1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /*- 24 * Ralink Technology RT2560 chipset driver 25 * http://www.ralinktech.com/ 26 */ 27 28 #include <sys/param.h> 29 #include <sys/sysctl.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 42 #include <machine/bus.h> 43 #include <machine/resource.h> 44 #include <sys/rman.h> 45 46 #include <net/bpf.h> 47 #include <net/if.h> 48 #include <net/if_arp.h> 49 #include <net/ethernet.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 #include <net/if_types.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_radiotap.h> 56 57 #include <netinet/in.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/in_var.h> 60 #include <netinet/ip.h> 61 #include <netinet/if_ether.h> 62 63 #include <dev/ral/if_ralrate.h> 64 #include <dev/ral/rt2560reg.h> 65 #include <dev/ral/rt2560var.h> 66 67 #ifdef RAL_DEBUG 68 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) 69 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) 70 extern int ral_debug; 71 #else 72 #define DPRINTF(x) 73 #define DPRINTFN(n, x) 74 #endif 75 76 static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int, 77 int); 78 static int rt2560_alloc_tx_ring(struct rt2560_softc *, 79 struct rt2560_tx_ring *, int); 80 static void rt2560_reset_tx_ring(struct rt2560_softc *, 81 struct rt2560_tx_ring *); 82 static void rt2560_free_tx_ring(struct rt2560_softc *, 83 struct rt2560_tx_ring *); 84 static int rt2560_alloc_rx_ring(struct rt2560_softc *, 85 struct rt2560_rx_ring *, int); 86 static void rt2560_reset_rx_ring(struct rt2560_softc *, 87 struct rt2560_rx_ring *); 88 static void rt2560_free_rx_ring(struct rt2560_softc *, 89 struct rt2560_rx_ring *); 90 static struct ieee80211_node *rt2560_node_alloc( 91 struct ieee80211_node_table *); 92 static int rt2560_media_change(struct ifnet *); 93 static void rt2560_next_scan(void *); 94 static void rt2560_iter_func(void *, struct ieee80211_node *); 95 static void rt2560_update_rssadapt(void *); 96 static int rt2560_newstate(struct ieee80211com *, 97 enum ieee80211_state, int); 98 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); 99 static void rt2560_encryption_intr(struct rt2560_softc *); 100 static void rt2560_tx_intr(struct rt2560_softc *); 101 static void rt2560_prio_intr(struct rt2560_softc *); 102 static void rt2560_decryption_intr(struct rt2560_softc *); 103 static void rt2560_rx_intr(struct rt2560_softc *); 104 static void rt2560_beacon_expire(struct rt2560_softc *); 105 static void rt2560_wakeup_expire(struct rt2560_softc *); 106 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *); 107 static int rt2560_ack_rate(struct ieee80211com *, int); 108 static uint16_t rt2560_txtime(int, int, uint32_t); 109 static uint8_t rt2560_plcp_signal(int); 110 static void rt2560_setup_tx_desc(struct rt2560_softc *, 111 struct rt2560_tx_desc *, uint32_t, int, int, int, 112 bus_addr_t); 113 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, 114 struct ieee80211_node *); 115 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, 116 struct ieee80211_node *); 117 static struct mbuf *rt2560_get_rts(struct rt2560_softc *, 118 struct ieee80211_frame *, uint16_t); 119 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, 120 struct ieee80211_node *); 121 static void rt2560_start(struct ifnet *); 122 static void rt2560_watchdog(void *); 123 static int rt2560_reset(struct ifnet *); 124 static int rt2560_ioctl(struct ifnet *, u_long, caddr_t); 125 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, 126 uint8_t); 127 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); 128 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, 129 uint32_t); 130 static void rt2560_set_chan(struct rt2560_softc *, 131 struct ieee80211_channel *); 132 #if 0 133 static void rt2560_disable_rf_tune(struct rt2560_softc *); 134 #endif 135 static void rt2560_enable_tsf_sync(struct rt2560_softc *); 136 static void rt2560_update_plcp(struct rt2560_softc *); 137 static void rt2560_update_slot(struct ifnet *); 138 static void rt2560_set_basicrates(struct rt2560_softc *); 139 static void rt2560_update_led(struct rt2560_softc *, int, int); 140 static void rt2560_set_bssid(struct rt2560_softc *, uint8_t *); 141 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *); 142 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); 143 static void rt2560_update_promisc(struct rt2560_softc *); 144 static const char *rt2560_get_rf(int); 145 static void rt2560_read_eeprom(struct rt2560_softc *); 146 static int rt2560_bbp_init(struct rt2560_softc *); 147 static void rt2560_set_txantenna(struct rt2560_softc *, int); 148 static void rt2560_set_rxantenna(struct rt2560_softc *, int); 149 static void rt2560_init(void *); 150 static void rt2560_stop(void *); 151 static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *, 152 const struct ieee80211_bpf_params *); 153 154 static const struct { 155 uint32_t reg; 156 uint32_t val; 157 } rt2560_def_mac[] = { 158 RT2560_DEF_MAC 159 }; 160 161 static const struct { 162 uint8_t reg; 163 uint8_t val; 164 } rt2560_def_bbp[] = { 165 RT2560_DEF_BBP 166 }; 167 168 static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; 169 static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; 170 static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; 171 static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; 172 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; 173 static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; 174 static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; 175 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; 176 177 static const struct { 178 uint8_t chan; 179 uint32_t r1, r2, r4; 180 } rt2560_rf5222[] = { 181 RT2560_RF5222 182 }; 183 184 int 185 rt2560_attach(device_t dev, int id) 186 { 187 struct rt2560_softc *sc = device_get_softc(dev); 188 struct ieee80211com *ic = &sc->sc_ic; 189 struct ifnet *ifp; 190 int error, i; 191 192 sc->sc_dev = dev; 193 194 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 195 MTX_DEF | MTX_RECURSE); 196 197 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 198 callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0); 199 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE); 200 201 /* retrieve RT2560 rev. no */ 202 sc->asic_rev = RAL_READ(sc, RT2560_CSR0); 203 204 /* retrieve MAC address */ 205 rt2560_get_macaddr(sc, ic->ic_myaddr); 206 207 /* retrieve RF rev. no and various other things from EEPROM */ 208 rt2560_read_eeprom(sc); 209 210 device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", 211 sc->asic_rev, rt2560_get_rf(sc->rf_rev)); 212 213 /* 214 * Allocate Tx and Rx rings. 215 */ 216 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); 217 if (error != 0) { 218 device_printf(sc->sc_dev, "could not allocate Tx ring\n"); 219 goto fail1; 220 } 221 222 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); 223 if (error != 0) { 224 device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); 225 goto fail2; 226 } 227 228 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); 229 if (error != 0) { 230 device_printf(sc->sc_dev, "could not allocate Prio ring\n"); 231 goto fail3; 232 } 233 234 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); 235 if (error != 0) { 236 device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); 237 goto fail4; 238 } 239 240 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); 241 if (error != 0) { 242 device_printf(sc->sc_dev, "could not allocate Rx ring\n"); 243 goto fail5; 244 } 245 246 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 247 if (ifp == NULL) { 248 device_printf(sc->sc_dev, "can not if_alloc()\n"); 249 goto fail6; 250 } 251 252 ifp->if_softc = sc; 253 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 254 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 255 ifp->if_init = rt2560_init; 256 ifp->if_ioctl = rt2560_ioctl; 257 ifp->if_start = rt2560_start; 258 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 259 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 260 IFQ_SET_READY(&ifp->if_snd); 261 262 ic->ic_ifp = ifp; 263 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 264 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 265 ic->ic_state = IEEE80211_S_INIT; 266 267 /* set device capabilities */ 268 ic->ic_caps = 269 IEEE80211_C_IBSS | /* IBSS mode supported */ 270 IEEE80211_C_MONITOR | /* monitor mode supported */ 271 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 272 IEEE80211_C_TXPMGT | /* tx power management */ 273 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 274 IEEE80211_C_SHSLOT | /* short slot time supported */ 275 IEEE80211_C_WPA; /* 802.11i */ 276 277 if (sc->rf_rev == RT2560_RF_5222) { 278 /* set supported .11a channels */ 279 for (i = 36; i <= 64; i += 4) { 280 ic->ic_channels[i].ic_freq = 281 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 282 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 283 } 284 for (i = 100; i <= 140; i += 4) { 285 ic->ic_channels[i].ic_freq = 286 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 287 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 288 } 289 for (i = 149; i <= 161; i += 4) { 290 ic->ic_channels[i].ic_freq = 291 ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ); 292 ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A; 293 } 294 } 295 296 /* set supported .11b and .11g channels (1 through 14) */ 297 for (i = 1; i <= 14; i++) { 298 ic->ic_channels[i].ic_freq = 299 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 300 ic->ic_channels[i].ic_flags = 301 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 302 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 303 } 304 305 ieee80211_ifattach(ic); 306 ic->ic_node_alloc = rt2560_node_alloc; 307 ic->ic_updateslot = rt2560_update_slot; 308 ic->ic_reset = rt2560_reset; 309 /* enable s/w bmiss handling in sta mode */ 310 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 311 312 /* override state transition machine */ 313 sc->sc_newstate = ic->ic_newstate; 314 ic->ic_newstate = rt2560_newstate; 315 ic->ic_raw_xmit = rt2560_raw_xmit; 316 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status); 317 318 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 319 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 320 321 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 322 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 323 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT); 324 325 sc->sc_txtap_len = sizeof sc->sc_txtapu; 326 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 327 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT); 328 329 /* 330 * Add a few sysctl knobs. 331 */ 332 sc->dwelltime = 200; 333 334 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 335 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 336 "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); 337 338 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 339 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 340 "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); 341 342 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 343 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", 344 CTLFLAG_RW, &sc->dwelltime, 0, 345 "channel dwell time (ms) for AP/station scanning"); 346 347 if (bootverbose) 348 ieee80211_announce(ic); 349 350 return 0; 351 352 fail6: rt2560_free_rx_ring(sc, &sc->rxq); 353 fail5: rt2560_free_tx_ring(sc, &sc->bcnq); 354 fail4: rt2560_free_tx_ring(sc, &sc->prioq); 355 fail3: rt2560_free_tx_ring(sc, &sc->atimq); 356 fail2: rt2560_free_tx_ring(sc, &sc->txq); 357 fail1: mtx_destroy(&sc->sc_mtx); 358 359 return ENXIO; 360 } 361 362 int 363 rt2560_detach(void *xsc) 364 { 365 struct rt2560_softc *sc = xsc; 366 struct ieee80211com *ic = &sc->sc_ic; 367 struct ifnet *ifp = ic->ic_ifp; 368 369 rt2560_stop(sc); 370 callout_stop(&sc->watchdog_ch); 371 callout_stop(&sc->scan_ch); 372 callout_stop(&sc->rssadapt_ch); 373 374 bpfdetach(ifp); 375 ieee80211_ifdetach(ic); 376 377 rt2560_free_tx_ring(sc, &sc->txq); 378 rt2560_free_tx_ring(sc, &sc->atimq); 379 rt2560_free_tx_ring(sc, &sc->prioq); 380 rt2560_free_tx_ring(sc, &sc->bcnq); 381 rt2560_free_rx_ring(sc, &sc->rxq); 382 383 if_free(ifp); 384 385 mtx_destroy(&sc->sc_mtx); 386 387 return 0; 388 } 389 390 void 391 rt2560_shutdown(void *xsc) 392 { 393 struct rt2560_softc *sc = xsc; 394 395 rt2560_stop(sc); 396 } 397 398 void 399 rt2560_suspend(void *xsc) 400 { 401 struct rt2560_softc *sc = xsc; 402 403 rt2560_stop(sc); 404 } 405 406 void 407 rt2560_resume(void *xsc) 408 { 409 struct rt2560_softc *sc = xsc; 410 struct ifnet *ifp = sc->sc_ic.ic_ifp; 411 412 if (ifp->if_flags & IFF_UP) { 413 ifp->if_init(ifp->if_softc); 414 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 415 ifp->if_start(ifp); 416 } 417 } 418 419 static void 420 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 421 { 422 if (error != 0) 423 return; 424 425 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 426 427 *(bus_addr_t *)arg = segs[0].ds_addr; 428 } 429 430 static int 431 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, 432 int count) 433 { 434 int i, error; 435 436 ring->count = count; 437 ring->queued = 0; 438 ring->cur = ring->next = 0; 439 ring->cur_encrypt = ring->next_encrypt = 0; 440 441 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 442 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1, 443 count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 444 if (error != 0) { 445 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 446 goto fail; 447 } 448 449 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 450 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 451 if (error != 0) { 452 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 453 goto fail; 454 } 455 456 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 457 count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 458 0); 459 if (error != 0) { 460 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 461 goto fail; 462 } 463 464 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, 465 M_NOWAIT | M_ZERO); 466 if (ring->data == NULL) { 467 device_printf(sc->sc_dev, "could not allocate soft data\n"); 468 error = ENOMEM; 469 goto fail; 470 } 471 472 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 473 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER, 474 MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 475 if (error != 0) { 476 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 477 goto fail; 478 } 479 480 for (i = 0; i < count; i++) { 481 error = bus_dmamap_create(ring->data_dmat, 0, 482 &ring->data[i].map); 483 if (error != 0) { 484 device_printf(sc->sc_dev, "could not create DMA map\n"); 485 goto fail; 486 } 487 } 488 489 return 0; 490 491 fail: rt2560_free_tx_ring(sc, ring); 492 return error; 493 } 494 495 static void 496 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 497 { 498 struct rt2560_tx_desc *desc; 499 struct rt2560_tx_data *data; 500 int i; 501 502 for (i = 0; i < ring->count; i++) { 503 desc = &ring->desc[i]; 504 data = &ring->data[i]; 505 506 if (data->m != NULL) { 507 bus_dmamap_sync(ring->data_dmat, data->map, 508 BUS_DMASYNC_POSTWRITE); 509 bus_dmamap_unload(ring->data_dmat, data->map); 510 m_freem(data->m); 511 data->m = NULL; 512 } 513 514 if (data->ni != NULL) { 515 ieee80211_free_node(data->ni); 516 data->ni = NULL; 517 } 518 519 desc->flags = 0; 520 } 521 522 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 523 524 ring->queued = 0; 525 ring->cur = ring->next = 0; 526 ring->cur_encrypt = ring->next_encrypt = 0; 527 } 528 529 static void 530 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 531 { 532 struct rt2560_tx_data *data; 533 int i; 534 535 if (ring->desc != NULL) { 536 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 537 BUS_DMASYNC_POSTWRITE); 538 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 539 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 540 } 541 542 if (ring->desc_dmat != NULL) 543 bus_dma_tag_destroy(ring->desc_dmat); 544 545 if (ring->data != NULL) { 546 for (i = 0; i < ring->count; i++) { 547 data = &ring->data[i]; 548 549 if (data->m != NULL) { 550 bus_dmamap_sync(ring->data_dmat, data->map, 551 BUS_DMASYNC_POSTWRITE); 552 bus_dmamap_unload(ring->data_dmat, data->map); 553 m_freem(data->m); 554 } 555 556 if (data->ni != NULL) 557 ieee80211_free_node(data->ni); 558 559 if (data->map != NULL) 560 bus_dmamap_destroy(ring->data_dmat, data->map); 561 } 562 563 free(ring->data, M_DEVBUF); 564 } 565 566 if (ring->data_dmat != NULL) 567 bus_dma_tag_destroy(ring->data_dmat); 568 } 569 570 static int 571 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, 572 int count) 573 { 574 struct rt2560_rx_desc *desc; 575 struct rt2560_rx_data *data; 576 bus_addr_t physaddr; 577 int i, error; 578 579 ring->count = count; 580 ring->cur = ring->next = 0; 581 ring->cur_decrypt = 0; 582 583 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 584 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1, 585 count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 586 if (error != 0) { 587 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 588 goto fail; 589 } 590 591 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 592 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 593 if (error != 0) { 594 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 595 goto fail; 596 } 597 598 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 599 count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 600 0); 601 if (error != 0) { 602 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 603 goto fail; 604 } 605 606 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, 607 M_NOWAIT | M_ZERO); 608 if (ring->data == NULL) { 609 device_printf(sc->sc_dev, "could not allocate soft data\n"); 610 error = ENOMEM; 611 goto fail; 612 } 613 614 /* 615 * Pre-allocate Rx buffers and populate Rx ring. 616 */ 617 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 618 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 619 NULL, &ring->data_dmat); 620 if (error != 0) { 621 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 622 goto fail; 623 } 624 625 for (i = 0; i < count; i++) { 626 desc = &sc->rxq.desc[i]; 627 data = &sc->rxq.data[i]; 628 629 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 630 if (error != 0) { 631 device_printf(sc->sc_dev, "could not create DMA map\n"); 632 goto fail; 633 } 634 635 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 636 if (data->m == NULL) { 637 device_printf(sc->sc_dev, 638 "could not allocate rx mbuf\n"); 639 error = ENOMEM; 640 goto fail; 641 } 642 643 error = bus_dmamap_load(ring->data_dmat, data->map, 644 mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, 645 &physaddr, 0); 646 if (error != 0) { 647 device_printf(sc->sc_dev, 648 "could not load rx buf DMA map"); 649 goto fail; 650 } 651 652 desc->flags = htole32(RT2560_RX_BUSY); 653 desc->physaddr = htole32(physaddr); 654 } 655 656 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 657 658 return 0; 659 660 fail: rt2560_free_rx_ring(sc, ring); 661 return error; 662 } 663 664 static void 665 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 666 { 667 int i; 668 669 for (i = 0; i < ring->count; i++) { 670 ring->desc[i].flags = htole32(RT2560_RX_BUSY); 671 ring->data[i].drop = 0; 672 } 673 674 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 675 676 ring->cur = ring->next = 0; 677 ring->cur_decrypt = 0; 678 } 679 680 static void 681 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 682 { 683 struct rt2560_rx_data *data; 684 int i; 685 686 if (ring->desc != NULL) { 687 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 688 BUS_DMASYNC_POSTWRITE); 689 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 690 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 691 } 692 693 if (ring->desc_dmat != NULL) 694 bus_dma_tag_destroy(ring->desc_dmat); 695 696 if (ring->data != NULL) { 697 for (i = 0; i < ring->count; i++) { 698 data = &ring->data[i]; 699 700 if (data->m != NULL) { 701 bus_dmamap_sync(ring->data_dmat, data->map, 702 BUS_DMASYNC_POSTREAD); 703 bus_dmamap_unload(ring->data_dmat, data->map); 704 m_freem(data->m); 705 } 706 707 if (data->map != NULL) 708 bus_dmamap_destroy(ring->data_dmat, data->map); 709 } 710 711 free(ring->data, M_DEVBUF); 712 } 713 714 if (ring->data_dmat != NULL) 715 bus_dma_tag_destroy(ring->data_dmat); 716 } 717 718 static struct ieee80211_node * 719 rt2560_node_alloc(struct ieee80211_node_table *nt) 720 { 721 struct rt2560_node *rn; 722 723 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE, 724 M_NOWAIT | M_ZERO); 725 726 return (rn != NULL) ? &rn->ni : NULL; 727 } 728 729 static int 730 rt2560_media_change(struct ifnet *ifp) 731 { 732 struct rt2560_softc *sc = ifp->if_softc; 733 int error; 734 735 error = ieee80211_media_change(ifp); 736 if (error != ENETRESET) 737 return error; 738 739 if ((ifp->if_flags & IFF_UP) && 740 (ifp->if_drv_flags & IFF_DRV_RUNNING)) 741 rt2560_init(sc); 742 743 return 0; 744 } 745 746 /* 747 * This function is called periodically (every 200ms) during scanning to 748 * switch from one channel to another. 749 */ 750 static void 751 rt2560_next_scan(void *arg) 752 { 753 struct rt2560_softc *sc = arg; 754 struct ieee80211com *ic = &sc->sc_ic; 755 756 if (ic->ic_state == IEEE80211_S_SCAN) 757 ieee80211_next_scan(ic); 758 } 759 760 /* 761 * This function is called for each node present in the node station table. 762 */ 763 static void 764 rt2560_iter_func(void *arg, struct ieee80211_node *ni) 765 { 766 struct rt2560_node *rn = (struct rt2560_node *)ni; 767 768 ral_rssadapt_updatestats(&rn->rssadapt); 769 } 770 771 /* 772 * This function is called periodically (every 100ms) in RUN state to update 773 * the rate adaptation statistics. 774 */ 775 static void 776 rt2560_update_rssadapt(void *arg) 777 { 778 struct rt2560_softc *sc = arg; 779 struct ieee80211com *ic = &sc->sc_ic; 780 781 RAL_LOCK(sc); 782 783 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg); 784 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc); 785 786 RAL_UNLOCK(sc); 787 } 788 789 static int 790 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 791 { 792 struct rt2560_softc *sc = ic->ic_ifp->if_softc; 793 enum ieee80211_state ostate; 794 struct ieee80211_node *ni; 795 struct mbuf *m; 796 int error = 0; 797 798 ostate = ic->ic_state; 799 callout_stop(&sc->scan_ch); 800 801 switch (nstate) { 802 case IEEE80211_S_INIT: 803 callout_stop(&sc->rssadapt_ch); 804 805 if (ostate == IEEE80211_S_RUN) { 806 /* abort TSF synchronization */ 807 RAL_WRITE(sc, RT2560_CSR14, 0); 808 809 /* turn association led off */ 810 rt2560_update_led(sc, 0, 0); 811 } 812 break; 813 814 case IEEE80211_S_SCAN: 815 rt2560_set_chan(sc, ic->ic_curchan); 816 callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000, 817 rt2560_next_scan, sc); 818 break; 819 820 case IEEE80211_S_AUTH: 821 rt2560_set_chan(sc, ic->ic_curchan); 822 break; 823 824 case IEEE80211_S_ASSOC: 825 rt2560_set_chan(sc, ic->ic_curchan); 826 break; 827 828 case IEEE80211_S_RUN: 829 rt2560_set_chan(sc, ic->ic_curchan); 830 831 ni = ic->ic_bss; 832 833 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 834 rt2560_update_plcp(sc); 835 rt2560_set_basicrates(sc); 836 rt2560_set_bssid(sc, ni->ni_bssid); 837 } 838 839 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 840 ic->ic_opmode == IEEE80211_M_IBSS) { 841 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo); 842 if (m == NULL) { 843 device_printf(sc->sc_dev, 844 "could not allocate beacon\n"); 845 error = ENOBUFS; 846 break; 847 } 848 849 ieee80211_ref_node(ni); 850 error = rt2560_tx_bcn(sc, m, ni); 851 if (error != 0) 852 break; 853 } 854 855 /* turn assocation led on */ 856 rt2560_update_led(sc, 1, 0); 857 858 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 859 callout_reset(&sc->rssadapt_ch, hz / 10, 860 rt2560_update_rssadapt, sc); 861 862 rt2560_enable_tsf_sync(sc); 863 } 864 break; 865 } 866 867 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 868 } 869 870 /* 871 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 872 * 93C66). 873 */ 874 static uint16_t 875 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) 876 { 877 uint32_t tmp; 878 uint16_t val; 879 int n; 880 881 /* clock C once before the first command */ 882 RT2560_EEPROM_CTL(sc, 0); 883 884 RT2560_EEPROM_CTL(sc, RT2560_S); 885 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 886 RT2560_EEPROM_CTL(sc, RT2560_S); 887 888 /* write start bit (1) */ 889 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 890 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 891 892 /* write READ opcode (10) */ 893 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 894 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 895 RT2560_EEPROM_CTL(sc, RT2560_S); 896 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 897 898 /* write address (A5-A0 or A7-A0) */ 899 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; 900 for (; n >= 0; n--) { 901 RT2560_EEPROM_CTL(sc, RT2560_S | 902 (((addr >> n) & 1) << RT2560_SHIFT_D)); 903 RT2560_EEPROM_CTL(sc, RT2560_S | 904 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); 905 } 906 907 RT2560_EEPROM_CTL(sc, RT2560_S); 908 909 /* read data Q15-Q0 */ 910 val = 0; 911 for (n = 15; n >= 0; n--) { 912 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 913 tmp = RAL_READ(sc, RT2560_CSR21); 914 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; 915 RT2560_EEPROM_CTL(sc, RT2560_S); 916 } 917 918 RT2560_EEPROM_CTL(sc, 0); 919 920 /* clear Chip Select and clock C */ 921 RT2560_EEPROM_CTL(sc, RT2560_S); 922 RT2560_EEPROM_CTL(sc, 0); 923 RT2560_EEPROM_CTL(sc, RT2560_C); 924 925 return val; 926 } 927 928 /* 929 * Some frames were processed by the hardware cipher engine and are ready for 930 * transmission. 931 */ 932 static void 933 rt2560_encryption_intr(struct rt2560_softc *sc) 934 { 935 struct rt2560_tx_desc *desc; 936 int hw; 937 938 /* retrieve last descriptor index processed by cipher engine */ 939 hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr; 940 hw /= RT2560_TX_DESC_SIZE; 941 942 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 943 BUS_DMASYNC_POSTREAD); 944 945 for (; sc->txq.next_encrypt != hw;) { 946 desc = &sc->txq.desc[sc->txq.next_encrypt]; 947 948 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 949 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY)) 950 break; 951 952 /* for TKIP, swap eiv field to fix a bug in ASIC */ 953 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) == 954 RT2560_TX_CIPHER_TKIP) 955 desc->eiv = bswap32(desc->eiv); 956 957 /* mark the frame ready for transmission */ 958 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 959 960 DPRINTFN(15, ("encryption done idx=%u\n", 961 sc->txq.next_encrypt)); 962 963 sc->txq.next_encrypt = 964 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; 965 } 966 967 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 968 BUS_DMASYNC_PREWRITE); 969 970 /* kick Tx */ 971 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); 972 } 973 974 static void 975 rt2560_tx_intr(struct rt2560_softc *sc) 976 { 977 struct ieee80211com *ic = &sc->sc_ic; 978 struct ifnet *ifp = ic->ic_ifp; 979 struct rt2560_tx_desc *desc; 980 struct rt2560_tx_data *data; 981 struct rt2560_node *rn; 982 983 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 984 BUS_DMASYNC_POSTREAD); 985 986 for (;;) { 987 desc = &sc->txq.desc[sc->txq.next]; 988 data = &sc->txq.data[sc->txq.next]; 989 990 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 991 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) || 992 !(le32toh(desc->flags) & RT2560_TX_VALID)) 993 break; 994 995 rn = (struct rt2560_node *)data->ni; 996 997 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) { 998 case RT2560_TX_SUCCESS: 999 DPRINTFN(10, ("data frame sent successfully\n")); 1000 if (data->id.id_node != NULL) { 1001 ral_rssadapt_raise_rate(ic, &rn->rssadapt, 1002 &data->id); 1003 } 1004 ifp->if_opackets++; 1005 break; 1006 1007 case RT2560_TX_SUCCESS_RETRY: 1008 DPRINTFN(9, ("data frame sent after %u retries\n", 1009 (le32toh(desc->flags) >> 5) & 0x7)); 1010 ifp->if_opackets++; 1011 break; 1012 1013 case RT2560_TX_FAIL_RETRY: 1014 DPRINTFN(9, ("sending data frame failed (too much " 1015 "retries)\n")); 1016 if (data->id.id_node != NULL) { 1017 ral_rssadapt_lower_rate(ic, data->ni, 1018 &rn->rssadapt, &data->id); 1019 } 1020 ifp->if_oerrors++; 1021 break; 1022 1023 case RT2560_TX_FAIL_INVALID: 1024 case RT2560_TX_FAIL_OTHER: 1025 default: 1026 device_printf(sc->sc_dev, "sending data frame failed " 1027 "0x%08x\n", le32toh(desc->flags)); 1028 ifp->if_oerrors++; 1029 } 1030 1031 bus_dmamap_sync(sc->txq.data_dmat, data->map, 1032 BUS_DMASYNC_POSTWRITE); 1033 bus_dmamap_unload(sc->txq.data_dmat, data->map); 1034 m_freem(data->m); 1035 data->m = NULL; 1036 ieee80211_free_node(data->ni); 1037 data->ni = NULL; 1038 1039 /* descriptor is no longer valid */ 1040 desc->flags &= ~htole32(RT2560_TX_VALID); 1041 1042 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); 1043 1044 sc->txq.queued--; 1045 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; 1046 } 1047 1048 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1049 BUS_DMASYNC_PREWRITE); 1050 1051 sc->sc_tx_timer = 0; 1052 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1053 rt2560_start(ifp); 1054 } 1055 1056 static void 1057 rt2560_prio_intr(struct rt2560_softc *sc) 1058 { 1059 struct ieee80211com *ic = &sc->sc_ic; 1060 struct ifnet *ifp = ic->ic_ifp; 1061 struct rt2560_tx_desc *desc; 1062 struct rt2560_tx_data *data; 1063 1064 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1065 BUS_DMASYNC_POSTREAD); 1066 1067 for (;;) { 1068 desc = &sc->prioq.desc[sc->prioq.next]; 1069 data = &sc->prioq.data[sc->prioq.next]; 1070 1071 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 1072 !(le32toh(desc->flags) & RT2560_TX_VALID)) 1073 break; 1074 1075 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) { 1076 case RT2560_TX_SUCCESS: 1077 DPRINTFN(10, ("mgt frame sent successfully\n")); 1078 break; 1079 1080 case RT2560_TX_SUCCESS_RETRY: 1081 DPRINTFN(9, ("mgt frame sent after %u retries\n", 1082 (le32toh(desc->flags) >> 5) & 0x7)); 1083 break; 1084 1085 case RT2560_TX_FAIL_RETRY: 1086 DPRINTFN(9, ("sending mgt frame failed (too much " 1087 "retries)\n")); 1088 break; 1089 1090 case RT2560_TX_FAIL_INVALID: 1091 case RT2560_TX_FAIL_OTHER: 1092 default: 1093 device_printf(sc->sc_dev, "sending mgt frame failed " 1094 "0x%08x\n", le32toh(desc->flags)); 1095 } 1096 1097 bus_dmamap_sync(sc->prioq.data_dmat, data->map, 1098 BUS_DMASYNC_POSTWRITE); 1099 bus_dmamap_unload(sc->prioq.data_dmat, data->map); 1100 m_freem(data->m); 1101 data->m = NULL; 1102 ieee80211_free_node(data->ni); 1103 data->ni = NULL; 1104 1105 /* descriptor is no longer valid */ 1106 desc->flags &= ~htole32(RT2560_TX_VALID); 1107 1108 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); 1109 1110 sc->prioq.queued--; 1111 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; 1112 } 1113 1114 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1115 BUS_DMASYNC_PREWRITE); 1116 1117 sc->sc_tx_timer = 0; 1118 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1119 rt2560_start(ifp); 1120 } 1121 1122 /* 1123 * Some frames were processed by the hardware cipher engine and are ready for 1124 * transmission to the IEEE802.11 layer. 1125 */ 1126 static void 1127 rt2560_decryption_intr(struct rt2560_softc *sc) 1128 { 1129 struct ieee80211com *ic = &sc->sc_ic; 1130 struct ifnet *ifp = ic->ic_ifp; 1131 struct rt2560_rx_desc *desc; 1132 struct rt2560_rx_data *data; 1133 bus_addr_t physaddr; 1134 struct ieee80211_frame *wh; 1135 struct ieee80211_node *ni; 1136 struct rt2560_node *rn; 1137 struct mbuf *mnew, *m; 1138 int hw, error; 1139 1140 /* retrieve last decriptor index processed by cipher engine */ 1141 hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr; 1142 hw /= RT2560_RX_DESC_SIZE; 1143 1144 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1145 BUS_DMASYNC_POSTREAD); 1146 1147 for (; sc->rxq.cur_decrypt != hw;) { 1148 desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; 1149 data = &sc->rxq.data[sc->rxq.cur_decrypt]; 1150 1151 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1152 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1153 break; 1154 1155 if (data->drop) { 1156 ifp->if_ierrors++; 1157 goto skip; 1158 } 1159 1160 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && 1161 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) { 1162 ifp->if_ierrors++; 1163 goto skip; 1164 } 1165 1166 /* 1167 * Try to allocate a new mbuf for this ring element and load it 1168 * before processing the current mbuf. If the ring element 1169 * cannot be loaded, drop the received packet and reuse the old 1170 * mbuf. In the unlikely case that the old mbuf can't be 1171 * reloaded either, explicitly panic. 1172 */ 1173 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1174 if (mnew == NULL) { 1175 ifp->if_ierrors++; 1176 goto skip; 1177 } 1178 1179 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1180 BUS_DMASYNC_POSTREAD); 1181 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1182 1183 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1184 mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr, 1185 &physaddr, 0); 1186 if (error != 0) { 1187 m_freem(mnew); 1188 1189 /* try to reload the old mbuf */ 1190 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1191 mtod(data->m, void *), MCLBYTES, 1192 rt2560_dma_map_addr, &physaddr, 0); 1193 if (error != 0) { 1194 /* very unlikely that it will fail... */ 1195 panic("%s: could not load old rx mbuf", 1196 device_get_name(sc->sc_dev)); 1197 } 1198 ifp->if_ierrors++; 1199 goto skip; 1200 } 1201 1202 /* 1203 * New mbuf successfully loaded, update Rx ring and continue 1204 * processing. 1205 */ 1206 m = data->m; 1207 data->m = mnew; 1208 desc->physaddr = htole32(physaddr); 1209 1210 /* finalize mbuf */ 1211 m->m_pkthdr.rcvif = ifp; 1212 m->m_pkthdr.len = m->m_len = 1213 (le32toh(desc->flags) >> 16) & 0xfff; 1214 1215 if (bpf_peers_present(sc->sc_drvbpf)) { 1216 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; 1217 uint32_t tsf_lo, tsf_hi; 1218 1219 /* get timestamp (low and high 32 bits) */ 1220 tsf_hi = RAL_READ(sc, RT2560_CSR17); 1221 tsf_lo = RAL_READ(sc, RT2560_CSR16); 1222 1223 tap->wr_tsf = 1224 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1225 tap->wr_flags = 0; 1226 tap->wr_rate = rt2560_rxrate(desc); 1227 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1228 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1229 tap->wr_antenna = sc->rx_ant; 1230 tap->wr_antsignal = desc->rssi; 1231 1232 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1233 } 1234 1235 wh = mtod(m, struct ieee80211_frame *); 1236 ni = ieee80211_find_rxnode(ic, 1237 (struct ieee80211_frame_min *)wh); 1238 1239 /* send the frame to the 802.11 layer */ 1240 ieee80211_input(ic, m, ni, desc->rssi, 0); 1241 1242 /* give rssi to the rate adatation algorithm */ 1243 rn = (struct rt2560_node *)ni; 1244 ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi); 1245 1246 /* node is no longer needed */ 1247 ieee80211_free_node(ni); 1248 1249 skip: desc->flags = htole32(RT2560_RX_BUSY); 1250 1251 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); 1252 1253 sc->rxq.cur_decrypt = 1254 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; 1255 } 1256 1257 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1258 BUS_DMASYNC_PREWRITE); 1259 } 1260 1261 /* 1262 * Some frames were received. Pass them to the hardware cipher engine before 1263 * sending them to the 802.11 layer. 1264 */ 1265 static void 1266 rt2560_rx_intr(struct rt2560_softc *sc) 1267 { 1268 struct rt2560_rx_desc *desc; 1269 struct rt2560_rx_data *data; 1270 1271 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1272 BUS_DMASYNC_POSTREAD); 1273 1274 for (;;) { 1275 desc = &sc->rxq.desc[sc->rxq.cur]; 1276 data = &sc->rxq.data[sc->rxq.cur]; 1277 1278 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1279 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1280 break; 1281 1282 data->drop = 0; 1283 1284 if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) || 1285 (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) { 1286 /* 1287 * This should not happen since we did not request 1288 * to receive those frames when we filled RXCSR0. 1289 */ 1290 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1291 le32toh(desc->flags))); 1292 data->drop = 1; 1293 } 1294 1295 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { 1296 DPRINTFN(5, ("bad length\n")); 1297 data->drop = 1; 1298 } 1299 1300 /* mark the frame for decryption */ 1301 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); 1302 1303 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1304 1305 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; 1306 } 1307 1308 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1309 BUS_DMASYNC_PREWRITE); 1310 1311 /* kick decrypt */ 1312 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); 1313 } 1314 1315 /* 1316 * This function is called periodically in IBSS mode when a new beacon must be 1317 * sent out. 1318 */ 1319 static void 1320 rt2560_beacon_expire(struct rt2560_softc *sc) 1321 { 1322 struct ieee80211com *ic = &sc->sc_ic; 1323 struct rt2560_tx_data *data; 1324 1325 if (ic->ic_opmode != IEEE80211_M_IBSS && 1326 ic->ic_opmode != IEEE80211_M_HOSTAP) 1327 return; 1328 1329 data = &sc->bcnq.data[sc->bcnq.next]; 1330 1331 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 1332 bus_dmamap_unload(sc->bcnq.data_dmat, data->map); 1333 1334 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1); 1335 1336 if (bpf_peers_present(ic->ic_rawbpf)) 1337 bpf_mtap(ic->ic_rawbpf, data->m); 1338 1339 rt2560_tx_bcn(sc, data->m, data->ni); 1340 1341 DPRINTFN(15, ("beacon expired\n")); 1342 1343 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT; 1344 } 1345 1346 /* ARGSUSED */ 1347 static void 1348 rt2560_wakeup_expire(struct rt2560_softc *sc) 1349 { 1350 DPRINTFN(2, ("wakeup expired\n")); 1351 } 1352 1353 void 1354 rt2560_intr(void *arg) 1355 { 1356 struct rt2560_softc *sc = arg; 1357 struct ifnet *ifp = sc->sc_ifp; 1358 uint32_t r; 1359 1360 RAL_LOCK(sc); 1361 1362 /* disable interrupts */ 1363 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 1364 1365 /* don't re-enable interrupts if we're shutting down */ 1366 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1367 RAL_UNLOCK(sc); 1368 return; 1369 } 1370 1371 r = RAL_READ(sc, RT2560_CSR7); 1372 RAL_WRITE(sc, RT2560_CSR7, r); 1373 1374 if (r & RT2560_BEACON_EXPIRE) 1375 rt2560_beacon_expire(sc); 1376 1377 if (r & RT2560_WAKEUP_EXPIRE) 1378 rt2560_wakeup_expire(sc); 1379 1380 if (r & RT2560_ENCRYPTION_DONE) 1381 rt2560_encryption_intr(sc); 1382 1383 if (r & RT2560_TX_DONE) 1384 rt2560_tx_intr(sc); 1385 1386 if (r & RT2560_PRIO_DONE) 1387 rt2560_prio_intr(sc); 1388 1389 if (r & RT2560_DECRYPTION_DONE) 1390 rt2560_decryption_intr(sc); 1391 1392 if (r & RT2560_RX_DONE) 1393 rt2560_rx_intr(sc); 1394 1395 /* re-enable interrupts */ 1396 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 1397 1398 RAL_UNLOCK(sc); 1399 } 1400 1401 /* quickly determine if a given rate is CCK or OFDM */ 1402 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1403 1404 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1405 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1406 1407 #define RAL_SIFS 10 /* us */ 1408 1409 #define RT2560_TXRX_TURNAROUND 10 /* us */ 1410 1411 /* 1412 * This function is only used by the Rx radiotap code. 1413 */ 1414 static uint8_t 1415 rt2560_rxrate(struct rt2560_rx_desc *desc) 1416 { 1417 if (le32toh(desc->flags) & RT2560_RX_OFDM) { 1418 /* reverse function of rt2560_plcp_signal */ 1419 switch (desc->rate) { 1420 case 0xb: return 12; 1421 case 0xf: return 18; 1422 case 0xa: return 24; 1423 case 0xe: return 36; 1424 case 0x9: return 48; 1425 case 0xd: return 72; 1426 case 0x8: return 96; 1427 case 0xc: return 108; 1428 } 1429 } else { 1430 if (desc->rate == 10) 1431 return 2; 1432 if (desc->rate == 20) 1433 return 4; 1434 if (desc->rate == 55) 1435 return 11; 1436 if (desc->rate == 110) 1437 return 22; 1438 } 1439 return 2; /* should not get there */ 1440 } 1441 1442 /* 1443 * Return the expected ack rate for a frame transmitted at rate `rate'. 1444 * XXX: this should depend on the destination node basic rate set. 1445 */ 1446 static int 1447 rt2560_ack_rate(struct ieee80211com *ic, int rate) 1448 { 1449 switch (rate) { 1450 /* CCK rates */ 1451 case 2: 1452 return 2; 1453 case 4: 1454 case 11: 1455 case 22: 1456 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1457 1458 /* OFDM rates */ 1459 case 12: 1460 case 18: 1461 return 12; 1462 case 24: 1463 case 36: 1464 return 24; 1465 case 48: 1466 case 72: 1467 case 96: 1468 case 108: 1469 return 48; 1470 } 1471 1472 /* default to 1Mbps */ 1473 return 2; 1474 } 1475 1476 /* 1477 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1478 * The function automatically determines the operating mode depending on the 1479 * given rate. `flags' indicates whether short preamble is in use or not. 1480 */ 1481 static uint16_t 1482 rt2560_txtime(int len, int rate, uint32_t flags) 1483 { 1484 uint16_t txtime; 1485 1486 if (RAL_RATE_IS_OFDM(rate)) { 1487 /* IEEE Std 802.11a-1999, pp. 37 */ 1488 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1489 txtime = 16 + 4 + 4 * txtime + 6; 1490 } else { 1491 /* IEEE Std 802.11b-1999, pp. 28 */ 1492 txtime = (16 * len + rate - 1) / rate; 1493 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1494 txtime += 72 + 24; 1495 else 1496 txtime += 144 + 48; 1497 } 1498 1499 return txtime; 1500 } 1501 1502 static uint8_t 1503 rt2560_plcp_signal(int rate) 1504 { 1505 switch (rate) { 1506 /* CCK rates (returned values are device-dependent) */ 1507 case 2: return 0x0; 1508 case 4: return 0x1; 1509 case 11: return 0x2; 1510 case 22: return 0x3; 1511 1512 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1513 case 12: return 0xb; 1514 case 18: return 0xf; 1515 case 24: return 0xa; 1516 case 36: return 0xe; 1517 case 48: return 0x9; 1518 case 72: return 0xd; 1519 case 96: return 0x8; 1520 case 108: return 0xc; 1521 1522 /* unsupported rates (should not get there) */ 1523 default: return 0xff; 1524 } 1525 } 1526 1527 static void 1528 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, 1529 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) 1530 { 1531 struct ieee80211com *ic = &sc->sc_ic; 1532 uint16_t plcp_length; 1533 int remainder; 1534 1535 desc->flags = htole32(flags); 1536 desc->flags |= htole32(len << 16); 1537 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : 1538 htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 1539 1540 desc->physaddr = htole32(physaddr); 1541 desc->wme = htole16( 1542 RT2560_AIFSN(2) | 1543 RT2560_LOGCWMIN(3) | 1544 RT2560_LOGCWMAX(8)); 1545 1546 /* setup PLCP fields */ 1547 desc->plcp_signal = rt2560_plcp_signal(rate); 1548 desc->plcp_service = 4; 1549 1550 len += IEEE80211_CRC_LEN; 1551 if (RAL_RATE_IS_OFDM(rate)) { 1552 desc->flags |= htole32(RT2560_TX_OFDM); 1553 1554 plcp_length = len & 0xfff; 1555 desc->plcp_length_hi = plcp_length >> 6; 1556 desc->plcp_length_lo = plcp_length & 0x3f; 1557 } else { 1558 plcp_length = (16 * len + rate - 1) / rate; 1559 if (rate == 22) { 1560 remainder = (16 * len) % 22; 1561 if (remainder != 0 && remainder < 7) 1562 desc->plcp_service |= RT2560_PLCP_LENGEXT; 1563 } 1564 desc->plcp_length_hi = plcp_length >> 8; 1565 desc->plcp_length_lo = plcp_length & 0xff; 1566 1567 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1568 desc->plcp_signal |= 0x08; 1569 } 1570 } 1571 1572 static int 1573 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, 1574 struct ieee80211_node *ni) 1575 { 1576 struct ieee80211com *ic = &sc->sc_ic; 1577 struct rt2560_tx_desc *desc; 1578 struct rt2560_tx_data *data; 1579 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1580 int nsegs, rate, error; 1581 1582 desc = &sc->bcnq.desc[sc->bcnq.cur]; 1583 data = &sc->bcnq.data[sc->bcnq.cur]; 1584 1585 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1586 1587 error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0, 1588 segs, &nsegs, BUS_DMA_NOWAIT); 1589 if (error != 0) { 1590 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1591 error); 1592 m_freem(m0); 1593 return error; 1594 } 1595 1596 if (bpf_peers_present(sc->sc_drvbpf)) { 1597 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1598 1599 tap->wt_flags = 0; 1600 tap->wt_rate = rate; 1601 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1602 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1603 tap->wt_antenna = sc->tx_ant; 1604 1605 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1606 } 1607 1608 data->m = m0; 1609 data->ni = ni; 1610 1611 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | 1612 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr); 1613 1614 DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n", 1615 m0->m_pkthdr.len, sc->bcnq.cur, rate)); 1616 1617 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1618 bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, 1619 BUS_DMASYNC_PREWRITE); 1620 1621 sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT; 1622 1623 return 0; 1624 } 1625 1626 static int 1627 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, 1628 struct ieee80211_node *ni) 1629 { 1630 struct ieee80211com *ic = &sc->sc_ic; 1631 struct rt2560_tx_desc *desc; 1632 struct rt2560_tx_data *data; 1633 struct ieee80211_frame *wh; 1634 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1635 uint16_t dur; 1636 uint32_t flags = 0; 1637 int nsegs, rate, error; 1638 1639 desc = &sc->prioq.desc[sc->prioq.cur]; 1640 data = &sc->prioq.data[sc->prioq.cur]; 1641 1642 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1643 1644 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1645 segs, &nsegs, 0); 1646 if (error != 0) { 1647 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1648 error); 1649 m_freem(m0); 1650 return error; 1651 } 1652 1653 if (bpf_peers_present(sc->sc_drvbpf)) { 1654 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1655 1656 tap->wt_flags = 0; 1657 tap->wt_rate = rate; 1658 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1659 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1660 tap->wt_antenna = sc->tx_ant; 1661 1662 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1663 } 1664 1665 data->m = m0; 1666 data->ni = ni; 1667 1668 wh = mtod(m0, struct ieee80211_frame *); 1669 1670 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1671 flags |= RT2560_TX_ACK; 1672 1673 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1674 RAL_SIFS; 1675 *(uint16_t *)wh->i_dur = htole16(dur); 1676 1677 /* tell hardware to add timestamp for probe responses */ 1678 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1679 IEEE80211_FC0_TYPE_MGT && 1680 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1681 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1682 flags |= RT2560_TX_TIMESTAMP; 1683 } 1684 1685 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, 1686 segs->ds_addr); 1687 1688 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1689 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1690 BUS_DMASYNC_PREWRITE); 1691 1692 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1693 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1694 1695 /* kick prio */ 1696 sc->prioq.queued++; 1697 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1698 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1699 1700 return 0; 1701 } 1702 1703 static int 1704 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0, 1705 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 1706 { 1707 struct ieee80211com *ic = &sc->sc_ic; 1708 struct rt2560_tx_desc *desc; 1709 struct rt2560_tx_data *data; 1710 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1711 uint32_t flags; 1712 int nsegs, rate, error; 1713 1714 desc = &sc->prioq.desc[sc->prioq.cur]; 1715 data = &sc->prioq.data[sc->prioq.cur]; 1716 1717 rate = params->ibp_rate0 & IEEE80211_RATE_VAL; 1718 /* XXX validate */ 1719 if (rate == 0) { 1720 m_freem(m0); 1721 return EINVAL; 1722 } 1723 1724 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1725 segs, &nsegs, 0); 1726 if (error != 0) { 1727 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1728 error); 1729 m_freem(m0); 1730 return error; 1731 } 1732 1733 if (bpf_peers_present(sc->sc_drvbpf)) { 1734 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1735 1736 tap->wt_flags = 0; 1737 tap->wt_rate = rate; 1738 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1739 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1740 tap->wt_antenna = sc->tx_ant; 1741 1742 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1743 } 1744 1745 data->m = m0; 1746 data->ni = ni; 1747 1748 flags = 0; 1749 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1750 flags |= RT2560_TX_ACK; 1751 1752 /* XXX need to setup descriptor ourself */ 1753 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, 1754 rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0, 1755 segs->ds_addr); 1756 1757 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1758 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1759 BUS_DMASYNC_PREWRITE); 1760 1761 DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n", 1762 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1763 1764 /* kick prio */ 1765 sc->prioq.queued++; 1766 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1767 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1768 1769 return 0; 1770 } 1771 1772 /* 1773 * Build a RTS control frame. 1774 */ 1775 static struct mbuf * 1776 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh, 1777 uint16_t dur) 1778 { 1779 struct ieee80211_frame_rts *rts; 1780 struct mbuf *m; 1781 1782 MGETHDR(m, M_DONTWAIT, MT_DATA); 1783 if (m == NULL) { 1784 sc->sc_ic.ic_stats.is_tx_nobuf++; 1785 device_printf(sc->sc_dev, "could not allocate RTS frame\n"); 1786 return NULL; 1787 } 1788 1789 rts = mtod(m, struct ieee80211_frame_rts *); 1790 1791 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1792 IEEE80211_FC0_SUBTYPE_RTS; 1793 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1794 *(uint16_t *)rts->i_dur = htole16(dur); 1795 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1796 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1797 1798 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1799 1800 return m; 1801 } 1802 1803 static int 1804 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, 1805 struct ieee80211_node *ni) 1806 { 1807 struct ieee80211com *ic = &sc->sc_ic; 1808 struct rt2560_tx_desc *desc; 1809 struct rt2560_tx_data *data; 1810 struct rt2560_node *rn; 1811 struct ieee80211_rateset *rs; 1812 struct ieee80211_frame *wh; 1813 struct ieee80211_key *k; 1814 struct mbuf *mnew; 1815 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1816 uint16_t dur; 1817 uint32_t flags = 0; 1818 int nsegs, rate, error; 1819 1820 wh = mtod(m0, struct ieee80211_frame *); 1821 1822 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1823 rs = &ic->ic_sup_rates[ic->ic_curmode]; 1824 rate = rs->rs_rates[ic->ic_fixed_rate]; 1825 } else { 1826 rs = &ni->ni_rates; 1827 rn = (struct rt2560_node *)ni; 1828 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh, 1829 m0->m_pkthdr.len, NULL, 0); 1830 rate = rs->rs_rates[ni->ni_txrate]; 1831 } 1832 rate &= IEEE80211_RATE_VAL; 1833 1834 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1835 k = ieee80211_crypto_encap(ic, ni, m0); 1836 if (k == NULL) { 1837 m_freem(m0); 1838 return ENOBUFS; 1839 } 1840 1841 /* packet header may have moved, reset our local pointer */ 1842 wh = mtod(m0, struct ieee80211_frame *); 1843 } 1844 1845 /* 1846 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1847 * for directed frames only when the length of the MPDU is greater 1848 * than the length threshold indicated by [...]" ic_rtsthreshold. 1849 */ 1850 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1851 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1852 struct mbuf *m; 1853 uint16_t dur; 1854 int rtsrate, ackrate; 1855 1856 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1857 ackrate = rt2560_ack_rate(ic, rate); 1858 1859 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1860 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1861 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1862 3 * RAL_SIFS; 1863 1864 m = rt2560_get_rts(sc, wh, dur); 1865 1866 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1867 data = &sc->txq.data[sc->txq.cur_encrypt]; 1868 1869 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1870 m, segs, &nsegs, 0); 1871 if (error != 0) { 1872 device_printf(sc->sc_dev, 1873 "could not map mbuf (error %d)\n", error); 1874 m_freem(m); 1875 m_freem(m0); 1876 return error; 1877 } 1878 1879 /* avoid multiple free() of the same node for each fragment */ 1880 ieee80211_ref_node(ni); 1881 1882 data->m = m; 1883 data->ni = ni; 1884 1885 /* RTS frames are not taken into account for rssadapt */ 1886 data->id.id_node = NULL; 1887 1888 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK | 1889 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, 1890 segs->ds_addr); 1891 1892 bus_dmamap_sync(sc->txq.data_dmat, data->map, 1893 BUS_DMASYNC_PREWRITE); 1894 1895 sc->txq.queued++; 1896 sc->txq.cur_encrypt = 1897 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1898 1899 /* 1900 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1901 * asynchronous data frame shall be transmitted after the CTS 1902 * frame and a SIFS period. 1903 */ 1904 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; 1905 } 1906 1907 data = &sc->txq.data[sc->txq.cur_encrypt]; 1908 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1909 1910 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, 1911 segs, &nsegs, 0); 1912 if (error != 0 && error != EFBIG) { 1913 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1914 error); 1915 m_freem(m0); 1916 return error; 1917 } 1918 if (error != 0) { 1919 mnew = m_defrag(m0, M_DONTWAIT); 1920 if (mnew == NULL) { 1921 device_printf(sc->sc_dev, 1922 "could not defragment mbuf\n"); 1923 m_freem(m0); 1924 return ENOBUFS; 1925 } 1926 m0 = mnew; 1927 1928 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1929 m0, segs, &nsegs, 0); 1930 if (error != 0) { 1931 device_printf(sc->sc_dev, 1932 "could not map mbuf (error %d)\n", error); 1933 m_freem(m0); 1934 return error; 1935 } 1936 1937 /* packet header may have moved, reset our local pointer */ 1938 wh = mtod(m0, struct ieee80211_frame *); 1939 } 1940 1941 if (bpf_peers_present(sc->sc_drvbpf)) { 1942 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1943 1944 tap->wt_flags = 0; 1945 tap->wt_rate = rate; 1946 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1947 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1948 tap->wt_antenna = sc->tx_ant; 1949 1950 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1951 } 1952 1953 data->m = m0; 1954 data->ni = ni; 1955 1956 /* remember link conditions for rate adaptation algorithm */ 1957 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1958 data->id.id_len = m0->m_pkthdr.len; 1959 data->id.id_rateidx = ni->ni_txrate; 1960 data->id.id_node = ni; 1961 data->id.id_rssi = ni->ni_rssi; 1962 } else 1963 data->id.id_node = NULL; 1964 1965 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1966 flags |= RT2560_TX_ACK; 1967 1968 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), 1969 ic->ic_flags) + RAL_SIFS; 1970 *(uint16_t *)wh->i_dur = htole16(dur); 1971 } 1972 1973 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, 1974 segs->ds_addr); 1975 1976 bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1977 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1978 BUS_DMASYNC_PREWRITE); 1979 1980 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1981 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate)); 1982 1983 /* kick encrypt */ 1984 sc->txq.queued++; 1985 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1986 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); 1987 1988 return 0; 1989 } 1990 1991 static void 1992 rt2560_start(struct ifnet *ifp) 1993 { 1994 struct rt2560_softc *sc = ifp->if_softc; 1995 struct ieee80211com *ic = &sc->sc_ic; 1996 struct mbuf *m0; 1997 struct ether_header *eh; 1998 struct ieee80211_node *ni; 1999 2000 RAL_LOCK(sc); 2001 2002 /* prevent management frames from being sent if we're not ready */ 2003 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2004 RAL_UNLOCK(sc); 2005 return; 2006 } 2007 2008 for (;;) { 2009 IF_POLL(&ic->ic_mgtq, m0); 2010 if (m0 != NULL) { 2011 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 2012 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2013 break; 2014 } 2015 IF_DEQUEUE(&ic->ic_mgtq, m0); 2016 2017 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 2018 m0->m_pkthdr.rcvif = NULL; 2019 2020 if (bpf_peers_present(ic->ic_rawbpf)) 2021 bpf_mtap(ic->ic_rawbpf, m0); 2022 2023 if (rt2560_tx_mgt(sc, m0, ni) != 0) 2024 break; 2025 2026 } else { 2027 if (ic->ic_state != IEEE80211_S_RUN) 2028 break; 2029 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 2030 if (m0 == NULL) 2031 break; 2032 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { 2033 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2034 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2035 break; 2036 } 2037 2038 if (m0->m_len < sizeof (struct ether_header) && 2039 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 2040 continue; 2041 2042 eh = mtod(m0, struct ether_header *); 2043 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2044 if (ni == NULL) { 2045 m_freem(m0); 2046 continue; 2047 } 2048 BPF_MTAP(ifp, m0); 2049 2050 m0 = ieee80211_encap(ic, m0, ni); 2051 if (m0 == NULL) { 2052 ieee80211_free_node(ni); 2053 continue; 2054 } 2055 2056 if (bpf_peers_present(ic->ic_rawbpf)) 2057 bpf_mtap(ic->ic_rawbpf, m0); 2058 2059 if (rt2560_tx_data(sc, m0, ni) != 0) { 2060 ieee80211_free_node(ni); 2061 ifp->if_oerrors++; 2062 break; 2063 } 2064 } 2065 2066 sc->sc_tx_timer = 5; 2067 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2068 } 2069 2070 RAL_UNLOCK(sc); 2071 } 2072 2073 static void 2074 rt2560_watchdog(void *arg) 2075 { 2076 struct rt2560_softc *sc = arg; 2077 struct ieee80211com *ic = &sc->sc_ic; 2078 2079 if (sc->sc_tx_timer > 0) { 2080 if (--sc->sc_tx_timer == 0) { 2081 device_printf(sc->sc_dev, "device timeout\n"); 2082 rt2560_init(sc); 2083 sc->sc_ifp->if_oerrors++; 2084 return; 2085 } 2086 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2087 } 2088 2089 ieee80211_watchdog(ic); 2090 } 2091 2092 /* 2093 * This function allows for fast channel switching in monitor mode (used by 2094 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 2095 * generate a new beacon frame. 2096 */ 2097 static int 2098 rt2560_reset(struct ifnet *ifp) 2099 { 2100 struct rt2560_softc *sc = ifp->if_softc; 2101 struct ieee80211com *ic = &sc->sc_ic; 2102 2103 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2104 return ENETRESET; 2105 2106 rt2560_set_chan(sc, ic->ic_curchan); 2107 2108 return 0; 2109 } 2110 2111 static int 2112 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2113 { 2114 struct rt2560_softc *sc = ifp->if_softc; 2115 struct ieee80211com *ic = &sc->sc_ic; 2116 int error = 0; 2117 2118 RAL_LOCK(sc); 2119 2120 switch (cmd) { 2121 case SIOCSIFFLAGS: 2122 if (ifp->if_flags & IFF_UP) { 2123 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2124 rt2560_update_promisc(sc); 2125 else 2126 rt2560_init(sc); 2127 } else { 2128 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2129 rt2560_stop(sc); 2130 } 2131 break; 2132 2133 default: 2134 error = ieee80211_ioctl(ic, cmd, data); 2135 } 2136 2137 if (error == ENETRESET) { 2138 if ((ifp->if_flags & IFF_UP) && 2139 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 2140 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2141 rt2560_init(sc); 2142 error = 0; 2143 } 2144 2145 RAL_UNLOCK(sc); 2146 2147 return error; 2148 } 2149 2150 static void 2151 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) 2152 { 2153 uint32_t tmp; 2154 int ntries; 2155 2156 for (ntries = 0; ntries < 100; ntries++) { 2157 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2158 break; 2159 DELAY(1); 2160 } 2161 if (ntries == 100) { 2162 device_printf(sc->sc_dev, "could not write to BBP\n"); 2163 return; 2164 } 2165 2166 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; 2167 RAL_WRITE(sc, RT2560_BBPCSR, tmp); 2168 2169 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2170 } 2171 2172 static uint8_t 2173 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) 2174 { 2175 uint32_t val; 2176 int ntries; 2177 2178 val = RT2560_BBP_BUSY | reg << 8; 2179 RAL_WRITE(sc, RT2560_BBPCSR, val); 2180 2181 for (ntries = 0; ntries < 100; ntries++) { 2182 val = RAL_READ(sc, RT2560_BBPCSR); 2183 if (!(val & RT2560_BBP_BUSY)) 2184 return val & 0xff; 2185 DELAY(1); 2186 } 2187 2188 device_printf(sc->sc_dev, "could not read from BBP\n"); 2189 return 0; 2190 } 2191 2192 static void 2193 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) 2194 { 2195 uint32_t tmp; 2196 int ntries; 2197 2198 for (ntries = 0; ntries < 100; ntries++) { 2199 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) 2200 break; 2201 DELAY(1); 2202 } 2203 if (ntries == 100) { 2204 device_printf(sc->sc_dev, "could not write to RF\n"); 2205 return; 2206 } 2207 2208 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | 2209 (reg & 0x3); 2210 RAL_WRITE(sc, RT2560_RFCSR, tmp); 2211 2212 /* remember last written value in sc */ 2213 sc->rf_regs[reg] = val; 2214 2215 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 2216 } 2217 2218 static void 2219 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) 2220 { 2221 struct ieee80211com *ic = &sc->sc_ic; 2222 uint8_t power, tmp; 2223 u_int i, chan; 2224 2225 chan = ieee80211_chan2ieee(ic, c); 2226 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2227 return; 2228 2229 if (IEEE80211_IS_CHAN_2GHZ(c)) 2230 power = min(sc->txpow[chan - 1], 31); 2231 else 2232 power = 31; 2233 2234 /* adjust txpower using ifconfig settings */ 2235 power -= (100 - ic->ic_txpowlimit) / 8; 2236 2237 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 2238 2239 switch (sc->rf_rev) { 2240 case RT2560_RF_2522: 2241 rt2560_rf_write(sc, RAL_RF1, 0x00814); 2242 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); 2243 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2244 break; 2245 2246 case RT2560_RF_2523: 2247 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2248 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); 2249 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 2250 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2251 break; 2252 2253 case RT2560_RF_2524: 2254 rt2560_rf_write(sc, RAL_RF1, 0x0c808); 2255 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); 2256 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2257 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2258 break; 2259 2260 case RT2560_RF_2525: 2261 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2262 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); 2263 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2264 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2265 2266 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2267 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); 2268 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2269 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2270 break; 2271 2272 case RT2560_RF_2525E: 2273 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2274 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); 2275 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2276 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 2277 break; 2278 2279 case RT2560_RF_2526: 2280 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); 2281 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2282 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2283 2284 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); 2285 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2286 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2287 break; 2288 2289 /* dual-band RF */ 2290 case RT2560_RF_5222: 2291 for (i = 0; rt2560_rf5222[i].chan != chan; i++); 2292 2293 rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); 2294 rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); 2295 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2296 rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); 2297 break; 2298 } 2299 2300 if (ic->ic_state != IEEE80211_S_SCAN) { 2301 /* set Japan filter bit for channel 14 */ 2302 tmp = rt2560_bbp_read(sc, 70); 2303 2304 tmp &= ~RT2560_JAPAN_FILTER; 2305 if (chan == 14) 2306 tmp |= RT2560_JAPAN_FILTER; 2307 2308 rt2560_bbp_write(sc, 70, tmp); 2309 2310 /* clear CRC errors */ 2311 RAL_READ(sc, RT2560_CNT0); 2312 } 2313 } 2314 2315 #if 0 2316 /* 2317 * Disable RF auto-tuning. 2318 */ 2319 static void 2320 rt2560_disable_rf_tune(struct rt2560_softc *sc) 2321 { 2322 uint32_t tmp; 2323 2324 if (sc->rf_rev != RT2560_RF_2523) { 2325 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 2326 rt2560_rf_write(sc, RAL_RF1, tmp); 2327 } 2328 2329 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 2330 rt2560_rf_write(sc, RAL_RF3, tmp); 2331 2332 DPRINTFN(2, ("disabling RF autotune\n")); 2333 } 2334 #endif 2335 2336 /* 2337 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 2338 * synchronization. 2339 */ 2340 static void 2341 rt2560_enable_tsf_sync(struct rt2560_softc *sc) 2342 { 2343 struct ieee80211com *ic = &sc->sc_ic; 2344 uint16_t logcwmin, preload; 2345 uint32_t tmp; 2346 2347 /* first, disable TSF synchronization */ 2348 RAL_WRITE(sc, RT2560_CSR14, 0); 2349 2350 tmp = 16 * ic->ic_bss->ni_intval; 2351 RAL_WRITE(sc, RT2560_CSR12, tmp); 2352 2353 RAL_WRITE(sc, RT2560_CSR13, 0); 2354 2355 logcwmin = 5; 2356 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; 2357 tmp = logcwmin << 16 | preload; 2358 RAL_WRITE(sc, RT2560_BCNOCSR, tmp); 2359 2360 /* finally, enable TSF synchronization */ 2361 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; 2362 if (ic->ic_opmode == IEEE80211_M_STA) 2363 tmp |= RT2560_ENABLE_TSF_SYNC(1); 2364 else 2365 tmp |= RT2560_ENABLE_TSF_SYNC(2) | 2366 RT2560_ENABLE_BEACON_GENERATOR; 2367 RAL_WRITE(sc, RT2560_CSR14, tmp); 2368 2369 DPRINTF(("enabling TSF synchronization\n")); 2370 } 2371 2372 static void 2373 rt2560_update_plcp(struct rt2560_softc *sc) 2374 { 2375 struct ieee80211com *ic = &sc->sc_ic; 2376 2377 /* no short preamble for 1Mbps */ 2378 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); 2379 2380 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { 2381 /* values taken from the reference driver */ 2382 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); 2383 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); 2384 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); 2385 } else { 2386 /* same values as above or'ed 0x8 */ 2387 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); 2388 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); 2389 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); 2390 } 2391 2392 DPRINTF(("updating PLCP for %s preamble\n", 2393 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); 2394 } 2395 2396 /* 2397 * This function can be called by ieee80211_set_shortslottime(). Refer to 2398 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. 2399 */ 2400 static void 2401 rt2560_update_slot(struct ifnet *ifp) 2402 { 2403 struct rt2560_softc *sc = ifp->if_softc; 2404 struct ieee80211com *ic = &sc->sc_ic; 2405 uint8_t slottime; 2406 uint16_t tx_sifs, tx_pifs, tx_difs, eifs; 2407 uint32_t tmp; 2408 2409 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2410 2411 /* update the MAC slot boundaries */ 2412 tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; 2413 tx_pifs = tx_sifs + slottime; 2414 tx_difs = tx_sifs + 2 * slottime; 2415 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; 2416 2417 tmp = RAL_READ(sc, RT2560_CSR11); 2418 tmp = (tmp & ~0x1f00) | slottime << 8; 2419 RAL_WRITE(sc, RT2560_CSR11, tmp); 2420 2421 tmp = tx_pifs << 16 | tx_sifs; 2422 RAL_WRITE(sc, RT2560_CSR18, tmp); 2423 2424 tmp = eifs << 16 | tx_difs; 2425 RAL_WRITE(sc, RT2560_CSR19, tmp); 2426 2427 DPRINTF(("setting slottime to %uus\n", slottime)); 2428 } 2429 2430 static void 2431 rt2560_set_basicrates(struct rt2560_softc *sc) 2432 { 2433 struct ieee80211com *ic = &sc->sc_ic; 2434 2435 /* update basic rate set */ 2436 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2437 /* 11b basic rates: 1, 2Mbps */ 2438 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); 2439 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { 2440 /* 11a basic rates: 6, 12, 24Mbps */ 2441 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150); 2442 } else { 2443 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 2444 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f); 2445 } 2446 } 2447 2448 static void 2449 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) 2450 { 2451 uint32_t tmp; 2452 2453 /* set ON period to 70ms and OFF period to 30ms */ 2454 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; 2455 RAL_WRITE(sc, RT2560_LEDCSR, tmp); 2456 } 2457 2458 static void 2459 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid) 2460 { 2461 uint32_t tmp; 2462 2463 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2464 RAL_WRITE(sc, RT2560_CSR5, tmp); 2465 2466 tmp = bssid[4] | bssid[5] << 8; 2467 RAL_WRITE(sc, RT2560_CSR6, tmp); 2468 2469 DPRINTF(("setting BSSID to %6D\n", bssid, ":")); 2470 } 2471 2472 static void 2473 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2474 { 2475 uint32_t tmp; 2476 2477 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2478 RAL_WRITE(sc, RT2560_CSR3, tmp); 2479 2480 tmp = addr[4] | addr[5] << 8; 2481 RAL_WRITE(sc, RT2560_CSR4, tmp); 2482 2483 DPRINTF(("setting MAC address to %6D\n", addr, ":")); 2484 } 2485 2486 static void 2487 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2488 { 2489 uint32_t tmp; 2490 2491 tmp = RAL_READ(sc, RT2560_CSR3); 2492 addr[0] = tmp & 0xff; 2493 addr[1] = (tmp >> 8) & 0xff; 2494 addr[2] = (tmp >> 16) & 0xff; 2495 addr[3] = (tmp >> 24); 2496 2497 tmp = RAL_READ(sc, RT2560_CSR4); 2498 addr[4] = tmp & 0xff; 2499 addr[5] = (tmp >> 8) & 0xff; 2500 } 2501 2502 static void 2503 rt2560_update_promisc(struct rt2560_softc *sc) 2504 { 2505 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2506 uint32_t tmp; 2507 2508 tmp = RAL_READ(sc, RT2560_RXCSR0); 2509 2510 tmp &= ~RT2560_DROP_NOT_TO_ME; 2511 if (!(ifp->if_flags & IFF_PROMISC)) 2512 tmp |= RT2560_DROP_NOT_TO_ME; 2513 2514 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2515 2516 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2517 "entering" : "leaving")); 2518 } 2519 2520 static const char * 2521 rt2560_get_rf(int rev) 2522 { 2523 switch (rev) { 2524 case RT2560_RF_2522: return "RT2522"; 2525 case RT2560_RF_2523: return "RT2523"; 2526 case RT2560_RF_2524: return "RT2524"; 2527 case RT2560_RF_2525: return "RT2525"; 2528 case RT2560_RF_2525E: return "RT2525e"; 2529 case RT2560_RF_2526: return "RT2526"; 2530 case RT2560_RF_5222: return "RT5222"; 2531 default: return "unknown"; 2532 } 2533 } 2534 2535 static void 2536 rt2560_read_eeprom(struct rt2560_softc *sc) 2537 { 2538 uint16_t val; 2539 int i; 2540 2541 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); 2542 sc->rf_rev = (val >> 11) & 0x7; 2543 sc->hw_radio = (val >> 10) & 0x1; 2544 sc->led_mode = (val >> 6) & 0x7; 2545 sc->rx_ant = (val >> 4) & 0x3; 2546 sc->tx_ant = (val >> 2) & 0x3; 2547 sc->nb_ant = val & 0x3; 2548 2549 /* read default values for BBP registers */ 2550 for (i = 0; i < 16; i++) { 2551 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); 2552 sc->bbp_prom[i].reg = val >> 8; 2553 sc->bbp_prom[i].val = val & 0xff; 2554 } 2555 2556 /* read Tx power for all b/g channels */ 2557 for (i = 0; i < 14 / 2; i++) { 2558 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); 2559 sc->txpow[i * 2] = val >> 8; 2560 sc->txpow[i * 2 + 1] = val & 0xff; 2561 } 2562 } 2563 2564 static int 2565 rt2560_bbp_init(struct rt2560_softc *sc) 2566 { 2567 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2568 int i, ntries; 2569 2570 /* wait for BBP to be ready */ 2571 for (ntries = 0; ntries < 100; ntries++) { 2572 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) 2573 break; 2574 DELAY(1); 2575 } 2576 if (ntries == 100) { 2577 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2578 return EIO; 2579 } 2580 2581 /* initialize BBP registers to default values */ 2582 for (i = 0; i < N(rt2560_def_bbp); i++) { 2583 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, 2584 rt2560_def_bbp[i].val); 2585 } 2586 #if 0 2587 /* initialize BBP registers to values stored in EEPROM */ 2588 for (i = 0; i < 16; i++) { 2589 if (sc->bbp_prom[i].reg == 0xff) 2590 continue; 2591 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2592 } 2593 #endif 2594 2595 return 0; 2596 #undef N 2597 } 2598 2599 static void 2600 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) 2601 { 2602 uint32_t tmp; 2603 uint8_t tx; 2604 2605 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; 2606 if (antenna == 1) 2607 tx |= RT2560_BBP_ANTA; 2608 else if (antenna == 2) 2609 tx |= RT2560_BBP_ANTB; 2610 else 2611 tx |= RT2560_BBP_DIVERSITY; 2612 2613 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2614 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || 2615 sc->rf_rev == RT2560_RF_5222) 2616 tx |= RT2560_BBP_FLIPIQ; 2617 2618 rt2560_bbp_write(sc, RT2560_BBP_TX, tx); 2619 2620 /* update values for CCK and OFDM in BBPCSR1 */ 2621 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; 2622 tmp |= (tx & 0x7) << 16 | (tx & 0x7); 2623 RAL_WRITE(sc, RT2560_BBPCSR1, tmp); 2624 } 2625 2626 static void 2627 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) 2628 { 2629 uint8_t rx; 2630 2631 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; 2632 if (antenna == 1) 2633 rx |= RT2560_BBP_ANTA; 2634 else if (antenna == 2) 2635 rx |= RT2560_BBP_ANTB; 2636 else 2637 rx |= RT2560_BBP_DIVERSITY; 2638 2639 /* need to force no I/Q flip for RF 2525e and 2526 */ 2640 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) 2641 rx &= ~RT2560_BBP_FLIPIQ; 2642 2643 rt2560_bbp_write(sc, RT2560_BBP_RX, rx); 2644 } 2645 2646 static void 2647 rt2560_init(void *priv) 2648 { 2649 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2650 struct rt2560_softc *sc = priv; 2651 struct ieee80211com *ic = &sc->sc_ic; 2652 struct ifnet *ifp = ic->ic_ifp; 2653 uint32_t tmp; 2654 int i; 2655 2656 RAL_LOCK(sc); 2657 2658 rt2560_stop(sc); 2659 2660 /* setup tx rings */ 2661 tmp = RT2560_PRIO_RING_COUNT << 24 | 2662 RT2560_ATIM_RING_COUNT << 16 | 2663 RT2560_TX_RING_COUNT << 8 | 2664 RT2560_TX_DESC_SIZE; 2665 2666 /* rings must be initialized in this exact order */ 2667 RAL_WRITE(sc, RT2560_TXCSR2, tmp); 2668 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); 2669 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); 2670 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); 2671 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); 2672 2673 /* setup rx ring */ 2674 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; 2675 2676 RAL_WRITE(sc, RT2560_RXCSR1, tmp); 2677 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); 2678 2679 /* initialize MAC registers to default values */ 2680 for (i = 0; i < N(rt2560_def_mac); i++) 2681 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); 2682 2683 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2684 rt2560_set_macaddr(sc, ic->ic_myaddr); 2685 2686 /* set basic rate set (will be updated later) */ 2687 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); 2688 2689 rt2560_set_txantenna(sc, sc->tx_ant); 2690 rt2560_set_rxantenna(sc, sc->rx_ant); 2691 rt2560_update_slot(ifp); 2692 rt2560_update_plcp(sc); 2693 rt2560_update_led(sc, 0, 0); 2694 2695 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2696 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); 2697 2698 if (rt2560_bbp_init(sc) != 0) { 2699 rt2560_stop(sc); 2700 RAL_UNLOCK(sc); 2701 return; 2702 } 2703 2704 /* set default BSS channel */ 2705 rt2560_set_chan(sc, ic->ic_curchan); 2706 2707 /* kick Rx */ 2708 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; 2709 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2710 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; 2711 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2712 tmp |= RT2560_DROP_TODS; 2713 if (!(ifp->if_flags & IFF_PROMISC)) 2714 tmp |= RT2560_DROP_NOT_TO_ME; 2715 } 2716 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2717 2718 /* clear old FCS and Rx FIFO errors */ 2719 RAL_READ(sc, RT2560_CNT0); 2720 RAL_READ(sc, RT2560_CNT4); 2721 2722 /* clear any pending interrupts */ 2723 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); 2724 2725 /* enable interrupts */ 2726 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 2727 2728 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2729 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2730 2731 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2732 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2733 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2734 } else 2735 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2736 2737 RAL_UNLOCK(sc); 2738 #undef N 2739 } 2740 2741 void 2742 rt2560_stop(void *priv) 2743 { 2744 struct rt2560_softc *sc = priv; 2745 struct ieee80211com *ic = &sc->sc_ic; 2746 struct ifnet *ifp = ic->ic_ifp; 2747 2748 sc->sc_tx_timer = 0; 2749 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2750 2751 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2752 2753 /* abort Tx */ 2754 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); 2755 2756 /* disable Rx */ 2757 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); 2758 2759 /* reset ASIC (imply reset BBP) */ 2760 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2761 RAL_WRITE(sc, RT2560_CSR1, 0); 2762 2763 /* disable interrupts */ 2764 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 2765 2766 /* reset Tx and Rx rings */ 2767 rt2560_reset_tx_ring(sc, &sc->txq); 2768 rt2560_reset_tx_ring(sc, &sc->atimq); 2769 rt2560_reset_tx_ring(sc, &sc->prioq); 2770 rt2560_reset_tx_ring(sc, &sc->bcnq); 2771 rt2560_reset_rx_ring(sc, &sc->rxq); 2772 } 2773 2774 static int 2775 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2776 const struct ieee80211_bpf_params *params) 2777 { 2778 struct ieee80211com *ic = ni->ni_ic; 2779 struct ifnet *ifp = ic->ic_ifp; 2780 struct rt2560_softc *sc = ifp->if_softc; 2781 2782 RAL_LOCK(sc); 2783 2784 /* prevent management frames from being sent if we're not ready */ 2785 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2786 RAL_UNLOCK(sc); 2787 m_freem(m); 2788 ieee80211_free_node(ni); 2789 return ENETDOWN; 2790 } 2791 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 2792 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2793 RAL_UNLOCK(sc); 2794 m_freem(m); 2795 ieee80211_free_node(ni); 2796 return ENOBUFS; /* XXX */ 2797 } 2798 2799 if (bpf_peers_present(ic->ic_rawbpf)) 2800 bpf_mtap(ic->ic_rawbpf, m); 2801 2802 ifp->if_opackets++; 2803 2804 if (params == NULL) { 2805 /* 2806 * Legacy path; interpret frame contents to decide 2807 * precisely how to send the frame. 2808 */ 2809 if (rt2560_tx_mgt(sc, m, ni) != 0) 2810 goto bad; 2811 } else { 2812 /* 2813 * Caller supplied explicit parameters to use in 2814 * sending the frame. 2815 */ 2816 if (rt2560_tx_raw(sc, m, ni, params)) 2817 goto bad; 2818 } 2819 sc->sc_tx_timer = 5; 2820 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2821 2822 RAL_UNLOCK(sc); 2823 2824 return 0; 2825 bad: 2826 ifp->if_oerrors++; 2827 ieee80211_free_node(ni); 2828 RAL_UNLOCK(sc); 2829 return EIO; /* XXX */ 2830 } 2831