xref: /freebsd/sys/dev/ral/rt2560.c (revision 995dc984471c92c03daad19a1d35af46c086ef3e)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_radiotap.h>
56 #include <net80211/ieee80211_regdomain.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #include <netinet/if_ether.h>
63 
64 #include <dev/ral/if_ralrate.h>
65 #include <dev/ral/rt2560reg.h>
66 #include <dev/ral/rt2560var.h>
67 
68 #define RT2560_RSSI(sc, rssi)					\
69 	((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ?	\
70 	 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
71 
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
75 extern int ral_debug;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
82 			    int);
83 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
84 			    struct rt2560_tx_ring *, int);
85 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
86 			    struct rt2560_tx_ring *);
87 static void		rt2560_free_tx_ring(struct rt2560_softc *,
88 			    struct rt2560_tx_ring *);
89 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
90 			    struct rt2560_rx_ring *, int);
91 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
92 			    struct rt2560_rx_ring *);
93 static void		rt2560_free_rx_ring(struct rt2560_softc *,
94 			    struct rt2560_rx_ring *);
95 static struct		ieee80211_node *rt2560_node_alloc(
96 			    struct ieee80211_node_table *);
97 static int		rt2560_media_change(struct ifnet *);
98 static void		rt2560_iter_func(void *, struct ieee80211_node *);
99 static void		rt2560_update_rssadapt(void *);
100 static int		rt2560_newstate(struct ieee80211com *,
101 			    enum ieee80211_state, int);
102 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
103 static void		rt2560_encryption_intr(struct rt2560_softc *);
104 static void		rt2560_tx_intr(struct rt2560_softc *);
105 static void		rt2560_prio_intr(struct rt2560_softc *);
106 static void		rt2560_decryption_intr(struct rt2560_softc *);
107 static void		rt2560_rx_intr(struct rt2560_softc *);
108 static void		rt2560_beacon_update(struct ieee80211com *, int item);
109 static void		rt2560_beacon_expire(struct rt2560_softc *);
110 static void		rt2560_wakeup_expire(struct rt2560_softc *);
111 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
112 static int		rt2560_ack_rate(struct ieee80211com *, int);
113 static void		rt2560_scan_start(struct ieee80211com *);
114 static void		rt2560_scan_end(struct ieee80211com *);
115 static void		rt2560_set_channel(struct ieee80211com *);
116 static uint16_t		rt2560_txtime(int, int, uint32_t);
117 static uint8_t		rt2560_plcp_signal(int);
118 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
119 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
120 			    bus_addr_t);
121 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
122 			    struct ieee80211_node *);
123 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
124 			    struct ieee80211_node *);
125 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
126 			    struct ieee80211_frame *, uint16_t);
127 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
128 			    struct ieee80211_node *);
129 static void		rt2560_start(struct ifnet *);
130 static void		rt2560_watchdog(void *);
131 static int		rt2560_reset(struct ifnet *);
132 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
133 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
134 			    uint8_t);
135 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
136 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
137 			    uint32_t);
138 static void		rt2560_set_chan(struct rt2560_softc *,
139 			    struct ieee80211_channel *);
140 #if 0
141 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
142 #endif
143 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
144 static void		rt2560_update_plcp(struct rt2560_softc *);
145 static void		rt2560_update_slot(struct ifnet *);
146 static void		rt2560_set_basicrates(struct rt2560_softc *);
147 static void		rt2560_update_led(struct rt2560_softc *, int, int);
148 static void		rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
149 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
150 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
151 static void		rt2560_update_promisc(struct rt2560_softc *);
152 static const char	*rt2560_get_rf(int);
153 static void		rt2560_read_config(struct rt2560_softc *);
154 static int		rt2560_bbp_init(struct rt2560_softc *);
155 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
156 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
157 static void		rt2560_init(void *);
158 static int		rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
159 				const struct ieee80211_bpf_params *);
160 
161 static const struct {
162 	uint32_t	reg;
163 	uint32_t	val;
164 } rt2560_def_mac[] = {
165 	RT2560_DEF_MAC
166 };
167 
168 static const struct {
169 	uint8_t	reg;
170 	uint8_t	val;
171 } rt2560_def_bbp[] = {
172 	RT2560_DEF_BBP
173 };
174 
175 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
176 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
177 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
178 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
179 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
180 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
181 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
182 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
183 
184 static const struct {
185 	uint8_t		chan;
186 	uint32_t	r1, r2, r4;
187 } rt2560_rf5222[] = {
188 	RT2560_RF5222
189 };
190 
191 int
192 rt2560_attach(device_t dev, int id)
193 {
194 	struct rt2560_softc *sc = device_get_softc(dev);
195 	struct ieee80211com *ic = &sc->sc_ic;
196 	struct ifnet *ifp;
197 	int error, bands;
198 
199 	sc->sc_dev = dev;
200 
201 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
202 	    MTX_DEF | MTX_RECURSE);
203 
204 	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
205 	callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
206 
207 	/* retrieve RT2560 rev. no */
208 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
209 
210 	/* retrieve MAC address */
211 	rt2560_get_macaddr(sc, ic->ic_myaddr);
212 
213 	/* retrieve RF rev. no and various other things from EEPROM */
214 	rt2560_read_config(sc);
215 
216 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
217 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
218 
219 	/*
220 	 * Allocate Tx and Rx rings.
221 	 */
222 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
223 	if (error != 0) {
224 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
225 		goto fail1;
226 	}
227 
228 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
229 	if (error != 0) {
230 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
231 		goto fail2;
232 	}
233 
234 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
235 	if (error != 0) {
236 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
237 		goto fail3;
238 	}
239 
240 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
241 	if (error != 0) {
242 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
243 		goto fail4;
244 	}
245 
246 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
247 	if (error != 0) {
248 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
249 		goto fail5;
250 	}
251 
252 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
253 	if (ifp == NULL) {
254 		device_printf(sc->sc_dev, "can not if_alloc()\n");
255 		goto fail6;
256 	}
257 
258 	ifp->if_softc = sc;
259 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
260 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
261 	ifp->if_init = rt2560_init;
262 	ifp->if_ioctl = rt2560_ioctl;
263 	ifp->if_start = rt2560_start;
264 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
265 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
266 	IFQ_SET_READY(&ifp->if_snd);
267 
268 	ic->ic_ifp = ifp;
269 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
270 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
271 	ic->ic_state = IEEE80211_S_INIT;
272 
273 	/* set device capabilities */
274 	ic->ic_caps =
275 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
276 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
277 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
278 	    IEEE80211_C_TXPMGT |	/* tx power management */
279 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
280 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
281 	    IEEE80211_C_BGSCAN |	/* bg scanning support */
282 	    IEEE80211_C_WPA;		/* 802.11i */
283 
284 	bands = 0;
285 	setbit(&bands, IEEE80211_MODE_11B);
286 	setbit(&bands, IEEE80211_MODE_11G);
287 	if (sc->rf_rev == RT2560_RF_5222)
288 		setbit(&bands, IEEE80211_MODE_11A);
289 	ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
290 
291 	ieee80211_ifattach(ic);
292 	ic->ic_scan_start = rt2560_scan_start;
293 	ic->ic_scan_end = rt2560_scan_end;
294 	ic->ic_set_channel = rt2560_set_channel;
295 	ic->ic_node_alloc = rt2560_node_alloc;
296 	ic->ic_updateslot = rt2560_update_slot;
297 	ic->ic_reset = rt2560_reset;
298 	/* enable s/w bmiss handling in sta mode */
299 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
300 
301 	/* override state transition machine */
302 	sc->sc_newstate = ic->ic_newstate;
303 	ic->ic_newstate = rt2560_newstate;
304 	ic->ic_raw_xmit = rt2560_raw_xmit;
305 	ic->ic_update_beacon = rt2560_beacon_update;
306 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
307 
308 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
309 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
310 	    &sc->sc_drvbpf);
311 
312 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
313 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
314 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
315 
316 	sc->sc_txtap_len = sizeof sc->sc_txtap;
317 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
318 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
319 
320 	/*
321 	 * Add a few sysctl knobs.
322 	 */
323 	sc->dwelltime = 200;
324 
325 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
326 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
327 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
328 
329 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
330 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
331 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
332 
333 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
334 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
335 	    CTLFLAG_RW, &sc->dwelltime, 0,
336 	    "channel dwell time (ms) for AP/station scanning");
337 
338 	if (bootverbose)
339 		ieee80211_announce(ic);
340 
341 	return 0;
342 
343 fail6:	rt2560_free_rx_ring(sc, &sc->rxq);
344 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
345 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
346 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
347 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
348 fail1:	mtx_destroy(&sc->sc_mtx);
349 
350 	return ENXIO;
351 }
352 
353 int
354 rt2560_detach(void *xsc)
355 {
356 	struct rt2560_softc *sc = xsc;
357 	struct ieee80211com *ic = &sc->sc_ic;
358 	struct ifnet *ifp = ic->ic_ifp;
359 
360 	rt2560_stop(sc);
361 	callout_stop(&sc->rssadapt_ch);
362 
363 	bpfdetach(ifp);
364 	ieee80211_ifdetach(ic);
365 
366 	rt2560_free_tx_ring(sc, &sc->txq);
367 	rt2560_free_tx_ring(sc, &sc->atimq);
368 	rt2560_free_tx_ring(sc, &sc->prioq);
369 	rt2560_free_tx_ring(sc, &sc->bcnq);
370 	rt2560_free_rx_ring(sc, &sc->rxq);
371 
372 	if_free(ifp);
373 
374 	mtx_destroy(&sc->sc_mtx);
375 
376 	return 0;
377 }
378 
379 void
380 rt2560_resume(void *xsc)
381 {
382 	struct rt2560_softc *sc = xsc;
383 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
384 
385 	if (ifp->if_flags & IFF_UP) {
386 		ifp->if_init(ifp->if_softc);
387 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
388 			ifp->if_start(ifp);
389 	}
390 }
391 
392 static void
393 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
394 {
395 	if (error != 0)
396 		return;
397 
398 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
399 
400 	*(bus_addr_t *)arg = segs[0].ds_addr;
401 }
402 
403 static int
404 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
405     int count)
406 {
407 	int i, error;
408 
409 	ring->count = count;
410 	ring->queued = 0;
411 	ring->cur = ring->next = 0;
412 	ring->cur_encrypt = ring->next_encrypt = 0;
413 
414 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
415 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
416 	    count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE,
417 	    0, NULL, NULL, &ring->desc_dmat);
418 	if (error != 0) {
419 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
420 		goto fail;
421 	}
422 
423 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
424 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
425 	if (error != 0) {
426 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
427 		goto fail;
428 	}
429 
430 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
431 	    count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
432 	    0);
433 	if (error != 0) {
434 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
435 		goto fail;
436 	}
437 
438 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
439 	    M_NOWAIT | M_ZERO);
440 	if (ring->data == NULL) {
441 		device_printf(sc->sc_dev, "could not allocate soft data\n");
442 		error = ENOMEM;
443 		goto fail;
444 	}
445 
446 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
447 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
448 	    MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL,
449 	    &ring->data_dmat);
450 	if (error != 0) {
451 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
452 		goto fail;
453 	}
454 
455 	for (i = 0; i < count; i++) {
456 		error = bus_dmamap_create(ring->data_dmat, 0,
457 		    &ring->data[i].map);
458 		if (error != 0) {
459 			device_printf(sc->sc_dev, "could not create DMA map\n");
460 			goto fail;
461 		}
462 	}
463 
464 	return 0;
465 
466 fail:	rt2560_free_tx_ring(sc, ring);
467 	return error;
468 }
469 
470 static void
471 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
472 {
473 	struct rt2560_tx_desc *desc;
474 	struct rt2560_tx_data *data;
475 	int i;
476 
477 	for (i = 0; i < ring->count; i++) {
478 		desc = &ring->desc[i];
479 		data = &ring->data[i];
480 
481 		if (data->m != NULL) {
482 			bus_dmamap_sync(ring->data_dmat, data->map,
483 			    BUS_DMASYNC_POSTWRITE);
484 			bus_dmamap_unload(ring->data_dmat, data->map);
485 			m_freem(data->m);
486 			data->m = NULL;
487 		}
488 
489 		if (data->ni != NULL) {
490 			ieee80211_free_node(data->ni);
491 			data->ni = NULL;
492 		}
493 
494 		desc->flags = 0;
495 	}
496 
497 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
498 
499 	ring->queued = 0;
500 	ring->cur = ring->next = 0;
501 	ring->cur_encrypt = ring->next_encrypt = 0;
502 }
503 
504 static void
505 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
506 {
507 	struct rt2560_tx_data *data;
508 	int i;
509 
510 	if (ring->desc != NULL) {
511 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
512 		    BUS_DMASYNC_POSTWRITE);
513 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
514 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
515 	}
516 
517 	if (ring->desc_dmat != NULL)
518 		bus_dma_tag_destroy(ring->desc_dmat);
519 
520 	if (ring->data != NULL) {
521 		for (i = 0; i < ring->count; i++) {
522 			data = &ring->data[i];
523 
524 			if (data->m != NULL) {
525 				bus_dmamap_sync(ring->data_dmat, data->map,
526 				    BUS_DMASYNC_POSTWRITE);
527 				bus_dmamap_unload(ring->data_dmat, data->map);
528 				m_freem(data->m);
529 			}
530 
531 			if (data->ni != NULL)
532 				ieee80211_free_node(data->ni);
533 
534 			if (data->map != NULL)
535 				bus_dmamap_destroy(ring->data_dmat, data->map);
536 		}
537 
538 		free(ring->data, M_DEVBUF);
539 	}
540 
541 	if (ring->data_dmat != NULL)
542 		bus_dma_tag_destroy(ring->data_dmat);
543 }
544 
545 static int
546 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
547     int count)
548 {
549 	struct rt2560_rx_desc *desc;
550 	struct rt2560_rx_data *data;
551 	bus_addr_t physaddr;
552 	int i, error;
553 
554 	ring->count = count;
555 	ring->cur = ring->next = 0;
556 	ring->cur_decrypt = 0;
557 
558 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
559 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
560 	    count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE,
561 	    0, NULL, NULL, &ring->desc_dmat);
562 	if (error != 0) {
563 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
564 		goto fail;
565 	}
566 
567 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
568 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
569 	if (error != 0) {
570 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
571 		goto fail;
572 	}
573 
574 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
575 	    count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
576 	    0);
577 	if (error != 0) {
578 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
579 		goto fail;
580 	}
581 
582 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
583 	    M_NOWAIT | M_ZERO);
584 	if (ring->data == NULL) {
585 		device_printf(sc->sc_dev, "could not allocate soft data\n");
586 		error = ENOMEM;
587 		goto fail;
588 	}
589 
590 	/*
591 	 * Pre-allocate Rx buffers and populate Rx ring.
592 	 */
593 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
594 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
595 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
596 	if (error != 0) {
597 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
598 		goto fail;
599 	}
600 
601 	for (i = 0; i < count; i++) {
602 		desc = &sc->rxq.desc[i];
603 		data = &sc->rxq.data[i];
604 
605 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
606 		if (error != 0) {
607 			device_printf(sc->sc_dev, "could not create DMA map\n");
608 			goto fail;
609 		}
610 
611 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
612 		if (data->m == NULL) {
613 			device_printf(sc->sc_dev,
614 			    "could not allocate rx mbuf\n");
615 			error = ENOMEM;
616 			goto fail;
617 		}
618 
619 		error = bus_dmamap_load(ring->data_dmat, data->map,
620 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
621 		    &physaddr, 0);
622 		if (error != 0) {
623 			device_printf(sc->sc_dev,
624 			    "could not load rx buf DMA map");
625 			goto fail;
626 		}
627 
628 		desc->flags = htole32(RT2560_RX_BUSY);
629 		desc->physaddr = htole32(physaddr);
630 	}
631 
632 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
633 
634 	return 0;
635 
636 fail:	rt2560_free_rx_ring(sc, ring);
637 	return error;
638 }
639 
640 static void
641 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
642 {
643 	int i;
644 
645 	for (i = 0; i < ring->count; i++) {
646 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
647 		ring->data[i].drop = 0;
648 	}
649 
650 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
651 
652 	ring->cur = ring->next = 0;
653 	ring->cur_decrypt = 0;
654 }
655 
656 static void
657 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
658 {
659 	struct rt2560_rx_data *data;
660 	int i;
661 
662 	if (ring->desc != NULL) {
663 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
664 		    BUS_DMASYNC_POSTWRITE);
665 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
666 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
667 	}
668 
669 	if (ring->desc_dmat != NULL)
670 		bus_dma_tag_destroy(ring->desc_dmat);
671 
672 	if (ring->data != NULL) {
673 		for (i = 0; i < ring->count; i++) {
674 			data = &ring->data[i];
675 
676 			if (data->m != NULL) {
677 				bus_dmamap_sync(ring->data_dmat, data->map,
678 				    BUS_DMASYNC_POSTREAD);
679 				bus_dmamap_unload(ring->data_dmat, data->map);
680 				m_freem(data->m);
681 			}
682 
683 			if (data->map != NULL)
684 				bus_dmamap_destroy(ring->data_dmat, data->map);
685 		}
686 
687 		free(ring->data, M_DEVBUF);
688 	}
689 
690 	if (ring->data_dmat != NULL)
691 		bus_dma_tag_destroy(ring->data_dmat);
692 }
693 
694 static struct ieee80211_node *
695 rt2560_node_alloc(struct ieee80211_node_table *nt)
696 {
697 	struct rt2560_node *rn;
698 
699 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
700 	    M_NOWAIT | M_ZERO);
701 
702 	return (rn != NULL) ? &rn->ni : NULL;
703 }
704 
705 static int
706 rt2560_media_change(struct ifnet *ifp)
707 {
708 	struct rt2560_softc *sc = ifp->if_softc;
709 	int error;
710 
711 	error = ieee80211_media_change(ifp);
712 
713 	if (error == ENETRESET) {
714 		if ((ifp->if_flags & IFF_UP) &&
715 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
716 		        rt2560_init(sc);
717 	}
718 	return error;
719 }
720 
721 /*
722  * This function is called for each node present in the node station table.
723  */
724 static void
725 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
726 {
727 	struct rt2560_node *rn = (struct rt2560_node *)ni;
728 
729 	ral_rssadapt_updatestats(&rn->rssadapt);
730 }
731 
732 /*
733  * This function is called periodically (every 100ms) in RUN state to update
734  * the rate adaptation statistics.
735  */
736 static void
737 rt2560_update_rssadapt(void *arg)
738 {
739 	struct rt2560_softc *sc = arg;
740 	struct ieee80211com *ic = &sc->sc_ic;
741 
742 	RAL_LOCK(sc);
743 
744 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
745 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
746 
747 	RAL_UNLOCK(sc);
748 }
749 
750 static int
751 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
752 {
753 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
754 	enum ieee80211_state ostate;
755 	struct ieee80211_node *ni;
756 	struct mbuf *m;
757 	int error = 0;
758 
759 	ostate = ic->ic_state;
760 
761 	switch (nstate) {
762 	case IEEE80211_S_INIT:
763 		callout_stop(&sc->rssadapt_ch);
764 
765 		if (ostate == IEEE80211_S_RUN) {
766 			/* abort TSF synchronization */
767 			RAL_WRITE(sc, RT2560_CSR14, 0);
768 
769 			/* turn association led off */
770 			rt2560_update_led(sc, 0, 0);
771 		}
772 		break;
773 	case IEEE80211_S_RUN:
774 		ni = ic->ic_bss;
775 
776 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
777 			rt2560_update_plcp(sc);
778 			rt2560_set_basicrates(sc);
779 			rt2560_set_bssid(sc, ni->ni_bssid);
780 		}
781 
782 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
783 		    ic->ic_opmode == IEEE80211_M_IBSS) {
784 			m = ieee80211_beacon_alloc(ni, &sc->sc_bo);
785 			if (m == NULL) {
786 				device_printf(sc->sc_dev,
787 				    "could not allocate beacon\n");
788 				error = ENOBUFS;
789 				break;
790 			}
791 
792 			ieee80211_ref_node(ni);
793 			error = rt2560_tx_bcn(sc, m, ni);
794 			if (error != 0)
795 				break;
796 		}
797 
798 		/* turn assocation led on */
799 		rt2560_update_led(sc, 1, 0);
800 
801 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
802 			callout_reset(&sc->rssadapt_ch, hz / 10,
803 			    rt2560_update_rssadapt, sc);
804 
805 			rt2560_enable_tsf_sync(sc);
806 		}
807 		break;
808 	case IEEE80211_S_SCAN:
809 	case IEEE80211_S_AUTH:
810 	case IEEE80211_S_ASSOC:
811 	default:
812 		break;
813 	}
814 
815 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
816 }
817 
818 /*
819  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
820  * 93C66).
821  */
822 static uint16_t
823 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
824 {
825 	uint32_t tmp;
826 	uint16_t val;
827 	int n;
828 
829 	/* clock C once before the first command */
830 	RT2560_EEPROM_CTL(sc, 0);
831 
832 	RT2560_EEPROM_CTL(sc, RT2560_S);
833 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
834 	RT2560_EEPROM_CTL(sc, RT2560_S);
835 
836 	/* write start bit (1) */
837 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
838 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
839 
840 	/* write READ opcode (10) */
841 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
842 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
843 	RT2560_EEPROM_CTL(sc, RT2560_S);
844 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
845 
846 	/* write address (A5-A0 or A7-A0) */
847 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
848 	for (; n >= 0; n--) {
849 		RT2560_EEPROM_CTL(sc, RT2560_S |
850 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
851 		RT2560_EEPROM_CTL(sc, RT2560_S |
852 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
853 	}
854 
855 	RT2560_EEPROM_CTL(sc, RT2560_S);
856 
857 	/* read data Q15-Q0 */
858 	val = 0;
859 	for (n = 15; n >= 0; n--) {
860 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
861 		tmp = RAL_READ(sc, RT2560_CSR21);
862 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
863 		RT2560_EEPROM_CTL(sc, RT2560_S);
864 	}
865 
866 	RT2560_EEPROM_CTL(sc, 0);
867 
868 	/* clear Chip Select and clock C */
869 	RT2560_EEPROM_CTL(sc, RT2560_S);
870 	RT2560_EEPROM_CTL(sc, 0);
871 	RT2560_EEPROM_CTL(sc, RT2560_C);
872 
873 	return val;
874 }
875 
876 /*
877  * Some frames were processed by the hardware cipher engine and are ready for
878  * transmission.
879  */
880 static void
881 rt2560_encryption_intr(struct rt2560_softc *sc)
882 {
883 	struct rt2560_tx_desc *desc;
884 	int hw;
885 
886 	/* retrieve last descriptor index processed by cipher engine */
887 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
888 	hw /= RT2560_TX_DESC_SIZE;
889 
890 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
891 	    BUS_DMASYNC_POSTREAD);
892 
893 	while (sc->txq.next_encrypt != hw) {
894 		if (sc->txq.next_encrypt == sc->txq.cur_encrypt) {
895 			printf("hw encrypt %d, cur_encrypt %d\n", hw,
896 			    sc->txq.cur_encrypt);
897 			break;
898 		}
899 
900 		desc = &sc->txq.desc[sc->txq.next_encrypt];
901 
902 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
903 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
904 			break;
905 
906 		/* for TKIP, swap eiv field to fix a bug in ASIC */
907 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
908 		    RT2560_TX_CIPHER_TKIP)
909 			desc->eiv = bswap32(desc->eiv);
910 
911 		/* mark the frame ready for transmission */
912 		desc->flags |= htole32(RT2560_TX_VALID);
913 		desc->flags |= htole32(RT2560_TX_BUSY);
914 
915 		DPRINTFN(15, ("encryption done idx=%u\n",
916 		    sc->txq.next_encrypt));
917 
918 		sc->txq.next_encrypt =
919 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
920 	}
921 
922 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
923 	    BUS_DMASYNC_PREWRITE);
924 
925 	/* kick Tx */
926 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
927 }
928 
929 static void
930 rt2560_tx_intr(struct rt2560_softc *sc)
931 {
932 	struct ieee80211com *ic = &sc->sc_ic;
933 	struct ifnet *ifp = ic->ic_ifp;
934 	struct rt2560_tx_desc *desc;
935 	struct rt2560_tx_data *data;
936 	struct rt2560_node *rn;
937 
938 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
939 	    BUS_DMASYNC_POSTREAD);
940 
941 	for (;;) {
942 		desc = &sc->txq.desc[sc->txq.next];
943 		data = &sc->txq.data[sc->txq.next];
944 
945 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
946 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
947 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
948 			break;
949 
950 		rn = (struct rt2560_node *)data->ni;
951 
952 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
953 		case RT2560_TX_SUCCESS:
954 			DPRINTFN(10, ("data frame sent successfully\n"));
955 			if (data->id.id_node != NULL) {
956 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
957 				    &data->id);
958 			}
959 			ifp->if_opackets++;
960 			break;
961 
962 		case RT2560_TX_SUCCESS_RETRY:
963 			DPRINTFN(9, ("data frame sent after %u retries\n",
964 			    (le32toh(desc->flags) >> 5) & 0x7));
965 			ifp->if_opackets++;
966 			break;
967 
968 		case RT2560_TX_FAIL_RETRY:
969 			DPRINTFN(9, ("sending data frame failed (too much "
970 			    "retries)\n"));
971 			if (data->id.id_node != NULL) {
972 				ral_rssadapt_lower_rate(ic, data->ni,
973 				    &rn->rssadapt, &data->id);
974 			}
975 			ifp->if_oerrors++;
976 			break;
977 
978 		case RT2560_TX_FAIL_INVALID:
979 		case RT2560_TX_FAIL_OTHER:
980 		default:
981 			device_printf(sc->sc_dev, "sending data frame failed "
982 			    "0x%08x\n", le32toh(desc->flags));
983 			ifp->if_oerrors++;
984 		}
985 
986 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
987 		    BUS_DMASYNC_POSTWRITE);
988 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
989 		m_freem(data->m);
990 		data->m = NULL;
991 		ieee80211_free_node(data->ni);
992 		data->ni = NULL;
993 
994 		/* descriptor is no longer valid */
995 		desc->flags &= ~htole32(RT2560_TX_VALID);
996 
997 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
998 
999 		sc->txq.queued--;
1000 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1001 	}
1002 
1003 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1004 	    BUS_DMASYNC_PREWRITE);
1005 
1006 	if (sc->prioq.queued == 0 && sc->txq.queued == 0)
1007 		sc->sc_tx_timer = 0;
1008 
1009 	if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) {
1010 		sc->sc_flags &= ~RT2560_F_DATA_OACTIVE;
1011 		if ((sc->sc_flags &
1012 		     (RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
1013 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1014 		rt2560_start(ifp);
1015 	}
1016 }
1017 
1018 static void
1019 rt2560_prio_intr(struct rt2560_softc *sc)
1020 {
1021 	struct ieee80211com *ic = &sc->sc_ic;
1022 	struct ifnet *ifp = ic->ic_ifp;
1023 	struct rt2560_tx_desc *desc;
1024 	struct rt2560_tx_data *data;
1025 	struct ieee80211_node *ni;
1026 	struct mbuf *m;
1027 	int flags;
1028 
1029 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1030 	    BUS_DMASYNC_POSTREAD);
1031 
1032 	for (;;) {
1033 		desc = &sc->prioq.desc[sc->prioq.next];
1034 		data = &sc->prioq.data[sc->prioq.next];
1035 
1036 		flags = le32toh(desc->flags);
1037 		if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
1038 			break;
1039 
1040 		switch (flags & RT2560_TX_RESULT_MASK) {
1041 		case RT2560_TX_SUCCESS:
1042 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1043 			break;
1044 
1045 		case RT2560_TX_SUCCESS_RETRY:
1046 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1047 			    (flags >> 5) & 0x7));
1048 			break;
1049 
1050 		case RT2560_TX_FAIL_RETRY:
1051 			DPRINTFN(9, ("sending mgt frame failed (too much "
1052 			    "retries)\n"));
1053 			break;
1054 
1055 		case RT2560_TX_FAIL_INVALID:
1056 		case RT2560_TX_FAIL_OTHER:
1057 		default:
1058 			device_printf(sc->sc_dev, "sending mgt frame failed "
1059 			    "0x%08x\n", flags);
1060 			break;
1061 		}
1062 
1063 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1064 		    BUS_DMASYNC_POSTWRITE);
1065 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1066 
1067 		m = data->m;
1068 		data->m = NULL;
1069 		ni = data->ni;
1070 		data->ni = NULL;
1071 
1072 		/* descriptor is no longer valid */
1073 		desc->flags &= ~htole32(RT2560_TX_VALID);
1074 
1075 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1076 
1077 		sc->prioq.queued--;
1078 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1079 
1080 		if (m->m_flags & M_TXCB)
1081 			ieee80211_process_callback(ni, m,
1082 				(flags & RT2560_TX_RESULT_MASK) &~
1083 				(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
1084 		m_freem(m);
1085 		ieee80211_free_node(ni);
1086 	}
1087 
1088 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1089 	    BUS_DMASYNC_PREWRITE);
1090 
1091 	if (sc->prioq.queued == 0 && sc->txq.queued == 0)
1092 		sc->sc_tx_timer = 0;
1093 
1094 	if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) {
1095 		sc->sc_flags &= ~RT2560_F_PRIO_OACTIVE;
1096 		if ((sc->sc_flags &
1097 		     (RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
1098 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1099 		rt2560_start(ifp);
1100 	}
1101 }
1102 
1103 /*
1104  * Some frames were processed by the hardware cipher engine and are ready for
1105  * transmission to the IEEE802.11 layer.
1106  */
1107 static void
1108 rt2560_decryption_intr(struct rt2560_softc *sc)
1109 {
1110 	struct ieee80211com *ic = &sc->sc_ic;
1111 	struct ifnet *ifp = ic->ic_ifp;
1112 	struct rt2560_rx_desc *desc;
1113 	struct rt2560_rx_data *data;
1114 	bus_addr_t physaddr;
1115 	struct ieee80211_frame *wh;
1116 	struct ieee80211_node *ni;
1117 	struct rt2560_node *rn;
1118 	struct mbuf *mnew, *m;
1119 	int hw, error;
1120 
1121 	/* retrieve last decriptor index processed by cipher engine */
1122 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1123 	hw /= RT2560_RX_DESC_SIZE;
1124 
1125 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1126 	    BUS_DMASYNC_POSTREAD);
1127 
1128 	for (; sc->rxq.cur_decrypt != hw;) {
1129 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1130 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1131 
1132 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1133 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1134 			break;
1135 
1136 		if (data->drop) {
1137 			ifp->if_ierrors++;
1138 			goto skip;
1139 		}
1140 
1141 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1142 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1143 			ifp->if_ierrors++;
1144 			goto skip;
1145 		}
1146 
1147 		/*
1148 		 * Try to allocate a new mbuf for this ring element and load it
1149 		 * before processing the current mbuf. If the ring element
1150 		 * cannot be loaded, drop the received packet and reuse the old
1151 		 * mbuf. In the unlikely case that the old mbuf can't be
1152 		 * reloaded either, explicitly panic.
1153 		 */
1154 		mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1155 		if (mnew == NULL) {
1156 			ifp->if_ierrors++;
1157 			goto skip;
1158 		}
1159 
1160 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1161 		    BUS_DMASYNC_POSTREAD);
1162 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1163 
1164 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1165 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1166 		    &physaddr, 0);
1167 		if (error != 0) {
1168 			m_freem(mnew);
1169 
1170 			/* try to reload the old mbuf */
1171 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1172 			    mtod(data->m, void *), MCLBYTES,
1173 			    rt2560_dma_map_addr, &physaddr, 0);
1174 			if (error != 0) {
1175 				/* very unlikely that it will fail... */
1176 				panic("%s: could not load old rx mbuf",
1177 				    device_get_name(sc->sc_dev));
1178 			}
1179 			ifp->if_ierrors++;
1180 			goto skip;
1181 		}
1182 
1183 		/*
1184 	 	 * New mbuf successfully loaded, update Rx ring and continue
1185 		 * processing.
1186 		 */
1187 		m = data->m;
1188 		data->m = mnew;
1189 		desc->physaddr = htole32(physaddr);
1190 
1191 		/* finalize mbuf */
1192 		m->m_pkthdr.rcvif = ifp;
1193 		m->m_pkthdr.len = m->m_len =
1194 		    (le32toh(desc->flags) >> 16) & 0xfff;
1195 
1196 		if (bpf_peers_present(sc->sc_drvbpf)) {
1197 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1198 			uint32_t tsf_lo, tsf_hi;
1199 
1200 			/* get timestamp (low and high 32 bits) */
1201 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1202 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1203 
1204 			tap->wr_tsf =
1205 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1206 			tap->wr_flags = 0;
1207 			tap->wr_rate = rt2560_rxrate(desc);
1208 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1209 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1210 			tap->wr_antenna = sc->rx_ant;
1211 			tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi);
1212 
1213 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1214 		}
1215 
1216 		sc->sc_flags |= RT2560_F_INPUT_RUNNING;
1217 		RAL_UNLOCK(sc);
1218 		wh = mtod(m, struct ieee80211_frame *);
1219 		ni = ieee80211_find_rxnode(ic,
1220 		    (struct ieee80211_frame_min *)wh);
1221 
1222 		/* send the frame to the 802.11 layer */
1223 		ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi),
1224 				RT2560_NOISE_FLOOR, 0);
1225 
1226 		/* give rssi to the rate adatation algorithm */
1227 		rn = (struct rt2560_node *)ni;
1228 		ral_rssadapt_input(ic, ni, &rn->rssadapt,
1229 				   RT2560_RSSI(sc, desc->rssi));
1230 
1231 		/* node is no longer needed */
1232 		ieee80211_free_node(ni);
1233 
1234 		RAL_LOCK(sc);
1235 		sc->sc_flags &= ~RT2560_F_INPUT_RUNNING;
1236 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1237 
1238 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1239 
1240 		sc->rxq.cur_decrypt =
1241 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1242 	}
1243 
1244 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1245 	    BUS_DMASYNC_PREWRITE);
1246 }
1247 
1248 /*
1249  * Some frames were received. Pass them to the hardware cipher engine before
1250  * sending them to the 802.11 layer.
1251  */
1252 static void
1253 rt2560_rx_intr(struct rt2560_softc *sc)
1254 {
1255 	struct rt2560_rx_desc *desc;
1256 	struct rt2560_rx_data *data;
1257 
1258 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1259 	    BUS_DMASYNC_POSTREAD);
1260 
1261 	for (;;) {
1262 		desc = &sc->rxq.desc[sc->rxq.cur];
1263 		data = &sc->rxq.data[sc->rxq.cur];
1264 
1265 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1266 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1267 			break;
1268 
1269 		data->drop = 0;
1270 
1271 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1272 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1273 			/*
1274 			 * This should not happen since we did not request
1275 			 * to receive those frames when we filled RXCSR0.
1276 			 */
1277 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1278 			    le32toh(desc->flags)));
1279 			data->drop = 1;
1280 		}
1281 
1282 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1283 			DPRINTFN(5, ("bad length\n"));
1284 			data->drop = 1;
1285 		}
1286 
1287 		/* mark the frame for decryption */
1288 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1289 
1290 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1291 
1292 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1293 	}
1294 
1295 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1296 	    BUS_DMASYNC_PREWRITE);
1297 
1298 	/* kick decrypt */
1299 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1300 }
1301 
1302 static void
1303 rt2560_beacon_update(struct ieee80211com *ic, int item)
1304 {
1305 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
1306 	struct ieee80211_beacon_offsets *bo = &sc->sc_bo;
1307 
1308 	setbit(bo->bo_flags, item);
1309 }
1310 
1311 /*
1312  * This function is called periodically in IBSS mode when a new beacon must be
1313  * sent out.
1314  */
1315 static void
1316 rt2560_beacon_expire(struct rt2560_softc *sc)
1317 {
1318 	struct ieee80211com *ic = &sc->sc_ic;
1319 	struct rt2560_tx_data *data;
1320 
1321 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1322 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1323 		return;
1324 
1325 	data = &sc->bcnq.data[sc->bcnq.next];
1326 	/*
1327 	 * Don't send beacon if bsschan isn't set
1328 	 */
1329 	if (data->ni == NULL)
1330 	        return;
1331 
1332 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1333 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1334 
1335 	ieee80211_beacon_update(data->ni, &sc->sc_bo, data->m, 1);
1336 
1337 	if (bpf_peers_present(ic->ic_rawbpf))
1338 		bpf_mtap(ic->ic_rawbpf, data->m);
1339 
1340 	rt2560_tx_bcn(sc, data->m, data->ni);
1341 
1342 	DPRINTFN(15, ("beacon expired\n"));
1343 
1344 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1345 }
1346 
1347 /* ARGSUSED */
1348 static void
1349 rt2560_wakeup_expire(struct rt2560_softc *sc)
1350 {
1351 	DPRINTFN(2, ("wakeup expired\n"));
1352 }
1353 
1354 void
1355 rt2560_intr(void *arg)
1356 {
1357 	struct rt2560_softc *sc = arg;
1358 	struct ifnet *ifp = sc->sc_ifp;
1359 	uint32_t r;
1360 
1361 	RAL_LOCK(sc);
1362 
1363 	/* disable interrupts */
1364 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1365 
1366 	/* don't re-enable interrupts if we're shutting down */
1367 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1368 		RAL_UNLOCK(sc);
1369 		return;
1370 	}
1371 
1372 	r = RAL_READ(sc, RT2560_CSR7);
1373 	RAL_WRITE(sc, RT2560_CSR7, r);
1374 
1375 	if (r & RT2560_BEACON_EXPIRE)
1376 		rt2560_beacon_expire(sc);
1377 
1378 	if (r & RT2560_WAKEUP_EXPIRE)
1379 		rt2560_wakeup_expire(sc);
1380 
1381 	if (r & RT2560_ENCRYPTION_DONE)
1382 		rt2560_encryption_intr(sc);
1383 
1384 	if (r & RT2560_TX_DONE)
1385 		rt2560_tx_intr(sc);
1386 
1387 	if (r & RT2560_PRIO_DONE)
1388 		rt2560_prio_intr(sc);
1389 
1390 	if (r & RT2560_DECRYPTION_DONE)
1391 		rt2560_decryption_intr(sc);
1392 
1393 	if (r & RT2560_RX_DONE) {
1394 		rt2560_rx_intr(sc);
1395 		rt2560_encryption_intr(sc);
1396 	}
1397 
1398 	/* re-enable interrupts */
1399 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1400 
1401 	RAL_UNLOCK(sc);
1402 }
1403 
1404 /* quickly determine if a given rate is CCK or OFDM */
1405 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1406 
1407 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1408 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1409 
1410 #define RAL_SIFS		10	/* us */
1411 
1412 #define RT2560_TXRX_TURNAROUND	10	/* us */
1413 
1414 /*
1415  * This function is only used by the Rx radiotap code.
1416  */
1417 static uint8_t
1418 rt2560_rxrate(struct rt2560_rx_desc *desc)
1419 {
1420 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1421 		/* reverse function of rt2560_plcp_signal */
1422 		switch (desc->rate) {
1423 		case 0xb:	return 12;
1424 		case 0xf:	return 18;
1425 		case 0xa:	return 24;
1426 		case 0xe:	return 36;
1427 		case 0x9:	return 48;
1428 		case 0xd:	return 72;
1429 		case 0x8:	return 96;
1430 		case 0xc:	return 108;
1431 		}
1432 	} else {
1433 		if (desc->rate == 10)
1434 			return 2;
1435 		if (desc->rate == 20)
1436 			return 4;
1437 		if (desc->rate == 55)
1438 			return 11;
1439 		if (desc->rate == 110)
1440 			return 22;
1441 	}
1442 	return 2;	/* should not get there */
1443 }
1444 
1445 /*
1446  * Return the expected ack rate for a frame transmitted at rate `rate'.
1447  * XXX: this should depend on the destination node basic rate set.
1448  */
1449 static int
1450 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1451 {
1452 	switch (rate) {
1453 	/* CCK rates */
1454 	case 2:
1455 		return 2;
1456 	case 4:
1457 	case 11:
1458 	case 22:
1459 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1460 
1461 	/* OFDM rates */
1462 	case 12:
1463 	case 18:
1464 		return 12;
1465 	case 24:
1466 	case 36:
1467 		return 24;
1468 	case 48:
1469 	case 72:
1470 	case 96:
1471 	case 108:
1472 		return 48;
1473 	}
1474 
1475 	/* default to 1Mbps */
1476 	return 2;
1477 }
1478 
1479 /*
1480  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1481  * The function automatically determines the operating mode depending on the
1482  * given rate. `flags' indicates whether short preamble is in use or not.
1483  */
1484 static uint16_t
1485 rt2560_txtime(int len, int rate, uint32_t flags)
1486 {
1487 	uint16_t txtime;
1488 
1489 	if (RAL_RATE_IS_OFDM(rate)) {
1490 		/* IEEE Std 802.11a-1999, pp. 37 */
1491 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1492 		txtime = 16 + 4 + 4 * txtime + 6;
1493 	} else {
1494 		/* IEEE Std 802.11b-1999, pp. 28 */
1495 		txtime = (16 * len + rate - 1) / rate;
1496 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1497 			txtime +=  72 + 24;
1498 		else
1499 			txtime += 144 + 48;
1500 	}
1501 
1502 	return txtime;
1503 }
1504 
1505 static uint8_t
1506 rt2560_plcp_signal(int rate)
1507 {
1508 	switch (rate) {
1509 	/* CCK rates (returned values are device-dependent) */
1510 	case 2:		return 0x0;
1511 	case 4:		return 0x1;
1512 	case 11:	return 0x2;
1513 	case 22:	return 0x3;
1514 
1515 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1516 	case 12:	return 0xb;
1517 	case 18:	return 0xf;
1518 	case 24:	return 0xa;
1519 	case 36:	return 0xe;
1520 	case 48:	return 0x9;
1521 	case 72:	return 0xd;
1522 	case 96:	return 0x8;
1523 	case 108:	return 0xc;
1524 
1525 	/* unsupported rates (should not get there) */
1526 	default:	return 0xff;
1527 	}
1528 }
1529 
1530 static void
1531 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1532     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1533 {
1534 	struct ieee80211com *ic = &sc->sc_ic;
1535 	uint16_t plcp_length;
1536 	int remainder;
1537 
1538 	desc->flags = htole32(flags);
1539 	desc->flags |= htole32(len << 16);
1540 
1541 	desc->physaddr = htole32(physaddr);
1542 	desc->wme = htole16(
1543 	    RT2560_AIFSN(2) |
1544 	    RT2560_LOGCWMIN(3) |
1545 	    RT2560_LOGCWMAX(8));
1546 
1547 	/* setup PLCP fields */
1548 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1549 	desc->plcp_service = 4;
1550 
1551 	len += IEEE80211_CRC_LEN;
1552 	if (RAL_RATE_IS_OFDM(rate)) {
1553 		desc->flags |= htole32(RT2560_TX_OFDM);
1554 
1555 		plcp_length = len & 0xfff;
1556 		desc->plcp_length_hi = plcp_length >> 6;
1557 		desc->plcp_length_lo = plcp_length & 0x3f;
1558 	} else {
1559 		plcp_length = (16 * len + rate - 1) / rate;
1560 		if (rate == 22) {
1561 			remainder = (16 * len) % 22;
1562 			if (remainder != 0 && remainder < 7)
1563 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1564 		}
1565 		desc->plcp_length_hi = plcp_length >> 8;
1566 		desc->plcp_length_lo = plcp_length & 0xff;
1567 
1568 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1569 			desc->plcp_signal |= 0x08;
1570 	}
1571 
1572 	if (!encrypt)
1573 		desc->flags |= htole32(RT2560_TX_VALID);
1574 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY)
1575 			       : htole32(RT2560_TX_BUSY);
1576 }
1577 
1578 static int
1579 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1580     struct ieee80211_node *ni)
1581 {
1582 	struct ieee80211com *ic = &sc->sc_ic;
1583 	struct rt2560_tx_desc *desc;
1584 	struct rt2560_tx_data *data;
1585 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1586 	int nsegs, rate, error;
1587 
1588 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1589 	data = &sc->bcnq.data[sc->bcnq.cur];
1590 
1591 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1592 
1593 	error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1594 	    segs, &nsegs, BUS_DMA_NOWAIT);
1595 	if (error != 0) {
1596 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1597 		    error);
1598 		m_freem(m0);
1599 		return error;
1600 	}
1601 
1602 	if (bpf_peers_present(sc->sc_drvbpf)) {
1603 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1604 
1605 		tap->wt_flags = 0;
1606 		tap->wt_rate = rate;
1607 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1608 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1609 		tap->wt_antenna = sc->tx_ant;
1610 
1611 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1612 	}
1613 
1614 	data->m = m0;
1615 	data->ni = ni;
1616 
1617 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1618 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1619 
1620 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1621 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1622 
1623 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1624 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1625 	    BUS_DMASYNC_PREWRITE);
1626 
1627 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1628 
1629 	return 0;
1630 }
1631 
1632 static int
1633 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1634     struct ieee80211_node *ni)
1635 {
1636 	struct ieee80211com *ic = &sc->sc_ic;
1637 	struct rt2560_tx_desc *desc;
1638 	struct rt2560_tx_data *data;
1639 	struct ieee80211_frame *wh;
1640 	struct ieee80211_key *k;
1641 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1642 	uint16_t dur;
1643 	uint32_t flags = 0;
1644 	int nsegs, rate, error;
1645 
1646 	desc = &sc->prioq.desc[sc->prioq.cur];
1647 	data = &sc->prioq.data[sc->prioq.cur];
1648 
1649 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1650 
1651 	wh = mtod(m0, struct ieee80211_frame *);
1652 
1653 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1654 		k = ieee80211_crypto_encap(ic, ni, m0);
1655 		if (k == NULL) {
1656 			m_freem(m0);
1657 			return ENOBUFS;
1658 		}
1659 	}
1660 
1661 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1662 	    segs, &nsegs, 0);
1663 	if (error != 0) {
1664 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1665 		    error);
1666 		m_freem(m0);
1667 		return error;
1668 	}
1669 
1670 	if (bpf_peers_present(sc->sc_drvbpf)) {
1671 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1672 
1673 		tap->wt_flags = 0;
1674 		tap->wt_rate = rate;
1675 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1676 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1677 		tap->wt_antenna = sc->tx_ant;
1678 
1679 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1680 	}
1681 
1682 	data->m = m0;
1683 	data->ni = ni;
1684 
1685 	wh = mtod(m0, struct ieee80211_frame *);
1686 
1687 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1688 		flags |= RT2560_TX_ACK;
1689 
1690 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1691 		      RAL_SIFS;
1692 		*(uint16_t *)wh->i_dur = htole16(dur);
1693 
1694 		/* tell hardware to add timestamp for probe responses */
1695 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1696 		    IEEE80211_FC0_TYPE_MGT &&
1697 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1698 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1699 			flags |= RT2560_TX_TIMESTAMP;
1700 	}
1701 
1702 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1703 	    segs->ds_addr);
1704 
1705 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1706 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1707 	    BUS_DMASYNC_PREWRITE);
1708 
1709 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1710 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1711 
1712 	/* kick prio */
1713 	sc->prioq.queued++;
1714 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1715 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1716 
1717 	return 0;
1718 }
1719 
1720 static int
1721 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
1722     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
1723 {
1724 	struct ieee80211com *ic = &sc->sc_ic;
1725 	struct rt2560_tx_desc *desc;
1726 	struct rt2560_tx_data *data;
1727 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1728 	uint32_t flags;
1729 	int nsegs, rate, error;
1730 
1731 	desc = &sc->prioq.desc[sc->prioq.cur];
1732 	data = &sc->prioq.data[sc->prioq.cur];
1733 
1734 	rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1735 	/* XXX validate */
1736 	if (rate == 0) {
1737 		m_freem(m0);
1738 		return EINVAL;
1739 	}
1740 
1741 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1742 	    segs, &nsegs, 0);
1743 	if (error != 0) {
1744 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1745 		    error);
1746 		m_freem(m0);
1747 		return error;
1748 	}
1749 
1750 	if (bpf_peers_present(sc->sc_drvbpf)) {
1751 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1752 
1753 		tap->wt_flags = 0;
1754 		tap->wt_rate = rate;
1755 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1756 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1757 		tap->wt_antenna = sc->tx_ant;
1758 
1759 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1760 	}
1761 
1762 	data->m = m0;
1763 	data->ni = ni;
1764 
1765 	flags = 0;
1766 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1767 		flags |= RT2560_TX_ACK;
1768 
1769 	/* XXX need to setup descriptor ourself */
1770 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
1771 	    rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
1772 	    segs->ds_addr);
1773 
1774 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1775 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1776 	    BUS_DMASYNC_PREWRITE);
1777 
1778 	DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n",
1779 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1780 
1781 	/* kick prio */
1782 	sc->prioq.queued++;
1783 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1784 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * Build a RTS control frame.
1791  */
1792 static struct mbuf *
1793 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1794     uint16_t dur)
1795 {
1796 	struct ieee80211_frame_rts *rts;
1797 	struct mbuf *m;
1798 
1799 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1800 	if (m == NULL) {
1801 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1802 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1803 		return NULL;
1804 	}
1805 
1806 	rts = mtod(m, struct ieee80211_frame_rts *);
1807 
1808 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1809 	    IEEE80211_FC0_SUBTYPE_RTS;
1810 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1811 	*(uint16_t *)rts->i_dur = htole16(dur);
1812 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1813 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1814 
1815 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1816 
1817 	return m;
1818 }
1819 
1820 static int
1821 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1822     struct ieee80211_node *ni)
1823 {
1824 	struct ieee80211com *ic = &sc->sc_ic;
1825 	struct rt2560_tx_desc *desc;
1826 	struct rt2560_tx_data *data;
1827 	struct rt2560_node *rn;
1828 	struct ieee80211_frame *wh;
1829 	struct ieee80211_key *k;
1830 	struct mbuf *mnew;
1831 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1832 	uint16_t dur;
1833 	uint32_t flags = 0;
1834 	int nsegs, rate, error;
1835 
1836 	wh = mtod(m0, struct ieee80211_frame *);
1837 
1838 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1839 		rate = ic->ic_fixed_rate;
1840 	} else {
1841 		struct ieee80211_rateset *rs;
1842 
1843 		rs = &ni->ni_rates;
1844 		rn = (struct rt2560_node *)ni;
1845 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1846 		    m0->m_pkthdr.len, NULL, 0);
1847 		rate = rs->rs_rates[ni->ni_txrate];
1848 	}
1849 	rate &= IEEE80211_RATE_VAL;
1850 
1851 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1852 		k = ieee80211_crypto_encap(ic, ni, m0);
1853 		if (k == NULL) {
1854 			m_freem(m0);
1855 			return ENOBUFS;
1856 		}
1857 
1858 		/* packet header may have moved, reset our local pointer */
1859 		wh = mtod(m0, struct ieee80211_frame *);
1860 	}
1861 
1862 	/*
1863 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1864 	 * for directed frames only when the length of the MPDU is greater
1865 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1866 	 */
1867 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1868 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1869 		struct mbuf *m;
1870 		uint16_t dur;
1871 		int rtsrate, ackrate;
1872 
1873 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1874 		ackrate = rt2560_ack_rate(ic, rate);
1875 
1876 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1877 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1878 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1879 		      3 * RAL_SIFS;
1880 
1881 		m = rt2560_get_rts(sc, wh, dur);
1882 
1883 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1884 		data = &sc->txq.data[sc->txq.cur_encrypt];
1885 
1886 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1887 		    m, segs, &nsegs, 0);
1888 		if (error != 0) {
1889 			device_printf(sc->sc_dev,
1890 			    "could not map mbuf (error %d)\n", error);
1891 			m_freem(m);
1892 			m_freem(m0);
1893 			return error;
1894 		}
1895 
1896 		/* avoid multiple free() of the same node for each fragment */
1897 		ieee80211_ref_node(ni);
1898 
1899 		data->m = m;
1900 		data->ni = ni;
1901 
1902 		/* RTS frames are not taken into account for rssadapt */
1903 		data->id.id_node = NULL;
1904 
1905 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1906 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1907 		    segs->ds_addr);
1908 
1909 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1910 		    BUS_DMASYNC_PREWRITE);
1911 
1912 		sc->txq.queued++;
1913 		sc->txq.cur_encrypt =
1914 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1915 
1916 		/*
1917 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1918 		 * asynchronous data frame shall be transmitted after the CTS
1919 		 * frame and a SIFS period.
1920 		 */
1921 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1922 	}
1923 
1924 	data = &sc->txq.data[sc->txq.cur_encrypt];
1925 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1926 
1927 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1928 	    segs, &nsegs, 0);
1929 	if (error != 0 && error != EFBIG) {
1930 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1931 		    error);
1932 		m_freem(m0);
1933 		return error;
1934 	}
1935 	if (error != 0) {
1936 		mnew = m_defrag(m0, M_DONTWAIT);
1937 		if (mnew == NULL) {
1938 			device_printf(sc->sc_dev,
1939 			    "could not defragment mbuf\n");
1940 			m_freem(m0);
1941 			return ENOBUFS;
1942 		}
1943 		m0 = mnew;
1944 
1945 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1946 		    m0, segs, &nsegs, 0);
1947 		if (error != 0) {
1948 			device_printf(sc->sc_dev,
1949 			    "could not map mbuf (error %d)\n", error);
1950 			m_freem(m0);
1951 			return error;
1952 		}
1953 
1954 		/* packet header may have moved, reset our local pointer */
1955 		wh = mtod(m0, struct ieee80211_frame *);
1956 	}
1957 
1958 	if (bpf_peers_present(sc->sc_drvbpf)) {
1959 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1960 
1961 		tap->wt_flags = 0;
1962 		tap->wt_rate = rate;
1963 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1964 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1965 		tap->wt_antenna = sc->tx_ant;
1966 
1967 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1968 	}
1969 
1970 	data->m = m0;
1971 	data->ni = ni;
1972 
1973 	/* remember link conditions for rate adaptation algorithm */
1974 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1975 		data->id.id_len = m0->m_pkthdr.len;
1976 		data->id.id_rateidx = ni->ni_txrate;
1977 		data->id.id_node = ni;
1978 		data->id.id_rssi = ni->ni_rssi;
1979 	} else
1980 		data->id.id_node = NULL;
1981 
1982 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1983 		flags |= RT2560_TX_ACK;
1984 
1985 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1986 		    ic->ic_flags) + RAL_SIFS;
1987 		*(uint16_t *)wh->i_dur = htole16(dur);
1988 	}
1989 
1990 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1991 	    segs->ds_addr);
1992 
1993 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1994 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1995 	    BUS_DMASYNC_PREWRITE);
1996 
1997 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1998 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1999 
2000 	/* kick encrypt */
2001 	sc->txq.queued++;
2002 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
2003 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
2004 
2005 	return 0;
2006 }
2007 
2008 static void
2009 rt2560_start(struct ifnet *ifp)
2010 {
2011 	struct rt2560_softc *sc = ifp->if_softc;
2012 	struct ieee80211com *ic = &sc->sc_ic;
2013 	struct mbuf *m0;
2014 	struct ether_header *eh;
2015 	struct ieee80211_node *ni;
2016 
2017 	RAL_LOCK(sc);
2018 
2019 	/* prevent management frames from being sent if we're not ready */
2020 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2021 		RAL_UNLOCK(sc);
2022 		return;
2023 	}
2024 
2025 	for (;;) {
2026 		IF_POLL(&ic->ic_mgtq, m0);
2027 		if (m0 != NULL) {
2028 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2029 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2030 				sc->sc_flags |= RT2560_F_PRIO_OACTIVE;
2031 				break;
2032 			}
2033 			IF_DEQUEUE(&ic->ic_mgtq, m0);
2034 
2035 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
2036 			m0->m_pkthdr.rcvif = NULL;
2037 
2038 			if (bpf_peers_present(ic->ic_rawbpf))
2039 				bpf_mtap(ic->ic_rawbpf, m0);
2040 
2041 			if (rt2560_tx_mgt(sc, m0, ni) != 0) {
2042 				ieee80211_free_node(ni);
2043 				break;
2044 			}
2045 		} else {
2046 			if (ic->ic_state != IEEE80211_S_RUN)
2047 				break;
2048 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
2049 			if (m0 == NULL)
2050 				break;
2051 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2052 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2053 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2054 				sc->sc_flags |= RT2560_F_DATA_OACTIVE;
2055 				break;
2056 			}
2057 			/*
2058 			 * Cancel any background scan.
2059 			 */
2060 			if (ic->ic_flags & IEEE80211_F_SCAN)
2061 				ieee80211_cancel_scan(ic);
2062 
2063 			if (m0->m_len < sizeof (struct ether_header) &&
2064 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2065 				continue;
2066 
2067 			eh = mtod(m0, struct ether_header *);
2068 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2069 			if (ni == NULL) {
2070 				m_freem(m0);
2071 				continue;
2072 			}
2073 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
2074 			    (m0->m_flags & M_PWR_SAV) == 0) {
2075 				/*
2076 				 * Station in power save mode; pass the frame
2077 				 * to the 802.11 layer and continue.  We'll get
2078 				 * the frame back when the time is right.
2079 				 */
2080 				ieee80211_pwrsave(ni, m0);
2081 				/*
2082 				 * If we're in power save mode 'cuz of a bg
2083 				 * scan cancel it so the traffic can flow.
2084 				 * The packet we just queued will automatically
2085 				 * get sent when we drop out of power save.
2086 				 * XXX locking
2087 				 */
2088 				if (ic->ic_flags & IEEE80211_F_SCAN)
2089 					ieee80211_cancel_scan(ic);
2090 				ieee80211_free_node(ni);
2091 				continue;
2092 			}
2093 
2094 			BPF_MTAP(ifp, m0);
2095 
2096 			m0 = ieee80211_encap(ic, m0, ni);
2097 			if (m0 == NULL) {
2098 				ieee80211_free_node(ni);
2099 				continue;
2100 			}
2101 
2102 			if (bpf_peers_present(ic->ic_rawbpf))
2103 				bpf_mtap(ic->ic_rawbpf, m0);
2104 
2105 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2106 				ieee80211_free_node(ni);
2107 				ifp->if_oerrors++;
2108 				break;
2109 			}
2110 		}
2111 
2112 		sc->sc_tx_timer = 5;
2113 		ic->ic_lastdata = ticks;
2114 	}
2115 
2116 	RAL_UNLOCK(sc);
2117 }
2118 
2119 static void
2120 rt2560_watchdog(void *arg)
2121 {
2122 	struct rt2560_softc *sc = arg;
2123 	struct ifnet *ifp = sc->sc_ifp;
2124 
2125 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
2126 		return;
2127 
2128 	rt2560_encryption_intr(sc);
2129 	rt2560_tx_intr(sc);
2130 
2131 	if (sc->sc_tx_timer > 0) {
2132 		if (--sc->sc_tx_timer == 0) {
2133 			device_printf(sc->sc_dev, "device timeout\n");
2134 			rt2560_init(sc);
2135 			ifp->if_oerrors++;
2136 			/* watchdog timeout is set in rt2560_init() */
2137 			return;
2138 		}
2139 	}
2140 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2141 }
2142 
2143 /*
2144  * This function allows for fast channel switching in monitor mode (used by
2145  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2146  * generate a new beacon frame.
2147  */
2148 static int
2149 rt2560_reset(struct ifnet *ifp)
2150 {
2151 	struct rt2560_softc *sc = ifp->if_softc;
2152 	struct ieee80211com *ic = &sc->sc_ic;
2153 
2154 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2155 		return ENETRESET;
2156 
2157 	rt2560_set_chan(sc, ic->ic_curchan);
2158 
2159 	return 0;
2160 }
2161 
2162 static int
2163 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2164 {
2165 	struct rt2560_softc *sc = ifp->if_softc;
2166 	struct ieee80211com *ic = &sc->sc_ic;
2167 	int error = 0;
2168 
2169 
2170 
2171 	switch (cmd) {
2172 	case SIOCSIFFLAGS:
2173 		if (ifp->if_flags & IFF_UP) {
2174 			RAL_LOCK(sc);
2175 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2176 				rt2560_update_promisc(sc);
2177 			else
2178 				rt2560_init(sc);
2179 			RAL_UNLOCK(sc);
2180 		} else {
2181 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2182 				rt2560_stop(sc);
2183 		}
2184 
2185 		break;
2186 
2187 	default:
2188 		error = ieee80211_ioctl(ic, cmd, data);
2189 	}
2190 
2191 	if (error == ENETRESET) {
2192 		if ((ifp->if_flags & IFF_UP) &&
2193 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2194 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2195 			rt2560_init(sc);
2196 		error = 0;
2197 	}
2198 
2199 
2200 	return error;
2201 }
2202 
2203 static void
2204 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2205 {
2206 	uint32_t tmp;
2207 	int ntries;
2208 
2209 	for (ntries = 0; ntries < 100; ntries++) {
2210 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2211 			break;
2212 		DELAY(1);
2213 	}
2214 	if (ntries == 100) {
2215 		device_printf(sc->sc_dev, "could not write to BBP\n");
2216 		return;
2217 	}
2218 
2219 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2220 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2221 
2222 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2223 }
2224 
2225 static uint8_t
2226 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2227 {
2228 	uint32_t val;
2229 	int ntries;
2230 
2231 	for (ntries = 0; ntries < 100; ntries++) {
2232 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2233 			break;
2234 		DELAY(1);
2235 	}
2236 	if (ntries == 100) {
2237 		device_printf(sc->sc_dev, "could not read from BBP\n");
2238 		return 0;
2239 	}
2240 
2241 	val = RT2560_BBP_BUSY | reg << 8;
2242 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2243 
2244 	for (ntries = 0; ntries < 100; ntries++) {
2245 		val = RAL_READ(sc, RT2560_BBPCSR);
2246 		if (!(val & RT2560_BBP_BUSY))
2247 			return val & 0xff;
2248 		DELAY(1);
2249 	}
2250 
2251 	device_printf(sc->sc_dev, "could not read from BBP\n");
2252 	return 0;
2253 }
2254 
2255 static void
2256 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2257 {
2258 	uint32_t tmp;
2259 	int ntries;
2260 
2261 	for (ntries = 0; ntries < 100; ntries++) {
2262 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2263 			break;
2264 		DELAY(1);
2265 	}
2266 	if (ntries == 100) {
2267 		device_printf(sc->sc_dev, "could not write to RF\n");
2268 		return;
2269 	}
2270 
2271 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2272 	    (reg & 0x3);
2273 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2274 
2275 	/* remember last written value in sc */
2276 	sc->rf_regs[reg] = val;
2277 
2278 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2279 }
2280 
2281 static void
2282 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2283 {
2284 	struct ieee80211com *ic = &sc->sc_ic;
2285 	uint8_t power, tmp;
2286 	u_int i, chan;
2287 
2288 	chan = ieee80211_chan2ieee(ic, c);
2289 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2290 		return;
2291 
2292 	if (IEEE80211_IS_CHAN_2GHZ(c))
2293 		power = min(sc->txpow[chan - 1], 31);
2294 	else
2295 		power = 31;
2296 
2297 	/* adjust txpower using ifconfig settings */
2298 	power -= (100 - ic->ic_txpowlimit) / 8;
2299 
2300 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2301 
2302 	switch (sc->rf_rev) {
2303 	case RT2560_RF_2522:
2304 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2305 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2306 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2307 		break;
2308 
2309 	case RT2560_RF_2523:
2310 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2311 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2312 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2313 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2314 		break;
2315 
2316 	case RT2560_RF_2524:
2317 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2318 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2319 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2320 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2321 		break;
2322 
2323 	case RT2560_RF_2525:
2324 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2325 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2326 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2327 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2328 
2329 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2330 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2331 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2332 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2333 		break;
2334 
2335 	case RT2560_RF_2525E:
2336 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2337 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2338 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2339 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2340 		break;
2341 
2342 	case RT2560_RF_2526:
2343 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2344 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2345 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2346 
2347 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2348 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2349 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2350 		break;
2351 
2352 	/* dual-band RF */
2353 	case RT2560_RF_5222:
2354 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2355 
2356 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2357 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2358 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2359 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2360 		break;
2361 	default:
2362  	        printf("unknown ral rev=%d\n", sc->rf_rev);
2363 	}
2364 
2365 	if (ic->ic_state != IEEE80211_S_SCAN) {
2366 		/* set Japan filter bit for channel 14 */
2367 		tmp = rt2560_bbp_read(sc, 70);
2368 
2369 		tmp &= ~RT2560_JAPAN_FILTER;
2370 		if (chan == 14)
2371 			tmp |= RT2560_JAPAN_FILTER;
2372 
2373 		rt2560_bbp_write(sc, 70, tmp);
2374 
2375 		/* clear CRC errors */
2376 		RAL_READ(sc, RT2560_CNT0);
2377 	}
2378 }
2379 
2380 static void
2381 rt2560_set_channel(struct ieee80211com *ic)
2382 {
2383 	struct ifnet *ifp = ic->ic_ifp;
2384 	struct rt2560_softc *sc = ifp->if_softc;
2385 
2386 	RAL_LOCK(sc);
2387 	rt2560_set_chan(sc, ic->ic_curchan);
2388 	RAL_UNLOCK(sc);
2389 
2390 }
2391 
2392 #if 0
2393 /*
2394  * Disable RF auto-tuning.
2395  */
2396 static void
2397 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2398 {
2399 	uint32_t tmp;
2400 
2401 	if (sc->rf_rev != RT2560_RF_2523) {
2402 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2403 		rt2560_rf_write(sc, RAL_RF1, tmp);
2404 	}
2405 
2406 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2407 	rt2560_rf_write(sc, RAL_RF3, tmp);
2408 
2409 	DPRINTFN(2, ("disabling RF autotune\n"));
2410 }
2411 #endif
2412 
2413 /*
2414  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2415  * synchronization.
2416  */
2417 static void
2418 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2419 {
2420 	struct ieee80211com *ic = &sc->sc_ic;
2421 	uint16_t logcwmin, preload;
2422 	uint32_t tmp;
2423 
2424 	/* first, disable TSF synchronization */
2425 	RAL_WRITE(sc, RT2560_CSR14, 0);
2426 
2427 	tmp = 16 * ic->ic_bss->ni_intval;
2428 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2429 
2430 	RAL_WRITE(sc, RT2560_CSR13, 0);
2431 
2432 	logcwmin = 5;
2433 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2434 	tmp = logcwmin << 16 | preload;
2435 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2436 
2437 	/* finally, enable TSF synchronization */
2438 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2439 	if (ic->ic_opmode == IEEE80211_M_STA)
2440 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2441 	else
2442 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2443 		       RT2560_ENABLE_BEACON_GENERATOR;
2444 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2445 
2446 	DPRINTF(("enabling TSF synchronization\n"));
2447 }
2448 
2449 static void
2450 rt2560_update_plcp(struct rt2560_softc *sc)
2451 {
2452 	struct ieee80211com *ic = &sc->sc_ic;
2453 
2454 	/* no short preamble for 1Mbps */
2455 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2456 
2457 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2458 		/* values taken from the reference driver */
2459 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2460 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2461 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2462 	} else {
2463 		/* same values as above or'ed 0x8 */
2464 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2465 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2466 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2467 	}
2468 
2469 	DPRINTF(("updating PLCP for %s preamble\n",
2470 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2471 }
2472 
2473 /*
2474  * This function can be called by ieee80211_set_shortslottime(). Refer to
2475  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2476  */
2477 static void
2478 rt2560_update_slot(struct ifnet *ifp)
2479 {
2480 	struct rt2560_softc *sc = ifp->if_softc;
2481 	struct ieee80211com *ic = &sc->sc_ic;
2482 	uint8_t slottime;
2483 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2484 	uint32_t tmp;
2485 
2486 #ifndef FORCE_SLOTTIME
2487 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2488 #else
2489 	/*
2490 	 * Setting slot time according to "short slot time" capability
2491 	 * in beacon/probe_resp seems to cause problem to acknowledge
2492 	 * certain AP's data frames transimitted at CCK/DS rates: the
2493 	 * problematic AP keeps retransmitting data frames, probably
2494 	 * because MAC level acks are not received by hardware.
2495 	 * So we cheat a little bit here by claiming we are capable of
2496 	 * "short slot time" but setting hardware slot time to the normal
2497 	 * slot time.  ral(4) does not seem to have trouble to receive
2498 	 * frames transmitted using short slot time even if hardware
2499 	 * slot time is set to normal slot time.  If we didn't use this
2500 	 * trick, we would have to claim that short slot time is not
2501 	 * supported; this would give relative poor RX performance
2502 	 * (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short
2503 	 * slot time.
2504 	 */
2505 	slottime = 20;
2506 #endif
2507 
2508 	/* update the MAC slot boundaries */
2509 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2510 	tx_pifs = tx_sifs + slottime;
2511 	tx_difs = tx_sifs + 2 * slottime;
2512 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2513 
2514 	tmp = RAL_READ(sc, RT2560_CSR11);
2515 	tmp = (tmp & ~0x1f00) | slottime << 8;
2516 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2517 
2518 	tmp = tx_pifs << 16 | tx_sifs;
2519 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2520 
2521 	tmp = eifs << 16 | tx_difs;
2522 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2523 
2524 	DPRINTF(("setting slottime to %uus\n", slottime));
2525 }
2526 
2527 static void
2528 rt2560_set_basicrates(struct rt2560_softc *sc)
2529 {
2530 	struct ieee80211com *ic = &sc->sc_ic;
2531 
2532 	/* update basic rate set */
2533 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2534 		/* 11b basic rates: 1, 2Mbps */
2535 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2536 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2537 		/* 11a basic rates: 6, 12, 24Mbps */
2538 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2539 	} else {
2540 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2541 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2542 	}
2543 }
2544 
2545 static void
2546 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2547 {
2548 	uint32_t tmp;
2549 
2550 	/* set ON period to 70ms and OFF period to 30ms */
2551 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2552 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2553 }
2554 
2555 static void
2556 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
2557 {
2558 	uint32_t tmp;
2559 
2560 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2561 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2562 
2563 	tmp = bssid[4] | bssid[5] << 8;
2564 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2565 
2566 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2567 }
2568 
2569 static void
2570 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2571 {
2572 	uint32_t tmp;
2573 
2574 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2575 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2576 
2577 	tmp = addr[4] | addr[5] << 8;
2578 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2579 
2580 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2581 }
2582 
2583 static void
2584 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2585 {
2586 	uint32_t tmp;
2587 
2588 	tmp = RAL_READ(sc, RT2560_CSR3);
2589 	addr[0] = tmp & 0xff;
2590 	addr[1] = (tmp >>  8) & 0xff;
2591 	addr[2] = (tmp >> 16) & 0xff;
2592 	addr[3] = (tmp >> 24);
2593 
2594 	tmp = RAL_READ(sc, RT2560_CSR4);
2595 	addr[4] = tmp & 0xff;
2596 	addr[5] = (tmp >> 8) & 0xff;
2597 }
2598 
2599 static void
2600 rt2560_update_promisc(struct rt2560_softc *sc)
2601 {
2602 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2603 	uint32_t tmp;
2604 
2605 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2606 
2607 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2608 	if (!(ifp->if_flags & IFF_PROMISC))
2609 		tmp |= RT2560_DROP_NOT_TO_ME;
2610 
2611 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2612 
2613 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2614 	    "entering" : "leaving"));
2615 }
2616 
2617 static const char *
2618 rt2560_get_rf(int rev)
2619 {
2620 	switch (rev) {
2621 	case RT2560_RF_2522:	return "RT2522";
2622 	case RT2560_RF_2523:	return "RT2523";
2623 	case RT2560_RF_2524:	return "RT2524";
2624 	case RT2560_RF_2525:	return "RT2525";
2625 	case RT2560_RF_2525E:	return "RT2525e";
2626 	case RT2560_RF_2526:	return "RT2526";
2627 	case RT2560_RF_5222:	return "RT5222";
2628 	default:		return "unknown";
2629 	}
2630 }
2631 
2632 static void
2633 rt2560_read_config(struct rt2560_softc *sc)
2634 {
2635 	uint16_t val;
2636 	int i;
2637 
2638 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2639 	sc->rf_rev =   (val >> 11) & 0x7;
2640 	sc->hw_radio = (val >> 10) & 0x1;
2641 	sc->led_mode = (val >> 6)  & 0x7;
2642 	sc->rx_ant =   (val >> 4)  & 0x3;
2643 	sc->tx_ant =   (val >> 2)  & 0x3;
2644 	sc->nb_ant =   val & 0x3;
2645 
2646 	/* read default values for BBP registers */
2647 	for (i = 0; i < 16; i++) {
2648 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2649 		if (val == 0 || val == 0xffff)
2650 			continue;
2651 
2652 		sc->bbp_prom[i].reg = val >> 8;
2653 		sc->bbp_prom[i].val = val & 0xff;
2654 	}
2655 
2656 	/* read Tx power for all b/g channels */
2657 	for (i = 0; i < 14 / 2; i++) {
2658 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2659 		sc->txpow[i * 2] = val & 0xff;
2660 		sc->txpow[i * 2 + 1] = val >> 8;
2661 	}
2662 	for (i = 0; i < 14; ++i) {
2663 		if (sc->txpow[i] > 31)
2664 			sc->txpow[i] = 24;
2665 	}
2666 
2667 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
2668 	if ((val & 0xff) == 0xff)
2669 		sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
2670 	else
2671 		sc->rssi_corr = val & 0xff;
2672 	DPRINTF(("rssi correction %d, calibrate 0x%02x\n",
2673 		 sc->rssi_corr, val));
2674 }
2675 
2676 
2677 static void
2678 rt2560_scan_start(struct ieee80211com *ic)
2679 {
2680 	struct ifnet *ifp = ic->ic_ifp;
2681 	struct rt2560_softc *sc = ifp->if_softc;
2682 
2683 	/* abort TSF synchronization */
2684 	RAL_WRITE(sc, RT2560_CSR14, 0);
2685 	rt2560_set_bssid(sc, ifp->if_broadcastaddr);
2686 }
2687 
2688 static void
2689 rt2560_scan_end(struct ieee80211com *ic)
2690 {
2691 	struct ifnet *ifp = ic->ic_ifp;
2692 	struct rt2560_softc *sc = ifp->if_softc;
2693 
2694 	rt2560_enable_tsf_sync(sc);
2695 	/* XXX keep local copy */
2696 	rt2560_set_bssid(sc, ic->ic_bss->ni_bssid);
2697 }
2698 
2699 static int
2700 rt2560_bbp_init(struct rt2560_softc *sc)
2701 {
2702 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2703 	int i, ntries;
2704 
2705 	/* wait for BBP to be ready */
2706 	for (ntries = 0; ntries < 100; ntries++) {
2707 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2708 			break;
2709 		DELAY(1);
2710 	}
2711 	if (ntries == 100) {
2712 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2713 		return EIO;
2714 	}
2715 
2716 	/* initialize BBP registers to default values */
2717 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2718 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2719 		    rt2560_def_bbp[i].val);
2720 	}
2721 
2722 	/* initialize BBP registers to values stored in EEPROM */
2723 	for (i = 0; i < 16; i++) {
2724 		if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0)
2725 			break;
2726 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2727 	}
2728 	rt2560_bbp_write(sc, 17, 0x48);	/* XXX restore bbp17 */
2729 
2730 	return 0;
2731 #undef N
2732 }
2733 
2734 static void
2735 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2736 {
2737 	uint32_t tmp;
2738 	uint8_t tx;
2739 
2740 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2741 	if (antenna == 1)
2742 		tx |= RT2560_BBP_ANTA;
2743 	else if (antenna == 2)
2744 		tx |= RT2560_BBP_ANTB;
2745 	else
2746 		tx |= RT2560_BBP_DIVERSITY;
2747 
2748 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2749 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2750 	    sc->rf_rev == RT2560_RF_5222)
2751 		tx |= RT2560_BBP_FLIPIQ;
2752 
2753 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2754 
2755 	/* update values for CCK and OFDM in BBPCSR1 */
2756 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2757 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2758 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2759 }
2760 
2761 static void
2762 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2763 {
2764 	uint8_t rx;
2765 
2766 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2767 	if (antenna == 1)
2768 		rx |= RT2560_BBP_ANTA;
2769 	else if (antenna == 2)
2770 		rx |= RT2560_BBP_ANTB;
2771 	else
2772 		rx |= RT2560_BBP_DIVERSITY;
2773 
2774 	/* need to force no I/Q flip for RF 2525e and 2526 */
2775 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2776 		rx &= ~RT2560_BBP_FLIPIQ;
2777 
2778 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2779 }
2780 
2781 static void
2782 rt2560_init(void *priv)
2783 {
2784 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2785 	struct rt2560_softc *sc = priv;
2786 	struct ieee80211com *ic = &sc->sc_ic;
2787 	struct ifnet *ifp = ic->ic_ifp;
2788 	uint32_t tmp;
2789 	int i;
2790 
2791 
2792 
2793 	rt2560_stop(sc);
2794 
2795 	RAL_LOCK(sc);
2796 	/* setup tx rings */
2797 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2798 	      RT2560_ATIM_RING_COUNT << 16 |
2799 	      RT2560_TX_RING_COUNT   <<  8 |
2800 	      RT2560_TX_DESC_SIZE;
2801 
2802 	/* rings must be initialized in this exact order */
2803 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2804 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2805 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2806 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2807 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2808 
2809 	/* setup rx ring */
2810 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2811 
2812 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2813 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2814 
2815 	/* initialize MAC registers to default values */
2816 	for (i = 0; i < N(rt2560_def_mac); i++)
2817 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2818 
2819 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2820 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2821 
2822 	/* set basic rate set (will be updated later) */
2823 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2824 
2825 	rt2560_update_slot(ifp);
2826 	rt2560_update_plcp(sc);
2827 	rt2560_update_led(sc, 0, 0);
2828 
2829 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2830 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2831 
2832 	if (rt2560_bbp_init(sc) != 0) {
2833 		rt2560_stop(sc);
2834 		RAL_UNLOCK(sc);
2835 		return;
2836 	}
2837 
2838 	rt2560_set_txantenna(sc, sc->tx_ant);
2839 	rt2560_set_rxantenna(sc, sc->rx_ant);
2840 
2841 	/* set default BSS channel */
2842 	rt2560_set_chan(sc, ic->ic_curchan);
2843 
2844 	/* kick Rx */
2845 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2846 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2847 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2848 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2849 			tmp |= RT2560_DROP_TODS;
2850 		if (!(ifp->if_flags & IFF_PROMISC))
2851 			tmp |= RT2560_DROP_NOT_TO_ME;
2852 	}
2853 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2854 
2855 	/* clear old FCS and Rx FIFO errors */
2856 	RAL_READ(sc, RT2560_CNT0);
2857 	RAL_READ(sc, RT2560_CNT4);
2858 
2859 	/* clear any pending interrupts */
2860 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2861 
2862 	/* enable interrupts */
2863 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2864 
2865 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2866 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2867 
2868 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2869 
2870 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2871 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2872 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2873 	} else
2874 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2875 
2876 	RAL_UNLOCK(sc);
2877 #undef N
2878 }
2879 
2880 void
2881 rt2560_stop(void *arg)
2882 {
2883 	struct rt2560_softc *sc = arg;
2884 	struct ieee80211com *ic = &sc->sc_ic;
2885 	struct ifnet *ifp = ic->ic_ifp;
2886 	volatile int *flags = &sc->sc_flags;
2887 
2888 	while (*flags & RT2560_F_INPUT_RUNNING) {
2889 		tsleep(sc, 0, "ralrunning", hz/10);
2890 	}
2891 
2892 	RAL_LOCK(sc);
2893 
2894 	callout_stop(&sc->watchdog_ch);
2895 
2896 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2897 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2898 		ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2899 
2900 		/* abort Tx */
2901 		RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2902 
2903 		/* disable Rx */
2904 		RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2905 
2906 		/* reset ASIC (imply reset BBP) */
2907 		RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2908 		RAL_WRITE(sc, RT2560_CSR1, 0);
2909 
2910 		/* disable interrupts */
2911 		RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2912 
2913 		/* reset Tx and Rx rings */
2914 		rt2560_reset_tx_ring(sc, &sc->txq);
2915 		rt2560_reset_tx_ring(sc, &sc->atimq);
2916 		rt2560_reset_tx_ring(sc, &sc->prioq);
2917 		rt2560_reset_tx_ring(sc, &sc->bcnq);
2918 		rt2560_reset_rx_ring(sc, &sc->rxq);
2919 	}
2920 	sc->sc_tx_timer = 0;
2921 	sc->sc_flags &= ~(RT2560_F_PRIO_OACTIVE | RT2560_F_DATA_OACTIVE);
2922 
2923 	RAL_UNLOCK(sc);
2924 }
2925 
2926 static int
2927 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2928 	const struct ieee80211_bpf_params *params)
2929 {
2930 	struct ieee80211com *ic = ni->ni_ic;
2931 	struct ifnet *ifp = ic->ic_ifp;
2932 	struct rt2560_softc *sc = ifp->if_softc;
2933 
2934 	RAL_LOCK(sc);
2935 
2936 	/* prevent management frames from being sent if we're not ready */
2937 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2938 		RAL_UNLOCK(sc);
2939 		m_freem(m);
2940 		ieee80211_free_node(ni);
2941 		return ENETDOWN;
2942 	}
2943 	if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2944 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2945 		RAL_UNLOCK(sc);
2946 		m_freem(m);
2947 		ieee80211_free_node(ni);
2948 		return ENOBUFS;		/* XXX */
2949 	}
2950 
2951 	if (bpf_peers_present(ic->ic_rawbpf))
2952 		bpf_mtap(ic->ic_rawbpf, m);
2953 
2954 	ifp->if_opackets++;
2955 
2956 	if (params == NULL) {
2957 		/*
2958 		 * Legacy path; interpret frame contents to decide
2959 		 * precisely how to send the frame.
2960 		 */
2961 		if (rt2560_tx_mgt(sc, m, ni) != 0)
2962 			goto bad;
2963 	} else {
2964 		/*
2965 		 * Caller supplied explicit parameters to use in
2966 		 * sending the frame.
2967 		 */
2968 		if (rt2560_tx_raw(sc, m, ni, params))
2969 			goto bad;
2970 	}
2971 	sc->sc_tx_timer = 5;
2972 
2973 	RAL_UNLOCK(sc);
2974 
2975 	return 0;
2976 bad:
2977 	ifp->if_oerrors++;
2978 	ieee80211_free_node(ni);
2979 	RAL_UNLOCK(sc);
2980 	return EIO;		/* XXX */
2981 }
2982