1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /*- 24 * Ralink Technology RT2560 chipset driver 25 * http://www.ralinktech.com/ 26 */ 27 28 #include <sys/param.h> 29 #include <sys/sysctl.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 42 #include <machine/bus.h> 43 #include <machine/resource.h> 44 #include <sys/rman.h> 45 46 #include <net/bpf.h> 47 #include <net/if.h> 48 #include <net/if_arp.h> 49 #include <net/ethernet.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 #include <net/if_types.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_radiotap.h> 56 #include <net80211/ieee80211_regdomain.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/if_ether.h> 63 64 #include <dev/ral/if_ralrate.h> 65 #include <dev/ral/rt2560reg.h> 66 #include <dev/ral/rt2560var.h> 67 68 #define RT2560_RSSI(sc, rssi) \ 69 ((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ? \ 70 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0) 71 72 #ifdef RAL_DEBUG 73 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) 74 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) 75 extern int ral_debug; 76 #else 77 #define DPRINTF(x) 78 #define DPRINTFN(n, x) 79 #endif 80 81 static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int, 82 int); 83 static int rt2560_alloc_tx_ring(struct rt2560_softc *, 84 struct rt2560_tx_ring *, int); 85 static void rt2560_reset_tx_ring(struct rt2560_softc *, 86 struct rt2560_tx_ring *); 87 static void rt2560_free_tx_ring(struct rt2560_softc *, 88 struct rt2560_tx_ring *); 89 static int rt2560_alloc_rx_ring(struct rt2560_softc *, 90 struct rt2560_rx_ring *, int); 91 static void rt2560_reset_rx_ring(struct rt2560_softc *, 92 struct rt2560_rx_ring *); 93 static void rt2560_free_rx_ring(struct rt2560_softc *, 94 struct rt2560_rx_ring *); 95 static struct ieee80211_node *rt2560_node_alloc( 96 struct ieee80211_node_table *); 97 static int rt2560_media_change(struct ifnet *); 98 static void rt2560_iter_func(void *, struct ieee80211_node *); 99 static void rt2560_update_rssadapt(void *); 100 static int rt2560_newstate(struct ieee80211com *, 101 enum ieee80211_state, int); 102 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); 103 static void rt2560_encryption_intr(struct rt2560_softc *); 104 static void rt2560_tx_intr(struct rt2560_softc *); 105 static void rt2560_prio_intr(struct rt2560_softc *); 106 static void rt2560_decryption_intr(struct rt2560_softc *); 107 static void rt2560_rx_intr(struct rt2560_softc *); 108 static void rt2560_beacon_update(struct ieee80211com *, int item); 109 static void rt2560_beacon_expire(struct rt2560_softc *); 110 static void rt2560_wakeup_expire(struct rt2560_softc *); 111 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *); 112 static int rt2560_ack_rate(struct ieee80211com *, int); 113 static void rt2560_scan_start(struct ieee80211com *); 114 static void rt2560_scan_end(struct ieee80211com *); 115 static void rt2560_set_channel(struct ieee80211com *); 116 static uint16_t rt2560_txtime(int, int, uint32_t); 117 static uint8_t rt2560_plcp_signal(int); 118 static void rt2560_setup_tx_desc(struct rt2560_softc *, 119 struct rt2560_tx_desc *, uint32_t, int, int, int, 120 bus_addr_t); 121 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, 122 struct ieee80211_node *); 123 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, 124 struct ieee80211_node *); 125 static struct mbuf *rt2560_get_rts(struct rt2560_softc *, 126 struct ieee80211_frame *, uint16_t); 127 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, 128 struct ieee80211_node *); 129 static void rt2560_start(struct ifnet *); 130 static void rt2560_watchdog(void *); 131 static int rt2560_reset(struct ifnet *); 132 static int rt2560_ioctl(struct ifnet *, u_long, caddr_t); 133 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, 134 uint8_t); 135 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); 136 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, 137 uint32_t); 138 static void rt2560_set_chan(struct rt2560_softc *, 139 struct ieee80211_channel *); 140 #if 0 141 static void rt2560_disable_rf_tune(struct rt2560_softc *); 142 #endif 143 static void rt2560_enable_tsf_sync(struct rt2560_softc *); 144 static void rt2560_update_plcp(struct rt2560_softc *); 145 static void rt2560_update_slot(struct ifnet *); 146 static void rt2560_set_basicrates(struct rt2560_softc *); 147 static void rt2560_update_led(struct rt2560_softc *, int, int); 148 static void rt2560_set_bssid(struct rt2560_softc *, const uint8_t *); 149 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *); 150 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); 151 static void rt2560_update_promisc(struct rt2560_softc *); 152 static const char *rt2560_get_rf(int); 153 static void rt2560_read_config(struct rt2560_softc *); 154 static int rt2560_bbp_init(struct rt2560_softc *); 155 static void rt2560_set_txantenna(struct rt2560_softc *, int); 156 static void rt2560_set_rxantenna(struct rt2560_softc *, int); 157 static void rt2560_init(void *); 158 static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *, 159 const struct ieee80211_bpf_params *); 160 161 static const struct { 162 uint32_t reg; 163 uint32_t val; 164 } rt2560_def_mac[] = { 165 RT2560_DEF_MAC 166 }; 167 168 static const struct { 169 uint8_t reg; 170 uint8_t val; 171 } rt2560_def_bbp[] = { 172 RT2560_DEF_BBP 173 }; 174 175 static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; 176 static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; 177 static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; 178 static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; 179 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; 180 static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; 181 static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; 182 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; 183 184 static const struct { 185 uint8_t chan; 186 uint32_t r1, r2, r4; 187 } rt2560_rf5222[] = { 188 RT2560_RF5222 189 }; 190 191 int 192 rt2560_attach(device_t dev, int id) 193 { 194 struct rt2560_softc *sc = device_get_softc(dev); 195 struct ieee80211com *ic = &sc->sc_ic; 196 struct ifnet *ifp; 197 int error, bands; 198 199 sc->sc_dev = dev; 200 201 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 202 MTX_DEF | MTX_RECURSE); 203 204 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 205 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE); 206 207 /* retrieve RT2560 rev. no */ 208 sc->asic_rev = RAL_READ(sc, RT2560_CSR0); 209 210 /* retrieve MAC address */ 211 rt2560_get_macaddr(sc, ic->ic_myaddr); 212 213 /* retrieve RF rev. no and various other things from EEPROM */ 214 rt2560_read_config(sc); 215 216 device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", 217 sc->asic_rev, rt2560_get_rf(sc->rf_rev)); 218 219 /* 220 * Allocate Tx and Rx rings. 221 */ 222 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); 223 if (error != 0) { 224 device_printf(sc->sc_dev, "could not allocate Tx ring\n"); 225 goto fail1; 226 } 227 228 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); 229 if (error != 0) { 230 device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); 231 goto fail2; 232 } 233 234 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); 235 if (error != 0) { 236 device_printf(sc->sc_dev, "could not allocate Prio ring\n"); 237 goto fail3; 238 } 239 240 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); 241 if (error != 0) { 242 device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); 243 goto fail4; 244 } 245 246 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); 247 if (error != 0) { 248 device_printf(sc->sc_dev, "could not allocate Rx ring\n"); 249 goto fail5; 250 } 251 252 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 253 if (ifp == NULL) { 254 device_printf(sc->sc_dev, "can not if_alloc()\n"); 255 goto fail6; 256 } 257 258 ifp->if_softc = sc; 259 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 260 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 261 ifp->if_init = rt2560_init; 262 ifp->if_ioctl = rt2560_ioctl; 263 ifp->if_start = rt2560_start; 264 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 265 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 266 IFQ_SET_READY(&ifp->if_snd); 267 268 ic->ic_ifp = ifp; 269 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 270 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 271 ic->ic_state = IEEE80211_S_INIT; 272 273 /* set device capabilities */ 274 ic->ic_caps = 275 IEEE80211_C_IBSS | /* IBSS mode supported */ 276 IEEE80211_C_MONITOR | /* monitor mode supported */ 277 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 278 IEEE80211_C_TXPMGT | /* tx power management */ 279 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 280 IEEE80211_C_SHSLOT | /* short slot time supported */ 281 IEEE80211_C_BGSCAN | /* bg scanning support */ 282 IEEE80211_C_WPA; /* 802.11i */ 283 284 bands = 0; 285 setbit(&bands, IEEE80211_MODE_11B); 286 setbit(&bands, IEEE80211_MODE_11G); 287 if (sc->rf_rev == RT2560_RF_5222) 288 setbit(&bands, IEEE80211_MODE_11A); 289 ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1); 290 291 ieee80211_ifattach(ic); 292 ic->ic_scan_start = rt2560_scan_start; 293 ic->ic_scan_end = rt2560_scan_end; 294 ic->ic_set_channel = rt2560_set_channel; 295 ic->ic_node_alloc = rt2560_node_alloc; 296 ic->ic_updateslot = rt2560_update_slot; 297 ic->ic_reset = rt2560_reset; 298 /* enable s/w bmiss handling in sta mode */ 299 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 300 301 /* override state transition machine */ 302 sc->sc_newstate = ic->ic_newstate; 303 ic->ic_newstate = rt2560_newstate; 304 ic->ic_raw_xmit = rt2560_raw_xmit; 305 ic->ic_update_beacon = rt2560_beacon_update; 306 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status); 307 308 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 309 sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap), 310 &sc->sc_drvbpf); 311 312 sc->sc_rxtap_len = sizeof sc->sc_rxtap; 313 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 314 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT); 315 316 sc->sc_txtap_len = sizeof sc->sc_txtap; 317 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 318 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT); 319 320 /* 321 * Add a few sysctl knobs. 322 */ 323 sc->dwelltime = 200; 324 325 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 326 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 327 "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); 328 329 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 330 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 331 "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); 332 333 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 334 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", 335 CTLFLAG_RW, &sc->dwelltime, 0, 336 "channel dwell time (ms) for AP/station scanning"); 337 338 if (bootverbose) 339 ieee80211_announce(ic); 340 341 return 0; 342 343 fail6: rt2560_free_rx_ring(sc, &sc->rxq); 344 fail5: rt2560_free_tx_ring(sc, &sc->bcnq); 345 fail4: rt2560_free_tx_ring(sc, &sc->prioq); 346 fail3: rt2560_free_tx_ring(sc, &sc->atimq); 347 fail2: rt2560_free_tx_ring(sc, &sc->txq); 348 fail1: mtx_destroy(&sc->sc_mtx); 349 350 return ENXIO; 351 } 352 353 int 354 rt2560_detach(void *xsc) 355 { 356 struct rt2560_softc *sc = xsc; 357 struct ieee80211com *ic = &sc->sc_ic; 358 struct ifnet *ifp = ic->ic_ifp; 359 360 rt2560_stop(sc); 361 callout_stop(&sc->rssadapt_ch); 362 363 bpfdetach(ifp); 364 ieee80211_ifdetach(ic); 365 366 rt2560_free_tx_ring(sc, &sc->txq); 367 rt2560_free_tx_ring(sc, &sc->atimq); 368 rt2560_free_tx_ring(sc, &sc->prioq); 369 rt2560_free_tx_ring(sc, &sc->bcnq); 370 rt2560_free_rx_ring(sc, &sc->rxq); 371 372 if_free(ifp); 373 374 mtx_destroy(&sc->sc_mtx); 375 376 return 0; 377 } 378 379 void 380 rt2560_resume(void *xsc) 381 { 382 struct rt2560_softc *sc = xsc; 383 struct ifnet *ifp = sc->sc_ic.ic_ifp; 384 385 if (ifp->if_flags & IFF_UP) { 386 ifp->if_init(ifp->if_softc); 387 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 388 ifp->if_start(ifp); 389 } 390 } 391 392 static void 393 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 394 { 395 if (error != 0) 396 return; 397 398 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 399 400 *(bus_addr_t *)arg = segs[0].ds_addr; 401 } 402 403 static int 404 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, 405 int count) 406 { 407 int i, error; 408 409 ring->count = count; 410 ring->queued = 0; 411 ring->cur = ring->next = 0; 412 ring->cur_encrypt = ring->next_encrypt = 0; 413 414 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 415 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 416 count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE, 417 0, NULL, NULL, &ring->desc_dmat); 418 if (error != 0) { 419 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 420 goto fail; 421 } 422 423 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 424 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 425 if (error != 0) { 426 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 427 goto fail; 428 } 429 430 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 431 count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 432 0); 433 if (error != 0) { 434 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 435 goto fail; 436 } 437 438 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, 439 M_NOWAIT | M_ZERO); 440 if (ring->data == NULL) { 441 device_printf(sc->sc_dev, "could not allocate soft data\n"); 442 error = ENOMEM; 443 goto fail; 444 } 445 446 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 447 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 448 MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL, 449 &ring->data_dmat); 450 if (error != 0) { 451 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 452 goto fail; 453 } 454 455 for (i = 0; i < count; i++) { 456 error = bus_dmamap_create(ring->data_dmat, 0, 457 &ring->data[i].map); 458 if (error != 0) { 459 device_printf(sc->sc_dev, "could not create DMA map\n"); 460 goto fail; 461 } 462 } 463 464 return 0; 465 466 fail: rt2560_free_tx_ring(sc, ring); 467 return error; 468 } 469 470 static void 471 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 472 { 473 struct rt2560_tx_desc *desc; 474 struct rt2560_tx_data *data; 475 int i; 476 477 for (i = 0; i < ring->count; i++) { 478 desc = &ring->desc[i]; 479 data = &ring->data[i]; 480 481 if (data->m != NULL) { 482 bus_dmamap_sync(ring->data_dmat, data->map, 483 BUS_DMASYNC_POSTWRITE); 484 bus_dmamap_unload(ring->data_dmat, data->map); 485 m_freem(data->m); 486 data->m = NULL; 487 } 488 489 if (data->ni != NULL) { 490 ieee80211_free_node(data->ni); 491 data->ni = NULL; 492 } 493 494 desc->flags = 0; 495 } 496 497 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 498 499 ring->queued = 0; 500 ring->cur = ring->next = 0; 501 ring->cur_encrypt = ring->next_encrypt = 0; 502 } 503 504 static void 505 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 506 { 507 struct rt2560_tx_data *data; 508 int i; 509 510 if (ring->desc != NULL) { 511 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 512 BUS_DMASYNC_POSTWRITE); 513 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 514 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 515 } 516 517 if (ring->desc_dmat != NULL) 518 bus_dma_tag_destroy(ring->desc_dmat); 519 520 if (ring->data != NULL) { 521 for (i = 0; i < ring->count; i++) { 522 data = &ring->data[i]; 523 524 if (data->m != NULL) { 525 bus_dmamap_sync(ring->data_dmat, data->map, 526 BUS_DMASYNC_POSTWRITE); 527 bus_dmamap_unload(ring->data_dmat, data->map); 528 m_freem(data->m); 529 } 530 531 if (data->ni != NULL) 532 ieee80211_free_node(data->ni); 533 534 if (data->map != NULL) 535 bus_dmamap_destroy(ring->data_dmat, data->map); 536 } 537 538 free(ring->data, M_DEVBUF); 539 } 540 541 if (ring->data_dmat != NULL) 542 bus_dma_tag_destroy(ring->data_dmat); 543 } 544 545 static int 546 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, 547 int count) 548 { 549 struct rt2560_rx_desc *desc; 550 struct rt2560_rx_data *data; 551 bus_addr_t physaddr; 552 int i, error; 553 554 ring->count = count; 555 ring->cur = ring->next = 0; 556 ring->cur_decrypt = 0; 557 558 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0, 559 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, 560 count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE, 561 0, NULL, NULL, &ring->desc_dmat); 562 if (error != 0) { 563 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 564 goto fail; 565 } 566 567 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 568 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 569 if (error != 0) { 570 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 571 goto fail; 572 } 573 574 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 575 count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 576 0); 577 if (error != 0) { 578 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 579 goto fail; 580 } 581 582 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, 583 M_NOWAIT | M_ZERO); 584 if (ring->data == NULL) { 585 device_printf(sc->sc_dev, "could not allocate soft data\n"); 586 error = ENOMEM; 587 goto fail; 588 } 589 590 /* 591 * Pre-allocate Rx buffers and populate Rx ring. 592 */ 593 error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0, 594 BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 595 1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 596 if (error != 0) { 597 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 598 goto fail; 599 } 600 601 for (i = 0; i < count; i++) { 602 desc = &sc->rxq.desc[i]; 603 data = &sc->rxq.data[i]; 604 605 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 606 if (error != 0) { 607 device_printf(sc->sc_dev, "could not create DMA map\n"); 608 goto fail; 609 } 610 611 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 612 if (data->m == NULL) { 613 device_printf(sc->sc_dev, 614 "could not allocate rx mbuf\n"); 615 error = ENOMEM; 616 goto fail; 617 } 618 619 error = bus_dmamap_load(ring->data_dmat, data->map, 620 mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, 621 &physaddr, 0); 622 if (error != 0) { 623 device_printf(sc->sc_dev, 624 "could not load rx buf DMA map"); 625 goto fail; 626 } 627 628 desc->flags = htole32(RT2560_RX_BUSY); 629 desc->physaddr = htole32(physaddr); 630 } 631 632 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 633 634 return 0; 635 636 fail: rt2560_free_rx_ring(sc, ring); 637 return error; 638 } 639 640 static void 641 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 642 { 643 int i; 644 645 for (i = 0; i < ring->count; i++) { 646 ring->desc[i].flags = htole32(RT2560_RX_BUSY); 647 ring->data[i].drop = 0; 648 } 649 650 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 651 652 ring->cur = ring->next = 0; 653 ring->cur_decrypt = 0; 654 } 655 656 static void 657 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 658 { 659 struct rt2560_rx_data *data; 660 int i; 661 662 if (ring->desc != NULL) { 663 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 664 BUS_DMASYNC_POSTWRITE); 665 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 666 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 667 } 668 669 if (ring->desc_dmat != NULL) 670 bus_dma_tag_destroy(ring->desc_dmat); 671 672 if (ring->data != NULL) { 673 for (i = 0; i < ring->count; i++) { 674 data = &ring->data[i]; 675 676 if (data->m != NULL) { 677 bus_dmamap_sync(ring->data_dmat, data->map, 678 BUS_DMASYNC_POSTREAD); 679 bus_dmamap_unload(ring->data_dmat, data->map); 680 m_freem(data->m); 681 } 682 683 if (data->map != NULL) 684 bus_dmamap_destroy(ring->data_dmat, data->map); 685 } 686 687 free(ring->data, M_DEVBUF); 688 } 689 690 if (ring->data_dmat != NULL) 691 bus_dma_tag_destroy(ring->data_dmat); 692 } 693 694 static struct ieee80211_node * 695 rt2560_node_alloc(struct ieee80211_node_table *nt) 696 { 697 struct rt2560_node *rn; 698 699 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE, 700 M_NOWAIT | M_ZERO); 701 702 return (rn != NULL) ? &rn->ni : NULL; 703 } 704 705 static int 706 rt2560_media_change(struct ifnet *ifp) 707 { 708 struct rt2560_softc *sc = ifp->if_softc; 709 int error; 710 711 error = ieee80211_media_change(ifp); 712 713 if (error == ENETRESET) { 714 if ((ifp->if_flags & IFF_UP) && 715 (ifp->if_drv_flags & IFF_DRV_RUNNING)) 716 rt2560_init(sc); 717 } 718 return error; 719 } 720 721 /* 722 * This function is called for each node present in the node station table. 723 */ 724 static void 725 rt2560_iter_func(void *arg, struct ieee80211_node *ni) 726 { 727 struct rt2560_node *rn = (struct rt2560_node *)ni; 728 729 ral_rssadapt_updatestats(&rn->rssadapt); 730 } 731 732 /* 733 * This function is called periodically (every 100ms) in RUN state to update 734 * the rate adaptation statistics. 735 */ 736 static void 737 rt2560_update_rssadapt(void *arg) 738 { 739 struct rt2560_softc *sc = arg; 740 struct ieee80211com *ic = &sc->sc_ic; 741 742 RAL_LOCK(sc); 743 744 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg); 745 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc); 746 747 RAL_UNLOCK(sc); 748 } 749 750 static int 751 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 752 { 753 struct rt2560_softc *sc = ic->ic_ifp->if_softc; 754 enum ieee80211_state ostate; 755 struct ieee80211_node *ni; 756 struct mbuf *m; 757 int error = 0; 758 759 ostate = ic->ic_state; 760 761 switch (nstate) { 762 case IEEE80211_S_INIT: 763 callout_stop(&sc->rssadapt_ch); 764 765 if (ostate == IEEE80211_S_RUN) { 766 /* abort TSF synchronization */ 767 RAL_WRITE(sc, RT2560_CSR14, 0); 768 769 /* turn association led off */ 770 rt2560_update_led(sc, 0, 0); 771 } 772 break; 773 case IEEE80211_S_RUN: 774 ni = ic->ic_bss; 775 776 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 777 rt2560_update_plcp(sc); 778 rt2560_set_basicrates(sc); 779 rt2560_set_bssid(sc, ni->ni_bssid); 780 } 781 782 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 783 ic->ic_opmode == IEEE80211_M_IBSS) { 784 m = ieee80211_beacon_alloc(ni, &sc->sc_bo); 785 if (m == NULL) { 786 device_printf(sc->sc_dev, 787 "could not allocate beacon\n"); 788 error = ENOBUFS; 789 break; 790 } 791 792 ieee80211_ref_node(ni); 793 error = rt2560_tx_bcn(sc, m, ni); 794 if (error != 0) 795 break; 796 } 797 798 /* turn assocation led on */ 799 rt2560_update_led(sc, 1, 0); 800 801 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 802 callout_reset(&sc->rssadapt_ch, hz / 10, 803 rt2560_update_rssadapt, sc); 804 805 rt2560_enable_tsf_sync(sc); 806 } 807 break; 808 case IEEE80211_S_SCAN: 809 case IEEE80211_S_AUTH: 810 case IEEE80211_S_ASSOC: 811 default: 812 break; 813 } 814 815 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 816 } 817 818 /* 819 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 820 * 93C66). 821 */ 822 static uint16_t 823 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) 824 { 825 uint32_t tmp; 826 uint16_t val; 827 int n; 828 829 /* clock C once before the first command */ 830 RT2560_EEPROM_CTL(sc, 0); 831 832 RT2560_EEPROM_CTL(sc, RT2560_S); 833 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 834 RT2560_EEPROM_CTL(sc, RT2560_S); 835 836 /* write start bit (1) */ 837 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 838 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 839 840 /* write READ opcode (10) */ 841 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 842 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 843 RT2560_EEPROM_CTL(sc, RT2560_S); 844 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 845 846 /* write address (A5-A0 or A7-A0) */ 847 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; 848 for (; n >= 0; n--) { 849 RT2560_EEPROM_CTL(sc, RT2560_S | 850 (((addr >> n) & 1) << RT2560_SHIFT_D)); 851 RT2560_EEPROM_CTL(sc, RT2560_S | 852 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); 853 } 854 855 RT2560_EEPROM_CTL(sc, RT2560_S); 856 857 /* read data Q15-Q0 */ 858 val = 0; 859 for (n = 15; n >= 0; n--) { 860 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 861 tmp = RAL_READ(sc, RT2560_CSR21); 862 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; 863 RT2560_EEPROM_CTL(sc, RT2560_S); 864 } 865 866 RT2560_EEPROM_CTL(sc, 0); 867 868 /* clear Chip Select and clock C */ 869 RT2560_EEPROM_CTL(sc, RT2560_S); 870 RT2560_EEPROM_CTL(sc, 0); 871 RT2560_EEPROM_CTL(sc, RT2560_C); 872 873 return val; 874 } 875 876 /* 877 * Some frames were processed by the hardware cipher engine and are ready for 878 * transmission. 879 */ 880 static void 881 rt2560_encryption_intr(struct rt2560_softc *sc) 882 { 883 struct rt2560_tx_desc *desc; 884 int hw; 885 886 /* retrieve last descriptor index processed by cipher engine */ 887 hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr; 888 hw /= RT2560_TX_DESC_SIZE; 889 890 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 891 BUS_DMASYNC_POSTREAD); 892 893 while (sc->txq.next_encrypt != hw) { 894 if (sc->txq.next_encrypt == sc->txq.cur_encrypt) { 895 printf("hw encrypt %d, cur_encrypt %d\n", hw, 896 sc->txq.cur_encrypt); 897 break; 898 } 899 900 desc = &sc->txq.desc[sc->txq.next_encrypt]; 901 902 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 903 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY)) 904 break; 905 906 /* for TKIP, swap eiv field to fix a bug in ASIC */ 907 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) == 908 RT2560_TX_CIPHER_TKIP) 909 desc->eiv = bswap32(desc->eiv); 910 911 /* mark the frame ready for transmission */ 912 desc->flags |= htole32(RT2560_TX_VALID); 913 desc->flags |= htole32(RT2560_TX_BUSY); 914 915 DPRINTFN(15, ("encryption done idx=%u\n", 916 sc->txq.next_encrypt)); 917 918 sc->txq.next_encrypt = 919 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; 920 } 921 922 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 923 BUS_DMASYNC_PREWRITE); 924 925 /* kick Tx */ 926 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); 927 } 928 929 static void 930 rt2560_tx_intr(struct rt2560_softc *sc) 931 { 932 struct ieee80211com *ic = &sc->sc_ic; 933 struct ifnet *ifp = ic->ic_ifp; 934 struct rt2560_tx_desc *desc; 935 struct rt2560_tx_data *data; 936 struct rt2560_node *rn; 937 938 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 939 BUS_DMASYNC_POSTREAD); 940 941 for (;;) { 942 desc = &sc->txq.desc[sc->txq.next]; 943 data = &sc->txq.data[sc->txq.next]; 944 945 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 946 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) || 947 !(le32toh(desc->flags) & RT2560_TX_VALID)) 948 break; 949 950 rn = (struct rt2560_node *)data->ni; 951 952 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) { 953 case RT2560_TX_SUCCESS: 954 DPRINTFN(10, ("data frame sent successfully\n")); 955 if (data->id.id_node != NULL) { 956 ral_rssadapt_raise_rate(ic, &rn->rssadapt, 957 &data->id); 958 } 959 ifp->if_opackets++; 960 break; 961 962 case RT2560_TX_SUCCESS_RETRY: 963 DPRINTFN(9, ("data frame sent after %u retries\n", 964 (le32toh(desc->flags) >> 5) & 0x7)); 965 ifp->if_opackets++; 966 break; 967 968 case RT2560_TX_FAIL_RETRY: 969 DPRINTFN(9, ("sending data frame failed (too much " 970 "retries)\n")); 971 if (data->id.id_node != NULL) { 972 ral_rssadapt_lower_rate(ic, data->ni, 973 &rn->rssadapt, &data->id); 974 } 975 ifp->if_oerrors++; 976 break; 977 978 case RT2560_TX_FAIL_INVALID: 979 case RT2560_TX_FAIL_OTHER: 980 default: 981 device_printf(sc->sc_dev, "sending data frame failed " 982 "0x%08x\n", le32toh(desc->flags)); 983 ifp->if_oerrors++; 984 } 985 986 bus_dmamap_sync(sc->txq.data_dmat, data->map, 987 BUS_DMASYNC_POSTWRITE); 988 bus_dmamap_unload(sc->txq.data_dmat, data->map); 989 m_freem(data->m); 990 data->m = NULL; 991 ieee80211_free_node(data->ni); 992 data->ni = NULL; 993 994 /* descriptor is no longer valid */ 995 desc->flags &= ~htole32(RT2560_TX_VALID); 996 997 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); 998 999 sc->txq.queued--; 1000 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; 1001 } 1002 1003 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1004 BUS_DMASYNC_PREWRITE); 1005 1006 if (sc->prioq.queued == 0 && sc->txq.queued == 0) 1007 sc->sc_tx_timer = 0; 1008 1009 if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) { 1010 sc->sc_flags &= ~RT2560_F_DATA_OACTIVE; 1011 if ((sc->sc_flags & 1012 (RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0) 1013 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1014 rt2560_start(ifp); 1015 } 1016 } 1017 1018 static void 1019 rt2560_prio_intr(struct rt2560_softc *sc) 1020 { 1021 struct ieee80211com *ic = &sc->sc_ic; 1022 struct ifnet *ifp = ic->ic_ifp; 1023 struct rt2560_tx_desc *desc; 1024 struct rt2560_tx_data *data; 1025 struct ieee80211_node *ni; 1026 struct mbuf *m; 1027 int flags; 1028 1029 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1030 BUS_DMASYNC_POSTREAD); 1031 1032 for (;;) { 1033 desc = &sc->prioq.desc[sc->prioq.next]; 1034 data = &sc->prioq.data[sc->prioq.next]; 1035 1036 flags = le32toh(desc->flags); 1037 if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0) 1038 break; 1039 1040 switch (flags & RT2560_TX_RESULT_MASK) { 1041 case RT2560_TX_SUCCESS: 1042 DPRINTFN(10, ("mgt frame sent successfully\n")); 1043 break; 1044 1045 case RT2560_TX_SUCCESS_RETRY: 1046 DPRINTFN(9, ("mgt frame sent after %u retries\n", 1047 (flags >> 5) & 0x7)); 1048 break; 1049 1050 case RT2560_TX_FAIL_RETRY: 1051 DPRINTFN(9, ("sending mgt frame failed (too much " 1052 "retries)\n")); 1053 break; 1054 1055 case RT2560_TX_FAIL_INVALID: 1056 case RT2560_TX_FAIL_OTHER: 1057 default: 1058 device_printf(sc->sc_dev, "sending mgt frame failed " 1059 "0x%08x\n", flags); 1060 break; 1061 } 1062 1063 bus_dmamap_sync(sc->prioq.data_dmat, data->map, 1064 BUS_DMASYNC_POSTWRITE); 1065 bus_dmamap_unload(sc->prioq.data_dmat, data->map); 1066 1067 m = data->m; 1068 data->m = NULL; 1069 ni = data->ni; 1070 data->ni = NULL; 1071 1072 /* descriptor is no longer valid */ 1073 desc->flags &= ~htole32(RT2560_TX_VALID); 1074 1075 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); 1076 1077 sc->prioq.queued--; 1078 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; 1079 1080 if (m->m_flags & M_TXCB) 1081 ieee80211_process_callback(ni, m, 1082 (flags & RT2560_TX_RESULT_MASK) &~ 1083 (RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY)); 1084 m_freem(m); 1085 ieee80211_free_node(ni); 1086 } 1087 1088 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1089 BUS_DMASYNC_PREWRITE); 1090 1091 if (sc->prioq.queued == 0 && sc->txq.queued == 0) 1092 sc->sc_tx_timer = 0; 1093 1094 if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) { 1095 sc->sc_flags &= ~RT2560_F_PRIO_OACTIVE; 1096 if ((sc->sc_flags & 1097 (RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0) 1098 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1099 rt2560_start(ifp); 1100 } 1101 } 1102 1103 /* 1104 * Some frames were processed by the hardware cipher engine and are ready for 1105 * transmission to the IEEE802.11 layer. 1106 */ 1107 static void 1108 rt2560_decryption_intr(struct rt2560_softc *sc) 1109 { 1110 struct ieee80211com *ic = &sc->sc_ic; 1111 struct ifnet *ifp = ic->ic_ifp; 1112 struct rt2560_rx_desc *desc; 1113 struct rt2560_rx_data *data; 1114 bus_addr_t physaddr; 1115 struct ieee80211_frame *wh; 1116 struct ieee80211_node *ni; 1117 struct rt2560_node *rn; 1118 struct mbuf *mnew, *m; 1119 int hw, error; 1120 1121 /* retrieve last decriptor index processed by cipher engine */ 1122 hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr; 1123 hw /= RT2560_RX_DESC_SIZE; 1124 1125 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1126 BUS_DMASYNC_POSTREAD); 1127 1128 for (; sc->rxq.cur_decrypt != hw;) { 1129 desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; 1130 data = &sc->rxq.data[sc->rxq.cur_decrypt]; 1131 1132 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1133 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1134 break; 1135 1136 if (data->drop) { 1137 ifp->if_ierrors++; 1138 goto skip; 1139 } 1140 1141 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && 1142 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) { 1143 ifp->if_ierrors++; 1144 goto skip; 1145 } 1146 1147 /* 1148 * Try to allocate a new mbuf for this ring element and load it 1149 * before processing the current mbuf. If the ring element 1150 * cannot be loaded, drop the received packet and reuse the old 1151 * mbuf. In the unlikely case that the old mbuf can't be 1152 * reloaded either, explicitly panic. 1153 */ 1154 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1155 if (mnew == NULL) { 1156 ifp->if_ierrors++; 1157 goto skip; 1158 } 1159 1160 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1161 BUS_DMASYNC_POSTREAD); 1162 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1163 1164 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1165 mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr, 1166 &physaddr, 0); 1167 if (error != 0) { 1168 m_freem(mnew); 1169 1170 /* try to reload the old mbuf */ 1171 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1172 mtod(data->m, void *), MCLBYTES, 1173 rt2560_dma_map_addr, &physaddr, 0); 1174 if (error != 0) { 1175 /* very unlikely that it will fail... */ 1176 panic("%s: could not load old rx mbuf", 1177 device_get_name(sc->sc_dev)); 1178 } 1179 ifp->if_ierrors++; 1180 goto skip; 1181 } 1182 1183 /* 1184 * New mbuf successfully loaded, update Rx ring and continue 1185 * processing. 1186 */ 1187 m = data->m; 1188 data->m = mnew; 1189 desc->physaddr = htole32(physaddr); 1190 1191 /* finalize mbuf */ 1192 m->m_pkthdr.rcvif = ifp; 1193 m->m_pkthdr.len = m->m_len = 1194 (le32toh(desc->flags) >> 16) & 0xfff; 1195 1196 if (bpf_peers_present(sc->sc_drvbpf)) { 1197 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; 1198 uint32_t tsf_lo, tsf_hi; 1199 1200 /* get timestamp (low and high 32 bits) */ 1201 tsf_hi = RAL_READ(sc, RT2560_CSR17); 1202 tsf_lo = RAL_READ(sc, RT2560_CSR16); 1203 1204 tap->wr_tsf = 1205 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1206 tap->wr_flags = 0; 1207 tap->wr_rate = rt2560_rxrate(desc); 1208 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1209 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1210 tap->wr_antenna = sc->rx_ant; 1211 tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi); 1212 1213 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1214 } 1215 1216 sc->sc_flags |= RT2560_F_INPUT_RUNNING; 1217 RAL_UNLOCK(sc); 1218 wh = mtod(m, struct ieee80211_frame *); 1219 ni = ieee80211_find_rxnode(ic, 1220 (struct ieee80211_frame_min *)wh); 1221 1222 /* send the frame to the 802.11 layer */ 1223 ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi), 1224 RT2560_NOISE_FLOOR, 0); 1225 1226 /* give rssi to the rate adatation algorithm */ 1227 rn = (struct rt2560_node *)ni; 1228 ral_rssadapt_input(ic, ni, &rn->rssadapt, 1229 RT2560_RSSI(sc, desc->rssi)); 1230 1231 /* node is no longer needed */ 1232 ieee80211_free_node(ni); 1233 1234 RAL_LOCK(sc); 1235 sc->sc_flags &= ~RT2560_F_INPUT_RUNNING; 1236 skip: desc->flags = htole32(RT2560_RX_BUSY); 1237 1238 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); 1239 1240 sc->rxq.cur_decrypt = 1241 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; 1242 } 1243 1244 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1245 BUS_DMASYNC_PREWRITE); 1246 } 1247 1248 /* 1249 * Some frames were received. Pass them to the hardware cipher engine before 1250 * sending them to the 802.11 layer. 1251 */ 1252 static void 1253 rt2560_rx_intr(struct rt2560_softc *sc) 1254 { 1255 struct rt2560_rx_desc *desc; 1256 struct rt2560_rx_data *data; 1257 1258 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1259 BUS_DMASYNC_POSTREAD); 1260 1261 for (;;) { 1262 desc = &sc->rxq.desc[sc->rxq.cur]; 1263 data = &sc->rxq.data[sc->rxq.cur]; 1264 1265 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1266 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1267 break; 1268 1269 data->drop = 0; 1270 1271 if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) || 1272 (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) { 1273 /* 1274 * This should not happen since we did not request 1275 * to receive those frames when we filled RXCSR0. 1276 */ 1277 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1278 le32toh(desc->flags))); 1279 data->drop = 1; 1280 } 1281 1282 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { 1283 DPRINTFN(5, ("bad length\n")); 1284 data->drop = 1; 1285 } 1286 1287 /* mark the frame for decryption */ 1288 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); 1289 1290 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1291 1292 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; 1293 } 1294 1295 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1296 BUS_DMASYNC_PREWRITE); 1297 1298 /* kick decrypt */ 1299 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); 1300 } 1301 1302 static void 1303 rt2560_beacon_update(struct ieee80211com *ic, int item) 1304 { 1305 struct rt2560_softc *sc = ic->ic_ifp->if_softc; 1306 struct ieee80211_beacon_offsets *bo = &sc->sc_bo; 1307 1308 setbit(bo->bo_flags, item); 1309 } 1310 1311 /* 1312 * This function is called periodically in IBSS mode when a new beacon must be 1313 * sent out. 1314 */ 1315 static void 1316 rt2560_beacon_expire(struct rt2560_softc *sc) 1317 { 1318 struct ieee80211com *ic = &sc->sc_ic; 1319 struct rt2560_tx_data *data; 1320 1321 if (ic->ic_opmode != IEEE80211_M_IBSS && 1322 ic->ic_opmode != IEEE80211_M_HOSTAP) 1323 return; 1324 1325 data = &sc->bcnq.data[sc->bcnq.next]; 1326 /* 1327 * Don't send beacon if bsschan isn't set 1328 */ 1329 if (data->ni == NULL) 1330 return; 1331 1332 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 1333 bus_dmamap_unload(sc->bcnq.data_dmat, data->map); 1334 1335 ieee80211_beacon_update(data->ni, &sc->sc_bo, data->m, 1); 1336 1337 if (bpf_peers_present(ic->ic_rawbpf)) 1338 bpf_mtap(ic->ic_rawbpf, data->m); 1339 1340 rt2560_tx_bcn(sc, data->m, data->ni); 1341 1342 DPRINTFN(15, ("beacon expired\n")); 1343 1344 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT; 1345 } 1346 1347 /* ARGSUSED */ 1348 static void 1349 rt2560_wakeup_expire(struct rt2560_softc *sc) 1350 { 1351 DPRINTFN(2, ("wakeup expired\n")); 1352 } 1353 1354 void 1355 rt2560_intr(void *arg) 1356 { 1357 struct rt2560_softc *sc = arg; 1358 struct ifnet *ifp = sc->sc_ifp; 1359 uint32_t r; 1360 1361 RAL_LOCK(sc); 1362 1363 /* disable interrupts */ 1364 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 1365 1366 /* don't re-enable interrupts if we're shutting down */ 1367 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1368 RAL_UNLOCK(sc); 1369 return; 1370 } 1371 1372 r = RAL_READ(sc, RT2560_CSR7); 1373 RAL_WRITE(sc, RT2560_CSR7, r); 1374 1375 if (r & RT2560_BEACON_EXPIRE) 1376 rt2560_beacon_expire(sc); 1377 1378 if (r & RT2560_WAKEUP_EXPIRE) 1379 rt2560_wakeup_expire(sc); 1380 1381 if (r & RT2560_ENCRYPTION_DONE) 1382 rt2560_encryption_intr(sc); 1383 1384 if (r & RT2560_TX_DONE) 1385 rt2560_tx_intr(sc); 1386 1387 if (r & RT2560_PRIO_DONE) 1388 rt2560_prio_intr(sc); 1389 1390 if (r & RT2560_DECRYPTION_DONE) 1391 rt2560_decryption_intr(sc); 1392 1393 if (r & RT2560_RX_DONE) { 1394 rt2560_rx_intr(sc); 1395 rt2560_encryption_intr(sc); 1396 } 1397 1398 /* re-enable interrupts */ 1399 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 1400 1401 RAL_UNLOCK(sc); 1402 } 1403 1404 /* quickly determine if a given rate is CCK or OFDM */ 1405 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1406 1407 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1408 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1409 1410 #define RAL_SIFS 10 /* us */ 1411 1412 #define RT2560_TXRX_TURNAROUND 10 /* us */ 1413 1414 /* 1415 * This function is only used by the Rx radiotap code. 1416 */ 1417 static uint8_t 1418 rt2560_rxrate(struct rt2560_rx_desc *desc) 1419 { 1420 if (le32toh(desc->flags) & RT2560_RX_OFDM) { 1421 /* reverse function of rt2560_plcp_signal */ 1422 switch (desc->rate) { 1423 case 0xb: return 12; 1424 case 0xf: return 18; 1425 case 0xa: return 24; 1426 case 0xe: return 36; 1427 case 0x9: return 48; 1428 case 0xd: return 72; 1429 case 0x8: return 96; 1430 case 0xc: return 108; 1431 } 1432 } else { 1433 if (desc->rate == 10) 1434 return 2; 1435 if (desc->rate == 20) 1436 return 4; 1437 if (desc->rate == 55) 1438 return 11; 1439 if (desc->rate == 110) 1440 return 22; 1441 } 1442 return 2; /* should not get there */ 1443 } 1444 1445 /* 1446 * Return the expected ack rate for a frame transmitted at rate `rate'. 1447 * XXX: this should depend on the destination node basic rate set. 1448 */ 1449 static int 1450 rt2560_ack_rate(struct ieee80211com *ic, int rate) 1451 { 1452 switch (rate) { 1453 /* CCK rates */ 1454 case 2: 1455 return 2; 1456 case 4: 1457 case 11: 1458 case 22: 1459 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1460 1461 /* OFDM rates */ 1462 case 12: 1463 case 18: 1464 return 12; 1465 case 24: 1466 case 36: 1467 return 24; 1468 case 48: 1469 case 72: 1470 case 96: 1471 case 108: 1472 return 48; 1473 } 1474 1475 /* default to 1Mbps */ 1476 return 2; 1477 } 1478 1479 /* 1480 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1481 * The function automatically determines the operating mode depending on the 1482 * given rate. `flags' indicates whether short preamble is in use or not. 1483 */ 1484 static uint16_t 1485 rt2560_txtime(int len, int rate, uint32_t flags) 1486 { 1487 uint16_t txtime; 1488 1489 if (RAL_RATE_IS_OFDM(rate)) { 1490 /* IEEE Std 802.11a-1999, pp. 37 */ 1491 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1492 txtime = 16 + 4 + 4 * txtime + 6; 1493 } else { 1494 /* IEEE Std 802.11b-1999, pp. 28 */ 1495 txtime = (16 * len + rate - 1) / rate; 1496 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1497 txtime += 72 + 24; 1498 else 1499 txtime += 144 + 48; 1500 } 1501 1502 return txtime; 1503 } 1504 1505 static uint8_t 1506 rt2560_plcp_signal(int rate) 1507 { 1508 switch (rate) { 1509 /* CCK rates (returned values are device-dependent) */ 1510 case 2: return 0x0; 1511 case 4: return 0x1; 1512 case 11: return 0x2; 1513 case 22: return 0x3; 1514 1515 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1516 case 12: return 0xb; 1517 case 18: return 0xf; 1518 case 24: return 0xa; 1519 case 36: return 0xe; 1520 case 48: return 0x9; 1521 case 72: return 0xd; 1522 case 96: return 0x8; 1523 case 108: return 0xc; 1524 1525 /* unsupported rates (should not get there) */ 1526 default: return 0xff; 1527 } 1528 } 1529 1530 static void 1531 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, 1532 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) 1533 { 1534 struct ieee80211com *ic = &sc->sc_ic; 1535 uint16_t plcp_length; 1536 int remainder; 1537 1538 desc->flags = htole32(flags); 1539 desc->flags |= htole32(len << 16); 1540 1541 desc->physaddr = htole32(physaddr); 1542 desc->wme = htole16( 1543 RT2560_AIFSN(2) | 1544 RT2560_LOGCWMIN(3) | 1545 RT2560_LOGCWMAX(8)); 1546 1547 /* setup PLCP fields */ 1548 desc->plcp_signal = rt2560_plcp_signal(rate); 1549 desc->plcp_service = 4; 1550 1551 len += IEEE80211_CRC_LEN; 1552 if (RAL_RATE_IS_OFDM(rate)) { 1553 desc->flags |= htole32(RT2560_TX_OFDM); 1554 1555 plcp_length = len & 0xfff; 1556 desc->plcp_length_hi = plcp_length >> 6; 1557 desc->plcp_length_lo = plcp_length & 0x3f; 1558 } else { 1559 plcp_length = (16 * len + rate - 1) / rate; 1560 if (rate == 22) { 1561 remainder = (16 * len) % 22; 1562 if (remainder != 0 && remainder < 7) 1563 desc->plcp_service |= RT2560_PLCP_LENGEXT; 1564 } 1565 desc->plcp_length_hi = plcp_length >> 8; 1566 desc->plcp_length_lo = plcp_length & 0xff; 1567 1568 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1569 desc->plcp_signal |= 0x08; 1570 } 1571 1572 if (!encrypt) 1573 desc->flags |= htole32(RT2560_TX_VALID); 1574 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) 1575 : htole32(RT2560_TX_BUSY); 1576 } 1577 1578 static int 1579 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, 1580 struct ieee80211_node *ni) 1581 { 1582 struct ieee80211com *ic = &sc->sc_ic; 1583 struct rt2560_tx_desc *desc; 1584 struct rt2560_tx_data *data; 1585 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1586 int nsegs, rate, error; 1587 1588 desc = &sc->bcnq.desc[sc->bcnq.cur]; 1589 data = &sc->bcnq.data[sc->bcnq.cur]; 1590 1591 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1592 1593 error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0, 1594 segs, &nsegs, BUS_DMA_NOWAIT); 1595 if (error != 0) { 1596 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1597 error); 1598 m_freem(m0); 1599 return error; 1600 } 1601 1602 if (bpf_peers_present(sc->sc_drvbpf)) { 1603 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1604 1605 tap->wt_flags = 0; 1606 tap->wt_rate = rate; 1607 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1608 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1609 tap->wt_antenna = sc->tx_ant; 1610 1611 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1612 } 1613 1614 data->m = m0; 1615 data->ni = ni; 1616 1617 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | 1618 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr); 1619 1620 DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n", 1621 m0->m_pkthdr.len, sc->bcnq.cur, rate)); 1622 1623 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1624 bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, 1625 BUS_DMASYNC_PREWRITE); 1626 1627 sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT; 1628 1629 return 0; 1630 } 1631 1632 static int 1633 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, 1634 struct ieee80211_node *ni) 1635 { 1636 struct ieee80211com *ic = &sc->sc_ic; 1637 struct rt2560_tx_desc *desc; 1638 struct rt2560_tx_data *data; 1639 struct ieee80211_frame *wh; 1640 struct ieee80211_key *k; 1641 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1642 uint16_t dur; 1643 uint32_t flags = 0; 1644 int nsegs, rate, error; 1645 1646 desc = &sc->prioq.desc[sc->prioq.cur]; 1647 data = &sc->prioq.data[sc->prioq.cur]; 1648 1649 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1650 1651 wh = mtod(m0, struct ieee80211_frame *); 1652 1653 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1654 k = ieee80211_crypto_encap(ic, ni, m0); 1655 if (k == NULL) { 1656 m_freem(m0); 1657 return ENOBUFS; 1658 } 1659 } 1660 1661 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1662 segs, &nsegs, 0); 1663 if (error != 0) { 1664 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1665 error); 1666 m_freem(m0); 1667 return error; 1668 } 1669 1670 if (bpf_peers_present(sc->sc_drvbpf)) { 1671 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1672 1673 tap->wt_flags = 0; 1674 tap->wt_rate = rate; 1675 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1676 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1677 tap->wt_antenna = sc->tx_ant; 1678 1679 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1680 } 1681 1682 data->m = m0; 1683 data->ni = ni; 1684 1685 wh = mtod(m0, struct ieee80211_frame *); 1686 1687 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1688 flags |= RT2560_TX_ACK; 1689 1690 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1691 RAL_SIFS; 1692 *(uint16_t *)wh->i_dur = htole16(dur); 1693 1694 /* tell hardware to add timestamp for probe responses */ 1695 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1696 IEEE80211_FC0_TYPE_MGT && 1697 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1698 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1699 flags |= RT2560_TX_TIMESTAMP; 1700 } 1701 1702 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, 1703 segs->ds_addr); 1704 1705 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1706 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1707 BUS_DMASYNC_PREWRITE); 1708 1709 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1710 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1711 1712 /* kick prio */ 1713 sc->prioq.queued++; 1714 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1715 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1716 1717 return 0; 1718 } 1719 1720 static int 1721 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0, 1722 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 1723 { 1724 struct ieee80211com *ic = &sc->sc_ic; 1725 struct rt2560_tx_desc *desc; 1726 struct rt2560_tx_data *data; 1727 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1728 uint32_t flags; 1729 int nsegs, rate, error; 1730 1731 desc = &sc->prioq.desc[sc->prioq.cur]; 1732 data = &sc->prioq.data[sc->prioq.cur]; 1733 1734 rate = params->ibp_rate0 & IEEE80211_RATE_VAL; 1735 /* XXX validate */ 1736 if (rate == 0) { 1737 m_freem(m0); 1738 return EINVAL; 1739 } 1740 1741 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1742 segs, &nsegs, 0); 1743 if (error != 0) { 1744 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1745 error); 1746 m_freem(m0); 1747 return error; 1748 } 1749 1750 if (bpf_peers_present(sc->sc_drvbpf)) { 1751 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1752 1753 tap->wt_flags = 0; 1754 tap->wt_rate = rate; 1755 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1756 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1757 tap->wt_antenna = sc->tx_ant; 1758 1759 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1760 } 1761 1762 data->m = m0; 1763 data->ni = ni; 1764 1765 flags = 0; 1766 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1767 flags |= RT2560_TX_ACK; 1768 1769 /* XXX need to setup descriptor ourself */ 1770 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, 1771 rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0, 1772 segs->ds_addr); 1773 1774 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1775 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1776 BUS_DMASYNC_PREWRITE); 1777 1778 DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n", 1779 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1780 1781 /* kick prio */ 1782 sc->prioq.queued++; 1783 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1784 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1785 1786 return 0; 1787 } 1788 1789 /* 1790 * Build a RTS control frame. 1791 */ 1792 static struct mbuf * 1793 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh, 1794 uint16_t dur) 1795 { 1796 struct ieee80211_frame_rts *rts; 1797 struct mbuf *m; 1798 1799 MGETHDR(m, M_DONTWAIT, MT_DATA); 1800 if (m == NULL) { 1801 sc->sc_ic.ic_stats.is_tx_nobuf++; 1802 device_printf(sc->sc_dev, "could not allocate RTS frame\n"); 1803 return NULL; 1804 } 1805 1806 rts = mtod(m, struct ieee80211_frame_rts *); 1807 1808 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1809 IEEE80211_FC0_SUBTYPE_RTS; 1810 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1811 *(uint16_t *)rts->i_dur = htole16(dur); 1812 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1813 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1814 1815 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1816 1817 return m; 1818 } 1819 1820 static int 1821 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, 1822 struct ieee80211_node *ni) 1823 { 1824 struct ieee80211com *ic = &sc->sc_ic; 1825 struct rt2560_tx_desc *desc; 1826 struct rt2560_tx_data *data; 1827 struct rt2560_node *rn; 1828 struct ieee80211_frame *wh; 1829 struct ieee80211_key *k; 1830 struct mbuf *mnew; 1831 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1832 uint16_t dur; 1833 uint32_t flags = 0; 1834 int nsegs, rate, error; 1835 1836 wh = mtod(m0, struct ieee80211_frame *); 1837 1838 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1839 rate = ic->ic_fixed_rate; 1840 } else { 1841 struct ieee80211_rateset *rs; 1842 1843 rs = &ni->ni_rates; 1844 rn = (struct rt2560_node *)ni; 1845 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh, 1846 m0->m_pkthdr.len, NULL, 0); 1847 rate = rs->rs_rates[ni->ni_txrate]; 1848 } 1849 rate &= IEEE80211_RATE_VAL; 1850 1851 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1852 k = ieee80211_crypto_encap(ic, ni, m0); 1853 if (k == NULL) { 1854 m_freem(m0); 1855 return ENOBUFS; 1856 } 1857 1858 /* packet header may have moved, reset our local pointer */ 1859 wh = mtod(m0, struct ieee80211_frame *); 1860 } 1861 1862 /* 1863 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1864 * for directed frames only when the length of the MPDU is greater 1865 * than the length threshold indicated by [...]" ic_rtsthreshold. 1866 */ 1867 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1868 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1869 struct mbuf *m; 1870 uint16_t dur; 1871 int rtsrate, ackrate; 1872 1873 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1874 ackrate = rt2560_ack_rate(ic, rate); 1875 1876 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1877 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1878 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1879 3 * RAL_SIFS; 1880 1881 m = rt2560_get_rts(sc, wh, dur); 1882 1883 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1884 data = &sc->txq.data[sc->txq.cur_encrypt]; 1885 1886 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1887 m, segs, &nsegs, 0); 1888 if (error != 0) { 1889 device_printf(sc->sc_dev, 1890 "could not map mbuf (error %d)\n", error); 1891 m_freem(m); 1892 m_freem(m0); 1893 return error; 1894 } 1895 1896 /* avoid multiple free() of the same node for each fragment */ 1897 ieee80211_ref_node(ni); 1898 1899 data->m = m; 1900 data->ni = ni; 1901 1902 /* RTS frames are not taken into account for rssadapt */ 1903 data->id.id_node = NULL; 1904 1905 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK | 1906 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, 1907 segs->ds_addr); 1908 1909 bus_dmamap_sync(sc->txq.data_dmat, data->map, 1910 BUS_DMASYNC_PREWRITE); 1911 1912 sc->txq.queued++; 1913 sc->txq.cur_encrypt = 1914 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1915 1916 /* 1917 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1918 * asynchronous data frame shall be transmitted after the CTS 1919 * frame and a SIFS period. 1920 */ 1921 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; 1922 } 1923 1924 data = &sc->txq.data[sc->txq.cur_encrypt]; 1925 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1926 1927 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, 1928 segs, &nsegs, 0); 1929 if (error != 0 && error != EFBIG) { 1930 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1931 error); 1932 m_freem(m0); 1933 return error; 1934 } 1935 if (error != 0) { 1936 mnew = m_defrag(m0, M_DONTWAIT); 1937 if (mnew == NULL) { 1938 device_printf(sc->sc_dev, 1939 "could not defragment mbuf\n"); 1940 m_freem(m0); 1941 return ENOBUFS; 1942 } 1943 m0 = mnew; 1944 1945 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1946 m0, segs, &nsegs, 0); 1947 if (error != 0) { 1948 device_printf(sc->sc_dev, 1949 "could not map mbuf (error %d)\n", error); 1950 m_freem(m0); 1951 return error; 1952 } 1953 1954 /* packet header may have moved, reset our local pointer */ 1955 wh = mtod(m0, struct ieee80211_frame *); 1956 } 1957 1958 if (bpf_peers_present(sc->sc_drvbpf)) { 1959 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1960 1961 tap->wt_flags = 0; 1962 tap->wt_rate = rate; 1963 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1964 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1965 tap->wt_antenna = sc->tx_ant; 1966 1967 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1968 } 1969 1970 data->m = m0; 1971 data->ni = ni; 1972 1973 /* remember link conditions for rate adaptation algorithm */ 1974 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1975 data->id.id_len = m0->m_pkthdr.len; 1976 data->id.id_rateidx = ni->ni_txrate; 1977 data->id.id_node = ni; 1978 data->id.id_rssi = ni->ni_rssi; 1979 } else 1980 data->id.id_node = NULL; 1981 1982 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1983 flags |= RT2560_TX_ACK; 1984 1985 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), 1986 ic->ic_flags) + RAL_SIFS; 1987 *(uint16_t *)wh->i_dur = htole16(dur); 1988 } 1989 1990 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, 1991 segs->ds_addr); 1992 1993 bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1994 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1995 BUS_DMASYNC_PREWRITE); 1996 1997 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1998 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate)); 1999 2000 /* kick encrypt */ 2001 sc->txq.queued++; 2002 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 2003 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); 2004 2005 return 0; 2006 } 2007 2008 static void 2009 rt2560_start(struct ifnet *ifp) 2010 { 2011 struct rt2560_softc *sc = ifp->if_softc; 2012 struct ieee80211com *ic = &sc->sc_ic; 2013 struct mbuf *m0; 2014 struct ether_header *eh; 2015 struct ieee80211_node *ni; 2016 2017 RAL_LOCK(sc); 2018 2019 /* prevent management frames from being sent if we're not ready */ 2020 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2021 RAL_UNLOCK(sc); 2022 return; 2023 } 2024 2025 for (;;) { 2026 IF_POLL(&ic->ic_mgtq, m0); 2027 if (m0 != NULL) { 2028 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 2029 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2030 sc->sc_flags |= RT2560_F_PRIO_OACTIVE; 2031 break; 2032 } 2033 IF_DEQUEUE(&ic->ic_mgtq, m0); 2034 2035 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2036 m0->m_pkthdr.rcvif = NULL; 2037 2038 if (bpf_peers_present(ic->ic_rawbpf)) 2039 bpf_mtap(ic->ic_rawbpf, m0); 2040 2041 if (rt2560_tx_mgt(sc, m0, ni) != 0) { 2042 ieee80211_free_node(ni); 2043 break; 2044 } 2045 } else { 2046 if (ic->ic_state != IEEE80211_S_RUN) 2047 break; 2048 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2049 if (m0 == NULL) 2050 break; 2051 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { 2052 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2053 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2054 sc->sc_flags |= RT2560_F_DATA_OACTIVE; 2055 break; 2056 } 2057 /* 2058 * Cancel any background scan. 2059 */ 2060 if (ic->ic_flags & IEEE80211_F_SCAN) 2061 ieee80211_cancel_scan(ic); 2062 2063 if (m0->m_len < sizeof (struct ether_header) && 2064 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 2065 continue; 2066 2067 eh = mtod(m0, struct ether_header *); 2068 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2069 if (ni == NULL) { 2070 m_freem(m0); 2071 continue; 2072 } 2073 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 2074 (m0->m_flags & M_PWR_SAV) == 0) { 2075 /* 2076 * Station in power save mode; pass the frame 2077 * to the 802.11 layer and continue. We'll get 2078 * the frame back when the time is right. 2079 */ 2080 ieee80211_pwrsave(ni, m0); 2081 /* 2082 * If we're in power save mode 'cuz of a bg 2083 * scan cancel it so the traffic can flow. 2084 * The packet we just queued will automatically 2085 * get sent when we drop out of power save. 2086 * XXX locking 2087 */ 2088 if (ic->ic_flags & IEEE80211_F_SCAN) 2089 ieee80211_cancel_scan(ic); 2090 ieee80211_free_node(ni); 2091 continue; 2092 } 2093 2094 BPF_MTAP(ifp, m0); 2095 2096 m0 = ieee80211_encap(ic, m0, ni); 2097 if (m0 == NULL) { 2098 ieee80211_free_node(ni); 2099 continue; 2100 } 2101 2102 if (bpf_peers_present(ic->ic_rawbpf)) 2103 bpf_mtap(ic->ic_rawbpf, m0); 2104 2105 if (rt2560_tx_data(sc, m0, ni) != 0) { 2106 ieee80211_free_node(ni); 2107 ifp->if_oerrors++; 2108 break; 2109 } 2110 } 2111 2112 sc->sc_tx_timer = 5; 2113 ic->ic_lastdata = ticks; 2114 } 2115 2116 RAL_UNLOCK(sc); 2117 } 2118 2119 static void 2120 rt2560_watchdog(void *arg) 2121 { 2122 struct rt2560_softc *sc = arg; 2123 struct ifnet *ifp = sc->sc_ifp; 2124 2125 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) 2126 return; 2127 2128 rt2560_encryption_intr(sc); 2129 rt2560_tx_intr(sc); 2130 2131 if (sc->sc_tx_timer > 0) { 2132 if (--sc->sc_tx_timer == 0) { 2133 device_printf(sc->sc_dev, "device timeout\n"); 2134 rt2560_init(sc); 2135 ifp->if_oerrors++; 2136 /* watchdog timeout is set in rt2560_init() */ 2137 return; 2138 } 2139 } 2140 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2141 } 2142 2143 /* 2144 * This function allows for fast channel switching in monitor mode (used by 2145 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 2146 * generate a new beacon frame. 2147 */ 2148 static int 2149 rt2560_reset(struct ifnet *ifp) 2150 { 2151 struct rt2560_softc *sc = ifp->if_softc; 2152 struct ieee80211com *ic = &sc->sc_ic; 2153 2154 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2155 return ENETRESET; 2156 2157 rt2560_set_chan(sc, ic->ic_curchan); 2158 2159 return 0; 2160 } 2161 2162 static int 2163 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2164 { 2165 struct rt2560_softc *sc = ifp->if_softc; 2166 struct ieee80211com *ic = &sc->sc_ic; 2167 int error = 0; 2168 2169 2170 2171 switch (cmd) { 2172 case SIOCSIFFLAGS: 2173 if (ifp->if_flags & IFF_UP) { 2174 RAL_LOCK(sc); 2175 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2176 rt2560_update_promisc(sc); 2177 else 2178 rt2560_init(sc); 2179 RAL_UNLOCK(sc); 2180 } else { 2181 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2182 rt2560_stop(sc); 2183 } 2184 2185 break; 2186 2187 default: 2188 error = ieee80211_ioctl(ic, cmd, data); 2189 } 2190 2191 if (error == ENETRESET) { 2192 if ((ifp->if_flags & IFF_UP) && 2193 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 2194 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2195 rt2560_init(sc); 2196 error = 0; 2197 } 2198 2199 2200 return error; 2201 } 2202 2203 static void 2204 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) 2205 { 2206 uint32_t tmp; 2207 int ntries; 2208 2209 for (ntries = 0; ntries < 100; ntries++) { 2210 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2211 break; 2212 DELAY(1); 2213 } 2214 if (ntries == 100) { 2215 device_printf(sc->sc_dev, "could not write to BBP\n"); 2216 return; 2217 } 2218 2219 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; 2220 RAL_WRITE(sc, RT2560_BBPCSR, tmp); 2221 2222 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2223 } 2224 2225 static uint8_t 2226 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) 2227 { 2228 uint32_t val; 2229 int ntries; 2230 2231 for (ntries = 0; ntries < 100; ntries++) { 2232 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2233 break; 2234 DELAY(1); 2235 } 2236 if (ntries == 100) { 2237 device_printf(sc->sc_dev, "could not read from BBP\n"); 2238 return 0; 2239 } 2240 2241 val = RT2560_BBP_BUSY | reg << 8; 2242 RAL_WRITE(sc, RT2560_BBPCSR, val); 2243 2244 for (ntries = 0; ntries < 100; ntries++) { 2245 val = RAL_READ(sc, RT2560_BBPCSR); 2246 if (!(val & RT2560_BBP_BUSY)) 2247 return val & 0xff; 2248 DELAY(1); 2249 } 2250 2251 device_printf(sc->sc_dev, "could not read from BBP\n"); 2252 return 0; 2253 } 2254 2255 static void 2256 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) 2257 { 2258 uint32_t tmp; 2259 int ntries; 2260 2261 for (ntries = 0; ntries < 100; ntries++) { 2262 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) 2263 break; 2264 DELAY(1); 2265 } 2266 if (ntries == 100) { 2267 device_printf(sc->sc_dev, "could not write to RF\n"); 2268 return; 2269 } 2270 2271 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | 2272 (reg & 0x3); 2273 RAL_WRITE(sc, RT2560_RFCSR, tmp); 2274 2275 /* remember last written value in sc */ 2276 sc->rf_regs[reg] = val; 2277 2278 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 2279 } 2280 2281 static void 2282 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) 2283 { 2284 struct ieee80211com *ic = &sc->sc_ic; 2285 uint8_t power, tmp; 2286 u_int i, chan; 2287 2288 chan = ieee80211_chan2ieee(ic, c); 2289 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2290 return; 2291 2292 if (IEEE80211_IS_CHAN_2GHZ(c)) 2293 power = min(sc->txpow[chan - 1], 31); 2294 else 2295 power = 31; 2296 2297 /* adjust txpower using ifconfig settings */ 2298 power -= (100 - ic->ic_txpowlimit) / 8; 2299 2300 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 2301 2302 switch (sc->rf_rev) { 2303 case RT2560_RF_2522: 2304 rt2560_rf_write(sc, RAL_RF1, 0x00814); 2305 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); 2306 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2307 break; 2308 2309 case RT2560_RF_2523: 2310 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2311 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); 2312 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 2313 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2314 break; 2315 2316 case RT2560_RF_2524: 2317 rt2560_rf_write(sc, RAL_RF1, 0x0c808); 2318 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); 2319 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2320 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2321 break; 2322 2323 case RT2560_RF_2525: 2324 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2325 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); 2326 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2327 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2328 2329 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2330 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); 2331 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2332 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2333 break; 2334 2335 case RT2560_RF_2525E: 2336 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2337 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); 2338 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2339 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 2340 break; 2341 2342 case RT2560_RF_2526: 2343 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); 2344 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2345 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2346 2347 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); 2348 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2349 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2350 break; 2351 2352 /* dual-band RF */ 2353 case RT2560_RF_5222: 2354 for (i = 0; rt2560_rf5222[i].chan != chan; i++); 2355 2356 rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); 2357 rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); 2358 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2359 rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); 2360 break; 2361 default: 2362 printf("unknown ral rev=%d\n", sc->rf_rev); 2363 } 2364 2365 if (ic->ic_state != IEEE80211_S_SCAN) { 2366 /* set Japan filter bit for channel 14 */ 2367 tmp = rt2560_bbp_read(sc, 70); 2368 2369 tmp &= ~RT2560_JAPAN_FILTER; 2370 if (chan == 14) 2371 tmp |= RT2560_JAPAN_FILTER; 2372 2373 rt2560_bbp_write(sc, 70, tmp); 2374 2375 /* clear CRC errors */ 2376 RAL_READ(sc, RT2560_CNT0); 2377 } 2378 } 2379 2380 static void 2381 rt2560_set_channel(struct ieee80211com *ic) 2382 { 2383 struct ifnet *ifp = ic->ic_ifp; 2384 struct rt2560_softc *sc = ifp->if_softc; 2385 2386 RAL_LOCK(sc); 2387 rt2560_set_chan(sc, ic->ic_curchan); 2388 RAL_UNLOCK(sc); 2389 2390 } 2391 2392 #if 0 2393 /* 2394 * Disable RF auto-tuning. 2395 */ 2396 static void 2397 rt2560_disable_rf_tune(struct rt2560_softc *sc) 2398 { 2399 uint32_t tmp; 2400 2401 if (sc->rf_rev != RT2560_RF_2523) { 2402 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 2403 rt2560_rf_write(sc, RAL_RF1, tmp); 2404 } 2405 2406 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 2407 rt2560_rf_write(sc, RAL_RF3, tmp); 2408 2409 DPRINTFN(2, ("disabling RF autotune\n")); 2410 } 2411 #endif 2412 2413 /* 2414 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 2415 * synchronization. 2416 */ 2417 static void 2418 rt2560_enable_tsf_sync(struct rt2560_softc *sc) 2419 { 2420 struct ieee80211com *ic = &sc->sc_ic; 2421 uint16_t logcwmin, preload; 2422 uint32_t tmp; 2423 2424 /* first, disable TSF synchronization */ 2425 RAL_WRITE(sc, RT2560_CSR14, 0); 2426 2427 tmp = 16 * ic->ic_bss->ni_intval; 2428 RAL_WRITE(sc, RT2560_CSR12, tmp); 2429 2430 RAL_WRITE(sc, RT2560_CSR13, 0); 2431 2432 logcwmin = 5; 2433 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; 2434 tmp = logcwmin << 16 | preload; 2435 RAL_WRITE(sc, RT2560_BCNOCSR, tmp); 2436 2437 /* finally, enable TSF synchronization */ 2438 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; 2439 if (ic->ic_opmode == IEEE80211_M_STA) 2440 tmp |= RT2560_ENABLE_TSF_SYNC(1); 2441 else 2442 tmp |= RT2560_ENABLE_TSF_SYNC(2) | 2443 RT2560_ENABLE_BEACON_GENERATOR; 2444 RAL_WRITE(sc, RT2560_CSR14, tmp); 2445 2446 DPRINTF(("enabling TSF synchronization\n")); 2447 } 2448 2449 static void 2450 rt2560_update_plcp(struct rt2560_softc *sc) 2451 { 2452 struct ieee80211com *ic = &sc->sc_ic; 2453 2454 /* no short preamble for 1Mbps */ 2455 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); 2456 2457 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { 2458 /* values taken from the reference driver */ 2459 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); 2460 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); 2461 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); 2462 } else { 2463 /* same values as above or'ed 0x8 */ 2464 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); 2465 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); 2466 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); 2467 } 2468 2469 DPRINTF(("updating PLCP for %s preamble\n", 2470 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); 2471 } 2472 2473 /* 2474 * This function can be called by ieee80211_set_shortslottime(). Refer to 2475 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. 2476 */ 2477 static void 2478 rt2560_update_slot(struct ifnet *ifp) 2479 { 2480 struct rt2560_softc *sc = ifp->if_softc; 2481 struct ieee80211com *ic = &sc->sc_ic; 2482 uint8_t slottime; 2483 uint16_t tx_sifs, tx_pifs, tx_difs, eifs; 2484 uint32_t tmp; 2485 2486 #ifndef FORCE_SLOTTIME 2487 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2488 #else 2489 /* 2490 * Setting slot time according to "short slot time" capability 2491 * in beacon/probe_resp seems to cause problem to acknowledge 2492 * certain AP's data frames transimitted at CCK/DS rates: the 2493 * problematic AP keeps retransmitting data frames, probably 2494 * because MAC level acks are not received by hardware. 2495 * So we cheat a little bit here by claiming we are capable of 2496 * "short slot time" but setting hardware slot time to the normal 2497 * slot time. ral(4) does not seem to have trouble to receive 2498 * frames transmitted using short slot time even if hardware 2499 * slot time is set to normal slot time. If we didn't use this 2500 * trick, we would have to claim that short slot time is not 2501 * supported; this would give relative poor RX performance 2502 * (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short 2503 * slot time. 2504 */ 2505 slottime = 20; 2506 #endif 2507 2508 /* update the MAC slot boundaries */ 2509 tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; 2510 tx_pifs = tx_sifs + slottime; 2511 tx_difs = tx_sifs + 2 * slottime; 2512 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; 2513 2514 tmp = RAL_READ(sc, RT2560_CSR11); 2515 tmp = (tmp & ~0x1f00) | slottime << 8; 2516 RAL_WRITE(sc, RT2560_CSR11, tmp); 2517 2518 tmp = tx_pifs << 16 | tx_sifs; 2519 RAL_WRITE(sc, RT2560_CSR18, tmp); 2520 2521 tmp = eifs << 16 | tx_difs; 2522 RAL_WRITE(sc, RT2560_CSR19, tmp); 2523 2524 DPRINTF(("setting slottime to %uus\n", slottime)); 2525 } 2526 2527 static void 2528 rt2560_set_basicrates(struct rt2560_softc *sc) 2529 { 2530 struct ieee80211com *ic = &sc->sc_ic; 2531 2532 /* update basic rate set */ 2533 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2534 /* 11b basic rates: 1, 2Mbps */ 2535 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); 2536 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { 2537 /* 11a basic rates: 6, 12, 24Mbps */ 2538 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150); 2539 } else { 2540 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 2541 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f); 2542 } 2543 } 2544 2545 static void 2546 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) 2547 { 2548 uint32_t tmp; 2549 2550 /* set ON period to 70ms and OFF period to 30ms */ 2551 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; 2552 RAL_WRITE(sc, RT2560_LEDCSR, tmp); 2553 } 2554 2555 static void 2556 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid) 2557 { 2558 uint32_t tmp; 2559 2560 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2561 RAL_WRITE(sc, RT2560_CSR5, tmp); 2562 2563 tmp = bssid[4] | bssid[5] << 8; 2564 RAL_WRITE(sc, RT2560_CSR6, tmp); 2565 2566 DPRINTF(("setting BSSID to %6D\n", bssid, ":")); 2567 } 2568 2569 static void 2570 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2571 { 2572 uint32_t tmp; 2573 2574 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2575 RAL_WRITE(sc, RT2560_CSR3, tmp); 2576 2577 tmp = addr[4] | addr[5] << 8; 2578 RAL_WRITE(sc, RT2560_CSR4, tmp); 2579 2580 DPRINTF(("setting MAC address to %6D\n", addr, ":")); 2581 } 2582 2583 static void 2584 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2585 { 2586 uint32_t tmp; 2587 2588 tmp = RAL_READ(sc, RT2560_CSR3); 2589 addr[0] = tmp & 0xff; 2590 addr[1] = (tmp >> 8) & 0xff; 2591 addr[2] = (tmp >> 16) & 0xff; 2592 addr[3] = (tmp >> 24); 2593 2594 tmp = RAL_READ(sc, RT2560_CSR4); 2595 addr[4] = tmp & 0xff; 2596 addr[5] = (tmp >> 8) & 0xff; 2597 } 2598 2599 static void 2600 rt2560_update_promisc(struct rt2560_softc *sc) 2601 { 2602 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2603 uint32_t tmp; 2604 2605 tmp = RAL_READ(sc, RT2560_RXCSR0); 2606 2607 tmp &= ~RT2560_DROP_NOT_TO_ME; 2608 if (!(ifp->if_flags & IFF_PROMISC)) 2609 tmp |= RT2560_DROP_NOT_TO_ME; 2610 2611 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2612 2613 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2614 "entering" : "leaving")); 2615 } 2616 2617 static const char * 2618 rt2560_get_rf(int rev) 2619 { 2620 switch (rev) { 2621 case RT2560_RF_2522: return "RT2522"; 2622 case RT2560_RF_2523: return "RT2523"; 2623 case RT2560_RF_2524: return "RT2524"; 2624 case RT2560_RF_2525: return "RT2525"; 2625 case RT2560_RF_2525E: return "RT2525e"; 2626 case RT2560_RF_2526: return "RT2526"; 2627 case RT2560_RF_5222: return "RT5222"; 2628 default: return "unknown"; 2629 } 2630 } 2631 2632 static void 2633 rt2560_read_config(struct rt2560_softc *sc) 2634 { 2635 uint16_t val; 2636 int i; 2637 2638 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); 2639 sc->rf_rev = (val >> 11) & 0x7; 2640 sc->hw_radio = (val >> 10) & 0x1; 2641 sc->led_mode = (val >> 6) & 0x7; 2642 sc->rx_ant = (val >> 4) & 0x3; 2643 sc->tx_ant = (val >> 2) & 0x3; 2644 sc->nb_ant = val & 0x3; 2645 2646 /* read default values for BBP registers */ 2647 for (i = 0; i < 16; i++) { 2648 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); 2649 if (val == 0 || val == 0xffff) 2650 continue; 2651 2652 sc->bbp_prom[i].reg = val >> 8; 2653 sc->bbp_prom[i].val = val & 0xff; 2654 } 2655 2656 /* read Tx power for all b/g channels */ 2657 for (i = 0; i < 14 / 2; i++) { 2658 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); 2659 sc->txpow[i * 2] = val & 0xff; 2660 sc->txpow[i * 2 + 1] = val >> 8; 2661 } 2662 for (i = 0; i < 14; ++i) { 2663 if (sc->txpow[i] > 31) 2664 sc->txpow[i] = 24; 2665 } 2666 2667 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE); 2668 if ((val & 0xff) == 0xff) 2669 sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR; 2670 else 2671 sc->rssi_corr = val & 0xff; 2672 DPRINTF(("rssi correction %d, calibrate 0x%02x\n", 2673 sc->rssi_corr, val)); 2674 } 2675 2676 2677 static void 2678 rt2560_scan_start(struct ieee80211com *ic) 2679 { 2680 struct ifnet *ifp = ic->ic_ifp; 2681 struct rt2560_softc *sc = ifp->if_softc; 2682 2683 /* abort TSF synchronization */ 2684 RAL_WRITE(sc, RT2560_CSR14, 0); 2685 rt2560_set_bssid(sc, ifp->if_broadcastaddr); 2686 } 2687 2688 static void 2689 rt2560_scan_end(struct ieee80211com *ic) 2690 { 2691 struct ifnet *ifp = ic->ic_ifp; 2692 struct rt2560_softc *sc = ifp->if_softc; 2693 2694 rt2560_enable_tsf_sync(sc); 2695 /* XXX keep local copy */ 2696 rt2560_set_bssid(sc, ic->ic_bss->ni_bssid); 2697 } 2698 2699 static int 2700 rt2560_bbp_init(struct rt2560_softc *sc) 2701 { 2702 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2703 int i, ntries; 2704 2705 /* wait for BBP to be ready */ 2706 for (ntries = 0; ntries < 100; ntries++) { 2707 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) 2708 break; 2709 DELAY(1); 2710 } 2711 if (ntries == 100) { 2712 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2713 return EIO; 2714 } 2715 2716 /* initialize BBP registers to default values */ 2717 for (i = 0; i < N(rt2560_def_bbp); i++) { 2718 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, 2719 rt2560_def_bbp[i].val); 2720 } 2721 2722 /* initialize BBP registers to values stored in EEPROM */ 2723 for (i = 0; i < 16; i++) { 2724 if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0) 2725 break; 2726 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2727 } 2728 rt2560_bbp_write(sc, 17, 0x48); /* XXX restore bbp17 */ 2729 2730 return 0; 2731 #undef N 2732 } 2733 2734 static void 2735 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) 2736 { 2737 uint32_t tmp; 2738 uint8_t tx; 2739 2740 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; 2741 if (antenna == 1) 2742 tx |= RT2560_BBP_ANTA; 2743 else if (antenna == 2) 2744 tx |= RT2560_BBP_ANTB; 2745 else 2746 tx |= RT2560_BBP_DIVERSITY; 2747 2748 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2749 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || 2750 sc->rf_rev == RT2560_RF_5222) 2751 tx |= RT2560_BBP_FLIPIQ; 2752 2753 rt2560_bbp_write(sc, RT2560_BBP_TX, tx); 2754 2755 /* update values for CCK and OFDM in BBPCSR1 */ 2756 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; 2757 tmp |= (tx & 0x7) << 16 | (tx & 0x7); 2758 RAL_WRITE(sc, RT2560_BBPCSR1, tmp); 2759 } 2760 2761 static void 2762 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) 2763 { 2764 uint8_t rx; 2765 2766 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; 2767 if (antenna == 1) 2768 rx |= RT2560_BBP_ANTA; 2769 else if (antenna == 2) 2770 rx |= RT2560_BBP_ANTB; 2771 else 2772 rx |= RT2560_BBP_DIVERSITY; 2773 2774 /* need to force no I/Q flip for RF 2525e and 2526 */ 2775 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) 2776 rx &= ~RT2560_BBP_FLIPIQ; 2777 2778 rt2560_bbp_write(sc, RT2560_BBP_RX, rx); 2779 } 2780 2781 static void 2782 rt2560_init(void *priv) 2783 { 2784 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2785 struct rt2560_softc *sc = priv; 2786 struct ieee80211com *ic = &sc->sc_ic; 2787 struct ifnet *ifp = ic->ic_ifp; 2788 uint32_t tmp; 2789 int i; 2790 2791 2792 2793 rt2560_stop(sc); 2794 2795 RAL_LOCK(sc); 2796 /* setup tx rings */ 2797 tmp = RT2560_PRIO_RING_COUNT << 24 | 2798 RT2560_ATIM_RING_COUNT << 16 | 2799 RT2560_TX_RING_COUNT << 8 | 2800 RT2560_TX_DESC_SIZE; 2801 2802 /* rings must be initialized in this exact order */ 2803 RAL_WRITE(sc, RT2560_TXCSR2, tmp); 2804 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); 2805 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); 2806 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); 2807 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); 2808 2809 /* setup rx ring */ 2810 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; 2811 2812 RAL_WRITE(sc, RT2560_RXCSR1, tmp); 2813 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); 2814 2815 /* initialize MAC registers to default values */ 2816 for (i = 0; i < N(rt2560_def_mac); i++) 2817 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); 2818 2819 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2820 rt2560_set_macaddr(sc, ic->ic_myaddr); 2821 2822 /* set basic rate set (will be updated later) */ 2823 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); 2824 2825 rt2560_update_slot(ifp); 2826 rt2560_update_plcp(sc); 2827 rt2560_update_led(sc, 0, 0); 2828 2829 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2830 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); 2831 2832 if (rt2560_bbp_init(sc) != 0) { 2833 rt2560_stop(sc); 2834 RAL_UNLOCK(sc); 2835 return; 2836 } 2837 2838 rt2560_set_txantenna(sc, sc->tx_ant); 2839 rt2560_set_rxantenna(sc, sc->rx_ant); 2840 2841 /* set default BSS channel */ 2842 rt2560_set_chan(sc, ic->ic_curchan); 2843 2844 /* kick Rx */ 2845 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; 2846 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2847 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; 2848 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2849 tmp |= RT2560_DROP_TODS; 2850 if (!(ifp->if_flags & IFF_PROMISC)) 2851 tmp |= RT2560_DROP_NOT_TO_ME; 2852 } 2853 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2854 2855 /* clear old FCS and Rx FIFO errors */ 2856 RAL_READ(sc, RT2560_CNT0); 2857 RAL_READ(sc, RT2560_CNT4); 2858 2859 /* clear any pending interrupts */ 2860 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); 2861 2862 /* enable interrupts */ 2863 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 2864 2865 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2866 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2867 2868 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2869 2870 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2871 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2872 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2873 } else 2874 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2875 2876 RAL_UNLOCK(sc); 2877 #undef N 2878 } 2879 2880 void 2881 rt2560_stop(void *arg) 2882 { 2883 struct rt2560_softc *sc = arg; 2884 struct ieee80211com *ic = &sc->sc_ic; 2885 struct ifnet *ifp = ic->ic_ifp; 2886 volatile int *flags = &sc->sc_flags; 2887 2888 while (*flags & RT2560_F_INPUT_RUNNING) { 2889 tsleep(sc, 0, "ralrunning", hz/10); 2890 } 2891 2892 RAL_LOCK(sc); 2893 2894 callout_stop(&sc->watchdog_ch); 2895 2896 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2897 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2898 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2899 2900 /* abort Tx */ 2901 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); 2902 2903 /* disable Rx */ 2904 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); 2905 2906 /* reset ASIC (imply reset BBP) */ 2907 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2908 RAL_WRITE(sc, RT2560_CSR1, 0); 2909 2910 /* disable interrupts */ 2911 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 2912 2913 /* reset Tx and Rx rings */ 2914 rt2560_reset_tx_ring(sc, &sc->txq); 2915 rt2560_reset_tx_ring(sc, &sc->atimq); 2916 rt2560_reset_tx_ring(sc, &sc->prioq); 2917 rt2560_reset_tx_ring(sc, &sc->bcnq); 2918 rt2560_reset_rx_ring(sc, &sc->rxq); 2919 } 2920 sc->sc_tx_timer = 0; 2921 sc->sc_flags &= ~(RT2560_F_PRIO_OACTIVE | RT2560_F_DATA_OACTIVE); 2922 2923 RAL_UNLOCK(sc); 2924 } 2925 2926 static int 2927 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2928 const struct ieee80211_bpf_params *params) 2929 { 2930 struct ieee80211com *ic = ni->ni_ic; 2931 struct ifnet *ifp = ic->ic_ifp; 2932 struct rt2560_softc *sc = ifp->if_softc; 2933 2934 RAL_LOCK(sc); 2935 2936 /* prevent management frames from being sent if we're not ready */ 2937 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2938 RAL_UNLOCK(sc); 2939 m_freem(m); 2940 ieee80211_free_node(ni); 2941 return ENETDOWN; 2942 } 2943 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 2944 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2945 RAL_UNLOCK(sc); 2946 m_freem(m); 2947 ieee80211_free_node(ni); 2948 return ENOBUFS; /* XXX */ 2949 } 2950 2951 if (bpf_peers_present(ic->ic_rawbpf)) 2952 bpf_mtap(ic->ic_rawbpf, m); 2953 2954 ifp->if_opackets++; 2955 2956 if (params == NULL) { 2957 /* 2958 * Legacy path; interpret frame contents to decide 2959 * precisely how to send the frame. 2960 */ 2961 if (rt2560_tx_mgt(sc, m, ni) != 0) 2962 goto bad; 2963 } else { 2964 /* 2965 * Caller supplied explicit parameters to use in 2966 * sending the frame. 2967 */ 2968 if (rt2560_tx_raw(sc, m, ni, params)) 2969 goto bad; 2970 } 2971 sc->sc_tx_timer = 5; 2972 2973 RAL_UNLOCK(sc); 2974 2975 return 0; 2976 bad: 2977 ifp->if_oerrors++; 2978 ieee80211_free_node(ni); 2979 RAL_UNLOCK(sc); 2980 return EIO; /* XXX */ 2981 } 2982