xref: /freebsd/sys/dev/ral/rt2560.c (revision 87569f75a91f298c52a71823c04d41cf53c88889)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/module.h>
37 #include <sys/bus.h>
38 #include <sys/endian.h>
39 
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <machine/clock.h>
43 #include <sys/rman.h>
44 
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/ethernet.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_radiotap.h>
55 
56 #include <netinet/in.h>
57 #include <netinet/in_systm.h>
58 #include <netinet/in_var.h>
59 #include <netinet/ip.h>
60 #include <netinet/if_ether.h>
61 
62 #include <dev/ral/if_ralrate.h>
63 #include <dev/ral/rt2560reg.h>
64 #include <dev/ral/rt2560var.h>
65 
66 #ifdef RAL_DEBUG
67 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
68 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
69 extern int ral_debug;
70 #else
71 #define DPRINTF(x)
72 #define DPRINTFN(n, x)
73 #endif
74 
75 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
76 			    int);
77 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
78 			    struct rt2560_tx_ring *, int);
79 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
80 			    struct rt2560_tx_ring *);
81 static void		rt2560_free_tx_ring(struct rt2560_softc *,
82 			    struct rt2560_tx_ring *);
83 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
84 			    struct rt2560_rx_ring *, int);
85 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
86 			    struct rt2560_rx_ring *);
87 static void		rt2560_free_rx_ring(struct rt2560_softc *,
88 			    struct rt2560_rx_ring *);
89 static struct		ieee80211_node *rt2560_node_alloc(
90 			    struct ieee80211_node_table *);
91 static int		rt2560_media_change(struct ifnet *);
92 static void		rt2560_next_scan(void *);
93 static void		rt2560_iter_func(void *, struct ieee80211_node *);
94 static void		rt2560_update_rssadapt(void *);
95 static int		rt2560_newstate(struct ieee80211com *,
96 			    enum ieee80211_state, int);
97 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
98 static void		rt2560_encryption_intr(struct rt2560_softc *);
99 static void		rt2560_tx_intr(struct rt2560_softc *);
100 static void		rt2560_prio_intr(struct rt2560_softc *);
101 static void		rt2560_decryption_intr(struct rt2560_softc *);
102 static void		rt2560_rx_intr(struct rt2560_softc *);
103 static void		rt2560_beacon_expire(struct rt2560_softc *);
104 static void		rt2560_wakeup_expire(struct rt2560_softc *);
105 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
106 static int		rt2560_ack_rate(struct ieee80211com *, int);
107 static uint16_t		rt2560_txtime(int, int, uint32_t);
108 static uint8_t		rt2560_plcp_signal(int);
109 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
110 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
111 			    bus_addr_t);
112 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
113 			    struct ieee80211_node *);
114 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
115 			    struct ieee80211_node *);
116 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
117 			    struct ieee80211_frame *, uint16_t);
118 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
119 			    struct ieee80211_node *);
120 static void		rt2560_start(struct ifnet *);
121 static void		rt2560_watchdog(struct ifnet *);
122 static int		rt2560_reset(struct ifnet *);
123 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
124 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
125 			    uint8_t);
126 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
127 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
128 			    uint32_t);
129 static void		rt2560_set_chan(struct rt2560_softc *,
130 			    struct ieee80211_channel *);
131 #if 0
132 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
133 #endif
134 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
135 static void		rt2560_update_plcp(struct rt2560_softc *);
136 static void		rt2560_update_slot(struct ifnet *);
137 static void		rt2560_set_basicrates(struct rt2560_softc *);
138 static void		rt2560_update_led(struct rt2560_softc *, int, int);
139 static void		rt2560_set_bssid(struct rt2560_softc *, uint8_t *);
140 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
141 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
142 static void		rt2560_update_promisc(struct rt2560_softc *);
143 static const char	*rt2560_get_rf(int);
144 static void		rt2560_read_eeprom(struct rt2560_softc *);
145 static int		rt2560_bbp_init(struct rt2560_softc *);
146 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
147 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
148 static void		rt2560_init(void *);
149 static void		rt2560_stop(void *);
150 
151 /*
152  * Supported rates for 802.11a/b/g modes (in 500Kbps unit).
153  */
154 static const struct ieee80211_rateset rt2560_rateset_11a =
155 	{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
156 
157 static const struct ieee80211_rateset rt2560_rateset_11b =
158 	{ 4, { 2, 4, 11, 22 } };
159 
160 static const struct ieee80211_rateset rt2560_rateset_11g =
161 	{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
162 
163 static const struct {
164 	uint32_t	reg;
165 	uint32_t	val;
166 } rt2560_def_mac[] = {
167 	RT2560_DEF_MAC
168 };
169 
170 static const struct {
171 	uint8_t	reg;
172 	uint8_t	val;
173 } rt2560_def_bbp[] = {
174 	RT2560_DEF_BBP
175 };
176 
177 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
178 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
179 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
180 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
181 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
182 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
183 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
184 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
185 
186 static const struct {
187 	uint8_t		chan;
188 	uint32_t	r1, r2, r4;
189 } rt2560_rf5222[] = {
190 	RT2560_RF5222
191 };
192 
193 int
194 rt2560_attach(device_t dev, int id)
195 {
196 	struct rt2560_softc *sc = device_get_softc(dev);
197 	struct ieee80211com *ic = &sc->sc_ic;
198 	struct ifnet *ifp;
199 	int error, i;
200 
201 	sc->sc_dev = dev;
202 
203 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
204 	    MTX_DEF | MTX_RECURSE);
205 
206 	callout_init(&sc->scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
207 	callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
208 
209 	/* retrieve RT2560 rev. no */
210 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
211 
212 	/* retrieve MAC address */
213 	rt2560_get_macaddr(sc, ic->ic_myaddr);
214 
215 	/* retrieve RF rev. no and various other things from EEPROM */
216 	rt2560_read_eeprom(sc);
217 
218 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
219 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
220 
221 	/*
222 	 * Allocate Tx and Rx rings.
223 	 */
224 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
225 	if (error != 0) {
226 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
227 		goto fail1;
228 	}
229 
230 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
231 	if (error != 0) {
232 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
233 		goto fail2;
234 	}
235 
236 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
237 	if (error != 0) {
238 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
239 		goto fail3;
240 	}
241 
242 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
243 	if (error != 0) {
244 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
245 		goto fail4;
246 	}
247 
248 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
249 	if (error != 0) {
250 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
251 		goto fail5;
252 	}
253 
254 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
255 	if (ifp == NULL) {
256 		device_printf(sc->sc_dev, "can not if_alloc()\n");
257 		goto fail6;
258 	}
259 
260 	ifp->if_softc = sc;
261 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
262 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
263 	ifp->if_init = rt2560_init;
264 	ifp->if_ioctl = rt2560_ioctl;
265 	ifp->if_start = rt2560_start;
266 	ifp->if_watchdog = rt2560_watchdog;
267 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
268 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
269 	IFQ_SET_READY(&ifp->if_snd);
270 
271 	ic->ic_ifp = ifp;
272 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
273 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
274 	ic->ic_state = IEEE80211_S_INIT;
275 
276 	/* set device capabilities */
277 	ic->ic_caps =
278 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
279 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
280 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
281 	    IEEE80211_C_TXPMGT |	/* tx power management */
282 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
283 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
284 	    IEEE80211_C_WPA;		/* 802.11i */
285 
286 	if (sc->rf_rev == RT2560_RF_5222) {
287 		/* set supported .11a rates */
288 		ic->ic_sup_rates[IEEE80211_MODE_11A] = rt2560_rateset_11a;
289 
290 		/* set supported .11a channels */
291 		for (i = 36; i <= 64; i += 4) {
292 			ic->ic_channels[i].ic_freq =
293 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
294 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
295 		}
296 		for (i = 100; i <= 140; i += 4) {
297 			ic->ic_channels[i].ic_freq =
298 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
299 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
300 		}
301 		for (i = 149; i <= 161; i += 4) {
302 			ic->ic_channels[i].ic_freq =
303 			    ieee80211_ieee2mhz(i, IEEE80211_CHAN_5GHZ);
304 			ic->ic_channels[i].ic_flags = IEEE80211_CHAN_A;
305 		}
306 	}
307 
308 	/* set supported .11b and .11g rates */
309 	ic->ic_sup_rates[IEEE80211_MODE_11B] = rt2560_rateset_11b;
310 	ic->ic_sup_rates[IEEE80211_MODE_11G] = rt2560_rateset_11g;
311 
312 	/* set supported .11b and .11g channels (1 through 14) */
313 	for (i = 1; i <= 14; i++) {
314 		ic->ic_channels[i].ic_freq =
315 		    ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
316 		ic->ic_channels[i].ic_flags =
317 		    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
318 		    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
319 	}
320 
321 	ieee80211_ifattach(ic);
322 	ic->ic_node_alloc = rt2560_node_alloc;
323 	ic->ic_updateslot = rt2560_update_slot;
324 	ic->ic_reset = rt2560_reset;
325 	/* enable s/w bmiss handling in sta mode */
326 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
327 
328 	/* override state transition machine */
329 	sc->sc_newstate = ic->ic_newstate;
330 	ic->ic_newstate = rt2560_newstate;
331 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
332 
333 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
334 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
335 
336 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
337 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
338 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
339 
340 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
341 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
342 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
343 
344 	/*
345 	 * Add a few sysctl knobs.
346 	 */
347 	sc->dwelltime = 200;
348 
349 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
350 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
351 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
352 
353 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
354 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
355 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
356 
357 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
358 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
359 	    CTLFLAG_RW, &sc->dwelltime, 0,
360 	    "channel dwell time (ms) for AP/station scanning");
361 
362 	if (bootverbose)
363 		ieee80211_announce(ic);
364 
365 	return 0;
366 
367 fail6:	rt2560_free_rx_ring(sc, &sc->rxq);
368 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
369 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
370 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
371 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
372 fail1:	mtx_destroy(&sc->sc_mtx);
373 
374 	return ENXIO;
375 }
376 
377 int
378 rt2560_detach(void *xsc)
379 {
380 	struct rt2560_softc *sc = xsc;
381 	struct ieee80211com *ic = &sc->sc_ic;
382 	struct ifnet *ifp = ic->ic_ifp;
383 
384 	rt2560_stop(sc);
385 	callout_stop(&sc->scan_ch);
386 	callout_stop(&sc->rssadapt_ch);
387 
388 	bpfdetach(ifp);
389 	ieee80211_ifdetach(ic);
390 
391 	rt2560_free_tx_ring(sc, &sc->txq);
392 	rt2560_free_tx_ring(sc, &sc->atimq);
393 	rt2560_free_tx_ring(sc, &sc->prioq);
394 	rt2560_free_tx_ring(sc, &sc->bcnq);
395 	rt2560_free_rx_ring(sc, &sc->rxq);
396 
397 	if_free(ifp);
398 
399 	mtx_destroy(&sc->sc_mtx);
400 
401 	return 0;
402 }
403 
404 void
405 rt2560_shutdown(void *xsc)
406 {
407 	struct rt2560_softc *sc = xsc;
408 
409 	rt2560_stop(sc);
410 }
411 
412 void
413 rt2560_suspend(void *xsc)
414 {
415 	struct rt2560_softc *sc = xsc;
416 
417 	rt2560_stop(sc);
418 }
419 
420 void
421 rt2560_resume(void *xsc)
422 {
423 	struct rt2560_softc *sc = xsc;
424 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
425 
426 	if (ifp->if_flags & IFF_UP) {
427 		ifp->if_init(ifp->if_softc);
428 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
429 			ifp->if_start(ifp);
430 	}
431 }
432 
433 static void
434 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
435 {
436 	if (error != 0)
437 		return;
438 
439 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
440 
441 	*(bus_addr_t *)arg = segs[0].ds_addr;
442 }
443 
444 static int
445 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
446     int count)
447 {
448 	int i, error;
449 
450 	ring->count = count;
451 	ring->queued = 0;
452 	ring->cur = ring->next = 0;
453 	ring->cur_encrypt = ring->next_encrypt = 0;
454 
455 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
456 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
457 	    count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
458 	if (error != 0) {
459 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
460 		goto fail;
461 	}
462 
463 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
464 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
465 	if (error != 0) {
466 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
467 		goto fail;
468 	}
469 
470 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
471 	    count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
472 	    0);
473 	if (error != 0) {
474 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
475 		goto fail;
476 	}
477 
478 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
479 	    M_NOWAIT | M_ZERO);
480 	if (ring->data == NULL) {
481 		device_printf(sc->sc_dev, "could not allocate soft data\n");
482 		error = ENOMEM;
483 		goto fail;
484 	}
485 
486 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
487 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
488 	    MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
489 	if (error != 0) {
490 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
491 		goto fail;
492 	}
493 
494 	for (i = 0; i < count; i++) {
495 		error = bus_dmamap_create(ring->data_dmat, 0,
496 		    &ring->data[i].map);
497 		if (error != 0) {
498 			device_printf(sc->sc_dev, "could not create DMA map\n");
499 			goto fail;
500 		}
501 	}
502 
503 	return 0;
504 
505 fail:	rt2560_free_tx_ring(sc, ring);
506 	return error;
507 }
508 
509 static void
510 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
511 {
512 	struct rt2560_tx_desc *desc;
513 	struct rt2560_tx_data *data;
514 	int i;
515 
516 	for (i = 0; i < ring->count; i++) {
517 		desc = &ring->desc[i];
518 		data = &ring->data[i];
519 
520 		if (data->m != NULL) {
521 			bus_dmamap_sync(ring->data_dmat, data->map,
522 			    BUS_DMASYNC_POSTWRITE);
523 			bus_dmamap_unload(ring->data_dmat, data->map);
524 			m_freem(data->m);
525 			data->m = NULL;
526 		}
527 
528 		if (data->ni != NULL) {
529 			ieee80211_free_node(data->ni);
530 			data->ni = NULL;
531 		}
532 
533 		desc->flags = 0;
534 	}
535 
536 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
537 
538 	ring->queued = 0;
539 	ring->cur = ring->next = 0;
540 	ring->cur_encrypt = ring->next_encrypt = 0;
541 }
542 
543 static void
544 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
545 {
546 	struct rt2560_tx_data *data;
547 	int i;
548 
549 	if (ring->desc != NULL) {
550 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
551 		    BUS_DMASYNC_POSTWRITE);
552 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
553 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
554 	}
555 
556 	if (ring->desc_dmat != NULL)
557 		bus_dma_tag_destroy(ring->desc_dmat);
558 
559 	if (ring->data != NULL) {
560 		for (i = 0; i < ring->count; i++) {
561 			data = &ring->data[i];
562 
563 			if (data->m != NULL) {
564 				bus_dmamap_sync(ring->data_dmat, data->map,
565 				    BUS_DMASYNC_POSTWRITE);
566 				bus_dmamap_unload(ring->data_dmat, data->map);
567 				m_freem(data->m);
568 			}
569 
570 			if (data->ni != NULL)
571 				ieee80211_free_node(data->ni);
572 
573 			if (data->map != NULL)
574 				bus_dmamap_destroy(ring->data_dmat, data->map);
575 		}
576 
577 		free(ring->data, M_DEVBUF);
578 	}
579 
580 	if (ring->data_dmat != NULL)
581 		bus_dma_tag_destroy(ring->data_dmat);
582 }
583 
584 static int
585 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
586     int count)
587 {
588 	struct rt2560_rx_desc *desc;
589 	struct rt2560_rx_data *data;
590 	bus_addr_t physaddr;
591 	int i, error;
592 
593 	ring->count = count;
594 	ring->cur = ring->next = 0;
595 	ring->cur_decrypt = 0;
596 
597 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
598 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
599 	    count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
600 	if (error != 0) {
601 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
602 		goto fail;
603 	}
604 
605 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
606 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
607 	if (error != 0) {
608 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
609 		goto fail;
610 	}
611 
612 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
613 	    count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
614 	    0);
615 	if (error != 0) {
616 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
617 		goto fail;
618 	}
619 
620 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
621 	    M_NOWAIT | M_ZERO);
622 	if (ring->data == NULL) {
623 		device_printf(sc->sc_dev, "could not allocate soft data\n");
624 		error = ENOMEM;
625 		goto fail;
626 	}
627 
628 	/*
629 	 * Pre-allocate Rx buffers and populate Rx ring.
630 	 */
631 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
632 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
633 	    NULL, &ring->data_dmat);
634 	if (error != 0) {
635 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
636 		goto fail;
637 	}
638 
639 	for (i = 0; i < count; i++) {
640 		desc = &sc->rxq.desc[i];
641 		data = &sc->rxq.data[i];
642 
643 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
644 		if (error != 0) {
645 			device_printf(sc->sc_dev, "could not create DMA map\n");
646 			goto fail;
647 		}
648 
649 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
650 		if (data->m == NULL) {
651 			device_printf(sc->sc_dev,
652 			    "could not allocate rx mbuf\n");
653 			error = ENOMEM;
654 			goto fail;
655 		}
656 
657 		error = bus_dmamap_load(ring->data_dmat, data->map,
658 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
659 		    &physaddr, 0);
660 		if (error != 0) {
661 			device_printf(sc->sc_dev,
662 			    "could not load rx buf DMA map");
663 			goto fail;
664 		}
665 
666 		desc->flags = htole32(RT2560_RX_BUSY);
667 		desc->physaddr = htole32(physaddr);
668 	}
669 
670 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
671 
672 	return 0;
673 
674 fail:	rt2560_free_rx_ring(sc, ring);
675 	return error;
676 }
677 
678 static void
679 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
680 {
681 	int i;
682 
683 	for (i = 0; i < ring->count; i++) {
684 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
685 		ring->data[i].drop = 0;
686 	}
687 
688 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
689 
690 	ring->cur = ring->next = 0;
691 	ring->cur_decrypt = 0;
692 }
693 
694 static void
695 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
696 {
697 	struct rt2560_rx_data *data;
698 	int i;
699 
700 	if (ring->desc != NULL) {
701 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
702 		    BUS_DMASYNC_POSTWRITE);
703 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
704 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
705 	}
706 
707 	if (ring->desc_dmat != NULL)
708 		bus_dma_tag_destroy(ring->desc_dmat);
709 
710 	if (ring->data != NULL) {
711 		for (i = 0; i < ring->count; i++) {
712 			data = &ring->data[i];
713 
714 			if (data->m != NULL) {
715 				bus_dmamap_sync(ring->data_dmat, data->map,
716 				    BUS_DMASYNC_POSTREAD);
717 				bus_dmamap_unload(ring->data_dmat, data->map);
718 				m_freem(data->m);
719 			}
720 
721 			if (data->map != NULL)
722 				bus_dmamap_destroy(ring->data_dmat, data->map);
723 		}
724 
725 		free(ring->data, M_DEVBUF);
726 	}
727 
728 	if (ring->data_dmat != NULL)
729 		bus_dma_tag_destroy(ring->data_dmat);
730 }
731 
732 static struct ieee80211_node *
733 rt2560_node_alloc(struct ieee80211_node_table *nt)
734 {
735 	struct rt2560_node *rn;
736 
737 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
738 	    M_NOWAIT | M_ZERO);
739 
740 	return (rn != NULL) ? &rn->ni : NULL;
741 }
742 
743 static int
744 rt2560_media_change(struct ifnet *ifp)
745 {
746 	struct rt2560_softc *sc = ifp->if_softc;
747 	int error;
748 
749 	error = ieee80211_media_change(ifp);
750 	if (error != ENETRESET)
751 		return error;
752 
753 	if ((ifp->if_flags & IFF_UP) &&
754 	    (ifp->if_drv_flags & IFF_DRV_RUNNING))
755 		rt2560_init(sc);
756 
757 	return 0;
758 }
759 
760 /*
761  * This function is called periodically (every 200ms) during scanning to
762  * switch from one channel to another.
763  */
764 static void
765 rt2560_next_scan(void *arg)
766 {
767 	struct rt2560_softc *sc = arg;
768 	struct ieee80211com *ic = &sc->sc_ic;
769 
770 	if (ic->ic_state == IEEE80211_S_SCAN)
771 		ieee80211_next_scan(ic);
772 }
773 
774 /*
775  * This function is called for each node present in the node station table.
776  */
777 static void
778 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
779 {
780 	struct rt2560_node *rn = (struct rt2560_node *)ni;
781 
782 	ral_rssadapt_updatestats(&rn->rssadapt);
783 }
784 
785 /*
786  * This function is called periodically (every 100ms) in RUN state to update
787  * the rate adaptation statistics.
788  */
789 static void
790 rt2560_update_rssadapt(void *arg)
791 {
792 	struct rt2560_softc *sc = arg;
793 	struct ieee80211com *ic = &sc->sc_ic;
794 
795 	RAL_LOCK(sc);
796 
797 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
798 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
799 
800 	RAL_UNLOCK(sc);
801 }
802 
803 static int
804 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
805 {
806 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
807 	enum ieee80211_state ostate;
808 	struct ieee80211_node *ni;
809 	struct mbuf *m;
810 	int error = 0;
811 
812 	ostate = ic->ic_state;
813 	callout_stop(&sc->scan_ch);
814 
815 	switch (nstate) {
816 	case IEEE80211_S_INIT:
817 		callout_stop(&sc->rssadapt_ch);
818 
819 		if (ostate == IEEE80211_S_RUN) {
820 			/* abort TSF synchronization */
821 			RAL_WRITE(sc, RT2560_CSR14, 0);
822 
823 			/* turn association led off */
824 			rt2560_update_led(sc, 0, 0);
825 		}
826 		break;
827 
828 	case IEEE80211_S_SCAN:
829 		rt2560_set_chan(sc, ic->ic_curchan);
830 		callout_reset(&sc->scan_ch, (sc->dwelltime * hz) / 1000,
831 		    rt2560_next_scan, sc);
832 		break;
833 
834 	case IEEE80211_S_AUTH:
835 		rt2560_set_chan(sc, ic->ic_curchan);
836 		break;
837 
838 	case IEEE80211_S_ASSOC:
839 		rt2560_set_chan(sc, ic->ic_curchan);
840 		break;
841 
842 	case IEEE80211_S_RUN:
843 		rt2560_set_chan(sc, ic->ic_curchan);
844 
845 		ni = ic->ic_bss;
846 
847 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
848 			rt2560_update_plcp(sc);
849 			rt2560_set_basicrates(sc);
850 			rt2560_set_bssid(sc, ni->ni_bssid);
851 		}
852 
853 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
854 		    ic->ic_opmode == IEEE80211_M_IBSS) {
855 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
856 			if (m == NULL) {
857 				device_printf(sc->sc_dev,
858 				    "could not allocate beacon\n");
859 				error = ENOBUFS;
860 				break;
861 			}
862 
863 			ieee80211_ref_node(ni);
864 			error = rt2560_tx_bcn(sc, m, ni);
865 			if (error != 0)
866 				break;
867 		}
868 
869 		/* turn assocation led on */
870 		rt2560_update_led(sc, 1, 0);
871 
872 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
873 			callout_reset(&sc->rssadapt_ch, hz / 10,
874 			    rt2560_update_rssadapt, sc);
875 
876 			rt2560_enable_tsf_sync(sc);
877 		}
878 		break;
879 	}
880 
881 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
882 }
883 
884 /*
885  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
886  * 93C66).
887  */
888 static uint16_t
889 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
890 {
891 	uint32_t tmp;
892 	uint16_t val;
893 	int n;
894 
895 	/* clock C once before the first command */
896 	RT2560_EEPROM_CTL(sc, 0);
897 
898 	RT2560_EEPROM_CTL(sc, RT2560_S);
899 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
900 	RT2560_EEPROM_CTL(sc, RT2560_S);
901 
902 	/* write start bit (1) */
903 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
904 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
905 
906 	/* write READ opcode (10) */
907 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
908 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
909 	RT2560_EEPROM_CTL(sc, RT2560_S);
910 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
911 
912 	/* write address (A5-A0 or A7-A0) */
913 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
914 	for (; n >= 0; n--) {
915 		RT2560_EEPROM_CTL(sc, RT2560_S |
916 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
917 		RT2560_EEPROM_CTL(sc, RT2560_S |
918 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
919 	}
920 
921 	RT2560_EEPROM_CTL(sc, RT2560_S);
922 
923 	/* read data Q15-Q0 */
924 	val = 0;
925 	for (n = 15; n >= 0; n--) {
926 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
927 		tmp = RAL_READ(sc, RT2560_CSR21);
928 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
929 		RT2560_EEPROM_CTL(sc, RT2560_S);
930 	}
931 
932 	RT2560_EEPROM_CTL(sc, 0);
933 
934 	/* clear Chip Select and clock C */
935 	RT2560_EEPROM_CTL(sc, RT2560_S);
936 	RT2560_EEPROM_CTL(sc, 0);
937 	RT2560_EEPROM_CTL(sc, RT2560_C);
938 
939 	return val;
940 }
941 
942 /*
943  * Some frames were processed by the hardware cipher engine and are ready for
944  * transmission.
945  */
946 static void
947 rt2560_encryption_intr(struct rt2560_softc *sc)
948 {
949 	struct rt2560_tx_desc *desc;
950 	int hw;
951 
952 	/* retrieve last descriptor index processed by cipher engine */
953 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
954 	hw /= RT2560_TX_DESC_SIZE;
955 
956 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
957 	    BUS_DMASYNC_POSTREAD);
958 
959 	for (; sc->txq.next_encrypt != hw;) {
960 		desc = &sc->txq.desc[sc->txq.next_encrypt];
961 
962 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
963 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
964 			break;
965 
966 		/* for TKIP, swap eiv field to fix a bug in ASIC */
967 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
968 		    RT2560_TX_CIPHER_TKIP)
969 			desc->eiv = bswap32(desc->eiv);
970 
971 		/* mark the frame ready for transmission */
972 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
973 
974 		DPRINTFN(15, ("encryption done idx=%u\n",
975 		    sc->txq.next_encrypt));
976 
977 		sc->txq.next_encrypt =
978 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
979 	}
980 
981 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
982 	    BUS_DMASYNC_PREWRITE);
983 
984 	/* kick Tx */
985 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
986 }
987 
988 static void
989 rt2560_tx_intr(struct rt2560_softc *sc)
990 {
991 	struct ieee80211com *ic = &sc->sc_ic;
992 	struct ifnet *ifp = ic->ic_ifp;
993 	struct rt2560_tx_desc *desc;
994 	struct rt2560_tx_data *data;
995 	struct rt2560_node *rn;
996 
997 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
998 	    BUS_DMASYNC_POSTREAD);
999 
1000 	for (;;) {
1001 		desc = &sc->txq.desc[sc->txq.next];
1002 		data = &sc->txq.data[sc->txq.next];
1003 
1004 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1005 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
1006 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1007 			break;
1008 
1009 		rn = (struct rt2560_node *)data->ni;
1010 
1011 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1012 		case RT2560_TX_SUCCESS:
1013 			DPRINTFN(10, ("data frame sent successfully\n"));
1014 			if (data->id.id_node != NULL) {
1015 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
1016 				    &data->id);
1017 			}
1018 			ifp->if_opackets++;
1019 			break;
1020 
1021 		case RT2560_TX_SUCCESS_RETRY:
1022 			DPRINTFN(9, ("data frame sent after %u retries\n",
1023 			    (le32toh(desc->flags) >> 5) & 0x7));
1024 			ifp->if_opackets++;
1025 			break;
1026 
1027 		case RT2560_TX_FAIL_RETRY:
1028 			DPRINTFN(9, ("sending data frame failed (too much "
1029 			    "retries)\n"));
1030 			if (data->id.id_node != NULL) {
1031 				ral_rssadapt_lower_rate(ic, data->ni,
1032 				    &rn->rssadapt, &data->id);
1033 			}
1034 			ifp->if_oerrors++;
1035 			break;
1036 
1037 		case RT2560_TX_FAIL_INVALID:
1038 		case RT2560_TX_FAIL_OTHER:
1039 		default:
1040 			device_printf(sc->sc_dev, "sending data frame failed "
1041 			    "0x%08x\n", le32toh(desc->flags));
1042 			ifp->if_oerrors++;
1043 		}
1044 
1045 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1046 		    BUS_DMASYNC_POSTWRITE);
1047 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
1048 		m_freem(data->m);
1049 		data->m = NULL;
1050 		ieee80211_free_node(data->ni);
1051 		data->ni = NULL;
1052 
1053 		/* descriptor is no longer valid */
1054 		desc->flags &= ~htole32(RT2560_TX_VALID);
1055 
1056 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
1057 
1058 		sc->txq.queued--;
1059 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1060 	}
1061 
1062 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1063 	    BUS_DMASYNC_PREWRITE);
1064 
1065 	sc->sc_tx_timer = 0;
1066 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1067 	rt2560_start(ifp);
1068 }
1069 
1070 static void
1071 rt2560_prio_intr(struct rt2560_softc *sc)
1072 {
1073 	struct ieee80211com *ic = &sc->sc_ic;
1074 	struct ifnet *ifp = ic->ic_ifp;
1075 	struct rt2560_tx_desc *desc;
1076 	struct rt2560_tx_data *data;
1077 
1078 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1079 	    BUS_DMASYNC_POSTREAD);
1080 
1081 	for (;;) {
1082 		desc = &sc->prioq.desc[sc->prioq.next];
1083 		data = &sc->prioq.data[sc->prioq.next];
1084 
1085 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
1086 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
1087 			break;
1088 
1089 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
1090 		case RT2560_TX_SUCCESS:
1091 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1092 			break;
1093 
1094 		case RT2560_TX_SUCCESS_RETRY:
1095 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1096 			    (le32toh(desc->flags) >> 5) & 0x7));
1097 			break;
1098 
1099 		case RT2560_TX_FAIL_RETRY:
1100 			DPRINTFN(9, ("sending mgt frame failed (too much "
1101 			    "retries)\n"));
1102 			break;
1103 
1104 		case RT2560_TX_FAIL_INVALID:
1105 		case RT2560_TX_FAIL_OTHER:
1106 		default:
1107 			device_printf(sc->sc_dev, "sending mgt frame failed "
1108 			    "0x%08x\n", le32toh(desc->flags));
1109 		}
1110 
1111 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1112 		    BUS_DMASYNC_POSTWRITE);
1113 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1114 		m_freem(data->m);
1115 		data->m = NULL;
1116 		ieee80211_free_node(data->ni);
1117 		data->ni = NULL;
1118 
1119 		/* descriptor is no longer valid */
1120 		desc->flags &= ~htole32(RT2560_TX_VALID);
1121 
1122 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1123 
1124 		sc->prioq.queued--;
1125 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1126 	}
1127 
1128 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1129 	    BUS_DMASYNC_PREWRITE);
1130 
1131 	sc->sc_tx_timer = 0;
1132 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1133 	rt2560_start(ifp);
1134 }
1135 
1136 /*
1137  * Some frames were processed by the hardware cipher engine and are ready for
1138  * transmission to the IEEE802.11 layer.
1139  */
1140 static void
1141 rt2560_decryption_intr(struct rt2560_softc *sc)
1142 {
1143 	struct ieee80211com *ic = &sc->sc_ic;
1144 	struct ifnet *ifp = ic->ic_ifp;
1145 	struct rt2560_rx_desc *desc;
1146 	struct rt2560_rx_data *data;
1147 	bus_addr_t physaddr;
1148 	struct ieee80211_frame *wh;
1149 	struct ieee80211_node *ni;
1150 	struct rt2560_node *rn;
1151 	struct mbuf *mnew, *m;
1152 	int hw, error;
1153 
1154 	/* retrieve last decriptor index processed by cipher engine */
1155 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1156 	hw /= RT2560_RX_DESC_SIZE;
1157 
1158 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1159 	    BUS_DMASYNC_POSTREAD);
1160 
1161 	for (; sc->rxq.cur_decrypt != hw;) {
1162 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1163 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1164 
1165 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1166 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1167 			break;
1168 
1169 		if (data->drop) {
1170 			ifp->if_ierrors++;
1171 			goto skip;
1172 		}
1173 
1174 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1175 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1176 			ifp->if_ierrors++;
1177 			goto skip;
1178 		}
1179 
1180 		/*
1181 		 * Try to allocate a new mbuf for this ring element and load it
1182 		 * before processing the current mbuf. If the ring element
1183 		 * cannot be loaded, drop the received packet and reuse the old
1184 		 * mbuf. In the unlikely case that the old mbuf can't be
1185 		 * reloaded either, explicitly panic.
1186 		 */
1187 		mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1188 		if (mnew == NULL) {
1189 			ifp->if_ierrors++;
1190 			goto skip;
1191 		}
1192 
1193 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1194 		    BUS_DMASYNC_POSTREAD);
1195 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1196 
1197 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1198 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1199 		    &physaddr, 0);
1200 		if (error != 0) {
1201 			m_freem(mnew);
1202 
1203 			/* try to reload the old mbuf */
1204 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1205 			    mtod(data->m, void *), MCLBYTES,
1206 			    rt2560_dma_map_addr, &physaddr, 0);
1207 			if (error != 0) {
1208 				/* very unlikely that it will fail... */
1209 				panic("%s: could not load old rx mbuf",
1210 				    device_get_name(sc->sc_dev));
1211 			}
1212 			ifp->if_ierrors++;
1213 			goto skip;
1214 		}
1215 
1216 		/*
1217 	 	 * New mbuf successfully loaded, update Rx ring and continue
1218 		 * processing.
1219 		 */
1220 		m = data->m;
1221 		data->m = mnew;
1222 		desc->physaddr = htole32(physaddr);
1223 
1224 		/* finalize mbuf */
1225 		m->m_pkthdr.rcvif = ifp;
1226 		m->m_pkthdr.len = m->m_len =
1227 		    (le32toh(desc->flags) >> 16) & 0xfff;
1228 
1229 		if (sc->sc_drvbpf != NULL) {
1230 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1231 			uint32_t tsf_lo, tsf_hi;
1232 
1233 			/* get timestamp (low and high 32 bits) */
1234 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1235 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1236 
1237 			tap->wr_tsf =
1238 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1239 			tap->wr_flags = 0;
1240 			tap->wr_rate = rt2560_rxrate(desc);
1241 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1242 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1243 			tap->wr_antenna = sc->rx_ant;
1244 			tap->wr_antsignal = desc->rssi;
1245 
1246 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1247 		}
1248 
1249 		wh = mtod(m, struct ieee80211_frame *);
1250 		ni = ieee80211_find_rxnode(ic,
1251 		    (struct ieee80211_frame_min *)wh);
1252 
1253 		/* send the frame to the 802.11 layer */
1254 		ieee80211_input(ic, m, ni, desc->rssi, 0);
1255 
1256 		/* give rssi to the rate adatation algorithm */
1257 		rn = (struct rt2560_node *)ni;
1258 		ral_rssadapt_input(ic, ni, &rn->rssadapt, desc->rssi);
1259 
1260 		/* node is no longer needed */
1261 		ieee80211_free_node(ni);
1262 
1263 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1264 
1265 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1266 
1267 		sc->rxq.cur_decrypt =
1268 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1269 	}
1270 
1271 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1272 	    BUS_DMASYNC_PREWRITE);
1273 }
1274 
1275 /*
1276  * Some frames were received. Pass them to the hardware cipher engine before
1277  * sending them to the 802.11 layer.
1278  */
1279 static void
1280 rt2560_rx_intr(struct rt2560_softc *sc)
1281 {
1282 	struct rt2560_rx_desc *desc;
1283 	struct rt2560_rx_data *data;
1284 
1285 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1286 	    BUS_DMASYNC_POSTREAD);
1287 
1288 	for (;;) {
1289 		desc = &sc->rxq.desc[sc->rxq.cur];
1290 		data = &sc->rxq.data[sc->rxq.cur];
1291 
1292 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1293 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1294 			break;
1295 
1296 		data->drop = 0;
1297 
1298 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1299 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1300 			/*
1301 			 * This should not happen since we did not request
1302 			 * to receive those frames when we filled RXCSR0.
1303 			 */
1304 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1305 			    le32toh(desc->flags)));
1306 			data->drop = 1;
1307 		}
1308 
1309 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1310 			DPRINTFN(5, ("bad length\n"));
1311 			data->drop = 1;
1312 		}
1313 
1314 		/* mark the frame for decryption */
1315 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1316 
1317 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1318 
1319 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1320 	}
1321 
1322 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1323 	    BUS_DMASYNC_PREWRITE);
1324 
1325 	/* kick decrypt */
1326 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1327 }
1328 
1329 /*
1330  * This function is called periodically in IBSS mode when a new beacon must be
1331  * sent out.
1332  */
1333 static void
1334 rt2560_beacon_expire(struct rt2560_softc *sc)
1335 {
1336 	struct ieee80211com *ic = &sc->sc_ic;
1337 	struct rt2560_tx_data *data;
1338 
1339 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1340 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1341 		return;
1342 
1343 	data = &sc->bcnq.data[sc->bcnq.next];
1344 
1345 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1346 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1347 
1348 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1349 
1350 	if (ic->ic_rawbpf != NULL)
1351 		bpf_mtap(ic->ic_rawbpf, data->m);
1352 
1353 	rt2560_tx_bcn(sc, data->m, data->ni);
1354 
1355 	DPRINTFN(15, ("beacon expired\n"));
1356 
1357 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1358 }
1359 
1360 /* ARGSUSED */
1361 static void
1362 rt2560_wakeup_expire(struct rt2560_softc *sc)
1363 {
1364 	DPRINTFN(2, ("wakeup expired\n"));
1365 }
1366 
1367 void
1368 rt2560_intr(void *arg)
1369 {
1370 	struct rt2560_softc *sc = arg;
1371 	uint32_t r;
1372 
1373 	RAL_LOCK(sc);
1374 
1375 	/* disable interrupts */
1376 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1377 
1378 	r = RAL_READ(sc, RT2560_CSR7);
1379 	RAL_WRITE(sc, RT2560_CSR7, r);
1380 
1381 	if (r & RT2560_BEACON_EXPIRE)
1382 		rt2560_beacon_expire(sc);
1383 
1384 	if (r & RT2560_WAKEUP_EXPIRE)
1385 		rt2560_wakeup_expire(sc);
1386 
1387 	if (r & RT2560_ENCRYPTION_DONE)
1388 		rt2560_encryption_intr(sc);
1389 
1390 	if (r & RT2560_TX_DONE)
1391 		rt2560_tx_intr(sc);
1392 
1393 	if (r & RT2560_PRIO_DONE)
1394 		rt2560_prio_intr(sc);
1395 
1396 	if (r & RT2560_DECRYPTION_DONE)
1397 		rt2560_decryption_intr(sc);
1398 
1399 	if (r & RT2560_RX_DONE)
1400 		rt2560_rx_intr(sc);
1401 
1402 	/* re-enable interrupts */
1403 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1404 
1405 	RAL_UNLOCK(sc);
1406 }
1407 
1408 /* quickly determine if a given rate is CCK or OFDM */
1409 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1410 
1411 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1412 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1413 
1414 #define RAL_SIFS		10	/* us */
1415 
1416 #define RT2560_TXRX_TURNAROUND	10	/* us */
1417 
1418 /*
1419  * This function is only used by the Rx radiotap code.
1420  */
1421 static uint8_t
1422 rt2560_rxrate(struct rt2560_rx_desc *desc)
1423 {
1424 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1425 		/* reverse function of rt2560_plcp_signal */
1426 		switch (desc->rate) {
1427 		case 0xb:	return 12;
1428 		case 0xf:	return 18;
1429 		case 0xa:	return 24;
1430 		case 0xe:	return 36;
1431 		case 0x9:	return 48;
1432 		case 0xd:	return 72;
1433 		case 0x8:	return 96;
1434 		case 0xc:	return 108;
1435 		}
1436 	} else {
1437 		if (desc->rate == 10)
1438 			return 2;
1439 		if (desc->rate == 20)
1440 			return 4;
1441 		if (desc->rate == 55)
1442 			return 11;
1443 		if (desc->rate == 110)
1444 			return 22;
1445 	}
1446 	return 2;	/* should not get there */
1447 }
1448 
1449 /*
1450  * Return the expected ack rate for a frame transmitted at rate `rate'.
1451  * XXX: this should depend on the destination node basic rate set.
1452  */
1453 static int
1454 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1455 {
1456 	switch (rate) {
1457 	/* CCK rates */
1458 	case 2:
1459 		return 2;
1460 	case 4:
1461 	case 11:
1462 	case 22:
1463 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1464 
1465 	/* OFDM rates */
1466 	case 12:
1467 	case 18:
1468 		return 12;
1469 	case 24:
1470 	case 36:
1471 		return 24;
1472 	case 48:
1473 	case 72:
1474 	case 96:
1475 	case 108:
1476 		return 48;
1477 	}
1478 
1479 	/* default to 1Mbps */
1480 	return 2;
1481 }
1482 
1483 /*
1484  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1485  * The function automatically determines the operating mode depending on the
1486  * given rate. `flags' indicates whether short preamble is in use or not.
1487  */
1488 static uint16_t
1489 rt2560_txtime(int len, int rate, uint32_t flags)
1490 {
1491 	uint16_t txtime;
1492 
1493 	if (RAL_RATE_IS_OFDM(rate)) {
1494 		/* IEEE Std 802.11a-1999, pp. 37 */
1495 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1496 		txtime = 16 + 4 + 4 * txtime + 6;
1497 	} else {
1498 		/* IEEE Std 802.11b-1999, pp. 28 */
1499 		txtime = (16 * len + rate - 1) / rate;
1500 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1501 			txtime +=  72 + 24;
1502 		else
1503 			txtime += 144 + 48;
1504 	}
1505 
1506 	return txtime;
1507 }
1508 
1509 static uint8_t
1510 rt2560_plcp_signal(int rate)
1511 {
1512 	switch (rate) {
1513 	/* CCK rates (returned values are device-dependent) */
1514 	case 2:		return 0x0;
1515 	case 4:		return 0x1;
1516 	case 11:	return 0x2;
1517 	case 22:	return 0x3;
1518 
1519 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1520 	case 12:	return 0xb;
1521 	case 18:	return 0xf;
1522 	case 24:	return 0xa;
1523 	case 36:	return 0xe;
1524 	case 48:	return 0x9;
1525 	case 72:	return 0xd;
1526 	case 96:	return 0x8;
1527 	case 108:	return 0xc;
1528 
1529 	/* unsupported rates (should not get there) */
1530 	default:	return 0xff;
1531 	}
1532 }
1533 
1534 static void
1535 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1536     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1537 {
1538 	struct ieee80211com *ic = &sc->sc_ic;
1539 	uint16_t plcp_length;
1540 	int remainder;
1541 
1542 	desc->flags = htole32(flags);
1543 	desc->flags |= htole32(len << 16);
1544 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1545 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1546 
1547 	desc->physaddr = htole32(physaddr);
1548 	desc->wme = htole16(
1549 	    RT2560_AIFSN(2) |
1550 	    RT2560_LOGCWMIN(3) |
1551 	    RT2560_LOGCWMAX(8));
1552 
1553 	/* setup PLCP fields */
1554 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1555 	desc->plcp_service = 4;
1556 
1557 	len += IEEE80211_CRC_LEN;
1558 	if (RAL_RATE_IS_OFDM(rate)) {
1559 		desc->flags |= htole32(RT2560_TX_OFDM);
1560 
1561 		plcp_length = len & 0xfff;
1562 		desc->plcp_length_hi = plcp_length >> 6;
1563 		desc->plcp_length_lo = plcp_length & 0x3f;
1564 	} else {
1565 		plcp_length = (16 * len + rate - 1) / rate;
1566 		if (rate == 22) {
1567 			remainder = (16 * len) % 22;
1568 			if (remainder != 0 && remainder < 7)
1569 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1570 		}
1571 		desc->plcp_length_hi = plcp_length >> 8;
1572 		desc->plcp_length_lo = plcp_length & 0xff;
1573 
1574 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1575 			desc->plcp_signal |= 0x08;
1576 	}
1577 }
1578 
1579 static int
1580 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1581     struct ieee80211_node *ni)
1582 {
1583 	struct ieee80211com *ic = &sc->sc_ic;
1584 	struct rt2560_tx_desc *desc;
1585 	struct rt2560_tx_data *data;
1586 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1587 	int nsegs, rate, error;
1588 
1589 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1590 	data = &sc->bcnq.data[sc->bcnq.cur];
1591 
1592 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1593 
1594 	error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1595 	    segs, &nsegs, BUS_DMA_NOWAIT);
1596 	if (error != 0) {
1597 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1598 		    error);
1599 		m_freem(m0);
1600 		return error;
1601 	}
1602 
1603 	if (sc->sc_drvbpf != NULL) {
1604 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1605 
1606 		tap->wt_flags = 0;
1607 		tap->wt_rate = rate;
1608 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1609 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1610 		tap->wt_antenna = sc->tx_ant;
1611 
1612 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1613 	}
1614 
1615 	data->m = m0;
1616 	data->ni = ni;
1617 
1618 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1619 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1620 
1621 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1622 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1623 
1624 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1625 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1626 	    BUS_DMASYNC_PREWRITE);
1627 
1628 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1629 
1630 	return 0;
1631 }
1632 
1633 static int
1634 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1635     struct ieee80211_node *ni)
1636 {
1637 	struct ieee80211com *ic = &sc->sc_ic;
1638 	struct rt2560_tx_desc *desc;
1639 	struct rt2560_tx_data *data;
1640 	struct ieee80211_frame *wh;
1641 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1642 	uint16_t dur;
1643 	uint32_t flags = 0;
1644 	int nsegs, rate, error;
1645 
1646 	desc = &sc->prioq.desc[sc->prioq.cur];
1647 	data = &sc->prioq.data[sc->prioq.cur];
1648 
1649 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1650 
1651 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1652 	    segs, &nsegs, 0);
1653 	if (error != 0) {
1654 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1655 		    error);
1656 		m_freem(m0);
1657 		return error;
1658 	}
1659 
1660 	if (sc->sc_drvbpf != NULL) {
1661 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1662 
1663 		tap->wt_flags = 0;
1664 		tap->wt_rate = rate;
1665 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1666 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1667 		tap->wt_antenna = sc->tx_ant;
1668 
1669 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1670 	}
1671 
1672 	data->m = m0;
1673 	data->ni = ni;
1674 
1675 	wh = mtod(m0, struct ieee80211_frame *);
1676 
1677 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1678 		flags |= RT2560_TX_ACK;
1679 
1680 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1681 		      RAL_SIFS;
1682 		*(uint16_t *)wh->i_dur = htole16(dur);
1683 
1684 		/* tell hardware to add timestamp for probe responses */
1685 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1686 		    IEEE80211_FC0_TYPE_MGT &&
1687 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1688 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1689 			flags |= RT2560_TX_TIMESTAMP;
1690 	}
1691 
1692 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1693 	    segs->ds_addr);
1694 
1695 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1696 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1697 	    BUS_DMASYNC_PREWRITE);
1698 
1699 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1700 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1701 
1702 	/* kick prio */
1703 	sc->prioq.queued++;
1704 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1705 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1706 
1707 	return 0;
1708 }
1709 
1710 /*
1711  * Build a RTS control frame.
1712  */
1713 static struct mbuf *
1714 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1715     uint16_t dur)
1716 {
1717 	struct ieee80211_frame_rts *rts;
1718 	struct mbuf *m;
1719 
1720 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1721 	if (m == NULL) {
1722 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1723 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1724 		return NULL;
1725 	}
1726 
1727 	rts = mtod(m, struct ieee80211_frame_rts *);
1728 
1729 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1730 	    IEEE80211_FC0_SUBTYPE_RTS;
1731 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1732 	*(uint16_t *)rts->i_dur = htole16(dur);
1733 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1734 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1735 
1736 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1737 
1738 	return m;
1739 }
1740 
1741 static int
1742 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1743     struct ieee80211_node *ni)
1744 {
1745 	struct ieee80211com *ic = &sc->sc_ic;
1746 	struct rt2560_tx_desc *desc;
1747 	struct rt2560_tx_data *data;
1748 	struct rt2560_node *rn;
1749 	struct ieee80211_rateset *rs;
1750 	struct ieee80211_frame *wh;
1751 	struct ieee80211_key *k;
1752 	struct mbuf *mnew;
1753 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1754 	uint16_t dur;
1755 	uint32_t flags = 0;
1756 	int nsegs, rate, error;
1757 
1758 	wh = mtod(m0, struct ieee80211_frame *);
1759 
1760 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1761 		rs = &ic->ic_sup_rates[ic->ic_curmode];
1762 		rate = rs->rs_rates[ic->ic_fixed_rate];
1763 	} else {
1764 		rs = &ni->ni_rates;
1765 		rn = (struct rt2560_node *)ni;
1766 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1767 		    m0->m_pkthdr.len, NULL, 0);
1768 		rate = rs->rs_rates[ni->ni_txrate];
1769 	}
1770 	rate &= IEEE80211_RATE_VAL;
1771 
1772 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1773 		k = ieee80211_crypto_encap(ic, ni, m0);
1774 		if (k == NULL) {
1775 			m_freem(m0);
1776 			return ENOBUFS;
1777 		}
1778 
1779 		/* packet header may have moved, reset our local pointer */
1780 		wh = mtod(m0, struct ieee80211_frame *);
1781 	}
1782 
1783 	/*
1784 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1785 	 * for directed frames only when the length of the MPDU is greater
1786 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1787 	 */
1788 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1789 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1790 		struct mbuf *m;
1791 		uint16_t dur;
1792 		int rtsrate, ackrate;
1793 
1794 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1795 		ackrate = rt2560_ack_rate(ic, rate);
1796 
1797 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1798 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1799 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1800 		      3 * RAL_SIFS;
1801 
1802 		m = rt2560_get_rts(sc, wh, dur);
1803 
1804 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1805 		data = &sc->txq.data[sc->txq.cur_encrypt];
1806 
1807 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1808 		    m, segs, &nsegs, 0);
1809 		if (error != 0) {
1810 			device_printf(sc->sc_dev,
1811 			    "could not map mbuf (error %d)\n", error);
1812 			m_freem(m);
1813 			m_freem(m0);
1814 			return error;
1815 		}
1816 
1817 		/* avoid multiple free() of the same node for each fragment */
1818 		ieee80211_ref_node(ni);
1819 
1820 		data->m = m;
1821 		data->ni = ni;
1822 
1823 		/* RTS frames are not taken into account for rssadapt */
1824 		data->id.id_node = NULL;
1825 
1826 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1827 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1828 		    segs->ds_addr);
1829 
1830 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1831 		    BUS_DMASYNC_PREWRITE);
1832 
1833 		sc->txq.queued++;
1834 		sc->txq.cur_encrypt =
1835 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1836 
1837 		/*
1838 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1839 		 * asynchronous data frame shall be transmitted after the CTS
1840 		 * frame and a SIFS period.
1841 		 */
1842 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1843 	}
1844 
1845 	data = &sc->txq.data[sc->txq.cur_encrypt];
1846 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1847 
1848 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1849 	    segs, &nsegs, 0);
1850 	if (error != 0 && error != EFBIG) {
1851 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1852 		    error);
1853 		m_freem(m0);
1854 		return error;
1855 	}
1856 	if (error != 0) {
1857 		mnew = m_defrag(m0, M_DONTWAIT);
1858 		if (mnew == NULL) {
1859 			device_printf(sc->sc_dev,
1860 			    "could not defragment mbuf\n");
1861 			m_freem(m0);
1862 			return ENOBUFS;
1863 		}
1864 		m0 = mnew;
1865 
1866 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1867 		    m0, segs, &nsegs, 0);
1868 		if (error != 0) {
1869 			device_printf(sc->sc_dev,
1870 			    "could not map mbuf (error %d)\n", error);
1871 			m_freem(m0);
1872 			return error;
1873 		}
1874 
1875 		/* packet header may have moved, reset our local pointer */
1876 		wh = mtod(m0, struct ieee80211_frame *);
1877 	}
1878 
1879 	if (sc->sc_drvbpf != NULL) {
1880 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1881 
1882 		tap->wt_flags = 0;
1883 		tap->wt_rate = rate;
1884 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1885 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1886 		tap->wt_antenna = sc->tx_ant;
1887 
1888 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1889 	}
1890 
1891 	data->m = m0;
1892 	data->ni = ni;
1893 
1894 	/* remember link conditions for rate adaptation algorithm */
1895 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1896 		data->id.id_len = m0->m_pkthdr.len;
1897 		data->id.id_rateidx = ni->ni_txrate;
1898 		data->id.id_node = ni;
1899 		data->id.id_rssi = ni->ni_rssi;
1900 	} else
1901 		data->id.id_node = NULL;
1902 
1903 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1904 		flags |= RT2560_TX_ACK;
1905 
1906 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1907 		    ic->ic_flags) + RAL_SIFS;
1908 		*(uint16_t *)wh->i_dur = htole16(dur);
1909 	}
1910 
1911 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1912 	    segs->ds_addr);
1913 
1914 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1915 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1916 	    BUS_DMASYNC_PREWRITE);
1917 
1918 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1919 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1920 
1921 	/* kick encrypt */
1922 	sc->txq.queued++;
1923 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1924 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1925 
1926 	return 0;
1927 }
1928 
1929 static void
1930 rt2560_start(struct ifnet *ifp)
1931 {
1932 	struct rt2560_softc *sc = ifp->if_softc;
1933 	struct ieee80211com *ic = &sc->sc_ic;
1934 	struct mbuf *m0;
1935 	struct ether_header *eh;
1936 	struct ieee80211_node *ni;
1937 
1938 	RAL_LOCK(sc);
1939 
1940 	for (;;) {
1941 		IF_POLL(&ic->ic_mgtq, m0);
1942 		if (m0 != NULL) {
1943 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1944 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1945 				break;
1946 			}
1947 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1948 
1949 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1950 			m0->m_pkthdr.rcvif = NULL;
1951 
1952 			if (ic->ic_rawbpf != NULL)
1953 				bpf_mtap(ic->ic_rawbpf, m0);
1954 
1955 			if (rt2560_tx_mgt(sc, m0, ni) != 0)
1956 				break;
1957 
1958 		} else {
1959 			if (ic->ic_state != IEEE80211_S_RUN)
1960 				break;
1961 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1962 			if (m0 == NULL)
1963 				break;
1964 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1965 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
1966 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1967 				break;
1968 			}
1969 
1970 			if (m0->m_len < sizeof (struct ether_header) &&
1971 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
1972 				continue;
1973 
1974 			eh = mtod(m0, struct ether_header *);
1975 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1976 			if (ni == NULL) {
1977 				m_freem(m0);
1978 				continue;
1979 			}
1980 			BPF_MTAP(ifp, m0);
1981 
1982 			m0 = ieee80211_encap(ic, m0, ni);
1983 			if (m0 == NULL) {
1984 				ieee80211_free_node(ni);
1985 				continue;
1986 			}
1987 
1988 			if (ic->ic_rawbpf != NULL)
1989 				bpf_mtap(ic->ic_rawbpf, m0);
1990 
1991 			if (rt2560_tx_data(sc, m0, ni) != 0) {
1992 				ieee80211_free_node(ni);
1993 				ifp->if_oerrors++;
1994 				break;
1995 			}
1996 		}
1997 
1998 		sc->sc_tx_timer = 5;
1999 		ifp->if_timer = 1;
2000 	}
2001 
2002 	RAL_UNLOCK(sc);
2003 }
2004 
2005 static void
2006 rt2560_watchdog(struct ifnet *ifp)
2007 {
2008 	struct rt2560_softc *sc = ifp->if_softc;
2009 	struct ieee80211com *ic = &sc->sc_ic;
2010 
2011 	RAL_LOCK(sc);
2012 
2013 	ifp->if_timer = 0;
2014 
2015 	if (sc->sc_tx_timer > 0) {
2016 		if (--sc->sc_tx_timer == 0) {
2017 			device_printf(sc->sc_dev, "device timeout\n");
2018 			rt2560_init(sc);
2019 			ifp->if_oerrors++;
2020 			RAL_UNLOCK(sc);
2021 			return;
2022 		}
2023 		ifp->if_timer = 1;
2024 	}
2025 
2026 	ieee80211_watchdog(ic);
2027 
2028 	RAL_UNLOCK(sc);
2029 }
2030 
2031 /*
2032  * This function allows for fast channel switching in monitor mode (used by
2033  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2034  * generate a new beacon frame.
2035  */
2036 static int
2037 rt2560_reset(struct ifnet *ifp)
2038 {
2039 	struct rt2560_softc *sc = ifp->if_softc;
2040 	struct ieee80211com *ic = &sc->sc_ic;
2041 
2042 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2043 		return ENETRESET;
2044 
2045 	rt2560_set_chan(sc, ic->ic_curchan);
2046 
2047 	return 0;
2048 }
2049 
2050 static int
2051 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2052 {
2053 	struct rt2560_softc *sc = ifp->if_softc;
2054 	struct ieee80211com *ic = &sc->sc_ic;
2055 	int error = 0;
2056 
2057 	RAL_LOCK(sc);
2058 
2059 	switch (cmd) {
2060 	case SIOCSIFFLAGS:
2061 		if (ifp->if_flags & IFF_UP) {
2062 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2063 				rt2560_update_promisc(sc);
2064 			else
2065 				rt2560_init(sc);
2066 		} else {
2067 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2068 				rt2560_stop(sc);
2069 		}
2070 		break;
2071 
2072 	default:
2073 		error = ieee80211_ioctl(ic, cmd, data);
2074 	}
2075 
2076 	if (error == ENETRESET) {
2077 		if ((ifp->if_flags & IFF_UP) &&
2078 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2079 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2080 			rt2560_init(sc);
2081 		error = 0;
2082 	}
2083 
2084 	RAL_UNLOCK(sc);
2085 
2086 	return error;
2087 }
2088 
2089 static void
2090 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2091 {
2092 	uint32_t tmp;
2093 	int ntries;
2094 
2095 	for (ntries = 0; ntries < 100; ntries++) {
2096 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2097 			break;
2098 		DELAY(1);
2099 	}
2100 	if (ntries == 100) {
2101 		device_printf(sc->sc_dev, "could not write to BBP\n");
2102 		return;
2103 	}
2104 
2105 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2106 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2107 
2108 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2109 }
2110 
2111 static uint8_t
2112 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2113 {
2114 	uint32_t val;
2115 	int ntries;
2116 
2117 	val = RT2560_BBP_BUSY | reg << 8;
2118 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2119 
2120 	for (ntries = 0; ntries < 100; ntries++) {
2121 		val = RAL_READ(sc, RT2560_BBPCSR);
2122 		if (!(val & RT2560_BBP_BUSY))
2123 			return val & 0xff;
2124 		DELAY(1);
2125 	}
2126 
2127 	device_printf(sc->sc_dev, "could not read from BBP\n");
2128 	return 0;
2129 }
2130 
2131 static void
2132 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2133 {
2134 	uint32_t tmp;
2135 	int ntries;
2136 
2137 	for (ntries = 0; ntries < 100; ntries++) {
2138 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2139 			break;
2140 		DELAY(1);
2141 	}
2142 	if (ntries == 100) {
2143 		device_printf(sc->sc_dev, "could not write to RF\n");
2144 		return;
2145 	}
2146 
2147 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2148 	    (reg & 0x3);
2149 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2150 
2151 	/* remember last written value in sc */
2152 	sc->rf_regs[reg] = val;
2153 
2154 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2155 }
2156 
2157 static void
2158 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2159 {
2160 	struct ieee80211com *ic = &sc->sc_ic;
2161 	uint8_t power, tmp;
2162 	u_int i, chan;
2163 
2164 	chan = ieee80211_chan2ieee(ic, c);
2165 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2166 		return;
2167 
2168 	if (IEEE80211_IS_CHAN_2GHZ(c))
2169 		power = min(sc->txpow[chan - 1], 31);
2170 	else
2171 		power = 31;
2172 
2173 	/* adjust txpower using ifconfig settings */
2174 	power -= (100 - ic->ic_txpowlimit) / 8;
2175 
2176 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2177 
2178 	switch (sc->rf_rev) {
2179 	case RT2560_RF_2522:
2180 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2181 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2182 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2183 		break;
2184 
2185 	case RT2560_RF_2523:
2186 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2187 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2188 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2189 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2190 		break;
2191 
2192 	case RT2560_RF_2524:
2193 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2194 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2195 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2196 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2197 		break;
2198 
2199 	case RT2560_RF_2525:
2200 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2201 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2202 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2203 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2204 
2205 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2206 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2207 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2208 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2209 		break;
2210 
2211 	case RT2560_RF_2525E:
2212 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2213 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2214 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2215 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2216 		break;
2217 
2218 	case RT2560_RF_2526:
2219 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2220 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2221 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2222 
2223 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2224 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2225 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2226 		break;
2227 
2228 	/* dual-band RF */
2229 	case RT2560_RF_5222:
2230 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2231 
2232 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2233 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2234 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2235 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2236 		break;
2237 	}
2238 
2239 	if (ic->ic_state != IEEE80211_S_SCAN) {
2240 		/* set Japan filter bit for channel 14 */
2241 		tmp = rt2560_bbp_read(sc, 70);
2242 
2243 		tmp &= ~RT2560_JAPAN_FILTER;
2244 		if (chan == 14)
2245 			tmp |= RT2560_JAPAN_FILTER;
2246 
2247 		rt2560_bbp_write(sc, 70, tmp);
2248 
2249 		/* clear CRC errors */
2250 		RAL_READ(sc, RT2560_CNT0);
2251 	}
2252 }
2253 
2254 #if 0
2255 /*
2256  * Disable RF auto-tuning.
2257  */
2258 static void
2259 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2260 {
2261 	uint32_t tmp;
2262 
2263 	if (sc->rf_rev != RT2560_RF_2523) {
2264 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2265 		rt2560_rf_write(sc, RAL_RF1, tmp);
2266 	}
2267 
2268 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2269 	rt2560_rf_write(sc, RAL_RF3, tmp);
2270 
2271 	DPRINTFN(2, ("disabling RF autotune\n"));
2272 }
2273 #endif
2274 
2275 /*
2276  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2277  * synchronization.
2278  */
2279 static void
2280 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2281 {
2282 	struct ieee80211com *ic = &sc->sc_ic;
2283 	uint16_t logcwmin, preload;
2284 	uint32_t tmp;
2285 
2286 	/* first, disable TSF synchronization */
2287 	RAL_WRITE(sc, RT2560_CSR14, 0);
2288 
2289 	tmp = 16 * ic->ic_bss->ni_intval;
2290 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2291 
2292 	RAL_WRITE(sc, RT2560_CSR13, 0);
2293 
2294 	logcwmin = 5;
2295 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2296 	tmp = logcwmin << 16 | preload;
2297 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2298 
2299 	/* finally, enable TSF synchronization */
2300 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2301 	if (ic->ic_opmode == IEEE80211_M_STA)
2302 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2303 	else
2304 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2305 		       RT2560_ENABLE_BEACON_GENERATOR;
2306 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2307 
2308 	DPRINTF(("enabling TSF synchronization\n"));
2309 }
2310 
2311 static void
2312 rt2560_update_plcp(struct rt2560_softc *sc)
2313 {
2314 	struct ieee80211com *ic = &sc->sc_ic;
2315 
2316 	/* no short preamble for 1Mbps */
2317 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2318 
2319 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2320 		/* values taken from the reference driver */
2321 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2322 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2323 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2324 	} else {
2325 		/* same values as above or'ed 0x8 */
2326 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2327 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2328 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2329 	}
2330 
2331 	DPRINTF(("updating PLCP for %s preamble\n",
2332 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2333 }
2334 
2335 /*
2336  * This function can be called by ieee80211_set_shortslottime(). Refer to
2337  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2338  */
2339 static void
2340 rt2560_update_slot(struct ifnet *ifp)
2341 {
2342 	struct rt2560_softc *sc = ifp->if_softc;
2343 	struct ieee80211com *ic = &sc->sc_ic;
2344 	uint8_t slottime;
2345 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2346 	uint32_t tmp;
2347 
2348 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2349 
2350 	/* update the MAC slot boundaries */
2351 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2352 	tx_pifs = tx_sifs + slottime;
2353 	tx_difs = tx_sifs + 2 * slottime;
2354 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2355 
2356 	tmp = RAL_READ(sc, RT2560_CSR11);
2357 	tmp = (tmp & ~0x1f00) | slottime << 8;
2358 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2359 
2360 	tmp = tx_pifs << 16 | tx_sifs;
2361 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2362 
2363 	tmp = eifs << 16 | tx_difs;
2364 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2365 
2366 	DPRINTF(("setting slottime to %uus\n", slottime));
2367 }
2368 
2369 static void
2370 rt2560_set_basicrates(struct rt2560_softc *sc)
2371 {
2372 	struct ieee80211com *ic = &sc->sc_ic;
2373 
2374 	/* update basic rate set */
2375 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2376 		/* 11b basic rates: 1, 2Mbps */
2377 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2378 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2379 		/* 11a basic rates: 6, 12, 24Mbps */
2380 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2381 	} else {
2382 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2383 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2384 	}
2385 }
2386 
2387 static void
2388 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2389 {
2390 	uint32_t tmp;
2391 
2392 	/* set ON period to 70ms and OFF period to 30ms */
2393 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2394 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2395 }
2396 
2397 static void
2398 rt2560_set_bssid(struct rt2560_softc *sc, uint8_t *bssid)
2399 {
2400 	uint32_t tmp;
2401 
2402 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2403 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2404 
2405 	tmp = bssid[4] | bssid[5] << 8;
2406 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2407 
2408 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2409 }
2410 
2411 static void
2412 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2413 {
2414 	uint32_t tmp;
2415 
2416 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2417 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2418 
2419 	tmp = addr[4] | addr[5] << 8;
2420 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2421 
2422 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2423 }
2424 
2425 static void
2426 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2427 {
2428 	uint32_t tmp;
2429 
2430 	tmp = RAL_READ(sc, RT2560_CSR3);
2431 	addr[0] = tmp & 0xff;
2432 	addr[1] = (tmp >>  8) & 0xff;
2433 	addr[2] = (tmp >> 16) & 0xff;
2434 	addr[3] = (tmp >> 24);
2435 
2436 	tmp = RAL_READ(sc, RT2560_CSR4);
2437 	addr[4] = tmp & 0xff;
2438 	addr[5] = (tmp >> 8) & 0xff;
2439 }
2440 
2441 static void
2442 rt2560_update_promisc(struct rt2560_softc *sc)
2443 {
2444 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2445 	uint32_t tmp;
2446 
2447 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2448 
2449 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2450 	if (!(ifp->if_flags & IFF_PROMISC))
2451 		tmp |= RT2560_DROP_NOT_TO_ME;
2452 
2453 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2454 
2455 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2456 	    "entering" : "leaving"));
2457 }
2458 
2459 static const char *
2460 rt2560_get_rf(int rev)
2461 {
2462 	switch (rev) {
2463 	case RT2560_RF_2522:	return "RT2522";
2464 	case RT2560_RF_2523:	return "RT2523";
2465 	case RT2560_RF_2524:	return "RT2524";
2466 	case RT2560_RF_2525:	return "RT2525";
2467 	case RT2560_RF_2525E:	return "RT2525e";
2468 	case RT2560_RF_2526:	return "RT2526";
2469 	case RT2560_RF_5222:	return "RT5222";
2470 	default:		return "unknown";
2471 	}
2472 }
2473 
2474 static void
2475 rt2560_read_eeprom(struct rt2560_softc *sc)
2476 {
2477 	uint16_t val;
2478 	int i;
2479 
2480 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2481 	sc->rf_rev =   (val >> 11) & 0x7;
2482 	sc->hw_radio = (val >> 10) & 0x1;
2483 	sc->led_mode = (val >> 6)  & 0x7;
2484 	sc->rx_ant =   (val >> 4)  & 0x3;
2485 	sc->tx_ant =   (val >> 2)  & 0x3;
2486 	sc->nb_ant =   val & 0x3;
2487 
2488 	/* read default values for BBP registers */
2489 	for (i = 0; i < 16; i++) {
2490 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2491 		sc->bbp_prom[i].reg = val >> 8;
2492 		sc->bbp_prom[i].val = val & 0xff;
2493 	}
2494 
2495 	/* read Tx power for all b/g channels */
2496 	for (i = 0; i < 14 / 2; i++) {
2497 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2498 		sc->txpow[i * 2] = val >> 8;
2499 		sc->txpow[i * 2 + 1] = val & 0xff;
2500 	}
2501 }
2502 
2503 static int
2504 rt2560_bbp_init(struct rt2560_softc *sc)
2505 {
2506 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2507 	int i, ntries;
2508 
2509 	/* wait for BBP to be ready */
2510 	for (ntries = 0; ntries < 100; ntries++) {
2511 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2512 			break;
2513 		DELAY(1);
2514 	}
2515 	if (ntries == 100) {
2516 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2517 		return EIO;
2518 	}
2519 
2520 	/* initialize BBP registers to default values */
2521 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2522 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2523 		    rt2560_def_bbp[i].val);
2524 	}
2525 #if 0
2526 	/* initialize BBP registers to values stored in EEPROM */
2527 	for (i = 0; i < 16; i++) {
2528 		if (sc->bbp_prom[i].reg == 0xff)
2529 			continue;
2530 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2531 	}
2532 #endif
2533 
2534 	return 0;
2535 #undef N
2536 }
2537 
2538 static void
2539 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2540 {
2541 	uint32_t tmp;
2542 	uint8_t tx;
2543 
2544 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2545 	if (antenna == 1)
2546 		tx |= RT2560_BBP_ANTA;
2547 	else if (antenna == 2)
2548 		tx |= RT2560_BBP_ANTB;
2549 	else
2550 		tx |= RT2560_BBP_DIVERSITY;
2551 
2552 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2553 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2554 	    sc->rf_rev == RT2560_RF_5222)
2555 		tx |= RT2560_BBP_FLIPIQ;
2556 
2557 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2558 
2559 	/* update values for CCK and OFDM in BBPCSR1 */
2560 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2561 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2562 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2563 }
2564 
2565 static void
2566 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2567 {
2568 	uint8_t rx;
2569 
2570 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2571 	if (antenna == 1)
2572 		rx |= RT2560_BBP_ANTA;
2573 	else if (antenna == 2)
2574 		rx |= RT2560_BBP_ANTB;
2575 	else
2576 		rx |= RT2560_BBP_DIVERSITY;
2577 
2578 	/* need to force no I/Q flip for RF 2525e and 2526 */
2579 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2580 		rx &= ~RT2560_BBP_FLIPIQ;
2581 
2582 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2583 }
2584 
2585 static void
2586 rt2560_init(void *priv)
2587 {
2588 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2589 	struct rt2560_softc *sc = priv;
2590 	struct ieee80211com *ic = &sc->sc_ic;
2591 	struct ifnet *ifp = ic->ic_ifp;
2592 	uint32_t tmp;
2593 	int i;
2594 
2595 	rt2560_stop(sc);
2596 
2597 	/* setup tx rings */
2598 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2599 	      RT2560_ATIM_RING_COUNT << 16 |
2600 	      RT2560_TX_RING_COUNT   <<  8 |
2601 	      RT2560_TX_DESC_SIZE;
2602 
2603 	/* rings must be initialized in this exact order */
2604 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2605 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2606 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2607 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2608 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2609 
2610 	/* setup rx ring */
2611 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2612 
2613 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2614 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2615 
2616 	/* initialize MAC registers to default values */
2617 	for (i = 0; i < N(rt2560_def_mac); i++)
2618 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2619 
2620 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2621 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2622 
2623 	/* set basic rate set (will be updated later) */
2624 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2625 
2626 	rt2560_set_txantenna(sc, sc->tx_ant);
2627 	rt2560_set_rxantenna(sc, sc->rx_ant);
2628 	rt2560_update_slot(ifp);
2629 	rt2560_update_plcp(sc);
2630 	rt2560_update_led(sc, 0, 0);
2631 
2632 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2633 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2634 
2635 	if (rt2560_bbp_init(sc) != 0) {
2636 		rt2560_stop(sc);
2637 		return;
2638 	}
2639 
2640 	/* set default BSS channel */
2641 	rt2560_set_chan(sc, ic->ic_curchan);
2642 
2643 	/* kick Rx */
2644 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2645 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2646 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2647 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2648 			tmp |= RT2560_DROP_TODS;
2649 		if (!(ifp->if_flags & IFF_PROMISC))
2650 			tmp |= RT2560_DROP_NOT_TO_ME;
2651 	}
2652 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2653 
2654 	/* clear old FCS and Rx FIFO errors */
2655 	RAL_READ(sc, RT2560_CNT0);
2656 	RAL_READ(sc, RT2560_CNT4);
2657 
2658 	/* clear any pending interrupts */
2659 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2660 
2661 	/* enable interrupts */
2662 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2663 
2664 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2665 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2666 
2667 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2668 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2669 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2670 	} else
2671 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2672 #undef N
2673 }
2674 
2675 void
2676 rt2560_stop(void *priv)
2677 {
2678 	struct rt2560_softc *sc = priv;
2679 	struct ieee80211com *ic = &sc->sc_ic;
2680 	struct ifnet *ifp = ic->ic_ifp;
2681 
2682 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2683 
2684 	sc->sc_tx_timer = 0;
2685 	ifp->if_timer = 0;
2686 	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2687 
2688 	/* abort Tx */
2689 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2690 
2691 	/* disable Rx */
2692 	RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2693 
2694 	/* reset ASIC (imply reset BBP) */
2695 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2696 	RAL_WRITE(sc, RT2560_CSR1, 0);
2697 
2698 	/* disable interrupts */
2699 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2700 
2701 	/* reset Tx and Rx rings */
2702 	rt2560_reset_tx_ring(sc, &sc->txq);
2703 	rt2560_reset_tx_ring(sc, &sc->atimq);
2704 	rt2560_reset_tx_ring(sc, &sc->prioq);
2705 	rt2560_reset_tx_ring(sc, &sc->bcnq);
2706 	rt2560_reset_rx_ring(sc, &sc->rxq);
2707 }
2708