xref: /freebsd/sys/dev/ral/rt2560.c (revision d5566384042fa631ffe7916fd89bcb4669ad12a7)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_radiotap.h>
56 #include <net80211/ieee80211_regdomain.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #include <netinet/if_ether.h>
63 
64 #include <dev/ral/if_ralrate.h>
65 #include <dev/ral/rt2560reg.h>
66 #include <dev/ral/rt2560var.h>
67 
68 #define RT2560_RSSI(sc, rssi)					\
69 	((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ?	\
70 	 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
71 
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
75 extern int ral_debug;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
82 			    int);
83 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
84 			    struct rt2560_tx_ring *, int);
85 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
86 			    struct rt2560_tx_ring *);
87 static void		rt2560_free_tx_ring(struct rt2560_softc *,
88 			    struct rt2560_tx_ring *);
89 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
90 			    struct rt2560_rx_ring *, int);
91 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
92 			    struct rt2560_rx_ring *);
93 static void		rt2560_free_rx_ring(struct rt2560_softc *,
94 			    struct rt2560_rx_ring *);
95 static struct		ieee80211_node *rt2560_node_alloc(
96 			    struct ieee80211_node_table *);
97 static int		rt2560_media_change(struct ifnet *);
98 static void		rt2560_iter_func(void *, struct ieee80211_node *);
99 static void		rt2560_update_rssadapt(void *);
100 static int		rt2560_newstate(struct ieee80211com *,
101 			    enum ieee80211_state, int);
102 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
103 static void		rt2560_encryption_intr(struct rt2560_softc *);
104 static void		rt2560_tx_intr(struct rt2560_softc *);
105 static void		rt2560_prio_intr(struct rt2560_softc *);
106 static void		rt2560_decryption_intr(struct rt2560_softc *);
107 static void		rt2560_rx_intr(struct rt2560_softc *);
108 static void		rt2560_beacon_update(struct ieee80211com *, int item);
109 static void		rt2560_beacon_expire(struct rt2560_softc *);
110 static void		rt2560_wakeup_expire(struct rt2560_softc *);
111 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
112 static int		rt2560_ack_rate(struct ieee80211com *, int);
113 static void		rt2560_scan_start(struct ieee80211com *);
114 static void		rt2560_scan_end(struct ieee80211com *);
115 static void		rt2560_set_channel(struct ieee80211com *);
116 static uint16_t		rt2560_txtime(int, int, uint32_t);
117 static uint8_t		rt2560_plcp_signal(int);
118 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
119 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
120 			    bus_addr_t);
121 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
122 			    struct ieee80211_node *);
123 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
124 			    struct ieee80211_node *);
125 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
126 			    struct ieee80211_frame *, uint16_t);
127 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
128 			    struct ieee80211_node *);
129 static void		rt2560_start(struct ifnet *);
130 static void		rt2560_watchdog(void *);
131 static int		rt2560_reset(struct ifnet *);
132 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
133 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
134 			    uint8_t);
135 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
136 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
137 			    uint32_t);
138 static void		rt2560_set_chan(struct rt2560_softc *,
139 			    struct ieee80211_channel *);
140 #if 0
141 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
142 #endif
143 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
144 static void		rt2560_update_plcp(struct rt2560_softc *);
145 static void		rt2560_update_slot(struct ifnet *);
146 static void		rt2560_set_basicrates(struct rt2560_softc *);
147 static void		rt2560_update_led(struct rt2560_softc *, int, int);
148 static void		rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
149 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
150 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
151 static void		rt2560_update_promisc(struct rt2560_softc *);
152 static const char	*rt2560_get_rf(int);
153 static void		rt2560_read_eeprom(struct rt2560_softc *);
154 static int		rt2560_bbp_init(struct rt2560_softc *);
155 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
156 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
157 static void		rt2560_init(void *);
158 static int		rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
159 				const struct ieee80211_bpf_params *);
160 
161 static const struct {
162 	uint32_t	reg;
163 	uint32_t	val;
164 } rt2560_def_mac[] = {
165 	RT2560_DEF_MAC
166 };
167 
168 static const struct {
169 	uint8_t	reg;
170 	uint8_t	val;
171 } rt2560_def_bbp[] = {
172 	RT2560_DEF_BBP
173 };
174 
175 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
176 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
177 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
178 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
179 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
180 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
181 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
182 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
183 
184 static const struct {
185 	uint8_t		chan;
186 	uint32_t	r1, r2, r4;
187 } rt2560_rf5222[] = {
188 	RT2560_RF5222
189 };
190 
191 int
192 rt2560_attach(device_t dev, int id)
193 {
194 	struct rt2560_softc *sc = device_get_softc(dev);
195 	struct ieee80211com *ic = &sc->sc_ic;
196 	struct ifnet *ifp;
197 	int error, bands;
198 
199 	sc->sc_dev = dev;
200 
201 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
202 	    MTX_DEF | MTX_RECURSE);
203 
204 	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
205 	callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
206 
207 	/* retrieve RT2560 rev. no */
208 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
209 
210 	/* retrieve MAC address */
211 	rt2560_get_macaddr(sc, ic->ic_myaddr);
212 
213 	/* retrieve RF rev. no and various other things from EEPROM */
214 	rt2560_read_eeprom(sc);
215 
216 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
217 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
218 
219 	/*
220 	 * Allocate Tx and Rx rings.
221 	 */
222 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
223 	if (error != 0) {
224 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
225 		goto fail1;
226 	}
227 
228 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
229 	if (error != 0) {
230 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
231 		goto fail2;
232 	}
233 
234 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
235 	if (error != 0) {
236 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
237 		goto fail3;
238 	}
239 
240 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
241 	if (error != 0) {
242 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
243 		goto fail4;
244 	}
245 
246 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
247 	if (error != 0) {
248 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
249 		goto fail5;
250 	}
251 
252 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
253 	if (ifp == NULL) {
254 		device_printf(sc->sc_dev, "can not if_alloc()\n");
255 		goto fail6;
256 	}
257 
258 	ifp->if_softc = sc;
259 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
260 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
261 	ifp->if_init = rt2560_init;
262 	ifp->if_ioctl = rt2560_ioctl;
263 	ifp->if_start = rt2560_start;
264 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
265 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
266 	IFQ_SET_READY(&ifp->if_snd);
267 
268 	ic->ic_ifp = ifp;
269 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
270 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
271 	ic->ic_state = IEEE80211_S_INIT;
272 
273 	/* set device capabilities */
274 	ic->ic_caps =
275 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
276 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
277 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
278 	    IEEE80211_C_TXPMGT |	/* tx power management */
279 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
280 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
281 	    IEEE80211_C_BGSCAN |	/* bg scanning support */
282 	    IEEE80211_C_WPA;		/* 802.11i */
283 
284 	bands = 0;
285 	setbit(&bands, IEEE80211_MODE_11B);
286 	setbit(&bands, IEEE80211_MODE_11G);
287 	if (sc->rf_rev == RT2560_RF_5222)
288 		setbit(&bands, IEEE80211_MODE_11A);
289 	ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
290 
291 	ieee80211_ifattach(ic);
292 	ic->ic_scan_start = rt2560_scan_start;
293 	ic->ic_scan_end = rt2560_scan_end;
294 	ic->ic_set_channel = rt2560_set_channel;
295 	ic->ic_node_alloc = rt2560_node_alloc;
296 	ic->ic_updateslot = rt2560_update_slot;
297 	ic->ic_reset = rt2560_reset;
298 	/* enable s/w bmiss handling in sta mode */
299 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
300 
301 	/* override state transition machine */
302 	sc->sc_newstate = ic->ic_newstate;
303 	ic->ic_newstate = rt2560_newstate;
304 	ic->ic_raw_xmit = rt2560_raw_xmit;
305 	ic->ic_update_beacon = rt2560_beacon_update;
306 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
307 
308 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
309 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
310 	    &sc->sc_drvbpf);
311 
312 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
313 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
314 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
315 
316 	sc->sc_txtap_len = sizeof sc->sc_txtap;
317 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
318 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
319 
320 	/*
321 	 * Add a few sysctl knobs.
322 	 */
323 	sc->dwelltime = 200;
324 
325 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
326 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
327 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
328 
329 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
330 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
331 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
332 
333 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
334 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
335 	    CTLFLAG_RW, &sc->dwelltime, 0,
336 	    "channel dwell time (ms) for AP/station scanning");
337 
338 	if (bootverbose)
339 		ieee80211_announce(ic);
340 
341 	return 0;
342 
343 fail6:	rt2560_free_rx_ring(sc, &sc->rxq);
344 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
345 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
346 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
347 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
348 fail1:	mtx_destroy(&sc->sc_mtx);
349 
350 	return ENXIO;
351 }
352 
353 int
354 rt2560_detach(void *xsc)
355 {
356 	struct rt2560_softc *sc = xsc;
357 	struct ieee80211com *ic = &sc->sc_ic;
358 	struct ifnet *ifp = ic->ic_ifp;
359 
360 	rt2560_stop(sc);
361 	callout_stop(&sc->watchdog_ch);
362 	callout_stop(&sc->rssadapt_ch);
363 
364 	bpfdetach(ifp);
365 	ieee80211_ifdetach(ic);
366 
367 	rt2560_free_tx_ring(sc, &sc->txq);
368 	rt2560_free_tx_ring(sc, &sc->atimq);
369 	rt2560_free_tx_ring(sc, &sc->prioq);
370 	rt2560_free_tx_ring(sc, &sc->bcnq);
371 	rt2560_free_rx_ring(sc, &sc->rxq);
372 
373 	if_free(ifp);
374 
375 	mtx_destroy(&sc->sc_mtx);
376 
377 	return 0;
378 }
379 
380 void
381 rt2560_resume(void *xsc)
382 {
383 	struct rt2560_softc *sc = xsc;
384 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
385 
386 	if (ifp->if_flags & IFF_UP) {
387 		ifp->if_init(ifp->if_softc);
388 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
389 			ifp->if_start(ifp);
390 	}
391 }
392 
393 static void
394 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
395 {
396 	if (error != 0)
397 		return;
398 
399 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
400 
401 	*(bus_addr_t *)arg = segs[0].ds_addr;
402 }
403 
404 static int
405 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
406     int count)
407 {
408 	int i, error;
409 
410 	ring->count = count;
411 	ring->queued = 0;
412 	ring->cur = ring->next = 0;
413 	ring->cur_encrypt = ring->next_encrypt = 0;
414 
415 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
416 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
417 	    count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE,
418 	    0, NULL, NULL, &ring->desc_dmat);
419 	if (error != 0) {
420 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
421 		goto fail;
422 	}
423 
424 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
425 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
426 	if (error != 0) {
427 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
428 		goto fail;
429 	}
430 
431 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
432 	    count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
433 	    0);
434 	if (error != 0) {
435 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
436 		goto fail;
437 	}
438 
439 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
440 	    M_NOWAIT | M_ZERO);
441 	if (ring->data == NULL) {
442 		device_printf(sc->sc_dev, "could not allocate soft data\n");
443 		error = ENOMEM;
444 		goto fail;
445 	}
446 
447 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
448 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
449 	    MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL,
450 	    &ring->data_dmat);
451 	if (error != 0) {
452 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
453 		goto fail;
454 	}
455 
456 	for (i = 0; i < count; i++) {
457 		error = bus_dmamap_create(ring->data_dmat, 0,
458 		    &ring->data[i].map);
459 		if (error != 0) {
460 			device_printf(sc->sc_dev, "could not create DMA map\n");
461 			goto fail;
462 		}
463 	}
464 
465 	return 0;
466 
467 fail:	rt2560_free_tx_ring(sc, ring);
468 	return error;
469 }
470 
471 static void
472 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
473 {
474 	struct rt2560_tx_desc *desc;
475 	struct rt2560_tx_data *data;
476 	int i;
477 
478 	for (i = 0; i < ring->count; i++) {
479 		desc = &ring->desc[i];
480 		data = &ring->data[i];
481 
482 		if (data->m != NULL) {
483 			bus_dmamap_sync(ring->data_dmat, data->map,
484 			    BUS_DMASYNC_POSTWRITE);
485 			bus_dmamap_unload(ring->data_dmat, data->map);
486 			m_freem(data->m);
487 			data->m = NULL;
488 		}
489 
490 		if (data->ni != NULL) {
491 			ieee80211_free_node(data->ni);
492 			data->ni = NULL;
493 		}
494 
495 		desc->flags = 0;
496 	}
497 
498 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
499 
500 	ring->queued = 0;
501 	ring->cur = ring->next = 0;
502 	ring->cur_encrypt = ring->next_encrypt = 0;
503 }
504 
505 static void
506 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
507 {
508 	struct rt2560_tx_data *data;
509 	int i;
510 
511 	if (ring->desc != NULL) {
512 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
513 		    BUS_DMASYNC_POSTWRITE);
514 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
515 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
516 	}
517 
518 	if (ring->desc_dmat != NULL)
519 		bus_dma_tag_destroy(ring->desc_dmat);
520 
521 	if (ring->data != NULL) {
522 		for (i = 0; i < ring->count; i++) {
523 			data = &ring->data[i];
524 
525 			if (data->m != NULL) {
526 				bus_dmamap_sync(ring->data_dmat, data->map,
527 				    BUS_DMASYNC_POSTWRITE);
528 				bus_dmamap_unload(ring->data_dmat, data->map);
529 				m_freem(data->m);
530 			}
531 
532 			if (data->ni != NULL)
533 				ieee80211_free_node(data->ni);
534 
535 			if (data->map != NULL)
536 				bus_dmamap_destroy(ring->data_dmat, data->map);
537 		}
538 
539 		free(ring->data, M_DEVBUF);
540 	}
541 
542 	if (ring->data_dmat != NULL)
543 		bus_dma_tag_destroy(ring->data_dmat);
544 }
545 
546 static int
547 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
548     int count)
549 {
550 	struct rt2560_rx_desc *desc;
551 	struct rt2560_rx_data *data;
552 	bus_addr_t physaddr;
553 	int i, error;
554 
555 	ring->count = count;
556 	ring->cur = ring->next = 0;
557 	ring->cur_decrypt = 0;
558 
559 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
560 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
561 	    count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE,
562 	    0, NULL, NULL, &ring->desc_dmat);
563 	if (error != 0) {
564 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
565 		goto fail;
566 	}
567 
568 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
569 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
570 	if (error != 0) {
571 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
572 		goto fail;
573 	}
574 
575 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
576 	    count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
577 	    0);
578 	if (error != 0) {
579 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
580 		goto fail;
581 	}
582 
583 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
584 	    M_NOWAIT | M_ZERO);
585 	if (ring->data == NULL) {
586 		device_printf(sc->sc_dev, "could not allocate soft data\n");
587 		error = ENOMEM;
588 		goto fail;
589 	}
590 
591 	/*
592 	 * Pre-allocate Rx buffers and populate Rx ring.
593 	 */
594 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
595 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
596 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
597 	if (error != 0) {
598 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
599 		goto fail;
600 	}
601 
602 	for (i = 0; i < count; i++) {
603 		desc = &sc->rxq.desc[i];
604 		data = &sc->rxq.data[i];
605 
606 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
607 		if (error != 0) {
608 			device_printf(sc->sc_dev, "could not create DMA map\n");
609 			goto fail;
610 		}
611 
612 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
613 		if (data->m == NULL) {
614 			device_printf(sc->sc_dev,
615 			    "could not allocate rx mbuf\n");
616 			error = ENOMEM;
617 			goto fail;
618 		}
619 
620 		error = bus_dmamap_load(ring->data_dmat, data->map,
621 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
622 		    &physaddr, 0);
623 		if (error != 0) {
624 			device_printf(sc->sc_dev,
625 			    "could not load rx buf DMA map");
626 			goto fail;
627 		}
628 
629 		desc->flags = htole32(RT2560_RX_BUSY);
630 		desc->physaddr = htole32(physaddr);
631 	}
632 
633 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
634 
635 	return 0;
636 
637 fail:	rt2560_free_rx_ring(sc, ring);
638 	return error;
639 }
640 
641 static void
642 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
643 {
644 	int i;
645 
646 	for (i = 0; i < ring->count; i++) {
647 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
648 		ring->data[i].drop = 0;
649 	}
650 
651 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
652 
653 	ring->cur = ring->next = 0;
654 	ring->cur_decrypt = 0;
655 }
656 
657 static void
658 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
659 {
660 	struct rt2560_rx_data *data;
661 	int i;
662 
663 	if (ring->desc != NULL) {
664 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
665 		    BUS_DMASYNC_POSTWRITE);
666 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
667 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
668 	}
669 
670 	if (ring->desc_dmat != NULL)
671 		bus_dma_tag_destroy(ring->desc_dmat);
672 
673 	if (ring->data != NULL) {
674 		for (i = 0; i < ring->count; i++) {
675 			data = &ring->data[i];
676 
677 			if (data->m != NULL) {
678 				bus_dmamap_sync(ring->data_dmat, data->map,
679 				    BUS_DMASYNC_POSTREAD);
680 				bus_dmamap_unload(ring->data_dmat, data->map);
681 				m_freem(data->m);
682 			}
683 
684 			if (data->map != NULL)
685 				bus_dmamap_destroy(ring->data_dmat, data->map);
686 		}
687 
688 		free(ring->data, M_DEVBUF);
689 	}
690 
691 	if (ring->data_dmat != NULL)
692 		bus_dma_tag_destroy(ring->data_dmat);
693 }
694 
695 static struct ieee80211_node *
696 rt2560_node_alloc(struct ieee80211_node_table *nt)
697 {
698 	struct rt2560_node *rn;
699 
700 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
701 	    M_NOWAIT | M_ZERO);
702 
703 	return (rn != NULL) ? &rn->ni : NULL;
704 }
705 
706 static int
707 rt2560_media_change(struct ifnet *ifp)
708 {
709 	struct rt2560_softc *sc = ifp->if_softc;
710 	int error;
711 
712 	error = ieee80211_media_change(ifp);
713 
714 	if (error == ENETRESET) {
715 		if ((ifp->if_flags & IFF_UP) &&
716 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
717 		        rt2560_init(sc);
718 	}
719 	return error;
720 }
721 
722 /*
723  * This function is called for each node present in the node station table.
724  */
725 static void
726 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
727 {
728 	struct rt2560_node *rn = (struct rt2560_node *)ni;
729 
730 	ral_rssadapt_updatestats(&rn->rssadapt);
731 }
732 
733 /*
734  * This function is called periodically (every 100ms) in RUN state to update
735  * the rate adaptation statistics.
736  */
737 static void
738 rt2560_update_rssadapt(void *arg)
739 {
740 	struct rt2560_softc *sc = arg;
741 	struct ieee80211com *ic = &sc->sc_ic;
742 
743 	RAL_LOCK(sc);
744 
745 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
746 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
747 
748 	RAL_UNLOCK(sc);
749 }
750 
751 static int
752 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
753 {
754 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
755 	enum ieee80211_state ostate;
756 	struct ieee80211_node *ni;
757 	struct mbuf *m;
758 	int error = 0;
759 
760 	ostate = ic->ic_state;
761 
762 	switch (nstate) {
763 	case IEEE80211_S_INIT:
764 		callout_stop(&sc->rssadapt_ch);
765 
766 		if (ostate == IEEE80211_S_RUN) {
767 			/* abort TSF synchronization */
768 			RAL_WRITE(sc, RT2560_CSR14, 0);
769 
770 			/* turn association led off */
771 			rt2560_update_led(sc, 0, 0);
772 		}
773 		break;
774 	case IEEE80211_S_RUN:
775 		ni = ic->ic_bss;
776 
777 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
778 			rt2560_update_plcp(sc);
779 			rt2560_set_basicrates(sc);
780 			rt2560_set_bssid(sc, ni->ni_bssid);
781 		}
782 
783 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
784 		    ic->ic_opmode == IEEE80211_M_IBSS) {
785 			m = ieee80211_beacon_alloc(ni, &sc->sc_bo);
786 			if (m == NULL) {
787 				device_printf(sc->sc_dev,
788 				    "could not allocate beacon\n");
789 				error = ENOBUFS;
790 				break;
791 			}
792 
793 			ieee80211_ref_node(ni);
794 			error = rt2560_tx_bcn(sc, m, ni);
795 			if (error != 0)
796 				break;
797 		}
798 
799 		/* turn assocation led on */
800 		rt2560_update_led(sc, 1, 0);
801 
802 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
803 			callout_reset(&sc->rssadapt_ch, hz / 10,
804 			    rt2560_update_rssadapt, sc);
805 
806 			rt2560_enable_tsf_sync(sc);
807 		}
808 		break;
809 	case IEEE80211_S_SCAN:
810 	case IEEE80211_S_AUTH:
811 	case IEEE80211_S_ASSOC:
812 	default:
813 		break;
814 	}
815 
816 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
817 }
818 
819 /*
820  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
821  * 93C66).
822  */
823 static uint16_t
824 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
825 {
826 	uint32_t tmp;
827 	uint16_t val;
828 	int n;
829 
830 	/* clock C once before the first command */
831 	RT2560_EEPROM_CTL(sc, 0);
832 
833 	RT2560_EEPROM_CTL(sc, RT2560_S);
834 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
835 	RT2560_EEPROM_CTL(sc, RT2560_S);
836 
837 	/* write start bit (1) */
838 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
839 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
840 
841 	/* write READ opcode (10) */
842 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
843 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
844 	RT2560_EEPROM_CTL(sc, RT2560_S);
845 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
846 
847 	/* write address (A5-A0 or A7-A0) */
848 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
849 	for (; n >= 0; n--) {
850 		RT2560_EEPROM_CTL(sc, RT2560_S |
851 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
852 		RT2560_EEPROM_CTL(sc, RT2560_S |
853 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
854 	}
855 
856 	RT2560_EEPROM_CTL(sc, RT2560_S);
857 
858 	/* read data Q15-Q0 */
859 	val = 0;
860 	for (n = 15; n >= 0; n--) {
861 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
862 		tmp = RAL_READ(sc, RT2560_CSR21);
863 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
864 		RT2560_EEPROM_CTL(sc, RT2560_S);
865 	}
866 
867 	RT2560_EEPROM_CTL(sc, 0);
868 
869 	/* clear Chip Select and clock C */
870 	RT2560_EEPROM_CTL(sc, RT2560_S);
871 	RT2560_EEPROM_CTL(sc, 0);
872 	RT2560_EEPROM_CTL(sc, RT2560_C);
873 
874 	return val;
875 }
876 
877 /*
878  * Some frames were processed by the hardware cipher engine and are ready for
879  * transmission.
880  */
881 static void
882 rt2560_encryption_intr(struct rt2560_softc *sc)
883 {
884 	struct rt2560_tx_desc *desc;
885 	int hw;
886 
887 	/* retrieve last descriptor index processed by cipher engine */
888 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
889 	hw /= RT2560_TX_DESC_SIZE;
890 
891 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
892 	    BUS_DMASYNC_POSTREAD);
893 
894 	for (; sc->txq.next_encrypt != hw;) {
895 		desc = &sc->txq.desc[sc->txq.next_encrypt];
896 
897 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
898 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
899 			break;
900 
901 		/* for TKIP, swap eiv field to fix a bug in ASIC */
902 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
903 		    RT2560_TX_CIPHER_TKIP)
904 			desc->eiv = bswap32(desc->eiv);
905 
906 		/* mark the frame ready for transmission */
907 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
908 
909 		DPRINTFN(15, ("encryption done idx=%u\n",
910 		    sc->txq.next_encrypt));
911 
912 		sc->txq.next_encrypt =
913 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
914 	}
915 
916 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
917 	    BUS_DMASYNC_PREWRITE);
918 
919 	/* kick Tx */
920 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
921 }
922 
923 static void
924 rt2560_tx_intr(struct rt2560_softc *sc)
925 {
926 	struct ieee80211com *ic = &sc->sc_ic;
927 	struct ifnet *ifp = ic->ic_ifp;
928 	struct rt2560_tx_desc *desc;
929 	struct rt2560_tx_data *data;
930 	struct rt2560_node *rn;
931 
932 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
933 	    BUS_DMASYNC_POSTREAD);
934 
935 	for (;;) {
936 		desc = &sc->txq.desc[sc->txq.next];
937 		data = &sc->txq.data[sc->txq.next];
938 
939 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
940 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
941 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
942 			break;
943 
944 		rn = (struct rt2560_node *)data->ni;
945 
946 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
947 		case RT2560_TX_SUCCESS:
948 			DPRINTFN(10, ("data frame sent successfully\n"));
949 			if (data->id.id_node != NULL) {
950 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
951 				    &data->id);
952 			}
953 			ifp->if_opackets++;
954 			break;
955 
956 		case RT2560_TX_SUCCESS_RETRY:
957 			DPRINTFN(9, ("data frame sent after %u retries\n",
958 			    (le32toh(desc->flags) >> 5) & 0x7));
959 			ifp->if_opackets++;
960 			break;
961 
962 		case RT2560_TX_FAIL_RETRY:
963 			DPRINTFN(9, ("sending data frame failed (too much "
964 			    "retries)\n"));
965 			if (data->id.id_node != NULL) {
966 				ral_rssadapt_lower_rate(ic, data->ni,
967 				    &rn->rssadapt, &data->id);
968 			}
969 			ifp->if_oerrors++;
970 			break;
971 
972 		case RT2560_TX_FAIL_INVALID:
973 		case RT2560_TX_FAIL_OTHER:
974 		default:
975 			device_printf(sc->sc_dev, "sending data frame failed "
976 			    "0x%08x\n", le32toh(desc->flags));
977 			ifp->if_oerrors++;
978 		}
979 
980 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
981 		    BUS_DMASYNC_POSTWRITE);
982 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
983 		m_freem(data->m);
984 		data->m = NULL;
985 		ieee80211_free_node(data->ni);
986 		data->ni = NULL;
987 
988 		/* descriptor is no longer valid */
989 		desc->flags &= ~htole32(RT2560_TX_VALID);
990 
991 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
992 
993 		sc->txq.queued--;
994 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
995 	}
996 
997 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
998 	    BUS_DMASYNC_PREWRITE);
999 
1000 	sc->sc_tx_timer = 0;
1001 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1002 	rt2560_start(ifp);
1003 }
1004 
1005 static void
1006 rt2560_prio_intr(struct rt2560_softc *sc)
1007 {
1008 	struct ieee80211com *ic = &sc->sc_ic;
1009 	struct ifnet *ifp = ic->ic_ifp;
1010 	struct rt2560_tx_desc *desc;
1011 	struct rt2560_tx_data *data;
1012 	struct ieee80211_node *ni;
1013 	struct mbuf *m;
1014 	int flags;
1015 
1016 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1017 	    BUS_DMASYNC_POSTREAD);
1018 
1019 	for (;;) {
1020 		desc = &sc->prioq.desc[sc->prioq.next];
1021 		data = &sc->prioq.data[sc->prioq.next];
1022 
1023 		flags = le32toh(desc->flags);
1024 		if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
1025 			break;
1026 
1027 		switch (flags & RT2560_TX_RESULT_MASK) {
1028 		case RT2560_TX_SUCCESS:
1029 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1030 			break;
1031 
1032 		case RT2560_TX_SUCCESS_RETRY:
1033 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1034 			    (flags >> 5) & 0x7));
1035 			break;
1036 
1037 		case RT2560_TX_FAIL_RETRY:
1038 			DPRINTFN(9, ("sending mgt frame failed (too much "
1039 			    "retries)\n"));
1040 			break;
1041 
1042 		case RT2560_TX_FAIL_INVALID:
1043 		case RT2560_TX_FAIL_OTHER:
1044 		default:
1045 			device_printf(sc->sc_dev, "sending mgt frame failed "
1046 			    "0x%08x\n", flags);
1047 			break;
1048 		}
1049 
1050 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1051 		    BUS_DMASYNC_POSTWRITE);
1052 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1053 
1054 		m = data->m;
1055 		data->m = NULL;
1056 		ni = data->ni;
1057 		data->ni = NULL;
1058 
1059 		/* descriptor is no longer valid */
1060 		desc->flags &= ~htole32(RT2560_TX_VALID);
1061 
1062 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1063 
1064 		sc->prioq.queued--;
1065 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1066 
1067 		if (m->m_flags & M_TXCB)
1068 			ieee80211_process_callback(ni, m,
1069 				(flags & RT2560_TX_RESULT_MASK) &~
1070 				(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
1071 		m_freem(m);
1072 		ieee80211_free_node(ni);
1073 	}
1074 
1075 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1076 	    BUS_DMASYNC_PREWRITE);
1077 
1078 	sc->sc_tx_timer = 0;
1079 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1080 	rt2560_start(ifp);
1081 }
1082 
1083 /*
1084  * Some frames were processed by the hardware cipher engine and are ready for
1085  * transmission to the IEEE802.11 layer.
1086  */
1087 static void
1088 rt2560_decryption_intr(struct rt2560_softc *sc)
1089 {
1090 	struct ieee80211com *ic = &sc->sc_ic;
1091 	struct ifnet *ifp = ic->ic_ifp;
1092 	struct rt2560_rx_desc *desc;
1093 	struct rt2560_rx_data *data;
1094 	bus_addr_t physaddr;
1095 	struct ieee80211_frame *wh;
1096 	struct ieee80211_node *ni;
1097 	struct rt2560_node *rn;
1098 	struct mbuf *mnew, *m;
1099 	int hw, error;
1100 
1101 	/* retrieve last decriptor index processed by cipher engine */
1102 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1103 	hw /= RT2560_RX_DESC_SIZE;
1104 
1105 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1106 	    BUS_DMASYNC_POSTREAD);
1107 
1108 	for (; sc->rxq.cur_decrypt != hw;) {
1109 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1110 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1111 
1112 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1113 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1114 			break;
1115 
1116 		if (data->drop) {
1117 			ifp->if_ierrors++;
1118 			goto skip;
1119 		}
1120 
1121 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1122 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1123 			ifp->if_ierrors++;
1124 			goto skip;
1125 		}
1126 
1127 		/*
1128 		 * Try to allocate a new mbuf for this ring element and load it
1129 		 * before processing the current mbuf. If the ring element
1130 		 * cannot be loaded, drop the received packet and reuse the old
1131 		 * mbuf. In the unlikely case that the old mbuf can't be
1132 		 * reloaded either, explicitly panic.
1133 		 */
1134 		mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1135 		if (mnew == NULL) {
1136 			ifp->if_ierrors++;
1137 			goto skip;
1138 		}
1139 
1140 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1141 		    BUS_DMASYNC_POSTREAD);
1142 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1143 
1144 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1145 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1146 		    &physaddr, 0);
1147 		if (error != 0) {
1148 			m_freem(mnew);
1149 
1150 			/* try to reload the old mbuf */
1151 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1152 			    mtod(data->m, void *), MCLBYTES,
1153 			    rt2560_dma_map_addr, &physaddr, 0);
1154 			if (error != 0) {
1155 				/* very unlikely that it will fail... */
1156 				panic("%s: could not load old rx mbuf",
1157 				    device_get_name(sc->sc_dev));
1158 			}
1159 			ifp->if_ierrors++;
1160 			goto skip;
1161 		}
1162 
1163 		/*
1164 	 	 * New mbuf successfully loaded, update Rx ring and continue
1165 		 * processing.
1166 		 */
1167 		m = data->m;
1168 		data->m = mnew;
1169 		desc->physaddr = htole32(physaddr);
1170 
1171 		/* finalize mbuf */
1172 		m->m_pkthdr.rcvif = ifp;
1173 		m->m_pkthdr.len = m->m_len =
1174 		    (le32toh(desc->flags) >> 16) & 0xfff;
1175 
1176 		if (bpf_peers_present(sc->sc_drvbpf)) {
1177 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1178 			uint32_t tsf_lo, tsf_hi;
1179 
1180 			/* get timestamp (low and high 32 bits) */
1181 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1182 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1183 
1184 			tap->wr_tsf =
1185 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1186 			tap->wr_flags = 0;
1187 			tap->wr_rate = rt2560_rxrate(desc);
1188 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1189 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1190 			tap->wr_antenna = sc->rx_ant;
1191 			tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi);
1192 
1193 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1194 		}
1195 
1196 		sc->sc_flags |= RAL_INPUT_RUNNING;
1197 		RAL_UNLOCK(sc);
1198 		wh = mtod(m, struct ieee80211_frame *);
1199 		ni = ieee80211_find_rxnode(ic,
1200 		    (struct ieee80211_frame_min *)wh);
1201 
1202 		/* send the frame to the 802.11 layer */
1203 		ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi),
1204 				RT2560_NOISE_FLOOR, 0);
1205 
1206 		/* give rssi to the rate adatation algorithm */
1207 		rn = (struct rt2560_node *)ni;
1208 		ral_rssadapt_input(ic, ni, &rn->rssadapt,
1209 				   RT2560_RSSI(sc, desc->rssi));
1210 
1211 		/* node is no longer needed */
1212 		ieee80211_free_node(ni);
1213 
1214 		RAL_LOCK(sc);
1215 		sc->sc_flags &= ~RAL_INPUT_RUNNING;
1216 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1217 
1218 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1219 
1220 		sc->rxq.cur_decrypt =
1221 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1222 	}
1223 
1224 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1225 	    BUS_DMASYNC_PREWRITE);
1226 }
1227 
1228 /*
1229  * Some frames were received. Pass them to the hardware cipher engine before
1230  * sending them to the 802.11 layer.
1231  */
1232 static void
1233 rt2560_rx_intr(struct rt2560_softc *sc)
1234 {
1235 	struct rt2560_rx_desc *desc;
1236 	struct rt2560_rx_data *data;
1237 
1238 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1239 	    BUS_DMASYNC_POSTREAD);
1240 
1241 	for (;;) {
1242 		desc = &sc->rxq.desc[sc->rxq.cur];
1243 		data = &sc->rxq.data[sc->rxq.cur];
1244 
1245 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1246 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1247 			break;
1248 
1249 		data->drop = 0;
1250 
1251 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1252 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1253 			/*
1254 			 * This should not happen since we did not request
1255 			 * to receive those frames when we filled RXCSR0.
1256 			 */
1257 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1258 			    le32toh(desc->flags)));
1259 			data->drop = 1;
1260 		}
1261 
1262 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1263 			DPRINTFN(5, ("bad length\n"));
1264 			data->drop = 1;
1265 		}
1266 
1267 		/* mark the frame for decryption */
1268 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1269 
1270 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1271 
1272 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1273 	}
1274 
1275 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1276 	    BUS_DMASYNC_PREWRITE);
1277 
1278 	/* kick decrypt */
1279 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1280 }
1281 
1282 static void
1283 rt2560_beacon_update(struct ieee80211com *ic, int item)
1284 {
1285 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
1286 	struct ieee80211_beacon_offsets *bo = &sc->sc_bo;
1287 
1288 	setbit(bo->bo_flags, item);
1289 }
1290 
1291 /*
1292  * This function is called periodically in IBSS mode when a new beacon must be
1293  * sent out.
1294  */
1295 static void
1296 rt2560_beacon_expire(struct rt2560_softc *sc)
1297 {
1298 	struct ieee80211com *ic = &sc->sc_ic;
1299 	struct rt2560_tx_data *data;
1300 
1301 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1302 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1303 		return;
1304 
1305 	data = &sc->bcnq.data[sc->bcnq.next];
1306 	/*
1307 	 * Don't send beacon if bsschan isn't set
1308 	 */
1309 	if (data->ni == NULL)
1310 	        return;
1311 
1312 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1313 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1314 
1315 	ieee80211_beacon_update(data->ni, &sc->sc_bo, data->m, 1);
1316 
1317 	if (bpf_peers_present(ic->ic_rawbpf))
1318 		bpf_mtap(ic->ic_rawbpf, data->m);
1319 
1320 	rt2560_tx_bcn(sc, data->m, data->ni);
1321 
1322 	DPRINTFN(15, ("beacon expired\n"));
1323 
1324 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1325 }
1326 
1327 /* ARGSUSED */
1328 static void
1329 rt2560_wakeup_expire(struct rt2560_softc *sc)
1330 {
1331 	DPRINTFN(2, ("wakeup expired\n"));
1332 }
1333 
1334 void
1335 rt2560_intr(void *arg)
1336 {
1337 	struct rt2560_softc *sc = arg;
1338 	struct ifnet *ifp = sc->sc_ifp;
1339 	uint32_t r;
1340 
1341 	RAL_LOCK(sc);
1342 
1343 	/* disable interrupts */
1344 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1345 
1346 	/* don't re-enable interrupts if we're shutting down */
1347 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1348 		RAL_UNLOCK(sc);
1349 		return;
1350 	}
1351 
1352 	r = RAL_READ(sc, RT2560_CSR7);
1353 	RAL_WRITE(sc, RT2560_CSR7, r);
1354 
1355 	if (r & RT2560_BEACON_EXPIRE)
1356 		rt2560_beacon_expire(sc);
1357 
1358 	if (r & RT2560_WAKEUP_EXPIRE)
1359 		rt2560_wakeup_expire(sc);
1360 
1361 	if (r & RT2560_ENCRYPTION_DONE)
1362 		rt2560_encryption_intr(sc);
1363 
1364 	if (r & RT2560_TX_DONE)
1365 		rt2560_tx_intr(sc);
1366 
1367 	if (r & RT2560_PRIO_DONE)
1368 		rt2560_prio_intr(sc);
1369 
1370 	if (r & RT2560_DECRYPTION_DONE)
1371 		rt2560_decryption_intr(sc);
1372 
1373 	if (r & RT2560_RX_DONE)
1374 		rt2560_rx_intr(sc);
1375 
1376 	/* re-enable interrupts */
1377 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1378 
1379 	RAL_UNLOCK(sc);
1380 }
1381 
1382 /* quickly determine if a given rate is CCK or OFDM */
1383 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1384 
1385 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1386 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1387 
1388 #define RAL_SIFS		10	/* us */
1389 
1390 #define RT2560_TXRX_TURNAROUND	10	/* us */
1391 
1392 /*
1393  * This function is only used by the Rx radiotap code.
1394  */
1395 static uint8_t
1396 rt2560_rxrate(struct rt2560_rx_desc *desc)
1397 {
1398 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1399 		/* reverse function of rt2560_plcp_signal */
1400 		switch (desc->rate) {
1401 		case 0xb:	return 12;
1402 		case 0xf:	return 18;
1403 		case 0xa:	return 24;
1404 		case 0xe:	return 36;
1405 		case 0x9:	return 48;
1406 		case 0xd:	return 72;
1407 		case 0x8:	return 96;
1408 		case 0xc:	return 108;
1409 		}
1410 	} else {
1411 		if (desc->rate == 10)
1412 			return 2;
1413 		if (desc->rate == 20)
1414 			return 4;
1415 		if (desc->rate == 55)
1416 			return 11;
1417 		if (desc->rate == 110)
1418 			return 22;
1419 	}
1420 	return 2;	/* should not get there */
1421 }
1422 
1423 /*
1424  * Return the expected ack rate for a frame transmitted at rate `rate'.
1425  * XXX: this should depend on the destination node basic rate set.
1426  */
1427 static int
1428 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1429 {
1430 	switch (rate) {
1431 	/* CCK rates */
1432 	case 2:
1433 		return 2;
1434 	case 4:
1435 	case 11:
1436 	case 22:
1437 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1438 
1439 	/* OFDM rates */
1440 	case 12:
1441 	case 18:
1442 		return 12;
1443 	case 24:
1444 	case 36:
1445 		return 24;
1446 	case 48:
1447 	case 72:
1448 	case 96:
1449 	case 108:
1450 		return 48;
1451 	}
1452 
1453 	/* default to 1Mbps */
1454 	return 2;
1455 }
1456 
1457 /*
1458  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1459  * The function automatically determines the operating mode depending on the
1460  * given rate. `flags' indicates whether short preamble is in use or not.
1461  */
1462 static uint16_t
1463 rt2560_txtime(int len, int rate, uint32_t flags)
1464 {
1465 	uint16_t txtime;
1466 
1467 	if (RAL_RATE_IS_OFDM(rate)) {
1468 		/* IEEE Std 802.11a-1999, pp. 37 */
1469 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1470 		txtime = 16 + 4 + 4 * txtime + 6;
1471 	} else {
1472 		/* IEEE Std 802.11b-1999, pp. 28 */
1473 		txtime = (16 * len + rate - 1) / rate;
1474 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1475 			txtime +=  72 + 24;
1476 		else
1477 			txtime += 144 + 48;
1478 	}
1479 
1480 	return txtime;
1481 }
1482 
1483 static uint8_t
1484 rt2560_plcp_signal(int rate)
1485 {
1486 	switch (rate) {
1487 	/* CCK rates (returned values are device-dependent) */
1488 	case 2:		return 0x0;
1489 	case 4:		return 0x1;
1490 	case 11:	return 0x2;
1491 	case 22:	return 0x3;
1492 
1493 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1494 	case 12:	return 0xb;
1495 	case 18:	return 0xf;
1496 	case 24:	return 0xa;
1497 	case 36:	return 0xe;
1498 	case 48:	return 0x9;
1499 	case 72:	return 0xd;
1500 	case 96:	return 0x8;
1501 	case 108:	return 0xc;
1502 
1503 	/* unsupported rates (should not get there) */
1504 	default:	return 0xff;
1505 	}
1506 }
1507 
1508 static void
1509 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1510     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1511 {
1512 	struct ieee80211com *ic = &sc->sc_ic;
1513 	uint16_t plcp_length;
1514 	int remainder;
1515 
1516 	desc->flags = htole32(flags);
1517 	desc->flags |= htole32(len << 16);
1518 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1519 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1520 
1521 	desc->physaddr = htole32(physaddr);
1522 	desc->wme = htole16(
1523 	    RT2560_AIFSN(2) |
1524 	    RT2560_LOGCWMIN(3) |
1525 	    RT2560_LOGCWMAX(8));
1526 
1527 	/* setup PLCP fields */
1528 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1529 	desc->plcp_service = 4;
1530 
1531 	len += IEEE80211_CRC_LEN;
1532 	if (RAL_RATE_IS_OFDM(rate)) {
1533 		desc->flags |= htole32(RT2560_TX_OFDM);
1534 
1535 		plcp_length = len & 0xfff;
1536 		desc->plcp_length_hi = plcp_length >> 6;
1537 		desc->plcp_length_lo = plcp_length & 0x3f;
1538 	} else {
1539 		plcp_length = (16 * len + rate - 1) / rate;
1540 		if (rate == 22) {
1541 			remainder = (16 * len) % 22;
1542 			if (remainder != 0 && remainder < 7)
1543 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1544 		}
1545 		desc->plcp_length_hi = plcp_length >> 8;
1546 		desc->plcp_length_lo = plcp_length & 0xff;
1547 
1548 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1549 			desc->plcp_signal |= 0x08;
1550 	}
1551 }
1552 
1553 static int
1554 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1555     struct ieee80211_node *ni)
1556 {
1557 	struct ieee80211com *ic = &sc->sc_ic;
1558 	struct rt2560_tx_desc *desc;
1559 	struct rt2560_tx_data *data;
1560 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1561 	int nsegs, rate, error;
1562 
1563 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1564 	data = &sc->bcnq.data[sc->bcnq.cur];
1565 
1566 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1567 
1568 	error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1569 	    segs, &nsegs, BUS_DMA_NOWAIT);
1570 	if (error != 0) {
1571 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1572 		    error);
1573 		m_freem(m0);
1574 		return error;
1575 	}
1576 
1577 	if (bpf_peers_present(sc->sc_drvbpf)) {
1578 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1579 
1580 		tap->wt_flags = 0;
1581 		tap->wt_rate = rate;
1582 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1583 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1584 		tap->wt_antenna = sc->tx_ant;
1585 
1586 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1587 	}
1588 
1589 	data->m = m0;
1590 	data->ni = ni;
1591 
1592 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1593 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1594 
1595 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1596 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1597 
1598 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1599 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1600 	    BUS_DMASYNC_PREWRITE);
1601 
1602 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1603 
1604 	return 0;
1605 }
1606 
1607 static int
1608 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1609     struct ieee80211_node *ni)
1610 {
1611 	struct ieee80211com *ic = &sc->sc_ic;
1612 	struct rt2560_tx_desc *desc;
1613 	struct rt2560_tx_data *data;
1614 	struct ieee80211_frame *wh;
1615 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1616 	uint16_t dur;
1617 	uint32_t flags = 0;
1618 	int nsegs, rate, error;
1619 
1620 	desc = &sc->prioq.desc[sc->prioq.cur];
1621 	data = &sc->prioq.data[sc->prioq.cur];
1622 
1623 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1624 
1625 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1626 	    segs, &nsegs, 0);
1627 	if (error != 0) {
1628 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1629 		    error);
1630 		m_freem(m0);
1631 		return error;
1632 	}
1633 
1634 	if (bpf_peers_present(sc->sc_drvbpf)) {
1635 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1636 
1637 		tap->wt_flags = 0;
1638 		tap->wt_rate = rate;
1639 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1640 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1641 		tap->wt_antenna = sc->tx_ant;
1642 
1643 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1644 	}
1645 
1646 	data->m = m0;
1647 	data->ni = ni;
1648 
1649 	wh = mtod(m0, struct ieee80211_frame *);
1650 
1651 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1652 		flags |= RT2560_TX_ACK;
1653 
1654 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1655 		      RAL_SIFS;
1656 		*(uint16_t *)wh->i_dur = htole16(dur);
1657 
1658 		/* tell hardware to add timestamp for probe responses */
1659 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1660 		    IEEE80211_FC0_TYPE_MGT &&
1661 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1662 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1663 			flags |= RT2560_TX_TIMESTAMP;
1664 	}
1665 
1666 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1667 	    segs->ds_addr);
1668 
1669 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1670 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1671 	    BUS_DMASYNC_PREWRITE);
1672 
1673 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1674 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1675 
1676 	/* kick prio */
1677 	sc->prioq.queued++;
1678 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1679 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1680 
1681 	return 0;
1682 }
1683 
1684 static int
1685 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
1686     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
1687 {
1688 	struct ieee80211com *ic = &sc->sc_ic;
1689 	struct rt2560_tx_desc *desc;
1690 	struct rt2560_tx_data *data;
1691 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1692 	uint32_t flags;
1693 	int nsegs, rate, error;
1694 
1695 	desc = &sc->prioq.desc[sc->prioq.cur];
1696 	data = &sc->prioq.data[sc->prioq.cur];
1697 
1698 	rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1699 	/* XXX validate */
1700 	if (rate == 0) {
1701 		m_freem(m0);
1702 		return EINVAL;
1703 	}
1704 
1705 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1706 	    segs, &nsegs, 0);
1707 	if (error != 0) {
1708 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1709 		    error);
1710 		m_freem(m0);
1711 		return error;
1712 	}
1713 
1714 	if (bpf_peers_present(sc->sc_drvbpf)) {
1715 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1716 
1717 		tap->wt_flags = 0;
1718 		tap->wt_rate = rate;
1719 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1720 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1721 		tap->wt_antenna = sc->tx_ant;
1722 
1723 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1724 	}
1725 
1726 	data->m = m0;
1727 	data->ni = ni;
1728 
1729 	flags = 0;
1730 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1731 		flags |= RT2560_TX_ACK;
1732 
1733 	/* XXX need to setup descriptor ourself */
1734 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
1735 	    rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
1736 	    segs->ds_addr);
1737 
1738 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1739 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1740 	    BUS_DMASYNC_PREWRITE);
1741 
1742 	DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n",
1743 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1744 
1745 	/* kick prio */
1746 	sc->prioq.queued++;
1747 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1748 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1749 
1750 	return 0;
1751 }
1752 
1753 /*
1754  * Build a RTS control frame.
1755  */
1756 static struct mbuf *
1757 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1758     uint16_t dur)
1759 {
1760 	struct ieee80211_frame_rts *rts;
1761 	struct mbuf *m;
1762 
1763 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1764 	if (m == NULL) {
1765 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1766 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1767 		return NULL;
1768 	}
1769 
1770 	rts = mtod(m, struct ieee80211_frame_rts *);
1771 
1772 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1773 	    IEEE80211_FC0_SUBTYPE_RTS;
1774 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1775 	*(uint16_t *)rts->i_dur = htole16(dur);
1776 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1777 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1778 
1779 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1780 
1781 	return m;
1782 }
1783 
1784 static int
1785 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1786     struct ieee80211_node *ni)
1787 {
1788 	struct ieee80211com *ic = &sc->sc_ic;
1789 	struct rt2560_tx_desc *desc;
1790 	struct rt2560_tx_data *data;
1791 	struct rt2560_node *rn;
1792 	struct ieee80211_frame *wh;
1793 	struct ieee80211_key *k;
1794 	struct mbuf *mnew;
1795 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1796 	uint16_t dur;
1797 	uint32_t flags = 0;
1798 	int nsegs, rate, error;
1799 
1800 	wh = mtod(m0, struct ieee80211_frame *);
1801 
1802 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1803 		rate = ic->ic_fixed_rate;
1804 	} else {
1805 		struct ieee80211_rateset *rs;
1806 
1807 		rs = &ni->ni_rates;
1808 		rn = (struct rt2560_node *)ni;
1809 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1810 		    m0->m_pkthdr.len, NULL, 0);
1811 		rate = rs->rs_rates[ni->ni_txrate];
1812 	}
1813 	rate &= IEEE80211_RATE_VAL;
1814 
1815 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1816 		k = ieee80211_crypto_encap(ic, ni, m0);
1817 		if (k == NULL) {
1818 			m_freem(m0);
1819 			return ENOBUFS;
1820 		}
1821 
1822 		/* packet header may have moved, reset our local pointer */
1823 		wh = mtod(m0, struct ieee80211_frame *);
1824 	}
1825 
1826 	/*
1827 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1828 	 * for directed frames only when the length of the MPDU is greater
1829 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1830 	 */
1831 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1832 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1833 		struct mbuf *m;
1834 		uint16_t dur;
1835 		int rtsrate, ackrate;
1836 
1837 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1838 		ackrate = rt2560_ack_rate(ic, rate);
1839 
1840 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1841 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1842 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1843 		      3 * RAL_SIFS;
1844 
1845 		m = rt2560_get_rts(sc, wh, dur);
1846 
1847 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1848 		data = &sc->txq.data[sc->txq.cur_encrypt];
1849 
1850 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1851 		    m, segs, &nsegs, 0);
1852 		if (error != 0) {
1853 			device_printf(sc->sc_dev,
1854 			    "could not map mbuf (error %d)\n", error);
1855 			m_freem(m);
1856 			m_freem(m0);
1857 			return error;
1858 		}
1859 
1860 		/* avoid multiple free() of the same node for each fragment */
1861 		ieee80211_ref_node(ni);
1862 
1863 		data->m = m;
1864 		data->ni = ni;
1865 
1866 		/* RTS frames are not taken into account for rssadapt */
1867 		data->id.id_node = NULL;
1868 
1869 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1870 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1871 		    segs->ds_addr);
1872 
1873 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1874 		    BUS_DMASYNC_PREWRITE);
1875 
1876 		sc->txq.queued++;
1877 		sc->txq.cur_encrypt =
1878 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1879 
1880 		/*
1881 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1882 		 * asynchronous data frame shall be transmitted after the CTS
1883 		 * frame and a SIFS period.
1884 		 */
1885 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1886 	}
1887 
1888 	data = &sc->txq.data[sc->txq.cur_encrypt];
1889 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1890 
1891 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1892 	    segs, &nsegs, 0);
1893 	if (error != 0 && error != EFBIG) {
1894 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1895 		    error);
1896 		m_freem(m0);
1897 		return error;
1898 	}
1899 	if (error != 0) {
1900 		mnew = m_defrag(m0, M_DONTWAIT);
1901 		if (mnew == NULL) {
1902 			device_printf(sc->sc_dev,
1903 			    "could not defragment mbuf\n");
1904 			m_freem(m0);
1905 			return ENOBUFS;
1906 		}
1907 		m0 = mnew;
1908 
1909 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1910 		    m0, segs, &nsegs, 0);
1911 		if (error != 0) {
1912 			device_printf(sc->sc_dev,
1913 			    "could not map mbuf (error %d)\n", error);
1914 			m_freem(m0);
1915 			return error;
1916 		}
1917 
1918 		/* packet header may have moved, reset our local pointer */
1919 		wh = mtod(m0, struct ieee80211_frame *);
1920 	}
1921 
1922 	if (bpf_peers_present(sc->sc_drvbpf)) {
1923 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1924 
1925 		tap->wt_flags = 0;
1926 		tap->wt_rate = rate;
1927 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1928 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1929 		tap->wt_antenna = sc->tx_ant;
1930 
1931 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1932 	}
1933 
1934 	data->m = m0;
1935 	data->ni = ni;
1936 
1937 	/* remember link conditions for rate adaptation algorithm */
1938 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1939 		data->id.id_len = m0->m_pkthdr.len;
1940 		data->id.id_rateidx = ni->ni_txrate;
1941 		data->id.id_node = ni;
1942 		data->id.id_rssi = ni->ni_rssi;
1943 	} else
1944 		data->id.id_node = NULL;
1945 
1946 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1947 		flags |= RT2560_TX_ACK;
1948 
1949 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1950 		    ic->ic_flags) + RAL_SIFS;
1951 		*(uint16_t *)wh->i_dur = htole16(dur);
1952 	}
1953 
1954 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1955 	    segs->ds_addr);
1956 
1957 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1958 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1959 	    BUS_DMASYNC_PREWRITE);
1960 
1961 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1962 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1963 
1964 	/* kick encrypt */
1965 	sc->txq.queued++;
1966 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1967 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1968 
1969 	return 0;
1970 }
1971 
1972 static void
1973 rt2560_start(struct ifnet *ifp)
1974 {
1975 	struct rt2560_softc *sc = ifp->if_softc;
1976 	struct ieee80211com *ic = &sc->sc_ic;
1977 	struct mbuf *m0;
1978 	struct ether_header *eh;
1979 	struct ieee80211_node *ni;
1980 
1981 	RAL_LOCK(sc);
1982 
1983 	/* prevent management frames from being sent if we're not ready */
1984 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1985 		RAL_UNLOCK(sc);
1986 		return;
1987 	}
1988 
1989 	for (;;) {
1990 		IF_POLL(&ic->ic_mgtq, m0);
1991 		if (m0 != NULL) {
1992 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1993 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1994 				break;
1995 			}
1996 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1997 
1998 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1999 			m0->m_pkthdr.rcvif = NULL;
2000 
2001 			if (bpf_peers_present(ic->ic_rawbpf))
2002 				bpf_mtap(ic->ic_rawbpf, m0);
2003 
2004 			if (rt2560_tx_mgt(sc, m0, ni) != 0) {
2005 				ieee80211_free_node(ni);
2006 				break;
2007 			}
2008 		} else {
2009 			if (ic->ic_state != IEEE80211_S_RUN)
2010 				break;
2011 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2012 			if (m0 == NULL)
2013 				break;
2014 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2015 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2016 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2017 				break;
2018 			}
2019 			/*
2020 			 * Cancel any background scan.
2021 			 */
2022 			if (ic->ic_flags & IEEE80211_F_SCAN)
2023 				ieee80211_cancel_scan(ic);
2024 
2025 			if (m0->m_len < sizeof (struct ether_header) &&
2026 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2027 				continue;
2028 
2029 			eh = mtod(m0, struct ether_header *);
2030 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2031 			if (ni == NULL) {
2032 				m_freem(m0);
2033 				continue;
2034 			}
2035 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
2036 			    (m0->m_flags & M_PWR_SAV) == 0) {
2037 				/*
2038 				 * Station in power save mode; pass the frame
2039 				 * to the 802.11 layer and continue.  We'll get
2040 				 * the frame back when the time is right.
2041 				 */
2042 				ieee80211_pwrsave(ni, m0);
2043 				/*
2044 				 * If we're in power save mode 'cuz of a bg
2045 				 * scan cancel it so the traffic can flow.
2046 				 * The packet we just queued will automatically
2047 				 * get sent when we drop out of power save.
2048 				 * XXX locking
2049 				 */
2050 				if (ic->ic_flags & IEEE80211_F_SCAN)
2051 					ieee80211_cancel_scan(ic);
2052 				ieee80211_free_node(ni);
2053 				continue;
2054 
2055 			}
2056 
2057 			BPF_MTAP(ifp, m0);
2058 
2059 			m0 = ieee80211_encap(ic, m0, ni);
2060 			if (m0 == NULL) {
2061 				ieee80211_free_node(ni);
2062 				continue;
2063 			}
2064 
2065 			if (bpf_peers_present(ic->ic_rawbpf))
2066 				bpf_mtap(ic->ic_rawbpf, m0);
2067 
2068 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2069 				ieee80211_free_node(ni);
2070 				ifp->if_oerrors++;
2071 				break;
2072 			}
2073 		}
2074 
2075 		sc->sc_tx_timer = 5;
2076 		ic->ic_lastdata = ticks;
2077 		callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2078 	}
2079 
2080 	RAL_UNLOCK(sc);
2081 }
2082 
2083 static void
2084 rt2560_watchdog(void *arg)
2085 {
2086 	struct rt2560_softc *sc = arg;
2087 
2088 	if (sc->sc_tx_timer > 0) {
2089 		if (--sc->sc_tx_timer == 0) {
2090 			device_printf(sc->sc_dev, "device timeout\n");
2091 			rt2560_init(sc);
2092 			sc->sc_ifp->if_oerrors++;
2093 			return;
2094 		}
2095 		callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2096 	}
2097 }
2098 
2099 /*
2100  * This function allows for fast channel switching in monitor mode (used by
2101  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2102  * generate a new beacon frame.
2103  */
2104 static int
2105 rt2560_reset(struct ifnet *ifp)
2106 {
2107 	struct rt2560_softc *sc = ifp->if_softc;
2108 	struct ieee80211com *ic = &sc->sc_ic;
2109 
2110 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2111 		return ENETRESET;
2112 
2113 	rt2560_set_chan(sc, ic->ic_curchan);
2114 
2115 	return 0;
2116 }
2117 
2118 static int
2119 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2120 {
2121 	struct rt2560_softc *sc = ifp->if_softc;
2122 	struct ieee80211com *ic = &sc->sc_ic;
2123 	int error = 0;
2124 
2125 
2126 
2127 	switch (cmd) {
2128 	case SIOCSIFFLAGS:
2129 		if (ifp->if_flags & IFF_UP) {
2130 			RAL_LOCK(sc);
2131 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2132 				rt2560_update_promisc(sc);
2133 			else
2134 				rt2560_init(sc);
2135 			RAL_UNLOCK(sc);
2136 		} else {
2137 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2138 				rt2560_stop(sc);
2139 		}
2140 
2141 		break;
2142 
2143 	default:
2144 		error = ieee80211_ioctl(ic, cmd, data);
2145 	}
2146 
2147 	if (error == ENETRESET) {
2148 		if ((ifp->if_flags & IFF_UP) &&
2149 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2150 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2151 			rt2560_init(sc);
2152 		error = 0;
2153 	}
2154 
2155 
2156 	return error;
2157 }
2158 
2159 static void
2160 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2161 {
2162 	uint32_t tmp;
2163 	int ntries;
2164 
2165 	for (ntries = 0; ntries < 100; ntries++) {
2166 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2167 			break;
2168 		DELAY(1);
2169 	}
2170 	if (ntries == 100) {
2171 		device_printf(sc->sc_dev, "could not write to BBP\n");
2172 		return;
2173 	}
2174 
2175 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2176 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2177 
2178 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2179 }
2180 
2181 static uint8_t
2182 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2183 {
2184 	uint32_t val;
2185 	int ntries;
2186 
2187 	val = RT2560_BBP_BUSY | reg << 8;
2188 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2189 
2190 	for (ntries = 0; ntries < 100; ntries++) {
2191 		val = RAL_READ(sc, RT2560_BBPCSR);
2192 		if (!(val & RT2560_BBP_BUSY))
2193 			return val & 0xff;
2194 		DELAY(1);
2195 	}
2196 
2197 	device_printf(sc->sc_dev, "could not read from BBP\n");
2198 	return 0;
2199 }
2200 
2201 static void
2202 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2203 {
2204 	uint32_t tmp;
2205 	int ntries;
2206 
2207 	for (ntries = 0; ntries < 100; ntries++) {
2208 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2209 			break;
2210 		DELAY(1);
2211 	}
2212 	if (ntries == 100) {
2213 		device_printf(sc->sc_dev, "could not write to RF\n");
2214 		return;
2215 	}
2216 
2217 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2218 	    (reg & 0x3);
2219 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2220 
2221 	/* remember last written value in sc */
2222 	sc->rf_regs[reg] = val;
2223 
2224 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2225 }
2226 
2227 static void
2228 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2229 {
2230 	struct ieee80211com *ic = &sc->sc_ic;
2231 	uint8_t power, tmp;
2232 	u_int i, chan;
2233 
2234 	chan = ieee80211_chan2ieee(ic, c);
2235 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2236 		return;
2237 
2238 	if (IEEE80211_IS_CHAN_2GHZ(c))
2239 		power = min(sc->txpow[chan - 1], 31);
2240 	else
2241 		power = 31;
2242 
2243 	/* adjust txpower using ifconfig settings */
2244 	power -= (100 - ic->ic_txpowlimit) / 8;
2245 
2246 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2247 
2248 	switch (sc->rf_rev) {
2249 	case RT2560_RF_2522:
2250 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2251 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2252 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2253 		break;
2254 
2255 	case RT2560_RF_2523:
2256 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2257 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2258 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2259 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2260 		break;
2261 
2262 	case RT2560_RF_2524:
2263 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2264 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2265 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2266 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2267 		break;
2268 
2269 	case RT2560_RF_2525:
2270 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2271 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2272 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2273 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2274 
2275 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2276 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2277 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2278 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2279 		break;
2280 
2281 	case RT2560_RF_2525E:
2282 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2283 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2284 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2285 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2286 		break;
2287 
2288 	case RT2560_RF_2526:
2289 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2290 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2291 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2292 
2293 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2294 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2295 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2296 		break;
2297 
2298 	/* dual-band RF */
2299 	case RT2560_RF_5222:
2300 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2301 
2302 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2303 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2304 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2305 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2306 		break;
2307 	default:
2308  	        printf("unknown ral rev=%d\n", sc->rf_rev);
2309 	}
2310 
2311 	if (ic->ic_state != IEEE80211_S_SCAN) {
2312 		/* set Japan filter bit for channel 14 */
2313 		tmp = rt2560_bbp_read(sc, 70);
2314 
2315 		tmp &= ~RT2560_JAPAN_FILTER;
2316 		if (chan == 14)
2317 			tmp |= RT2560_JAPAN_FILTER;
2318 
2319 		rt2560_bbp_write(sc, 70, tmp);
2320 
2321 		/* clear CRC errors */
2322 		RAL_READ(sc, RT2560_CNT0);
2323 	}
2324 }
2325 
2326 static void
2327 rt2560_set_channel(struct ieee80211com *ic)
2328 {
2329 	struct ifnet *ifp = ic->ic_ifp;
2330 	struct rt2560_softc *sc = ifp->if_softc;
2331 
2332 	RAL_LOCK(sc);
2333 	rt2560_set_chan(sc, ic->ic_curchan);
2334 	RAL_UNLOCK(sc);
2335 
2336 }
2337 
2338 #if 0
2339 /*
2340  * Disable RF auto-tuning.
2341  */
2342 static void
2343 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2344 {
2345 	uint32_t tmp;
2346 
2347 	if (sc->rf_rev != RT2560_RF_2523) {
2348 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2349 		rt2560_rf_write(sc, RAL_RF1, tmp);
2350 	}
2351 
2352 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2353 	rt2560_rf_write(sc, RAL_RF3, tmp);
2354 
2355 	DPRINTFN(2, ("disabling RF autotune\n"));
2356 }
2357 #endif
2358 
2359 /*
2360  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2361  * synchronization.
2362  */
2363 static void
2364 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2365 {
2366 	struct ieee80211com *ic = &sc->sc_ic;
2367 	uint16_t logcwmin, preload;
2368 	uint32_t tmp;
2369 
2370 	/* first, disable TSF synchronization */
2371 	RAL_WRITE(sc, RT2560_CSR14, 0);
2372 
2373 	tmp = 16 * ic->ic_bss->ni_intval;
2374 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2375 
2376 	RAL_WRITE(sc, RT2560_CSR13, 0);
2377 
2378 	logcwmin = 5;
2379 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2380 	tmp = logcwmin << 16 | preload;
2381 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2382 
2383 	/* finally, enable TSF synchronization */
2384 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2385 	if (ic->ic_opmode == IEEE80211_M_STA)
2386 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2387 	else
2388 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2389 		       RT2560_ENABLE_BEACON_GENERATOR;
2390 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2391 
2392 	DPRINTF(("enabling TSF synchronization\n"));
2393 }
2394 
2395 static void
2396 rt2560_update_plcp(struct rt2560_softc *sc)
2397 {
2398 	struct ieee80211com *ic = &sc->sc_ic;
2399 
2400 	/* no short preamble for 1Mbps */
2401 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2402 
2403 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2404 		/* values taken from the reference driver */
2405 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2406 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2407 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2408 	} else {
2409 		/* same values as above or'ed 0x8 */
2410 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2411 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2412 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2413 	}
2414 
2415 	DPRINTF(("updating PLCP for %s preamble\n",
2416 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2417 }
2418 
2419 /*
2420  * This function can be called by ieee80211_set_shortslottime(). Refer to
2421  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2422  */
2423 static void
2424 rt2560_update_slot(struct ifnet *ifp)
2425 {
2426 	struct rt2560_softc *sc = ifp->if_softc;
2427 	struct ieee80211com *ic = &sc->sc_ic;
2428 	uint8_t slottime;
2429 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2430 	uint32_t tmp;
2431 
2432 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2433 
2434 	/* update the MAC slot boundaries */
2435 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2436 	tx_pifs = tx_sifs + slottime;
2437 	tx_difs = tx_sifs + 2 * slottime;
2438 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2439 
2440 	tmp = RAL_READ(sc, RT2560_CSR11);
2441 	tmp = (tmp & ~0x1f00) | slottime << 8;
2442 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2443 
2444 	tmp = tx_pifs << 16 | tx_sifs;
2445 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2446 
2447 	tmp = eifs << 16 | tx_difs;
2448 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2449 
2450 	DPRINTF(("setting slottime to %uus\n", slottime));
2451 }
2452 
2453 static void
2454 rt2560_set_basicrates(struct rt2560_softc *sc)
2455 {
2456 	struct ieee80211com *ic = &sc->sc_ic;
2457 
2458 	/* update basic rate set */
2459 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2460 		/* 11b basic rates: 1, 2Mbps */
2461 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2462 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2463 		/* 11a basic rates: 6, 12, 24Mbps */
2464 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2465 	} else {
2466 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2467 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2468 	}
2469 }
2470 
2471 static void
2472 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2473 {
2474 	uint32_t tmp;
2475 
2476 	/* set ON period to 70ms and OFF period to 30ms */
2477 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2478 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2479 }
2480 
2481 static void
2482 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
2483 {
2484 	uint32_t tmp;
2485 
2486 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2487 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2488 
2489 	tmp = bssid[4] | bssid[5] << 8;
2490 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2491 
2492 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2493 }
2494 
2495 static void
2496 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2497 {
2498 	uint32_t tmp;
2499 
2500 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2501 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2502 
2503 	tmp = addr[4] | addr[5] << 8;
2504 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2505 
2506 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2507 }
2508 
2509 static void
2510 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2511 {
2512 	uint32_t tmp;
2513 
2514 	tmp = RAL_READ(sc, RT2560_CSR3);
2515 	addr[0] = tmp & 0xff;
2516 	addr[1] = (tmp >>  8) & 0xff;
2517 	addr[2] = (tmp >> 16) & 0xff;
2518 	addr[3] = (tmp >> 24);
2519 
2520 	tmp = RAL_READ(sc, RT2560_CSR4);
2521 	addr[4] = tmp & 0xff;
2522 	addr[5] = (tmp >> 8) & 0xff;
2523 }
2524 
2525 static void
2526 rt2560_update_promisc(struct rt2560_softc *sc)
2527 {
2528 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2529 	uint32_t tmp;
2530 
2531 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2532 
2533 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2534 	if (!(ifp->if_flags & IFF_PROMISC))
2535 		tmp |= RT2560_DROP_NOT_TO_ME;
2536 
2537 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2538 
2539 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2540 	    "entering" : "leaving"));
2541 }
2542 
2543 static const char *
2544 rt2560_get_rf(int rev)
2545 {
2546 	switch (rev) {
2547 	case RT2560_RF_2522:	return "RT2522";
2548 	case RT2560_RF_2523:	return "RT2523";
2549 	case RT2560_RF_2524:	return "RT2524";
2550 	case RT2560_RF_2525:	return "RT2525";
2551 	case RT2560_RF_2525E:	return "RT2525e";
2552 	case RT2560_RF_2526:	return "RT2526";
2553 	case RT2560_RF_5222:	return "RT5222";
2554 	default:		return "unknown";
2555 	}
2556 }
2557 
2558 static void
2559 rt2560_read_eeprom(struct rt2560_softc *sc)
2560 {
2561 	uint16_t val;
2562 	int i;
2563 
2564 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2565 	sc->rf_rev =   (val >> 11) & 0x7;
2566 	sc->hw_radio = (val >> 10) & 0x1;
2567 	sc->led_mode = (val >> 6)  & 0x7;
2568 	sc->rx_ant =   (val >> 4)  & 0x3;
2569 	sc->tx_ant =   (val >> 2)  & 0x3;
2570 	sc->nb_ant =   val & 0x3;
2571 
2572 	/* read default values for BBP registers */
2573 	for (i = 0; i < 16; i++) {
2574 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2575 		sc->bbp_prom[i].reg = val >> 8;
2576 		sc->bbp_prom[i].val = val & 0xff;
2577 	}
2578 
2579 	/* read Tx power for all b/g channels */
2580 	for (i = 0; i < 14 / 2; i++) {
2581 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2582 		sc->txpow[i * 2] = val >> 8;
2583 		sc->txpow[i * 2 + 1] = val & 0xff;
2584 	}
2585 
2586 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
2587 	if ((val & 0xff) == 0xff)
2588 		sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
2589 	else
2590 		sc->rssi_corr = val & 0xff;
2591 	DPRINTF(("rssi correction %d, calibrate 0x%02x\n",
2592 		 sc->rssi_corr, val));
2593 }
2594 
2595 
2596 static void
2597 rt2560_scan_start(struct ieee80211com *ic)
2598 {
2599 	struct ifnet *ifp = ic->ic_ifp;
2600 	struct rt2560_softc *sc = ifp->if_softc;
2601 
2602 	/* abort TSF synchronization */
2603 	RAL_WRITE(sc, RT2560_CSR14, 0);
2604 	rt2560_set_bssid(sc, ifp->if_broadcastaddr);
2605 }
2606 
2607 static void
2608 rt2560_scan_end(struct ieee80211com *ic)
2609 {
2610 	struct ifnet *ifp = ic->ic_ifp;
2611 	struct rt2560_softc *sc = ifp->if_softc;
2612 
2613 	rt2560_enable_tsf_sync(sc);
2614 	/* XXX keep local copy */
2615 	rt2560_set_bssid(sc, ic->ic_bss->ni_bssid);
2616 }
2617 
2618 static int
2619 rt2560_bbp_init(struct rt2560_softc *sc)
2620 {
2621 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2622 	int i, ntries;
2623 
2624 	/* wait for BBP to be ready */
2625 	for (ntries = 0; ntries < 100; ntries++) {
2626 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2627 			break;
2628 		DELAY(1);
2629 	}
2630 	if (ntries == 100) {
2631 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2632 		return EIO;
2633 	}
2634 
2635 	/* initialize BBP registers to default values */
2636 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2637 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2638 		    rt2560_def_bbp[i].val);
2639 	}
2640 #if 0
2641 	/* initialize BBP registers to values stored in EEPROM */
2642 	for (i = 0; i < 16; i++) {
2643 		if (sc->bbp_prom[i].reg == 0xff)
2644 			continue;
2645 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2646 	}
2647 #endif
2648 
2649 	return 0;
2650 #undef N
2651 }
2652 
2653 static void
2654 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2655 {
2656 	uint32_t tmp;
2657 	uint8_t tx;
2658 
2659 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2660 	if (antenna == 1)
2661 		tx |= RT2560_BBP_ANTA;
2662 	else if (antenna == 2)
2663 		tx |= RT2560_BBP_ANTB;
2664 	else
2665 		tx |= RT2560_BBP_DIVERSITY;
2666 
2667 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2668 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2669 	    sc->rf_rev == RT2560_RF_5222)
2670 		tx |= RT2560_BBP_FLIPIQ;
2671 
2672 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2673 
2674 	/* update values for CCK and OFDM in BBPCSR1 */
2675 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2676 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2677 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2678 }
2679 
2680 static void
2681 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2682 {
2683 	uint8_t rx;
2684 
2685 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2686 	if (antenna == 1)
2687 		rx |= RT2560_BBP_ANTA;
2688 	else if (antenna == 2)
2689 		rx |= RT2560_BBP_ANTB;
2690 	else
2691 		rx |= RT2560_BBP_DIVERSITY;
2692 
2693 	/* need to force no I/Q flip for RF 2525e and 2526 */
2694 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2695 		rx &= ~RT2560_BBP_FLIPIQ;
2696 
2697 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2698 }
2699 
2700 static void
2701 rt2560_init(void *priv)
2702 {
2703 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2704 	struct rt2560_softc *sc = priv;
2705 	struct ieee80211com *ic = &sc->sc_ic;
2706 	struct ifnet *ifp = ic->ic_ifp;
2707 	uint32_t tmp;
2708 	int i;
2709 
2710 
2711 
2712 	rt2560_stop(sc);
2713 
2714 	RAL_LOCK(sc);
2715 	/* setup tx rings */
2716 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2717 	      RT2560_ATIM_RING_COUNT << 16 |
2718 	      RT2560_TX_RING_COUNT   <<  8 |
2719 	      RT2560_TX_DESC_SIZE;
2720 
2721 	/* rings must be initialized in this exact order */
2722 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2723 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2724 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2725 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2726 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2727 
2728 	/* setup rx ring */
2729 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2730 
2731 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2732 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2733 
2734 	/* initialize MAC registers to default values */
2735 	for (i = 0; i < N(rt2560_def_mac); i++)
2736 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2737 
2738 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2739 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2740 
2741 	/* set basic rate set (will be updated later) */
2742 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2743 
2744 	rt2560_set_txantenna(sc, sc->tx_ant);
2745 	rt2560_set_rxantenna(sc, sc->rx_ant);
2746 	rt2560_update_slot(ifp);
2747 	rt2560_update_plcp(sc);
2748 	rt2560_update_led(sc, 0, 0);
2749 
2750 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2751 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2752 
2753 	if (rt2560_bbp_init(sc) != 0) {
2754 		rt2560_stop(sc);
2755 		RAL_UNLOCK(sc);
2756 		return;
2757 	}
2758 
2759 	/* set default BSS channel */
2760 	rt2560_set_chan(sc, ic->ic_curchan);
2761 
2762 	/* kick Rx */
2763 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2764 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2765 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2766 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2767 			tmp |= RT2560_DROP_TODS;
2768 		if (!(ifp->if_flags & IFF_PROMISC))
2769 			tmp |= RT2560_DROP_NOT_TO_ME;
2770 	}
2771 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2772 
2773 	/* clear old FCS and Rx FIFO errors */
2774 	RAL_READ(sc, RT2560_CNT0);
2775 	RAL_READ(sc, RT2560_CNT4);
2776 
2777 	/* clear any pending interrupts */
2778 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2779 
2780 	/* enable interrupts */
2781 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2782 
2783 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2784 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2785 
2786 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2787 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2788 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2789 	} else
2790 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2791 
2792 	RAL_UNLOCK(sc);
2793 #undef N
2794 }
2795 
2796 void
2797 rt2560_stop(void *arg)
2798 {
2799 	struct rt2560_softc *sc = arg;
2800 	struct ieee80211com *ic = &sc->sc_ic;
2801 	struct ifnet *ifp = ic->ic_ifp;
2802 	volatile int *flags = &sc->sc_flags;
2803 
2804 	while (*flags & RAL_INPUT_RUNNING) {
2805 		tsleep(sc, 0, "ralrunning", hz/10);
2806 	}
2807 
2808 	RAL_LOCK(sc);
2809 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2810 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2811 		sc->sc_tx_timer = 0;
2812 		ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2813 
2814 		/* abort Tx */
2815 		RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2816 
2817 		/* disable Rx */
2818 		RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2819 
2820 		/* reset ASIC (imply reset BBP) */
2821 		RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2822 		RAL_WRITE(sc, RT2560_CSR1, 0);
2823 
2824 		/* disable interrupts */
2825 		RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2826 
2827 		/* reset Tx and Rx rings */
2828 		rt2560_reset_tx_ring(sc, &sc->txq);
2829 		rt2560_reset_tx_ring(sc, &sc->atimq);
2830 		rt2560_reset_tx_ring(sc, &sc->prioq);
2831 		rt2560_reset_tx_ring(sc, &sc->bcnq);
2832 		rt2560_reset_rx_ring(sc, &sc->rxq);
2833 	}
2834 	RAL_UNLOCK(sc);
2835 }
2836 
2837 static int
2838 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2839 	const struct ieee80211_bpf_params *params)
2840 {
2841 	struct ieee80211com *ic = ni->ni_ic;
2842 	struct ifnet *ifp = ic->ic_ifp;
2843 	struct rt2560_softc *sc = ifp->if_softc;
2844 
2845 	RAL_LOCK(sc);
2846 
2847 	/* prevent management frames from being sent if we're not ready */
2848 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2849 		RAL_UNLOCK(sc);
2850 		m_freem(m);
2851 		ieee80211_free_node(ni);
2852 		return ENETDOWN;
2853 	}
2854 	if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2855 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2856 		RAL_UNLOCK(sc);
2857 		m_freem(m);
2858 		ieee80211_free_node(ni);
2859 		return ENOBUFS;		/* XXX */
2860 	}
2861 
2862 	if (bpf_peers_present(ic->ic_rawbpf))
2863 		bpf_mtap(ic->ic_rawbpf, m);
2864 
2865 	ifp->if_opackets++;
2866 
2867 	if (params == NULL) {
2868 		/*
2869 		 * Legacy path; interpret frame contents to decide
2870 		 * precisely how to send the frame.
2871 		 */
2872 		if (rt2560_tx_mgt(sc, m, ni) != 0)
2873 			goto bad;
2874 	} else {
2875 		/*
2876 		 * Caller supplied explicit parameters to use in
2877 		 * sending the frame.
2878 		 */
2879 		if (rt2560_tx_raw(sc, m, ni, params))
2880 			goto bad;
2881 	}
2882 	sc->sc_tx_timer = 5;
2883 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2884 
2885 	RAL_UNLOCK(sc);
2886 
2887 	return 0;
2888 bad:
2889 	ifp->if_oerrors++;
2890 	ieee80211_free_node(ni);
2891 	RAL_UNLOCK(sc);
2892 	return EIO;		/* XXX */
2893 }
2894 
2895