 goto fail; 445 } 446 447 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 448 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 449 MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL, 450 &ring->data_dmat); 451 if (error != 0) { 452 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 453 goto fail; 454 } 455 456 for (i = 0; i < count; i++) { 457 error = bus_dmamap_create(ring->data_dmat, 0, 458 &ring->data[i].map); 459 if (error != 0) { 460 device_printf(sc->sc_dev, "could not create DMA map\n"); 461 goto fail; 462 } 463 } 464 465 return 0; 466 467 fail: rt2560_free_tx_ring(sc, ring); 468 return error; 469 } 470 471 static void 472 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 473 { 474 struct rt2560_tx_desc *desc; 475 struct rt2560_tx_data *data; 476 int i; 477 478 for (i = 0; i < ring->count; i++) { 479 desc = &ring->desc[i]; 480 data = &ring->data[i]; 481 482 if (data->m != NULL) { 483 bus_dmamap_sync(ring->data_dmat, data->map, 484 BUS_DMASYNC_POSTWRITE); 485 bus_dmamap_unload(ring->data_dmat, data->map); 486 m_freem(data->m); 487 data->m = NULL; 488 } 489 490 if (data->ni != NULL) { 491 ieee80211_free_node(data->ni); 492 data->ni = NULL; 493 } 494 495 desc->flags = 0; 496 } 497 498 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 499 500 ring->queued = 0; 501 ring->cur = ring->next = 0; 502 ring->cur_encrypt = ring->next_encrypt = 0; 503 } 504 505 static void 506 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 507 { 508 struct rt2560_tx_data *data; 509 int i; 510 511 if (ring->desc != NULL) { 512 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 513 BUS_DMASYNC_POSTWRITE); 514 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 515 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 516 } 517 518 if (ring->desc_dmat != NULL) 519 bus_dma_tag_destroy(ring->desc_dmat); 520 521 if (ring->data != NULL) { 522 for (i = 0; i < ring->count; i++) { 523 data = &ring->data[i]; 524 525 if (data->m != NULL) { 526 bus_dmamap_sync(ring->data_dmat, data->map, 527 BUS_DMASYNC_POSTWRITE); 528 bus_dmamap_unload(ring->data_dmat, data->map); 529 m_freem(data->m); 530 } 531 532 if (data->ni != NULL) 533 ieee80211_free_node(data->ni); 534 535 if (data->map != NULL) 536 bus_dmamap_destroy(ring->data_dmat, data->map); 537 } 538 539 free(ring->data, M_DEVBUF); 540 } 541 542 if (ring->data_dmat != NULL) 543 bus_dma_tag_destroy(ring->data_dmat); 544 } 545 546 static int 547 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, 548 int count) 549 { 550 struct rt2560_rx_desc *desc; 551 struct rt2560_rx_data *data; 552 bus_addr_t physaddr; 553 int i, error; 554 555 ring->count = count; 556 ring->cur = ring->next = 0; 557 ring->cur_decrypt = 0; 558 559 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 560 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 561 count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE, 562 0, NULL, NULL, &ring->desc_dmat); 563 if (error != 0) { 564 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 565 goto fail; 566 } 567 568 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 569 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 570 if (error != 0) { 571 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 572 goto fail; 573 } 574 575 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 576 count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 577 0); 578 if (error != 0) { 579 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 580 goto fail; 581 } 582 583 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, 584 M_NOWAIT | M_ZERO); 585 if (ring->data == NULL) { 586 device_printf(sc->sc_dev, "could not allocate soft data\n"); 587 error = ENOMEM; 588 goto fail; 589 } 590 591 /* 592 * Pre-allocate Rx buffers and populate Rx ring. 593 */ 594 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 595 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 596 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 597 if (error != 0) { 598 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 599 goto fail; 600 } 601 602 for (i = 0; i < count; i++) { 603 desc = &sc->rxq.desc[i]; 604 data = &sc->rxq.data[i]; 605 606 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 607 if (error != 0) { 608 device_printf(sc->sc_dev, "could not create DMA map\n"); 609 goto fail; 610 } 611 612 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 613 if (data->m == NULL) { 614 device_printf(sc->sc_dev, 615 "could not allocate rx mbuf\n"); 616 error = ENOMEM; 617 goto fail; 618 } 619 620 error = bus_dmamap_load(ring->data_dmat, data->map, 621 mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, 622 &physaddr, 0); 623 if (error != 0) { 624 device_printf(sc->sc_dev, 625 "could not load rx buf DMA map"); 626 goto fail; 627 } 628 629 desc->flags = htole32(RT2560_RX_BUSY); 630 desc->physaddr = htole32(physaddr); 631 } 632 633 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 634 635 return 0; 636 637 fail: rt2560_free_rx_ring(sc, ring); 638 return error; 639 } 640 641 static void 642 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 643 { 644 int i; 645 646 for (i = 0; i < ring->count; i++) { 647 ring->desc[i].flags = htole32(RT2560_RX_BUSY); 648 ring->data[i].drop = 0; 649 } 650 651 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 652 653 ring->cur = ring->next = 0; 654 ring->cur_decrypt = 0; 655 } 656 657 static void 658 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 659 { 660 struct rt2560_rx_data *data; 661 int i; 662 663 if (ring->desc != NULL) { 664 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 665 BUS_DMASYNC_POSTWRITE); 666 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 667 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 668 } 669 670 if (ring->desc_dmat != NULL) 671 bus_dma_tag_destroy(ring->desc_dmat); 672 673 if (ring->data != NULL) { 674 for (i = 0; i < ring->count; i++) { 675 data = &ring->data[i]; 676 677 if (data->m != NULL) { 678 bus_dmamap_sync(ring->data_dmat, data->map, 679 BUS_DMASYNC_POSTREAD); 680 bus_dmamap_unload(ring->data_dmat, data->map); 681 m_freem(data->m); 682 } 683 684 if (data->map != NULL) 685 bus_dmamap_destroy(ring->data_dmat, data->map); 686 } 687 688 free(ring->data, M_DEVBUF); 689 } 690 691 if (ring->data_dmat != NULL) 692 bus_dma_tag_destroy(ring->data_dmat); 693 } 694 695 static struct ieee80211_node * 696 rt2560_node_alloc(struct ieee80211_node_table *nt) 697 { 698 struct rt2560_node *rn; 699 700 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE, 701 M_NOWAIT | M_ZERO); 702 703 return (rn != NULL) ? &rn->ni : NULL; 704 } 705 706 static int 707 rt2560_media_change(struct ifnet *ifp) 708 { 709 struct rt2560_softc *sc = ifp->if_softc; 710 int error; 711 712 error = ieee80211_media_change(ifp); 713 714 if (error == ENETRESET) { 715 if ((ifp->if_flags & IFF_UP) && 716 (ifp->if_drv_flags & IFF_DRV_RUNNING)) 717 rt2560_init(sc); 718 } 719 return error; 720 } 721 722 /* 723 * This function is called for each node present in the node station table. 724 */ 725 static void 726 rt2560_iter_func(void *arg, struct ieee80211_node *ni) 727 { 728 struct rt2560_node *rn = (struct rt2560_node *)ni; 729 730 ral_rssadapt_updatestats(&rn->rssadapt); 731 } 732 733 /* 734 * This function is called periodically (every 100ms) in RUN state to update 735 * the rate adaptation statistics. 736 */ 737 static void 738 rt2560_update_rssadapt(void *arg) 739 { 740 struct rt2560_softc *sc = arg; 741 struct ieee80211com *ic = &sc->sc_ic; 742 743 RAL_LOCK(sc); 744 745 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg); 746 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc); 747 748 RAL_UNLOCK(sc); 749 } 750 751 static int 752 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 753 { 754 struct rt2560_softc *sc = ic->ic_ifp->if_softc; 755 enum ieee80211_state ostate; 756 struct ieee80211_node *ni; 757 struct mbuf *m; 758 int error = 0; 759 760 ostate = ic->ic_state; 761 762 switch (nstate) { 763 case IEEE80211_S_INIT: 764 callout_stop(&sc->rssadapt_ch); 765 766 if (ostate == IEEE80211_S_RUN) { 767 /* abort TSF synchronization */ 768 RAL_WRITE(sc, RT2560_CSR14, 0); 769 770 /* turn association led off */ 771 rt2560_update_led(sc, 0, 0); 772 } 773 break; 774 case IEEE80211_S_RUN: 775 ni = ic->ic_bss; 776 777 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 778 rt2560_update_plcp(sc); 779 rt2560_set_basicrates(sc); 780 rt2560_set_bssid(sc, ni->ni_bssid); 781 } 782 783 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 784 ic->ic_opmode == IEEE80211_M_IBSS) { 785 m = ieee80211_beacon_alloc(ni, &sc->sc_bo); 786 if (m == NULL) { 787 device_printf(sc->sc_dev, 788 "could not allocate beacon\n"); 789 error = ENOBUFS; 790 break; 791 } 792 793 ieee80211_ref_node(ni); 794 error = rt2560_tx_bcn(sc, m, ni); 795 if (error != 0) 796 break; 797 } 798 799 /* turn assocation led on */ 800 rt2560_update_led(sc, 1, 0); 801 802 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 803 callout_reset(&sc->rssadapt_ch, hz / 10, 804 rt2560_update_rssadapt, sc); 805 806 rt2560_enable_tsf_sync(sc); 807 } 808 break; 809 case IEEE80211_S_SCAN: 810 case IEEE80211_S_AUTH: 811 case IEEE80211_S_ASSOC: 812 default: 813 break; 814 } 815 816 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 817 } 818 819 /* 820 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 821 * 93C66). 822 */ 823 static uint16_t 824 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) 825 { 826 uint32_t tmp; 827 uint16_t val; 828 int n; 829 830 /* clock C once before the first command */ 831 RT2560_EEPROM_CTL(sc, 0); 832 833 RT2560_EEPROM_CTL(sc, RT2560_S); 834 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 835 RT2560_EEPROM_CTL(sc, RT2560_S); 836 837 /* write start bit (1) */ 838 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 839 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 840 841 /* write READ opcode (10) */ 842 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 843 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 844 RT2560_EEPROM_CTL(sc, RT2560_S); 845 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 846 847 /* write address (A5-A0 or A7-A0) */ 848 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; 849 for (; n >= 0; n--) { 850 RT2560_EEPROM_CTL(sc, RT2560_S | 851 (((addr >> n) & 1) << RT2560_SHIFT_D)); 852 RT2560_EEPROM_CTL(sc, RT2560_S | 853 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); 854 } 855 856 RT2560_EEPROM_CTL(sc, RT2560_S); 857 858 /* read data Q15-Q0 */ 859 val = 0; 860 for (n = 15; n >= 0; n--) { 861 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 862 tmp = RAL_READ(sc, RT2560_CSR21); 863 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; 864 RT2560_EEPROM_CTL(sc, RT2560_S); 865 } 866 867 RT2560_EEPROM_CTL(sc, 0); 868 869 /* clear Chip Select and clock C */ 870 RT2560_EEPROM_CTL(sc, RT2560_S); 871 RT2560_EEPROM_CTL(sc, 0); 872 RT2560_EEPROM_CTL(sc, RT2560_C); 873 874 return val; 875 } 876 877 /* 878 * Some frames were processed by the hardware cipher engine and are ready for 879 * transmission. 880 */ 881 static void 882 rt2560_encryption_intr(struct rt2560_softc *sc) 883 { 884 struct rt2560_tx_desc *desc; 885 int hw; 886 887 /* retrieve last descriptor index processed by cipher engine */ 888 hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr; 889 hw /= RT2560_TX_DESC_SIZE; 890 891 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 892 BUS_DMASYNC_POSTREAD); 893 894 for (; sc->txq.next_encrypt != hw;) { 895 desc = &sc->txq.desc[sc->txq.next_encrypt]; 896 897 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 898 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY)) 899 break; 900 901 /* for TKIP, swap eiv field to fix a bug in ASIC */ 902 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) == 903 RT2560_TX_CIPHER_TKIP) 904 desc->eiv = bswap32(desc->eiv); 905 906 /* mark the frame ready for transmission */ 907 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 908 909 DPRINTFN(15, ("encryption done idx=%u\n", 910 sc->txq.next_encrypt)); 911 912 sc->txq.next_encrypt = 913 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; 914 } 915 916 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 917 BUS_DMASYNC_PREWRITE); 918 919 /* kick Tx */ 920 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); 921 } 922 923 static void 924 rt2560_tx_intr(struct rt2560_softc *sc) 925 { 926 struct ieee80211com *ic = &sc->sc_ic; 927 struct ifnet *ifp = ic->ic_ifp; 928 struct rt2560_tx_desc *desc; 929 struct rt2560_tx_data *data; 930 struct rt2560_node *rn; 931 932 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 933 BUS_DMASYNC_POSTREAD); 934 935 for (;;) { 936 desc = &sc->txq.desc[sc->txq.next]; 937 data = &sc->txq.data[sc->txq.next]; 938 939 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 940 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) || 941 !(le32toh(desc->flags) & RT2560_TX_VALID)) 942 break; 943 944 rn = (struct rt2560_node *)data->ni; 945 946 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) { 947 case RT2560_TX_SUCCESS: 948 DPRINTFN(10, ("data frame sent successfully\n")); 949 if (data->id.id_node != NULL) { 950 ral_rssadapt_raise_rate(ic, &rn->rssadapt, 951 &data->id); 952 } 953 ifp->if_opackets++; 954 break; 955 956 case RT2560_TX_SUCCESS_RETRY: 957 DPRINTFN(9, ("data frame sent after %u retries\n", 958 (le32toh(desc->flags) >> 5) & 0x7)); 959 ifp->if_opackets++; 960 break; 961 962 case RT2560_TX_FAIL_RETRY: 963 DPRINTFN(9, ("sending data frame failed (too much " 964 "retries)\n")); 965 if (data->id.id_node != NULL) { 966 ral_rssadapt_lower_rate(ic, data->ni, 967 &rn->rssadapt, &data->id); 968 } 969 ifp->if_oerrors++; 970 break; 971 972 case RT2560_TX_FAIL_INVALID: 973 case RT2560_TX_FAIL_OTHER: 974 default: 975 device_printf(sc->sc_dev, "sending data frame failed " 976 "0x%08x\n", le32toh(desc->flags)); 977 ifp->if_oerrors++; 978 } 979 980 bus_dmamap_sync(sc->txq.data_dmat, data->map, 981 BUS_DMASYNC_POSTWRITE); 982 bus_dmamap_unload(sc->txq.data_dmat, data->map); 983 m_freem(data->m); 984 data->m = NULL; 985 ieee80211_free_node(data->ni); 986 data->ni = NULL; 987 988 /* descriptor is no longer valid */ 989 desc->flags &= ~htole32(RT2560_TX_VALID); 990 991 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); 992 993 sc->txq.queued--; 994 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; 995 } 996 997 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 998 BUS_DMASYNC_PREWRITE); 999 1000 sc->sc_tx_timer = 0; 1001 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1002 rt2560_start(ifp); 1003 } 1004 1005 static void 1006 rt2560_prio_intr(struct rt2560_softc *sc) 1007 { 1008 struct ieee80211com *ic = &sc->sc_ic; 1009 struct ifnet *ifp = ic->ic_ifp; 1010 struct rt2560_tx_desc *desc; 1011 struct rt2560_tx_data *data; 1012 struct ieee80211_node *ni; 1013 struct mbuf *m; 1014 int flags; 1015 1016 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1017 BUS_DMASYNC_POSTREAD); 1018 1019 for (;;) { 1020 desc = &sc->prioq.desc[sc->prioq.next]; 1021 data = &sc->prioq.data[sc->prioq.next]; 1022 1023 flags = le32toh(desc->flags); 1024 if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0) 1025 break; 1026 1027 switch (flags & RT2560_TX_RESULT_MASK) { 1028 case RT2560_TX_SUCCESS: 1029 DPRINTFN(10, ("mgt frame sent successfully\n")); 1030 break; 1031 1032 case RT2560_TX_SUCCESS_RETRY: 1033 DPRINTFN(9, ("mgt frame sent after %u retries\n", 1034 (flags >> 5) & 0x7)); 1035 break; 1036 1037 case RT2560_TX_FAIL_RETRY: 1038 DPRINTFN(9, ("sending mgt frame failed (too much " 1039 "retries)\n")); 1040 break; 1041 1042 case RT2560_TX_FAIL_INVALID: 1043 case RT2560_TX_FAIL_OTHER: 1044 default: 1045 device_printf(sc->sc_dev, "sending mgt frame failed " 1046 "0x%08x\n", flags); 1047 break; 1048 } 1049 1050 bus_dmamap_sync(sc->prioq.data_dmat, data->map, 1051 BUS_DMASYNC_POSTWRITE); 1052 bus_dmamap_unload(sc->prioq.data_dmat, data->map); 1053 1054 m = data->m; 1055 data->m = NULL; 1056 ni = data->ni; 1057 data->ni = NULL; 1058 1059 /* descriptor is no longer valid */ 1060 desc->flags &= ~htole32(RT2560_TX_VALID); 1061 1062 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); 1063 1064 sc->prioq.queued--; 1065 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; 1066 1067 if (m->m_flags & M_TXCB) 1068 ieee80211_process_callback(ni, m, 1069 (flags & RT2560_TX_RESULT_MASK) &~ 1070 (RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY)); 1071 m_freem(m); 1072 ieee80211_free_node(ni); 1073 } 1074 1075 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1076 BUS_DMASYNC_PREWRITE); 1077 1078 sc->sc_tx_timer = 0; 1079 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1080 rt2560_start(ifp); 1081 } 1082 1083 /* 1084 * Some frames were processed by the hardware cipher engine and are ready for 1085 * transmission to the IEEE802.11 layer. 1086 */ 1087 static void 1088 rt2560_decryption_intr(struct rt2560_softc *sc) 1089 { 1090 struct ieee80211com *ic = &sc->sc_ic; 1091 struct ifnet *ifp = ic->ic_ifp; 1092 struct rt2560_rx_desc *desc; 1093 struct rt2560_rx_data *data; 1094 bus_addr_t physaddr; 1095 struct ieee80211_frame *wh; 1096 struct ieee80211_node *ni; 1097 struct rt2560_node *rn; 1098 struct mbuf *mnew, *m; 1099 int hw, error; 1100 1101 /* retrieve last decriptor index processed by cipher engine */ 1102 hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr; 1103 hw /= RT2560_RX_DESC_SIZE; 1104 1105 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1106 BUS_DMASYNC_POSTREAD); 1107 1108 for (; sc->rxq.cur_decrypt != hw;) { 1109 desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; 1110 data = &sc->rxq.data[sc->rxq.cur_decrypt]; 1111 1112 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1113 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1114 break; 1115 1116 if (data->drop) { 1117 ifp->if_ierrors++; 1118 goto skip; 1119 } 1120 1121 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && 1122 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) { 1123 ifp->if_ierrors++; 1124 goto skip; 1125 } 1126 1127 /* 1128 * Try to allocate a new mbuf for this ring element and load it 1129 * before processing the current mbuf. If the ring element 1130 * cannot be loaded, drop the received packet and reuse the old 1131 * mbuf. In the unlikely case that the old mbuf can't be 1132 * reloaded either, explicitly panic. 1133 */ 1134 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1135 if (mnew == NULL) { 1136 ifp->if_ierrors++; 1137 goto skip; 1138 } 1139 1140 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1141 BUS_DMASYNC_POSTREAD); 1142 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1143 1144 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1145 mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr, 1146 &physaddr, 0); 1147 if (error != 0) { 1148 m_freem(mnew); 1149 1150 /* try to reload the old mbuf */ 1151 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1152 mtod(data->m, void *), MCLBYTES, 1153 rt2560_dma_map_addr, &physaddr, 0); 1154 if (error != 0) { 1155 /* very unlikely that it will fail... */ 1156 panic("%s: could not load old rx mbuf", 1157 device_get_name(sc->sc_dev)); 1158 } 1159 ifp->if_ierrors++; 1160 goto skip; 1161 } 1162 1163 /* 1164 * New mbuf successfully loaded, update Rx ring and continue 1165 * processing. 1166 */ 1167 m = data->m; 1168 data->m = mnew; 1169 desc->physaddr = htole32(physaddr); 1170 1171 /* finalize mbuf */ 1172 m->m_pkthdr.rcvif = ifp; 1173 m->m_pkthdr.len = m->m_len = 1174 (le32toh(desc->flags) >> 16) & 0xfff; 1175 1176 if (bpf_peers_present(sc->sc_drvbpf)) { 1177 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; 1178 uint32_t tsf_lo, tsf_hi; 1179 1180 /* get timestamp (low and high 32 bits) */ 1181 tsf_hi = RAL_READ(sc, RT2560_CSR17); 1182 tsf_lo = RAL_READ(sc, RT2560_CSR16); 1183 1184 tap->wr_tsf = 1185 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1186 tap->wr_flags = 0; 1187 tap->wr_rate = rt2560_rxrate(desc); 1188 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1189 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1190 tap->wr_antenna = sc->rx_ant; 1191 tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi); 1192 1193 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1194 } 1195 1196 sc->sc_flags |= RAL_INPUT_RUNNING; 1197 RAL_UNLOCK(sc); 1198 wh = mtod(m, struct ieee80211_frame *); 1199 ni = ieee80211_find_rxnode(ic, 1200 (struct ieee80211_frame_min *)wh); 1201 1202 /* send the frame to the 802.11 layer */ 1203 ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi), 1204 RT2560_NOISE_FLOOR, 0); 1205 1206 /* give rssi to the rate adatation algorithm */ 1207 rn = (struct rt2560_node *)ni; 1208 ral_rssadapt_input(ic, ni, &rn->rssadapt, 1209 RT2560_RSSI(sc, desc->rssi)); 1210 1211 /* node is no longer needed */ 1212 ieee80211_free_node(ni); 1213 1214 RAL_LOCK(sc); 1215 sc->sc_flags &= ~RAL_INPUT_RUNNING; 1216 skip: desc->flags = htole32(RT2560_RX_BUSY); 1217 1218 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); 1219 1220 sc->rxq.cur_decrypt = 1221 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; 1222 } 1223 1224 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1225 BUS_DMASYNC_PREWRITE); 1226 } 1227 1228 /* 1229 * Some frames were received. Pass them to the hardware cipher engine before 1230 * sending them to the 802.11 layer. 1231 */ 1232 static void 1233 rt2560_rx_intr(struct rt2560_softc *sc) 1234 { 1235 struct rt2560_rx_desc *desc; 1236 struct rt2560_rx_data *data; 1237 1238 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1239 BUS_DMASYNC_POSTREAD); 1240 1241 for (;;) { 1242 desc = &sc->rxq.desc[sc->rxq.cur]; 1243 data = &sc->rxq.data[sc->rxq.cur]; 1244 1245 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1246 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1247 break; 1248 1249 data->drop = 0; 1250 1251 if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) || 1252 (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) { 1253 /* 1254 * This should not happen since we did not request 1255 * to receive those frames when we filled RXCSR0. 1256 */ 1257 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1258 le32toh(desc->flags))); 1259 data->drop = 1; 1260 } 1261 1262 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { 1263 DPRINTFN(5, ("bad length\n")); 1264 data->drop = 1; 1265 } 1266 1267 /* mark the frame for decryption */ 1268 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); 1269 1270 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1271 1272 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; 1273 } 1274 1275 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1276 BUS_DMASYNC_PREWRITE); 1277 1278 /* kick decrypt */ 1279 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); 1280 } 1281 1282 static void 1283 rt2560_beacon_update(struct ieee80211com *ic, int item) 1284 { 1285 struct rt2560_softc *sc = ic->ic_ifp->if_softc; 1286 struct ieee80211_beacon_offsets *bo = &sc->sc_bo; 1287 1288 setbit(bo->bo_flags, item); 1289 } 1290 1291 /* 1292 * This function is called periodically in IBSS mode when a new beacon must be 1293 * sent out. 1294 */ 1295 static void 1296 rt2560_beacon_expire(struct rt2560_softc *sc) 1297 { 1298 struct ieee80211com *ic = &sc->sc_ic; 1299 struct rt2560_tx_data *data; 1300 1301 if (ic->ic_opmode != IEEE80211_M_IBSS && 1302 ic->ic_opmode != IEEE80211_M_HOSTAP) 1303 return; 1304 1305 data = &sc->bcnq.data[sc->bcnq.next]; 1306 /* 1307 * Don't send beacon if bsschan isn't set 1308 */ 1309 if (data->ni == NULL) 1310 return; 1311 1312 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 1313 bus_dmamap_unload(sc->bcnq.data_dmat, data->map); 1314 1315 ieee80211_beacon_update(data->ni, &sc->sc_bo, data->m, 1); 1316 1317 if (bpf_peers_present(ic->ic_rawbpf)) 1318 bpf_mtap(ic->ic_rawbpf, data->m); 1319 1320 rt2560_tx_bcn(sc, data->m, data->ni); 1321 1322 DPRINTFN(15, ("beacon expired\n")); 1323 1324 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT; 1325 } 1326 1327 /* ARGSUSED */ 1328 static void 1329 rt2560_wakeup_expire(struct rt2560_softc *sc) 1330 { 1331 DPRINTFN(2, ("wakeup expired\n")); 1332 } 1333 1334 void 1335 rt2560_intr(void *arg) 1336 { 1337 struct rt2560_softc *sc = arg; 1338 struct ifnet *ifp = sc->sc_ifp; 1339 uint32_t r; 1340 1341 RAL_LOCK(sc); 1342 1343 /* disable interrupts */ 1344 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 1345 1346 /* don't re-enable interrupts if we're shutting down */ 1347 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1348 RAL_UNLOCK(sc); 1349 return; 1350 } 1351 1352 r = RAL_READ(sc, RT2560_CSR7); 1353 RAL_WRITE(sc, RT2560_CSR7, r); 1354 1355 if (r & RT2560_BEACON_EXPIRE) 1356 rt2560_beacon_expire(sc); 1357 1358 if (r & RT2560_WAKEUP_EXPIRE) 1359 rt2560_wakeup_expire(sc); 1360 1361 if (r & RT2560_ENCRYPTION_DONE) 1362 rt2560_encryption_intr(sc); 1363 1364 if (r & RT2560_TX_DONE) 1365 rt2560_tx_intr(sc); 1366 1367 if (r & RT2560_PRIO_DONE) 1368 rt2560_prio_intr(sc); 1369 1370 if (r & RT2560_DECRYPTION_DONE) 1371 rt2560_decryption_intr(sc); 1372 1373 if (r & RT2560_RX_DONE) 1374 rt2560_rx_intr(sc); 1375 1376 /* re-enable interrupts */ 1377 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 1378 1379 RAL_UNLOCK(sc); 1380 } 1381 1382 /* quickly determine if a given rate is CCK or OFDM */ 1383 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1384 1385 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1386 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1387 1388 #define RAL_SIFS 10 /* us */ 1389 1390 #define RT2560_TXRX_TURNAROUND 10 /* us */ 1391 1392 /* 1393 * This function is only used by the Rx radiotap code. 1394 */ 1395 static uint8_t 1396 rt2560_rxrate(struct rt2560_rx_desc *desc) 1397 { 1398 if (le32toh(desc->flags) & RT2560_RX_OFDM) { 1399 /* reverse function of rt2560_plcp_signal */ 1400 switch (desc->rate) { 1401 case 0xb: return 12; 1402 case 0xf: return 18; 1403 case 0xa: return 24; 1404 case 0xe: return 36; 1405 case 0x9: return 48; 1406 case 0xd: return 72; 1407 case 0x8: return 96; 1408 case 0xc: return 108; 1409 } 1410 } else { 1411 if (desc->rate == 10) 1412 return 2; 1413 if (desc->rate == 20) 1414 return 4; 1415 if (desc->rate == 55) 1416 return 11; 1417 if (desc->rate == 110) 1418 return 22; 1419 } 1420 return 2; /* should not get there */ 1421 } 1422 1423 /* 1424 * Return the expected ack rate for a frame transmitted at rate `rate'. 1425 * XXX: this should depend on the destination node basic rate set. 1426 */ 1427 static int 1428 rt2560_ack_rate(struct ieee80211com *ic, int rate) 1429 { 1430 switch (rate) { 1431 /* CCK rates */ 1432 case 2: 1433 return 2; 1434 case 4: 1435 case 11: 1436 case 22: 1437 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1438 1439 /* OFDM rates */ 1440 case 12: 1441 case 18: 1442 return 12; 1443 case 24: 1444 case 36: 1445 return 24; 1446 case 48: 1447 case 72: 1448 case 96: 1449 case 108: 1450 return 48; 1451 } 1452 1453 /* default to 1Mbps */ 1454 return 2; 1455 } 1456 1457 /* 1458 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1459 * The function automatically determines the operating mode depending on the 1460 * given rate. `flags' indicates whether short preamble is in use or not. 1461 */ 1462 static uint16_t 1463 rt2560_txtime(int len, int rate, uint32_t flags) 1464 { 1465 uint16_t txtime; 1466 1467 if (RAL_RATE_IS_OFDM(rate)) { 1468 /* IEEE Std 802.11a-1999, pp. 37 */ 1469 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1470 txtime = 16 + 4 + 4 * txtime + 6; 1471 } else { 1472 /* IEEE Std 802.11b-1999, pp. 28 */ 1473 txtime = (16 * len + rate - 1) / rate; 1474 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1475 txtime += 72 + 24; 1476 else 1477 txtime += 144 + 48; 1478 } 1479 1480 return txtime; 1481 } 1482 1483 static uint8_t 1484 rt2560_plcp_signal(int rate) 1485 { 1486 switch (rate) { 1487 /* CCK rates (returned values are device-dependent) */ 1488 case 2: return 0x0; 1489 case 4: return 0x1; 1490 case 11: return 0x2; 1491 case 22: return 0x3; 1492 1493 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1494 case 12: return 0xb; 1495 case 18: return 0xf; 1496 case 24: return 0xa; 1497 case 36: return 0xe; 1498 case 48: return 0x9; 1499 case 72: return 0xd; 1500 case 96: return 0x8; 1501 case 108: return 0xc; 1502 1503 /* unsupported rates (should not get there) */ 1504 default: return 0xff; 1505 } 1506 } 1507 1508 static void 1509 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, 1510 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) 1511 { 1512 struct ieee80211com *ic = &sc->sc_ic; 1513 uint16_t plcp_length; 1514 int remainder; 1515 1516 desc->flags = htole32(flags); 1517 desc->flags |= htole32(len << 16); 1518 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : 1519 htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 1520 1521 desc->physaddr = htole32(physaddr); 1522 desc->wme = htole16( 1523 RT2560_AIFSN(2) | 1524 RT2560_LOGCWMIN(3) | 1525 RT2560_LOGCWMAX(8)); 1526 1527 /* setup PLCP fields */ 1528 desc->plcp_signal = rt2560_plcp_signal(rate); 1529 desc->plcp_service = 4; 1530 1531 len += IEEE80211_CRC_LEN; 1532 if (RAL_RATE_IS_OFDM(rate)) { 1533 desc->flags |= htole32(RT2560_TX_OFDM); 1534 1535 plcp_length = len & 0xfff; 1536 desc->plcp_length_hi = plcp_length >> 6; 1537 desc->plcp_length_lo = plcp_length & 0x3f; 1538 } else { 1539 plcp_length = (16 * len + rate - 1) / rate; 1540 if (rate == 22) { 1541 remainder = (16 * len) % 22; 1542 if (remainder != 0 && remainder < 7) 1543 desc->plcp_service |= RT2560_PLCP_LENGEXT; 1544 } 1545 desc->plcp_length_hi = plcp_length >> 8; 1546 desc->plcp_length_lo = plcp_length & 0xff; 1547 1548 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1549 desc->plcp_signal |= 0x08; 1550 } 1551 } 1552 1553 static int 1554 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, 1555 struct ieee80211_node *ni) 1556 { 1557 struct ieee80211com *ic = &sc->sc_ic; 1558 struct rt2560_tx_desc *desc; 1559 struct rt2560_tx_data *data; 1560 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1561 int nsegs, rate, error; 1562 1563 desc = &sc->bcnq.desc[sc->bcnq.cur]; 1564 data = &sc->bcnq.data[sc->bcnq.cur]; 1565 1566 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1567 1568 error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0, 1569 segs, &nsegs, BUS_DMA_NOWAIT); 1570 if (error != 0) { 1571 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1572 error); 1573 m_freem(m0); 1574 return error; 1575 } 1576 1577 if (bpf_peers_present(sc->sc_drvbpf)) { 1578 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1579 1580 tap->wt_flags = 0; 1581 tap->wt_rate = rate; 1582 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1583 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1584 tap->wt_antenna = sc->tx_ant; 1585 1586 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1587 } 1588 1589 data->m = m0; 1590 data->ni = ni; 1591 1592 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | 1593 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr); 1594 1595 DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n", 1596 m0->m_pkthdr.len, sc->bcnq.cur, rate)); 1597 1598 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1599 bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, 1600 BUS_DMASYNC_PREWRITE); 1601 1602 sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT; 1603 1604 return 0; 1605 } 1606 1607 static int 1608 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, 1609 struct ieee80211_node *ni) 1610 { 1611 struct ieee80211com *ic = &sc->sc_ic; 1612 struct rt2560_tx_desc *desc; 1613 struct rt2560_tx_data *data; 1614 struct ieee80211_frame *wh; 1615 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1616 uint16_t dur; 1617 uint32_t flags = 0; 1618 int nsegs, rate, error; 1619 1620 desc = &sc->prioq.desc[sc->prioq.cur]; 1621 data = &sc->prioq.data[sc->prioq.cur]; 1622 1623 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1624 1625 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1626 segs, &nsegs, 0); 1627 if (error != 0) { 1628 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1629 error); 1630 m_freem(m0); 1631 return error; 1632 } 1633 1634 if (bpf_peers_present(sc->sc_drvbpf)) { 1635 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1636 1637 tap->wt_flags = 0; 1638 tap->wt_rate = rate; 1639 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1640 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1641 tap->wt_antenna = sc->tx_ant; 1642 1643 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1644 } 1645 1646 data->m = m0; 1647 data->ni = ni; 1648 1649 wh = mtod(m0, struct ieee80211_frame *); 1650 1651 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1652 flags |= RT2560_TX_ACK; 1653 1654 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1655 RAL_SIFS; 1656 *(uint16_t *)wh->i_dur = htole16(dur); 1657 1658 /* tell hardware to add timestamp for probe responses */ 1659 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1660 IEEE80211_FC0_TYPE_MGT && 1661 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1662 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1663 flags |= RT2560_TX_TIMESTAMP; 1664 } 1665 1666 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, 1667 segs->ds_addr); 1668 1669 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1670 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1671 BUS_DMASYNC_PREWRITE); 1672 1673 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1674 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1675 1676 /* kick prio */ 1677 sc->prioq.queued++; 1678 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1679 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1680 1681 return 0; 1682 } 1683 1684 static int 1685 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0, 1686 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 1687 { 1688 struct ieee80211com *ic = &sc->sc_ic; 1689 struct rt2560_tx_desc *desc; 1690 struct rt2560_tx_data *data; 1691 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1692 uint32_t flags; 1693 int nsegs, rate, error; 1694 1695 desc = &sc->prioq.desc[sc->prioq.cur]; 1696 data = &sc->prioq.data[sc->prioq.cur]; 1697 1698 rate = params->ibp_rate0 & IEEE80211_RATE_VAL; 1699 /* XXX validate */ 1700 if (rate == 0) { 1701 m_freem(m0); 1702 return EINVAL; 1703 } 1704 1705 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1706 segs, &nsegs, 0); 1707 if (error != 0) { 1708 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1709 error); 1710 m_freem(m0); 1711 return error; 1712 } 1713 1714 if (bpf_peers_present(sc->sc_drvbpf)) { 1715 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1716 1717 tap->wt_flags = 0; 1718 tap->wt_rate = rate; 1719 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1720 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1721 tap->wt_antenna = sc->tx_ant; 1722 1723 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1724 } 1725 1726 data->m = m0; 1727 data->ni = ni; 1728 1729 flags = 0; 1730 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1731 flags |= RT2560_TX_ACK; 1732 1733 /* XXX need to setup descriptor ourself */ 1734 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, 1735 rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0, 1736 segs->ds_addr); 1737 1738 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1739 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1740 BUS_DMASYNC_PREWRITE); 1741 1742 DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n", 1743 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1744 1745 /* kick prio */ 1746 sc->prioq.queued++; 1747 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1748 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1749 1750 return 0; 1751 } 1752 1753 /* 1754 * Build a RTS control frame. 1755 */ 1756 static struct mbuf * 1757 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh, 1758 uint16_t dur) 1759 { 1760 struct ieee80211_frame_rts *rts; 1761 struct mbuf *m; 1762 1763 MGETHDR(m, M_DONTWAIT, MT_DATA); 1764 if (m == NULL) { 1765 sc->sc_ic.ic_stats.is_tx_nobuf++; 1766 device_printf(sc->sc_dev, "could not allocate RTS frame\n"); 1767 return NULL; 1768 } 1769 1770 rts = mtod(m, struct ieee80211_frame_rts *); 1771 1772 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1773 IEEE80211_FC0_SUBTYPE_RTS; 1774 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1775 *(uint16_t *)rts->i_dur = htole16(dur); 1776 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1777 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1778 1779 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1780 1781 return m; 1782 } 1783 1784 static int 1785 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, 1786 struct ieee80211_node *ni) 1787 { 1788 struct ieee80211com *ic = &sc->sc_ic; 1789 struct rt2560_tx_desc *desc; 1790 struct rt2560_tx_data *data; 1791 struct rt2560_node *rn; 1792 struct ieee80211_frame *wh; 1793 struct ieee80211_key *k; 1794 struct mbuf *mnew; 1795 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1796 uint16_t dur; 1797 uint32_t flags = 0; 1798 int nsegs, rate, error; 1799 1800 wh = mtod(m0, struct ieee80211_frame *); 1801 1802 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1803 rate = ic->ic_fixed_rate; 1804 } else { 1805 struct ieee80211_rateset *rs; 1806 1807 rs = &ni->ni_rates; 1808 rn = (struct rt2560_node *)ni; 1809 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh, 1810 m0->m_pkthdr.len, NULL, 0); 1811 rate = rs->rs_rates[ni->ni_txrate]; 1812 } 1813 rate &= IEEE80211_RATE_VAL; 1814 1815 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1816 k = ieee80211_crypto_encap(ic, ni, m0); 1817 if (k == NULL) { 1818 m_freem(m0); 1819 return ENOBUFS; 1820 } 1821 1822 /* packet header may have moved, reset our local pointer */ 1823 wh = mtod(m0, struct ieee80211_frame *); 1824 } 1825 1826 /* 1827 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1828 * for directed frames only when the length of the MPDU is greater 1829 * than the length threshold indicated by [...]" ic_rtsthreshold. 1830 */ 1831 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1832 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1833 struct mbuf *m; 1834 uint16_t dur; 1835 int rtsrate, ackrate; 1836 1837 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1838 ackrate = rt2560_ack_rate(ic, rate); 1839 1840 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1841 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1842 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1843 3 * RAL_SIFS; 1844 1845 m = rt2560_get_rts(sc, wh, dur); 1846 1847 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1848 data = &sc->txq.data[sc->txq.cur_encrypt]; 1849 1850 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1851 m, segs, &nsegs, 0); 1852 if (error != 0) { 1853 device_printf(sc->sc_dev, 1854 "could not map mbuf (error %d)\n", error); 1855 m_freem(m); 1856 m_freem(m0); 1857 return error; 1858 } 1859 1860 /* avoid multiple free() of the same node for each fragment */ 1861 ieee80211_ref_node(ni); 1862 1863 data->m = m; 1864 data->ni = ni; 1865 1866 /* RTS frames are not taken into account for rssadapt */ 1867 data->id.id_node = NULL; 1868 1869 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK | 1870 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, 1871 segs->ds_addr); 1872 1873 bus_dmamap_sync(sc->txq.data_dmat, data->map, 1874 BUS_DMASYNC_PREWRITE); 1875 1876 sc->txq.queued++; 1877 sc->txq.cur_encrypt = 1878 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1879 1880 /* 1881 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1882 * asynchronous data frame shall be transmitted after the CTS 1883 * frame and a SIFS period. 1884 */ 1885 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; 1886 } 1887 1888 data = &sc->txq.data[sc->txq.cur_encrypt]; 1889 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1890 1891 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, 1892 segs, &nsegs, 0); 1893 if (error != 0 && error != EFBIG) { 1894 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1895 error); 1896 m_freem(m0); 1897 return error; 1898 } 1899 if (error != 0) { 1900 mnew = m_defrag(m0, M_DONTWAIT); 1901 if (mnew == NULL) { 1902 device_printf(sc->sc_dev, 1903 "could not defragment mbuf\n"); 1904 m_freem(m0); 1905 return ENOBUFS; 1906 } 1907 m0 = mnew; 1908 1909 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1910 m0, segs, &nsegs, 0); 1911 if (error != 0) { 1912 device_printf(sc->sc_dev, 1913 "could not map mbuf (error %d)\n", error); 1914 m_freem(m0); 1915 return error; 1916 } 1917 1918 /* packet header may have moved, reset our local pointer */ 1919 wh = mtod(m0, struct ieee80211_frame *); 1920 } 1921 1922 if (bpf_peers_present(sc->sc_drvbpf)) { 1923 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1924 1925 tap->wt_flags = 0; 1926 tap->wt_rate = rate; 1927 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1928 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1929 tap->wt_antenna = sc->tx_ant; 1930 1931 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1932 } 1933 1934 data->m = m0; 1935 data->ni = ni; 1936 1937 /* remember link conditions for rate adaptation algorithm */ 1938 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1939 data->id.id_len = m0->m_pkthdr.len; 1940 data->id.id_rateidx = ni->ni_txrate; 1941 data->id.id_node = ni; 1942 data->id.id_rssi = ni->ni_rssi; 1943 } else 1944 data->id.id_node = NULL; 1945 1946 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1947 flags |= RT2560_TX_ACK; 1948 1949 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), 1950 ic->ic_flags) + RAL_SIFS; 1951 *(uint16_t *)wh->i_dur = htole16(dur); 1952 } 1953 1954 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, 1955 segs->ds_addr); 1956 1957 bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1958 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1959 BUS_DMASYNC_PREWRITE); 1960 1961 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1962 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate)); 1963 1964 /* kick encrypt */ 1965 sc->txq.queued++; 1966 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1967 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); 1968 1969 return 0; 1970 } 1971 1972 static void 1973 rt2560_start(struct ifnet *ifp) 1974 { 1975 struct rt2560_softc *sc = ifp->if_softc; 1976 struct ieee80211com *ic = &sc->sc_ic; 1977 struct mbuf *m0; 1978 struct ether_header *eh; 1979 struct ieee80211_node *ni; 1980 1981 RAL_LOCK(sc); 1982 1983 /* prevent management frames from being sent if we're not ready */ 1984 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1985 RAL_UNLOCK(sc); 1986 return; 1987 } 1988 1989 for (;;) { 1990 IF_POLL(&ic->ic_mgtq, m0); 1991 if (m0 != NULL) { 1992 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 1993 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1994 break; 1995 } 1996 IF_DEQUEUE(&ic->ic_mgtq, m0); 1997 1998 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1999 m0->m_pkthdr.rcvif = NULL; 2000 2001 if (bpf_peers_present(ic->ic_rawbpf)) 2002 bpf_mtap(ic->ic_rawbpf, m0); 2003 2004 if (rt2560_tx_mgt(sc, m0, ni) != 0) { 2005 ieee80211_free_node(ni); 2006 break; 2007 } 2008 } else { 2009 if (ic->ic_state != IEEE80211_S_RUN) 2010 break; 2011 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2012 if (m0 == NULL) 2013 break; 2014 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { 2015 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2016 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2017 break; 2018 } 2019 /* 2020 * Cancel any background scan. 2021 */ 2022 if (ic->ic_flags & IEEE80211_F_SCAN) 2023 ieee80211_cancel_scan(ic); 2024 2025 if (m0->m_len < sizeof (struct ether_header) && 2026 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 2027 continue; 2028 2029 eh = mtod(m0, struct ether_header *); 2030 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2031 if (ni == NULL) { 2032 m_freem(m0); 2033 continue; 2034 } 2035 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 2036 (m0->m_flags & M_PWR_SAV) == 0) { 2037 /* 2038 * Station in power save mode; pass the frame 2039 * to the 802.11 layer and continue. We'll get 2040 * the frame back when the time is right. 2041 */ 2042 ieee80211_pwrsave(ni, m0); 2043 /* 2044 * If we're in power save mode 'cuz of a bg 2045 * scan cancel it so the traffic can flow. 2046 * The packet we just queued will automatically 2047 * get sent when we drop out of power save. 2048 * XXX locking 2049 */ 2050 if (ic->ic_flags & IEEE80211_F_SCAN) 2051 ieee80211_cancel_scan(ic); 2052 ieee80211_free_node(ni); 2053 continue; 2054 2055 } 2056 2057 BPF_MTAP(ifp, m0); 2058 2059 m0 = ieee80211_encap(ic, m0, ni); 2060 if (m0 == NULL) { 2061 ieee80211_free_node(ni); 2062 continue; 2063 } 2064 2065 if (bpf_peers_present(ic->ic_rawbpf)) 2066 bpf_mtap(ic->ic_rawbpf, m0); 2067 2068 if (rt2560_tx_data(sc, m0, ni) != 0) { 2069 ieee80211_free_node(ni); 2070 ifp->if_oerrors++; 2071 break; 2072 } 2073 } 2074 2075 sc->sc_tx_timer = 5; 2076 ic->ic_lastdata = ticks; 2077 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2078 } 2079 2080 RAL_UNLOCK(sc); 2081 } 2082 2083 static void 2084 rt2560_watchdog(void *arg) 2085 { 2086 struct rt2560_softc *sc = arg; 2087 2088 if (sc->sc_tx_timer > 0) { 2089 if (--sc->sc_tx_timer == 0) { 2090 device_printf(sc->sc_dev, "device timeout\n"); 2091 rt2560_init(sc); 2092 sc->sc_ifp->if_oerrors++; 2093 return; 2094 } 2095 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2096 } 2097 } 2098 2099 /* 2100 * This function allows for fast channel switching in monitor mode (used by 2101 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 2102 * generate a new beacon frame. 2103 */ 2104 static int 2105 rt2560_reset(struct ifnet *ifp) 2106 { 2107 struct rt2560_softc *sc = ifp->if_softc; 2108 struct ieee80211com *ic = &sc->sc_ic; 2109 2110 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2111 return ENETRESET; 2112 2113 rt2560_set_chan(sc, ic->ic_curchan); 2114 2115 return 0; 2116 } 2117 2118 static int 2119 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2120 { 2121 struct rt2560_softc *sc = ifp->if_softc; 2122 struct ieee80211com *ic = &sc->sc_ic; 2123 int error = 0; 2124 2125 2126 2127 switch (cmd) { 2128 case SIOCSIFFLAGS: 2129 if (ifp->if_flags & IFF_UP) { 2130 RAL_LOCK(sc); 2131 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2132 rt2560_update_promisc(sc); 2133 else 2134 rt2560_init(sc); 2135 RAL_UNLOCK(sc); 2136 } else { 2137 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2138 rt2560_stop(sc); 2139 } 2140 2141 break; 2142 2143 default: 2144 error = ieee80211_ioctl(ic, cmd, data); 2145 } 2146 2147 if (error == ENETRESET) { 2148 if ((ifp->if_flags & IFF_UP) && 2149 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 2150 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2151 rt2560_init(sc); 2152 error = 0; 2153 } 2154 2155 2156 return error; 2157 } 2158 2159 static void 2160 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) 2161 { 2162 uint32_t tmp; 2163 int ntries; 2164 2165 for (ntries = 0; ntries < 100; ntries++) { 2166 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2167 break; 2168 DELAY(1); 2169 } 2170 if (ntries == 100) { 2171 device_printf(sc->sc_dev, "could not write to BBP\n"); 2172 return; 2173 } 2174 2175 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; 2176 RAL_WRITE(sc, RT2560_BBPCSR, tmp); 2177 2178 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2179 } 2180 2181 static uint8_t 2182 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) 2183 { 2184 uint32_t val; 2185 int ntries; 2186 2187 val = RT2560_BBP_BUSY | reg << 8; 2188 RAL_WRITE(sc, RT2560_BBPCSR, val); 2189 2190 for (ntries = 0; ntries < 100; ntries++) { 2191 val = RAL_READ(sc, RT2560_BBPCSR); 2192 if (!(val & RT2560_BBP_BUSY)) 2193 return val & 0xff; 2194 DELAY(1); 2195 } 2196 2197 device_printf(sc->sc_dev, "could not read from BBP\n"); 2198 return 0; 2199 } 2200 2201 static void 2202 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) 2203 { 2204 uint32_t tmp; 2205 int ntries; 2206 2207 for (ntries = 0; ntries < 100; ntries++) { 2208 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) 2209 break; 2210 DELAY(1); 2211 } 2212 if (ntries == 100) { 2213 device_printf(sc->sc_dev, "could not write to RF\n"); 2214 return; 2215 } 2216 2217 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | 2218 (reg & 0x3); 2219 RAL_WRITE(sc, RT2560_RFCSR, tmp); 2220 2221 /* remember last written value in sc */ 2222 sc->rf_regs[reg] = val; 2223 2224 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 2225 } 2226 2227 static void 2228 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) 2229 { 2230 struct ieee80211com *ic = &sc->sc_ic; 2231 uint8_t power, tmp; 2232 u_int i, chan; 2233 2234 chan = ieee80211_chan2ieee(ic, c); 2235 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2236 return; 2237 2238 if (IEEE80211_IS_CHAN_2GHZ(c)) 2239 power = min(sc->txpow[chan - 1], 31); 2240 else 2241 power = 31; 2242 2243 /* adjust txpower using ifconfig settings */ 2244 power -= (100 - ic->ic_txpowlimit) / 8; 2245 2246 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 2247 2248 switch (sc->rf_rev) { 2249 case RT2560_RF_2522: 2250 rt2560_rf_write(sc, RAL_RF1, 0x00814); 2251 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); 2252 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2253 break; 2254 2255 case RT2560_RF_2523: 2256 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2257 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); 2258 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 2259 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2260 break; 2261 2262 case RT2560_RF_2524: 2263 rt2560_rf_write(sc, RAL_RF1, 0x0c808); 2264 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); 2265 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2266 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2267 break; 2268 2269 case RT2560_RF_2525: 2270 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2271 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); 2272 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2273 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2274 2275 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2276 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); 2277 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2278 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2279 break; 2280 2281 case RT2560_RF_2525E: 2282 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2283 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); 2284 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2285 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 2286 break; 2287 2288 case RT2560_RF_2526: 2289 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); 2290 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2291 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2292 2293 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); 2294 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2295 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2296 break; 2297 2298 /* dual-band RF */ 2299 case RT2560_RF_5222: 2300 for (i = 0; rt2560_rf5222[i].chan != chan; i++); 2301 2302 rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); 2303 rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); 2304 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2305 rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); 2306 break; 2307 default: 2308 printf("unknown ral rev=%d\n", sc->rf_rev); 2309 } 2310 2311 if (ic->ic_state != IEEE80211_S_SCAN) { 2312 /* set Japan filter bit for channel 14 */ 2313 tmp = rt2560_bbp_read(sc, 70); 2314 2315 tmp &= ~RT2560_JAPAN_FILTER; 2316 if (chan == 14) 2317 tmp |= RT2560_JAPAN_FILTER; 2318 2319 rt2560_bbp_write(sc, 70, tmp); 2320 2321 /* clear CRC errors */ 2322 RAL_READ(sc, RT2560_CNT0); 2323 } 2324 } 2325 2326 static void 2327 rt2560_set_channel(struct ieee80211com *ic) 2328 { 2329 struct ifnet *ifp = ic->ic_ifp; 2330 struct rt2560_softc *sc = ifp->if_softc; 2331 2332 RAL_LOCK(sc); 2333 rt2560_set_chan(sc, ic->ic_curchan); 2334 RAL_UNLOCK(sc); 2335 2336 } 2337 2338 #if 0 2339 /* 2340 * Disable RF auto-tuning. 2341 */ 2342 static void 2343 rt2560_disable_rf_tune(struct rt2560_softc *sc) 2344 { 2345 uint32_t tmp; 2346 2347 if (sc->rf_rev != RT2560_RF_2523) { 2348 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 2349 rt2560_rf_write(sc, RAL_RF1, tmp); 2350 } 2351 2352 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 2353 rt2560_rf_write(sc, RAL_RF3, tmp); 2354 2355 DPRINTFN(2, ("disabling RF autotune\n")); 2356 } 2357 #endif 2358 2359 /* 2360 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 2361 * synchronization. 2362 */ 2363 static void 2364 rt2560_enable_tsf_sync(struct rt2560_softc *sc) 2365 { 2366 struct ieee80211com *ic = &sc->sc_ic; 2367 uint16_t logcwmin, preload; 2368 uint32_t tmp; 2369 2370 /* first, disable TSF synchronization */ 2371 RAL_WRITE(sc, RT2560_CSR14, 0); 2372 2373 tmp = 16 * ic->ic_bss->ni_intval; 2374 RAL_WRITE(sc, RT2560_CSR12, tmp); 2375 2376 RAL_WRITE(sc, RT2560_CSR13, 0); 2377 2378 logcwmin = 5; 2379 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; 2380 tmp = logcwmin << 16 | preload; 2381 RAL_WRITE(sc, RT2560_BCNOCSR, tmp); 2382 2383 /* finally, enable TSF synchronization */ 2384 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; 2385 if (ic->ic_opmode == IEEE80211_M_STA) 2386 tmp |= RT2560_ENABLE_TSF_SYNC(1); 2387 else 2388 tmp |= RT2560_ENABLE_TSF_SYNC(2) | 2389 RT2560_ENABLE_BEACON_GENERATOR; 2390 RAL_WRITE(sc, RT2560_CSR14, tmp); 2391 2392 DPRINTF(("enabling TSF synchronization\n")); 2393 } 2394 2395 static void 2396 rt2560_update_plcp(struct rt2560_softc *sc) 2397 { 2398 struct ieee80211com *ic = &sc->sc_ic; 2399 2400 /* no short preamble for 1Mbps */ 2401 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); 2402 2403 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { 2404 /* values taken from the reference driver */ 2405 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); 2406 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); 2407 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); 2408 } else { 2409 /* same values as above or'ed 0x8 */ 2410 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); 2411 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); 2412 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); 2413 } 2414 2415 DPRINTF(("updating PLCP for %s preamble\n", 2416 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); 2417 } 2418 2419 /* 2420 * This function can be called by ieee80211_set_shortslottime(). Refer to 2421 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. 2422 */ 2423 static void 2424 rt2560_update_slot(struct ifnet *ifp) 2425 { 2426 struct rt2560_softc *sc = ifp->if_softc; 2427 struct ieee80211com *ic = &sc->sc_ic; 2428 uint8_t slottime; 2429 uint16_t tx_sifs, tx_pifs, tx_difs, eifs; 2430 uint32_t tmp; 2431 2432 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2433 2434 /* update the MAC slot boundaries */ 2435 tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; 2436 tx_pifs = tx_sifs + slottime; 2437 tx_difs = tx_sifs + 2 * slottime; 2438 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; 2439 2440 tmp = RAL_READ(sc, RT2560_CSR11); 2441 tmp = (tmp & ~0x1f00) | slottime << 8; 2442 RAL_WRITE(sc, RT2560_CSR11, tmp); 2443 2444 tmp = tx_pifs << 16 | tx_sifs; 2445 RAL_WRITE(sc, RT2560_CSR18, tmp); 2446 2447 tmp = eifs << 16 | tx_difs; 2448 RAL_WRITE(sc, RT2560_CSR19, tmp); 2449 2450 DPRINTF(("setting slottime to %uus\n", slottime)); 2451 } 2452 2453 static void 2454 rt2560_set_basicrates(struct rt2560_softc *sc) 2455 { 2456 struct ieee80211com *ic = &sc->sc_ic; 2457 2458 /* update basic rate set */ 2459 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2460 /* 11b basic rates: 1, 2Mbps */ 2461 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); 2462 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { 2463 /* 11a basic rates: 6, 12, 24Mbps */ 2464 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150); 2465 } else { 2466 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 2467 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f); 2468 } 2469 } 2470 2471 static void 2472 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) 2473 { 2474 uint32_t tmp; 2475 2476 /* set ON period to 70ms and OFF period to 30ms */ 2477 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; 2478 RAL_WRITE(sc, RT2560_LEDCSR, tmp); 2479 } 2480 2481 static void 2482 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid) 2483 { 2484 uint32_t tmp; 2485 2486 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2487 RAL_WRITE(sc, RT2560_CSR5, tmp); 2488 2489 tmp = bssid[4] | bssid[5] << 8; 2490 RAL_WRITE(sc, RT2560_CSR6, tmp); 2491 2492 DPRINTF(("setting BSSID to %6D\n", bssid, ":")); 2493 } 2494 2495 static void 2496 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2497 { 2498 uint32_t tmp; 2499 2500 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2501 RAL_WRITE(sc, RT2560_CSR3, tmp); 2502 2503 tmp = addr[4] | addr[5] << 8; 2504 RAL_WRITE(sc, RT2560_CSR4, tmp); 2505 2506 DPRINTF(("setting MAC address to %6D\n", addr, ":")); 2507 } 2508 2509 static void 2510 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2511 { 2512 uint32_t tmp; 2513 2514 tmp = RAL_READ(sc, RT2560_CSR3); 2515 addr[0] = tmp & 0xff; 2516 addr[1] = (tmp >> 8) & 0xff; 2517 addr[2] = (tmp >> 16) & 0xff; 2518 addr[3] = (tmp >> 24); 2519 2520 tmp = RAL_READ(sc, RT2560_CSR4); 2521 addr[4] = tmp & 0xff; 2522 addr[5] = (tmp >> 8) & 0xff; 2523 } 2524 2525 static void 2526 rt2560_update_promisc(struct rt2560_softc *sc) 2527 { 2528 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2529 uint32_t tmp; 2530 2531 tmp = RAL_READ(sc, RT2560_RXCSR0); 2532 2533 tmp &= ~RT2560_DROP_NOT_TO_ME; 2534 if (!(ifp->if_flags & IFF_PROMISC)) 2535 tmp |= RT2560_DROP_NOT_TO_ME; 2536 2537 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2538 2539 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2540 "entering" : "leaving")); 2541 } 2542 2543 static const char * 2544 rt2560_get_rf(int rev) 2545 { 2546 switch (rev) { 2547 case RT2560_RF_2522: return "RT2522"; 2548 case RT2560_RF_2523: return "RT2523"; 2549 case RT2560_RF_2524: return "RT2524"; 2550 case RT2560_RF_2525: return "RT2525"; 2551 case RT2560_RF_2525E: return "RT2525e"; 2552 case RT2560_RF_2526: return "RT2526"; 2553 case RT2560_RF_5222: return "RT5222"; 2554 default: return "unknown"; 2555 } 2556 } 2557 2558 static void 2559 rt2560_read_eeprom(struct rt2560_softc *sc) 2560 { 2561 uint16_t val; 2562 int i; 2563 2564 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); 2565 sc->rf_rev = (val >> 11) & 0x7; 2566 sc->hw_radio = (val >> 10) & 0x1; 2567 sc->led_mode = (val >> 6) & 0x7; 2568 sc->rx_ant = (val >> 4) & 0x3; 2569 sc->tx_ant = (val >> 2) & 0x3; 2570 sc->nb_ant = val & 0x3; 2571 2572 /* read default values for BBP registers */ 2573 for (i = 0; i < 16; i++) { 2574 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); 2575 sc->bbp_prom[i].reg = val >> 8; 2576 sc->bbp_prom[i].val = val & 0xff; 2577 } 2578 2579 /* read Tx power for all b/g channels */ 2580 for (i = 0; i < 14 / 2; i++) { 2581 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); 2582 sc->txpow[i * 2] = val >> 8; 2583 sc->txpow[i * 2 + 1] = val & 0xff; 2584 } 2585 2586 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE); 2587 if ((val & 0xff) == 0xff) 2588 sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR; 2589 else 2590 sc->rssi_corr = val & 0xff; 2591 DPRINTF(("rssi correction %d, calibrate 0x%02x\n", 2592 sc->rssi_corr, val)); 2593 } 2594 2595 2596 static void 2597 rt2560_scan_start(struct ieee80211com *ic) 2598 { 2599 struct ifnet *ifp = ic->ic_ifp; 2600 struct rt2560_softc *sc = ifp->if_softc; 2601 2602 /* abort TSF synchronization */ 2603 RAL_WRITE(sc, RT2560_CSR14, 0); 2604 rt2560_set_bssid(sc, ifp->if_broadcastaddr); 2605 } 2606 2607 static void 2608 rt2560_scan_end(struct ieee80211com *ic) 2609 { 2610 struct ifnet *ifp = ic->ic_ifp; 2611 struct rt2560_softc *sc = ifp->if_softc; 2612 2613 rt2560_enable_tsf_sync(sc); 2614 /* XXX keep local copy */ 2615 rt2560_set_bssid(sc, ic->ic_bss->ni_bssid); 2616 } 2617 2618 static int 2619 rt2560_bbp_init(struct rt2560_softc *sc) 2620 { 2621 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2622 int i, ntries; 2623 2624 /* wait for BBP to be ready */ 2625 for (ntries = 0; ntries < 100; ntries++) { 2626 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) 2627 break; 2628 DELAY(1); 2629 } 2630 if (ntries == 100) { 2631 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2632 return EIO; 2633 } 2634 2635 /* initialize BBP registers to default values */ 2636 for (i = 0; i < N(rt2560_def_bbp); i++) { 2637 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, 2638 rt2560_def_bbp[i].val); 2639 } 2640 #if 0 2641 /* initialize BBP registers to values stored in EEPROM */ 2642 for (i = 0; i < 16; i++) { 2643 if (sc->bbp_prom[i].reg == 0xff) 2644 continue; 2645 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2646 } 2647 #endif 2648 2649 return 0; 2650 #undef N 2651 } 2652 2653 static void 2654 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) 2655 { 2656 uint32_t tmp; 2657 uint8_t tx; 2658 2659 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; 2660 if (antenna == 1) 2661 tx |= RT2560_BBP_ANTA; 2662 else if (antenna == 2) 2663 tx |= RT2560_BBP_ANTB; 2664 else 2665 tx |= RT2560_BBP_DIVERSITY; 2666 2667 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2668 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || 2669 sc->rf_rev == RT2560_RF_5222) 2670 tx |= RT2560_BBP_FLIPIQ; 2671 2672 rt2560_bbp_write(sc, RT2560_BBP_TX, tx); 2673 2674 /* update values for CCK and OFDM in BBPCSR1 */ 2675 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; 2676 tmp |= (tx & 0x7) << 16 | (tx & 0x7); 2677 RAL_WRITE(sc, RT2560_BBPCSR1, tmp); 2678 } 2679 2680 static void 2681 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) 2682 { 2683 uint8_t rx; 2684 2685 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; 2686 if (antenna == 1) 2687 rx |= RT2560_BBP_ANTA; 2688 else if (antenna == 2) 2689 rx |= RT2560_BBP_ANTB; 2690 else 2691 rx |= RT2560_BBP_DIVERSITY; 2692 2693 /* need to force no I/Q flip for RF 2525e and 2526 */ 2694 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) 2695 rx &= ~RT2560_BBP_FLIPIQ; 2696 2697 rt2560_bbp_write(sc, RT2560_BBP_RX, rx); 2698 } 2699 2700 static void 2701 rt2560_init(void *priv) 2702 { 2703 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2704 struct rt2560_softc *sc = priv; 2705 struct ieee80211com *ic = &sc->sc_ic; 2706 struct ifnet *ifp = ic->ic_ifp; 2707 uint32_t tmp; 2708 int i; 2709 2710 2711 2712 rt2560_stop(sc); 2713 2714 RAL_LOCK(sc); 2715 /* setup tx rings */ 2716 tmp = RT2560_PRIO_RING_COUNT << 24 | 2717 RT2560_ATIM_RING_COUNT << 16 | 2718 RT2560_TX_RING_COUNT << 8 | 2719 RT2560_TX_DESC_SIZE; 2720 2721 /* rings must be initialized in this exact order */ 2722 RAL_WRITE(sc, RT2560_TXCSR2, tmp); 2723 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); 2724 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); 2725 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); 2726 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); 2727 2728 /* setup rx ring */ 2729 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; 2730 2731 RAL_WRITE(sc, RT2560_RXCSR1, tmp); 2732 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); 2733 2734 /* initialize MAC registers to default values */ 2735 for (i = 0; i < N(rt2560_def_mac); i++) 2736 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); 2737 2738 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2739 rt2560_set_macaddr(sc, ic->ic_myaddr); 2740 2741 /* set basic rate set (will be updated later) */ 2742 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); 2743 2744 rt2560_set_txantenna(sc, sc->tx_ant); 2745 rt2560_set_rxantenna(sc, sc->rx_ant); 2746 rt2560_update_slot(ifp); 2747 rt2560_update_plcp(sc); 2748 rt2560_update_led(sc, 0, 0); 2749 2750 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2751 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); 2752 2753 if (rt2560_bbp_init(sc) != 0) { 2754 rt2560_stop(sc); 2755 RAL_UNLOCK(sc); 2756 return; 2757 } 2758 2759 /* set default BSS channel */ 2760 rt2560_set_chan(sc, ic->ic_curchan); 2761 2762 /* kick Rx */ 2763 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; 2764 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2765 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; 2766 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2767 tmp |= RT2560_DROP_TODS; 2768 if (!(ifp->if_flags & IFF_PROMISC)) 2769 tmp |= RT2560_DROP_NOT_TO_ME; 2770 } 2771 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2772 2773 /* clear old FCS and Rx FIFO errors */ 2774 RAL_READ(sc, RT2560_CNT0); 2775 RAL_READ(sc, RT2560_CNT4); 2776 2777 /* clear any pending interrupts */ 2778 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); 2779 2780 /* enable interrupts */ 2781 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 2782 2783 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2784 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2785 2786 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2787 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2788 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2789 } else 2790 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2791 2792 RAL_UNLOCK(sc); 2793 #undef N 2794 } 2795 2796 void 2797 rt2560_stop(void *arg) 2798 { 2799 struct rt2560_softc *sc = arg; 2800 struct ieee80211com *ic = &sc->sc_ic; 2801 struct ifnet *ifp = ic->ic_ifp; 2802 volatile int *flags = &sc->sc_flags; 2803 2804 while (*flags & RAL_INPUT_RUNNING) { 2805 tsleep(sc, 0, "ralrunning", hz/10); 2806 } 2807 2808 RAL_LOCK(sc); 2809 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2810 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2811 sc->sc_tx_timer = 0; 2812 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2813 2814 /* abort Tx */ 2815 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); 2816 2817 /* disable Rx */ 2818 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); 2819 2820 /* reset ASIC (imply reset BBP) */ 2821 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2822 RAL_WRITE(sc, RT2560_CSR1, 0); 2823 2824 /* disable interrupts */ 2825 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 2826 2827 /* reset Tx and Rx rings */ 2828 rt2560_reset_tx_ring(sc, &sc->txq); 2829 rt2560_reset_tx_ring(sc, &sc->atimq); 2830 rt2560_reset_tx_ring(sc, &sc->prioq); 2831 rt2560_reset_tx_ring(sc, &sc->bcnq); 2832 rt2560_reset_rx_ring(sc, &sc->rxq); 2833 } 2834 RAL_UNLOCK(sc); 2835 } 2836 2837 static int 2838 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2839 const struct ieee80211_bpf_params *params) 2840 { 2841 struct ieee80211com *ic = ni->ni_ic; 2842 struct ifnet *ifp = ic->ic_ifp; 2843 struct rt2560_softc *sc = ifp->if_softc; 2844 2845 RAL_LOCK(sc); 2846 2847 /* prevent management frames from being sent if we're not ready */ 2848 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2849 RAL_UNLOCK(sc); 2850 m_freem(m); 2851 ieee80211_free_node(ni); 2852 return ENETDOWN; 2853 } 2854 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 2855 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2856 RAL_UNLOCK(sc); 2857 m_freem(m); 2858 ieee80211_free_node(ni); 2859 return ENOBUFS; /* XXX */ 2860 } 2861 2862 if (bpf_peers_present(ic->ic_rawbpf)) 2863 bpf_mtap(ic->ic_rawbpf, m); 2864 2865 ifp->if_opackets++; 2866 2867 if (params == NULL) { 2868 /* 2869 * Legacy path; interpret frame contents to decide 2870 * precisely how to send the frame. 2871 */ 2872 if (rt2560_tx_mgt(sc, m, ni) != 0) 2873 goto bad; 2874 } else { 2875 /* 2876 * Caller supplied explicit parameters to use in 2877 * sending the frame. 2878 */ 2879 if (rt2560_tx_raw(sc, m, ni, params)) 2880 goto bad; 2881 } 2882 sc->sc_tx_timer = 5; 2883 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2884 2885 RAL_UNLOCK(sc); 2886 2887 return 0; 2888 bad: 2889 ifp->if_oerrors++; 2890 ieee80211_free_node(ni); 2891 RAL_UNLOCK(sc); 2892 return EIO; /* XXX */ 2893 } 2894 2895