xref: /freebsd/sys/dev/ral/rt2560.c (revision 5ee7cd2107c8ffd1fe70115deabd6599dffb313b)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_radiotap.h>
56 #include <net80211/ieee80211_regdomain.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #include <netinet/if_ether.h>
63 
64 #include <dev/ral/if_ralrate.h>
65 #include <dev/ral/rt2560reg.h>
66 #include <dev/ral/rt2560var.h>
67 
68 #define RT2560_RSSI(sc, rssi)					\
69 	((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ?	\
70 	 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
71 
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
75 extern int ral_debug;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
82 			    int);
83 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
84 			    struct rt2560_tx_ring *, int);
85 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
86 			    struct rt2560_tx_ring *);
87 static void		rt2560_free_tx_ring(struct rt2560_softc *,
88 			    struct rt2560_tx_ring *);
89 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
90 			    struct rt2560_rx_ring *, int);
91 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
92 			    struct rt2560_rx_ring *);
93 static void		rt2560_free_rx_ring(struct rt2560_softc *,
94 			    struct rt2560_rx_ring *);
95 static struct		ieee80211_node *rt2560_node_alloc(
96 			    struct ieee80211_node_table *);
97 static int		rt2560_media_change(struct ifnet *);
98 static void		rt2560_iter_func(void *, struct ieee80211_node *);
99 static void		rt2560_update_rssadapt(void *);
100 static int		rt2560_newstate(struct ieee80211com *,
101 			    enum ieee80211_state, int);
102 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
103 static void		rt2560_encryption_intr(struct rt2560_softc *);
104 static void		rt2560_tx_intr(struct rt2560_softc *);
105 static void		rt2560_prio_intr(struct rt2560_softc *);
106 static void		rt2560_decryption_intr(struct rt2560_softc *);
107 static void		rt2560_rx_intr(struct rt2560_softc *);
108 static void		rt2560_beacon_expire(struct rt2560_softc *);
109 static void		rt2560_wakeup_expire(struct rt2560_softc *);
110 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
111 static int		rt2560_ack_rate(struct ieee80211com *, int);
112 static void		rt2560_scan_start(struct ieee80211com *);
113 static void		rt2560_scan_end(struct ieee80211com *);
114 static void		rt2560_set_channel(struct ieee80211com *);
115 static uint16_t		rt2560_txtime(int, int, uint32_t);
116 static uint8_t		rt2560_plcp_signal(int);
117 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
118 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
119 			    bus_addr_t);
120 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
121 			    struct ieee80211_node *);
122 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
123 			    struct ieee80211_node *);
124 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
125 			    struct ieee80211_frame *, uint16_t);
126 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
127 			    struct ieee80211_node *);
128 static void		rt2560_start(struct ifnet *);
129 static void		rt2560_watchdog(void *);
130 static int		rt2560_reset(struct ifnet *);
131 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
132 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
133 			    uint8_t);
134 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
135 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
136 			    uint32_t);
137 static void		rt2560_set_chan(struct rt2560_softc *,
138 			    struct ieee80211_channel *);
139 #if 0
140 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
141 #endif
142 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
143 static void		rt2560_update_plcp(struct rt2560_softc *);
144 static void		rt2560_update_slot(struct ifnet *);
145 static void		rt2560_set_basicrates(struct rt2560_softc *);
146 static void		rt2560_update_led(struct rt2560_softc *, int, int);
147 static void		rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
148 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
149 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
150 static void		rt2560_update_promisc(struct rt2560_softc *);
151 static const char	*rt2560_get_rf(int);
152 static void		rt2560_read_eeprom(struct rt2560_softc *);
153 static int		rt2560_bbp_init(struct rt2560_softc *);
154 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
155 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
156 static void		rt2560_init(void *);
157 static int		rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
158 				const struct ieee80211_bpf_params *);
159 
160 static const struct {
161 	uint32_t	reg;
162 	uint32_t	val;
163 } rt2560_def_mac[] = {
164 	RT2560_DEF_MAC
165 };
166 
167 static const struct {
168 	uint8_t	reg;
169 	uint8_t	val;
170 } rt2560_def_bbp[] = {
171 	RT2560_DEF_BBP
172 };
173 
174 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
175 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
176 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
177 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
178 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
179 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
180 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
181 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
182 
183 static const struct {
184 	uint8_t		chan;
185 	uint32_t	r1, r2, r4;
186 } rt2560_rf5222[] = {
187 	RT2560_RF5222
188 };
189 
190 int
191 rt2560_attach(device_t dev, int id)
192 {
193 	struct rt2560_softc *sc = device_get_softc(dev);
194 	struct ieee80211com *ic = &sc->sc_ic;
195 	struct ifnet *ifp;
196 	int error, bands;
197 
198 	sc->sc_dev = dev;
199 
200 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
201 	    MTX_DEF | MTX_RECURSE);
202 
203 	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
204 	callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
205 
206 	/* retrieve RT2560 rev. no */
207 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
208 
209 	/* retrieve MAC address */
210 	rt2560_get_macaddr(sc, ic->ic_myaddr);
211 
212 	/* retrieve RF rev. no and various other things from EEPROM */
213 	rt2560_read_eeprom(sc);
214 
215 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
216 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
217 
218 	/*
219 	 * Allocate Tx and Rx rings.
220 	 */
221 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
222 	if (error != 0) {
223 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
224 		goto fail1;
225 	}
226 
227 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
228 	if (error != 0) {
229 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
230 		goto fail2;
231 	}
232 
233 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
234 	if (error != 0) {
235 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
236 		goto fail3;
237 	}
238 
239 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
240 	if (error != 0) {
241 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
242 		goto fail4;
243 	}
244 
245 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
246 	if (error != 0) {
247 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
248 		goto fail5;
249 	}
250 
251 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
252 	if (ifp == NULL) {
253 		device_printf(sc->sc_dev, "can not if_alloc()\n");
254 		goto fail6;
255 	}
256 
257 	ifp->if_softc = sc;
258 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
259 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 	ifp->if_init = rt2560_init;
261 	ifp->if_ioctl = rt2560_ioctl;
262 	ifp->if_start = rt2560_start;
263 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
264 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
265 	IFQ_SET_READY(&ifp->if_snd);
266 
267 	ic->ic_ifp = ifp;
268 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
269 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
270 	ic->ic_state = IEEE80211_S_INIT;
271 
272 	/* set device capabilities */
273 	ic->ic_caps =
274 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
275 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
276 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
277 	    IEEE80211_C_TXPMGT |	/* tx power management */
278 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
279 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
280 	    IEEE80211_C_BGSCAN |	/* bg scanning support */
281 	    IEEE80211_C_WPA;		/* 802.11i */
282 
283 	bands = 0;
284 	setbit(&bands, IEEE80211_MODE_11B);
285 	setbit(&bands, IEEE80211_MODE_11G);
286 	if (sc->rf_rev == RT2560_RF_5222)
287 		setbit(&bands, IEEE80211_MODE_11A);
288 	ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
289 
290 	ieee80211_ifattach(ic);
291 	ic->ic_scan_start = rt2560_scan_start;
292 	ic->ic_scan_end = rt2560_scan_end;
293 	ic->ic_set_channel = rt2560_set_channel;
294 	ic->ic_node_alloc = rt2560_node_alloc;
295 	ic->ic_updateslot = rt2560_update_slot;
296 	ic->ic_reset = rt2560_reset;
297 	/* enable s/w bmiss handling in sta mode */
298 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
299 
300 	/* override state transition machine */
301 	sc->sc_newstate = ic->ic_newstate;
302 	ic->ic_newstate = rt2560_newstate;
303 	ic->ic_raw_xmit = rt2560_raw_xmit;
304 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
305 
306 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
307 	    sizeof (struct ieee80211_frame) + sizeof (sc->sc_txtap),
308 	    &sc->sc_drvbpf);
309 
310 	sc->sc_rxtap_len = sizeof sc->sc_rxtap;
311 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
312 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
313 
314 	sc->sc_txtap_len = sizeof sc->sc_txtap;
315 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
316 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
317 
318 	/*
319 	 * Add a few sysctl knobs.
320 	 */
321 	sc->dwelltime = 200;
322 
323 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
324 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
325 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
326 
327 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
328 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
329 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
330 
331 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
332 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
333 	    CTLFLAG_RW, &sc->dwelltime, 0,
334 	    "channel dwell time (ms) for AP/station scanning");
335 
336 	if (bootverbose)
337 		ieee80211_announce(ic);
338 
339 	return 0;
340 
341 fail6:	rt2560_free_rx_ring(sc, &sc->rxq);
342 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
343 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
344 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
345 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
346 fail1:	mtx_destroy(&sc->sc_mtx);
347 
348 	return ENXIO;
349 }
350 
351 int
352 rt2560_detach(void *xsc)
353 {
354 	struct rt2560_softc *sc = xsc;
355 	struct ieee80211com *ic = &sc->sc_ic;
356 	struct ifnet *ifp = ic->ic_ifp;
357 
358 	rt2560_stop(sc);
359 	callout_stop(&sc->watchdog_ch);
360 	callout_stop(&sc->rssadapt_ch);
361 
362 	bpfdetach(ifp);
363 	ieee80211_ifdetach(ic);
364 
365 	rt2560_free_tx_ring(sc, &sc->txq);
366 	rt2560_free_tx_ring(sc, &sc->atimq);
367 	rt2560_free_tx_ring(sc, &sc->prioq);
368 	rt2560_free_tx_ring(sc, &sc->bcnq);
369 	rt2560_free_rx_ring(sc, &sc->rxq);
370 
371 	if_free(ifp);
372 
373 	mtx_destroy(&sc->sc_mtx);
374 
375 	return 0;
376 }
377 
378 void
379 rt2560_resume(void *xsc)
380 {
381 	struct rt2560_softc *sc = xsc;
382 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
383 
384 	if (ifp->if_flags & IFF_UP) {
385 		ifp->if_init(ifp->if_softc);
386 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
387 			ifp->if_start(ifp);
388 	}
389 }
390 
391 static void
392 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
393 {
394 	if (error != 0)
395 		return;
396 
397 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
398 
399 	*(bus_addr_t *)arg = segs[0].ds_addr;
400 }
401 
402 static int
403 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
404     int count)
405 {
406 	int i, error;
407 
408 	ring->count = count;
409 	ring->queued = 0;
410 	ring->cur = ring->next = 0;
411 	ring->cur_encrypt = ring->next_encrypt = 0;
412 
413 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
414 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
415 	    count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
416 	if (error != 0) {
417 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
418 		goto fail;
419 	}
420 
421 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
422 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
423 	if (error != 0) {
424 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
425 		goto fail;
426 	}
427 
428 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
429 	    count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
430 	    0);
431 	if (error != 0) {
432 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
433 		goto fail;
434 	}
435 
436 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
437 	    M_NOWAIT | M_ZERO);
438 	if (ring->data == NULL) {
439 		device_printf(sc->sc_dev, "could not allocate soft data\n");
440 		error = ENOMEM;
441 		goto fail;
442 	}
443 
444 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
445 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
446 	    MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
447 	if (error != 0) {
448 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
449 		goto fail;
450 	}
451 
452 	for (i = 0; i < count; i++) {
453 		error = bus_dmamap_create(ring->data_dmat, 0,
454 		    &ring->data[i].map);
455 		if (error != 0) {
456 			device_printf(sc->sc_dev, "could not create DMA map\n");
457 			goto fail;
458 		}
459 	}
460 
461 	return 0;
462 
463 fail:	rt2560_free_tx_ring(sc, ring);
464 	return error;
465 }
466 
467 static void
468 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
469 {
470 	struct rt2560_tx_desc *desc;
471 	struct rt2560_tx_data *data;
472 	int i;
473 
474 	for (i = 0; i < ring->count; i++) {
475 		desc = &ring->desc[i];
476 		data = &ring->data[i];
477 
478 		if (data->m != NULL) {
479 			bus_dmamap_sync(ring->data_dmat, data->map,
480 			    BUS_DMASYNC_POSTWRITE);
481 			bus_dmamap_unload(ring->data_dmat, data->map);
482 			m_freem(data->m);
483 			data->m = NULL;
484 		}
485 
486 		if (data->ni != NULL) {
487 			ieee80211_free_node(data->ni);
488 			data->ni = NULL;
489 		}
490 
491 		desc->flags = 0;
492 	}
493 
494 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
495 
496 	ring->queued = 0;
497 	ring->cur = ring->next = 0;
498 	ring->cur_encrypt = ring->next_encrypt = 0;
499 }
500 
501 static void
502 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
503 {
504 	struct rt2560_tx_data *data;
505 	int i;
506 
507 	if (ring->desc != NULL) {
508 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
509 		    BUS_DMASYNC_POSTWRITE);
510 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
511 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
512 	}
513 
514 	if (ring->desc_dmat != NULL)
515 		bus_dma_tag_destroy(ring->desc_dmat);
516 
517 	if (ring->data != NULL) {
518 		for (i = 0; i < ring->count; i++) {
519 			data = &ring->data[i];
520 
521 			if (data->m != NULL) {
522 				bus_dmamap_sync(ring->data_dmat, data->map,
523 				    BUS_DMASYNC_POSTWRITE);
524 				bus_dmamap_unload(ring->data_dmat, data->map);
525 				m_freem(data->m);
526 			}
527 
528 			if (data->ni != NULL)
529 				ieee80211_free_node(data->ni);
530 
531 			if (data->map != NULL)
532 				bus_dmamap_destroy(ring->data_dmat, data->map);
533 		}
534 
535 		free(ring->data, M_DEVBUF);
536 	}
537 
538 	if (ring->data_dmat != NULL)
539 		bus_dma_tag_destroy(ring->data_dmat);
540 }
541 
542 static int
543 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
544     int count)
545 {
546 	struct rt2560_rx_desc *desc;
547 	struct rt2560_rx_data *data;
548 	bus_addr_t physaddr;
549 	int i, error;
550 
551 	ring->count = count;
552 	ring->cur = ring->next = 0;
553 	ring->cur_decrypt = 0;
554 
555 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
556 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
557 	    count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
558 	if (error != 0) {
559 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
560 		goto fail;
561 	}
562 
563 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
564 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
565 	if (error != 0) {
566 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
567 		goto fail;
568 	}
569 
570 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
571 	    count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
572 	    0);
573 	if (error != 0) {
574 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
575 		goto fail;
576 	}
577 
578 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
579 	    M_NOWAIT | M_ZERO);
580 	if (ring->data == NULL) {
581 		device_printf(sc->sc_dev, "could not allocate soft data\n");
582 		error = ENOMEM;
583 		goto fail;
584 	}
585 
586 	/*
587 	 * Pre-allocate Rx buffers and populate Rx ring.
588 	 */
589 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
590 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
591 	    NULL, &ring->data_dmat);
592 	if (error != 0) {
593 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
594 		goto fail;
595 	}
596 
597 	for (i = 0; i < count; i++) {
598 		desc = &sc->rxq.desc[i];
599 		data = &sc->rxq.data[i];
600 
601 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
602 		if (error != 0) {
603 			device_printf(sc->sc_dev, "could not create DMA map\n");
604 			goto fail;
605 		}
606 
607 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
608 		if (data->m == NULL) {
609 			device_printf(sc->sc_dev,
610 			    "could not allocate rx mbuf\n");
611 			error = ENOMEM;
612 			goto fail;
613 		}
614 
615 		error = bus_dmamap_load(ring->data_dmat, data->map,
616 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
617 		    &physaddr, 0);
618 		if (error != 0) {
619 			device_printf(sc->sc_dev,
620 			    "could not load rx buf DMA map");
621 			goto fail;
622 		}
623 
624 		desc->flags = htole32(RT2560_RX_BUSY);
625 		desc->physaddr = htole32(physaddr);
626 	}
627 
628 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
629 
630 	return 0;
631 
632 fail:	rt2560_free_rx_ring(sc, ring);
633 	return error;
634 }
635 
636 static void
637 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
638 {
639 	int i;
640 
641 	for (i = 0; i < ring->count; i++) {
642 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
643 		ring->data[i].drop = 0;
644 	}
645 
646 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
647 
648 	ring->cur = ring->next = 0;
649 	ring->cur_decrypt = 0;
650 }
651 
652 static void
653 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
654 {
655 	struct rt2560_rx_data *data;
656 	int i;
657 
658 	if (ring->desc != NULL) {
659 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
660 		    BUS_DMASYNC_POSTWRITE);
661 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
662 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
663 	}
664 
665 	if (ring->desc_dmat != NULL)
666 		bus_dma_tag_destroy(ring->desc_dmat);
667 
668 	if (ring->data != NULL) {
669 		for (i = 0; i < ring->count; i++) {
670 			data = &ring->data[i];
671 
672 			if (data->m != NULL) {
673 				bus_dmamap_sync(ring->data_dmat, data->map,
674 				    BUS_DMASYNC_POSTREAD);
675 				bus_dmamap_unload(ring->data_dmat, data->map);
676 				m_freem(data->m);
677 			}
678 
679 			if (data->map != NULL)
680 				bus_dmamap_destroy(ring->data_dmat, data->map);
681 		}
682 
683 		free(ring->data, M_DEVBUF);
684 	}
685 
686 	if (ring->data_dmat != NULL)
687 		bus_dma_tag_destroy(ring->data_dmat);
688 }
689 
690 static struct ieee80211_node *
691 rt2560_node_alloc(struct ieee80211_node_table *nt)
692 {
693 	struct rt2560_node *rn;
694 
695 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
696 	    M_NOWAIT | M_ZERO);
697 
698 	return (rn != NULL) ? &rn->ni : NULL;
699 }
700 
701 static int
702 rt2560_media_change(struct ifnet *ifp)
703 {
704 	struct rt2560_softc *sc = ifp->if_softc;
705 	int error;
706 
707 	error = ieee80211_media_change(ifp);
708 
709 	if (error == ENETRESET) {
710 		if ((ifp->if_flags & IFF_UP) &&
711 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
712 		        rt2560_init(sc);
713 	}
714 	return error;
715 }
716 
717 /*
718  * This function is called for each node present in the node station table.
719  */
720 static void
721 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
722 {
723 	struct rt2560_node *rn = (struct rt2560_node *)ni;
724 
725 	ral_rssadapt_updatestats(&rn->rssadapt);
726 }
727 
728 /*
729  * This function is called periodically (every 100ms) in RUN state to update
730  * the rate adaptation statistics.
731  */
732 static void
733 rt2560_update_rssadapt(void *arg)
734 {
735 	struct rt2560_softc *sc = arg;
736 	struct ieee80211com *ic = &sc->sc_ic;
737 
738 	RAL_LOCK(sc);
739 
740 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
741 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
742 
743 	RAL_UNLOCK(sc);
744 }
745 
746 static int
747 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
748 {
749 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
750 	enum ieee80211_state ostate;
751 	struct ieee80211_node *ni;
752 	struct mbuf *m;
753 	int error = 0;
754 
755 	ostate = ic->ic_state;
756 
757 	switch (nstate) {
758 	case IEEE80211_S_INIT:
759 		callout_stop(&sc->rssadapt_ch);
760 
761 		if (ostate == IEEE80211_S_RUN) {
762 			/* abort TSF synchronization */
763 			RAL_WRITE(sc, RT2560_CSR14, 0);
764 
765 			/* turn association led off */
766 			rt2560_update_led(sc, 0, 0);
767 		}
768 		break;
769 	case IEEE80211_S_RUN:
770 		ni = ic->ic_bss;
771 
772 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
773 			rt2560_update_plcp(sc);
774 			rt2560_set_basicrates(sc);
775 			rt2560_set_bssid(sc, ni->ni_bssid);
776 		}
777 
778 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
779 		    ic->ic_opmode == IEEE80211_M_IBSS) {
780 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
781 			if (m == NULL) {
782 				device_printf(sc->sc_dev,
783 				    "could not allocate beacon\n");
784 				error = ENOBUFS;
785 				break;
786 			}
787 
788 			ieee80211_ref_node(ni);
789 			error = rt2560_tx_bcn(sc, m, ni);
790 			if (error != 0)
791 				break;
792 		}
793 
794 		/* turn assocation led on */
795 		rt2560_update_led(sc, 1, 0);
796 
797 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
798 			callout_reset(&sc->rssadapt_ch, hz / 10,
799 			    rt2560_update_rssadapt, sc);
800 
801 			rt2560_enable_tsf_sync(sc);
802 		}
803 		break;
804 	case IEEE80211_S_SCAN:
805 	case IEEE80211_S_AUTH:
806 	case IEEE80211_S_ASSOC:
807 		break;
808 	}
809 
810 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
811 }
812 
813 /*
814  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
815  * 93C66).
816  */
817 static uint16_t
818 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
819 {
820 	uint32_t tmp;
821 	uint16_t val;
822 	int n;
823 
824 	/* clock C once before the first command */
825 	RT2560_EEPROM_CTL(sc, 0);
826 
827 	RT2560_EEPROM_CTL(sc, RT2560_S);
828 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
829 	RT2560_EEPROM_CTL(sc, RT2560_S);
830 
831 	/* write start bit (1) */
832 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
833 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
834 
835 	/* write READ opcode (10) */
836 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
837 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
838 	RT2560_EEPROM_CTL(sc, RT2560_S);
839 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
840 
841 	/* write address (A5-A0 or A7-A0) */
842 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
843 	for (; n >= 0; n--) {
844 		RT2560_EEPROM_CTL(sc, RT2560_S |
845 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
846 		RT2560_EEPROM_CTL(sc, RT2560_S |
847 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
848 	}
849 
850 	RT2560_EEPROM_CTL(sc, RT2560_S);
851 
852 	/* read data Q15-Q0 */
853 	val = 0;
854 	for (n = 15; n >= 0; n--) {
855 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
856 		tmp = RAL_READ(sc, RT2560_CSR21);
857 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
858 		RT2560_EEPROM_CTL(sc, RT2560_S);
859 	}
860 
861 	RT2560_EEPROM_CTL(sc, 0);
862 
863 	/* clear Chip Select and clock C */
864 	RT2560_EEPROM_CTL(sc, RT2560_S);
865 	RT2560_EEPROM_CTL(sc, 0);
866 	RT2560_EEPROM_CTL(sc, RT2560_C);
867 
868 	return val;
869 }
870 
871 /*
872  * Some frames were processed by the hardware cipher engine and are ready for
873  * transmission.
874  */
875 static void
876 rt2560_encryption_intr(struct rt2560_softc *sc)
877 {
878 	struct rt2560_tx_desc *desc;
879 	int hw;
880 
881 	/* retrieve last descriptor index processed by cipher engine */
882 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
883 	hw /= RT2560_TX_DESC_SIZE;
884 
885 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
886 	    BUS_DMASYNC_POSTREAD);
887 
888 	for (; sc->txq.next_encrypt != hw;) {
889 		desc = &sc->txq.desc[sc->txq.next_encrypt];
890 
891 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
892 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
893 			break;
894 
895 		/* for TKIP, swap eiv field to fix a bug in ASIC */
896 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
897 		    RT2560_TX_CIPHER_TKIP)
898 			desc->eiv = bswap32(desc->eiv);
899 
900 		/* mark the frame ready for transmission */
901 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
902 
903 		DPRINTFN(15, ("encryption done idx=%u\n",
904 		    sc->txq.next_encrypt));
905 
906 		sc->txq.next_encrypt =
907 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
908 	}
909 
910 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
911 	    BUS_DMASYNC_PREWRITE);
912 
913 	/* kick Tx */
914 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
915 }
916 
917 static void
918 rt2560_tx_intr(struct rt2560_softc *sc)
919 {
920 	struct ieee80211com *ic = &sc->sc_ic;
921 	struct ifnet *ifp = ic->ic_ifp;
922 	struct rt2560_tx_desc *desc;
923 	struct rt2560_tx_data *data;
924 	struct rt2560_node *rn;
925 
926 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
927 	    BUS_DMASYNC_POSTREAD);
928 
929 	for (;;) {
930 		desc = &sc->txq.desc[sc->txq.next];
931 		data = &sc->txq.data[sc->txq.next];
932 
933 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
934 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
935 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
936 			break;
937 
938 		rn = (struct rt2560_node *)data->ni;
939 
940 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
941 		case RT2560_TX_SUCCESS:
942 			DPRINTFN(10, ("data frame sent successfully\n"));
943 			if (data->id.id_node != NULL) {
944 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
945 				    &data->id);
946 			}
947 			ifp->if_opackets++;
948 			break;
949 
950 		case RT2560_TX_SUCCESS_RETRY:
951 			DPRINTFN(9, ("data frame sent after %u retries\n",
952 			    (le32toh(desc->flags) >> 5) & 0x7));
953 			ifp->if_opackets++;
954 			break;
955 
956 		case RT2560_TX_FAIL_RETRY:
957 			DPRINTFN(9, ("sending data frame failed (too much "
958 			    "retries)\n"));
959 			if (data->id.id_node != NULL) {
960 				ral_rssadapt_lower_rate(ic, data->ni,
961 				    &rn->rssadapt, &data->id);
962 			}
963 			ifp->if_oerrors++;
964 			break;
965 
966 		case RT2560_TX_FAIL_INVALID:
967 		case RT2560_TX_FAIL_OTHER:
968 		default:
969 			device_printf(sc->sc_dev, "sending data frame failed "
970 			    "0x%08x\n", le32toh(desc->flags));
971 			ifp->if_oerrors++;
972 		}
973 
974 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
975 		    BUS_DMASYNC_POSTWRITE);
976 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
977 		m_freem(data->m);
978 		data->m = NULL;
979 		ieee80211_free_node(data->ni);
980 		data->ni = NULL;
981 
982 		/* descriptor is no longer valid */
983 		desc->flags &= ~htole32(RT2560_TX_VALID);
984 
985 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
986 
987 		sc->txq.queued--;
988 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
989 	}
990 
991 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
992 	    BUS_DMASYNC_PREWRITE);
993 
994 	sc->sc_tx_timer = 0;
995 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
996 	rt2560_start(ifp);
997 }
998 
999 static void
1000 rt2560_prio_intr(struct rt2560_softc *sc)
1001 {
1002 	struct ieee80211com *ic = &sc->sc_ic;
1003 	struct ifnet *ifp = ic->ic_ifp;
1004 	struct rt2560_tx_desc *desc;
1005 	struct rt2560_tx_data *data;
1006 	struct ieee80211_node *ni;
1007 	struct mbuf *m;
1008 	int flags;
1009 
1010 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1011 	    BUS_DMASYNC_POSTREAD);
1012 
1013 	for (;;) {
1014 		desc = &sc->prioq.desc[sc->prioq.next];
1015 		data = &sc->prioq.data[sc->prioq.next];
1016 
1017 		flags = le32toh(desc->flags);
1018 		if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
1019 			break;
1020 
1021 		switch (flags & RT2560_TX_RESULT_MASK) {
1022 		case RT2560_TX_SUCCESS:
1023 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1024 			break;
1025 
1026 		case RT2560_TX_SUCCESS_RETRY:
1027 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1028 			    (flags >> 5) & 0x7));
1029 			break;
1030 
1031 		case RT2560_TX_FAIL_RETRY:
1032 			DPRINTFN(9, ("sending mgt frame failed (too much "
1033 			    "retries)\n"));
1034 			break;
1035 
1036 		case RT2560_TX_FAIL_INVALID:
1037 		case RT2560_TX_FAIL_OTHER:
1038 		default:
1039 			device_printf(sc->sc_dev, "sending mgt frame failed "
1040 			    "0x%08x\n", flags);
1041 			break;
1042 		}
1043 
1044 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1045 		    BUS_DMASYNC_POSTWRITE);
1046 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1047 
1048 		m = data->m;
1049 		data->m = NULL;
1050 		ni = data->ni;
1051 		data->ni = NULL;
1052 
1053 		/* descriptor is no longer valid */
1054 		desc->flags &= ~htole32(RT2560_TX_VALID);
1055 
1056 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1057 
1058 		sc->prioq.queued--;
1059 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1060 
1061 		if (m->m_flags & M_TXCB)
1062 			ieee80211_process_callback(ni, m,
1063 				(flags & RT2560_TX_RESULT_MASK) &~
1064 				(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
1065 		m_freem(m);
1066 		ieee80211_free_node(ni);
1067 	}
1068 
1069 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1070 	    BUS_DMASYNC_PREWRITE);
1071 
1072 	sc->sc_tx_timer = 0;
1073 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1074 	rt2560_start(ifp);
1075 }
1076 
1077 /*
1078  * Some frames were processed by the hardware cipher engine and are ready for
1079  * transmission to the IEEE802.11 layer.
1080  */
1081 static void
1082 rt2560_decryption_intr(struct rt2560_softc *sc)
1083 {
1084 	struct ieee80211com *ic = &sc->sc_ic;
1085 	struct ifnet *ifp = ic->ic_ifp;
1086 	struct rt2560_rx_desc *desc;
1087 	struct rt2560_rx_data *data;
1088 	bus_addr_t physaddr;
1089 	struct ieee80211_frame *wh;
1090 	struct ieee80211_node *ni;
1091 	struct rt2560_node *rn;
1092 	struct mbuf *mnew, *m;
1093 	int hw, error;
1094 
1095 	/* retrieve last decriptor index processed by cipher engine */
1096 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1097 	hw /= RT2560_RX_DESC_SIZE;
1098 
1099 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1100 	    BUS_DMASYNC_POSTREAD);
1101 
1102 	for (; sc->rxq.cur_decrypt != hw;) {
1103 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1104 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1105 
1106 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1107 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1108 			break;
1109 
1110 		if (data->drop) {
1111 			ifp->if_ierrors++;
1112 			goto skip;
1113 		}
1114 
1115 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1116 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1117 			ifp->if_ierrors++;
1118 			goto skip;
1119 		}
1120 
1121 		/*
1122 		 * Try to allocate a new mbuf for this ring element and load it
1123 		 * before processing the current mbuf. If the ring element
1124 		 * cannot be loaded, drop the received packet and reuse the old
1125 		 * mbuf. In the unlikely case that the old mbuf can't be
1126 		 * reloaded either, explicitly panic.
1127 		 */
1128 		mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1129 		if (mnew == NULL) {
1130 			ifp->if_ierrors++;
1131 			goto skip;
1132 		}
1133 
1134 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1135 		    BUS_DMASYNC_POSTREAD);
1136 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1137 
1138 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1139 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1140 		    &physaddr, 0);
1141 		if (error != 0) {
1142 			m_freem(mnew);
1143 
1144 			/* try to reload the old mbuf */
1145 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1146 			    mtod(data->m, void *), MCLBYTES,
1147 			    rt2560_dma_map_addr, &physaddr, 0);
1148 			if (error != 0) {
1149 				/* very unlikely that it will fail... */
1150 				panic("%s: could not load old rx mbuf",
1151 				    device_get_name(sc->sc_dev));
1152 			}
1153 			ifp->if_ierrors++;
1154 			goto skip;
1155 		}
1156 
1157 		/*
1158 	 	 * New mbuf successfully loaded, update Rx ring and continue
1159 		 * processing.
1160 		 */
1161 		m = data->m;
1162 		data->m = mnew;
1163 		desc->physaddr = htole32(physaddr);
1164 
1165 		/* finalize mbuf */
1166 		m->m_pkthdr.rcvif = ifp;
1167 		m->m_pkthdr.len = m->m_len =
1168 		    (le32toh(desc->flags) >> 16) & 0xfff;
1169 
1170 		if (bpf_peers_present(sc->sc_drvbpf)) {
1171 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1172 			uint32_t tsf_lo, tsf_hi;
1173 
1174 			/* get timestamp (low and high 32 bits) */
1175 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1176 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1177 
1178 			tap->wr_tsf =
1179 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1180 			tap->wr_flags = 0;
1181 			tap->wr_rate = rt2560_rxrate(desc);
1182 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1183 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1184 			tap->wr_antenna = sc->rx_ant;
1185 			tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi);
1186 
1187 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1188 		}
1189 
1190 		sc->sc_flags |= RAL_INPUT_RUNNING;
1191 		RAL_UNLOCK(sc);
1192 		wh = mtod(m, struct ieee80211_frame *);
1193 		ni = ieee80211_find_rxnode(ic,
1194 		    (struct ieee80211_frame_min *)wh);
1195 
1196 		/* send the frame to the 802.11 layer */
1197 		ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi),
1198 				RT2560_NOISE_FLOOR, 0);
1199 
1200 		/* give rssi to the rate adatation algorithm */
1201 		rn = (struct rt2560_node *)ni;
1202 		ral_rssadapt_input(ic, ni, &rn->rssadapt,
1203 				   RT2560_RSSI(sc, desc->rssi));
1204 
1205 		/* node is no longer needed */
1206 		ieee80211_free_node(ni);
1207 
1208 		RAL_LOCK(sc);
1209 		sc->sc_flags &= ~RAL_INPUT_RUNNING;
1210 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1211 
1212 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1213 
1214 		sc->rxq.cur_decrypt =
1215 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1216 	}
1217 
1218 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1219 	    BUS_DMASYNC_PREWRITE);
1220 }
1221 
1222 /*
1223  * Some frames were received. Pass them to the hardware cipher engine before
1224  * sending them to the 802.11 layer.
1225  */
1226 static void
1227 rt2560_rx_intr(struct rt2560_softc *sc)
1228 {
1229 	struct rt2560_rx_desc *desc;
1230 	struct rt2560_rx_data *data;
1231 
1232 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1233 	    BUS_DMASYNC_POSTREAD);
1234 
1235 	for (;;) {
1236 		desc = &sc->rxq.desc[sc->rxq.cur];
1237 		data = &sc->rxq.data[sc->rxq.cur];
1238 
1239 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1240 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1241 			break;
1242 
1243 		data->drop = 0;
1244 
1245 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1246 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1247 			/*
1248 			 * This should not happen since we did not request
1249 			 * to receive those frames when we filled RXCSR0.
1250 			 */
1251 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1252 			    le32toh(desc->flags)));
1253 			data->drop = 1;
1254 		}
1255 
1256 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1257 			DPRINTFN(5, ("bad length\n"));
1258 			data->drop = 1;
1259 		}
1260 
1261 		/* mark the frame for decryption */
1262 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1263 
1264 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1265 
1266 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1267 	}
1268 
1269 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1270 	    BUS_DMASYNC_PREWRITE);
1271 
1272 	/* kick decrypt */
1273 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1274 }
1275 
1276 /*
1277  * This function is called periodically in IBSS mode when a new beacon must be
1278  * sent out.
1279  */
1280 static void
1281 rt2560_beacon_expire(struct rt2560_softc *sc)
1282 {
1283 	struct ieee80211com *ic = &sc->sc_ic;
1284 	struct rt2560_tx_data *data;
1285 
1286 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1287 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1288 		return;
1289 
1290 	data = &sc->bcnq.data[sc->bcnq.next];
1291 	/*
1292 	 * Don't send beacon if bsschan isn't set
1293 	 */
1294 	if (data->ni == NULL)
1295 	        return;
1296 
1297 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1298 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1299 
1300 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1301 
1302 	if (bpf_peers_present(ic->ic_rawbpf))
1303 		bpf_mtap(ic->ic_rawbpf, data->m);
1304 
1305 	rt2560_tx_bcn(sc, data->m, data->ni);
1306 
1307 	DPRINTFN(15, ("beacon expired\n"));
1308 
1309 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1310 }
1311 
1312 /* ARGSUSED */
1313 static void
1314 rt2560_wakeup_expire(struct rt2560_softc *sc)
1315 {
1316 	DPRINTFN(2, ("wakeup expired\n"));
1317 }
1318 
1319 void
1320 rt2560_intr(void *arg)
1321 {
1322 	struct rt2560_softc *sc = arg;
1323 	struct ifnet *ifp = sc->sc_ifp;
1324 	uint32_t r;
1325 
1326 	RAL_LOCK(sc);
1327 
1328 	/* disable interrupts */
1329 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1330 
1331 	/* don't re-enable interrupts if we're shutting down */
1332 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1333 		RAL_UNLOCK(sc);
1334 		return;
1335 	}
1336 
1337 	r = RAL_READ(sc, RT2560_CSR7);
1338 	RAL_WRITE(sc, RT2560_CSR7, r);
1339 
1340 	if (r & RT2560_BEACON_EXPIRE)
1341 		rt2560_beacon_expire(sc);
1342 
1343 	if (r & RT2560_WAKEUP_EXPIRE)
1344 		rt2560_wakeup_expire(sc);
1345 
1346 	if (r & RT2560_ENCRYPTION_DONE)
1347 		rt2560_encryption_intr(sc);
1348 
1349 	if (r & RT2560_TX_DONE)
1350 		rt2560_tx_intr(sc);
1351 
1352 	if (r & RT2560_PRIO_DONE)
1353 		rt2560_prio_intr(sc);
1354 
1355 	if (r & RT2560_DECRYPTION_DONE)
1356 		rt2560_decryption_intr(sc);
1357 
1358 	if (r & RT2560_RX_DONE)
1359 		rt2560_rx_intr(sc);
1360 
1361 	/* re-enable interrupts */
1362 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1363 
1364 	RAL_UNLOCK(sc);
1365 }
1366 
1367 /* quickly determine if a given rate is CCK or OFDM */
1368 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1369 
1370 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1371 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1372 
1373 #define RAL_SIFS		10	/* us */
1374 
1375 #define RT2560_TXRX_TURNAROUND	10	/* us */
1376 
1377 /*
1378  * This function is only used by the Rx radiotap code.
1379  */
1380 static uint8_t
1381 rt2560_rxrate(struct rt2560_rx_desc *desc)
1382 {
1383 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1384 		/* reverse function of rt2560_plcp_signal */
1385 		switch (desc->rate) {
1386 		case 0xb:	return 12;
1387 		case 0xf:	return 18;
1388 		case 0xa:	return 24;
1389 		case 0xe:	return 36;
1390 		case 0x9:	return 48;
1391 		case 0xd:	return 72;
1392 		case 0x8:	return 96;
1393 		case 0xc:	return 108;
1394 		}
1395 	} else {
1396 		if (desc->rate == 10)
1397 			return 2;
1398 		if (desc->rate == 20)
1399 			return 4;
1400 		if (desc->rate == 55)
1401 			return 11;
1402 		if (desc->rate == 110)
1403 			return 22;
1404 	}
1405 	return 2;	/* should not get there */
1406 }
1407 
1408 /*
1409  * Return the expected ack rate for a frame transmitted at rate `rate'.
1410  * XXX: this should depend on the destination node basic rate set.
1411  */
1412 static int
1413 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1414 {
1415 	switch (rate) {
1416 	/* CCK rates */
1417 	case 2:
1418 		return 2;
1419 	case 4:
1420 	case 11:
1421 	case 22:
1422 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1423 
1424 	/* OFDM rates */
1425 	case 12:
1426 	case 18:
1427 		return 12;
1428 	case 24:
1429 	case 36:
1430 		return 24;
1431 	case 48:
1432 	case 72:
1433 	case 96:
1434 	case 108:
1435 		return 48;
1436 	}
1437 
1438 	/* default to 1Mbps */
1439 	return 2;
1440 }
1441 
1442 /*
1443  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1444  * The function automatically determines the operating mode depending on the
1445  * given rate. `flags' indicates whether short preamble is in use or not.
1446  */
1447 static uint16_t
1448 rt2560_txtime(int len, int rate, uint32_t flags)
1449 {
1450 	uint16_t txtime;
1451 
1452 	if (RAL_RATE_IS_OFDM(rate)) {
1453 		/* IEEE Std 802.11a-1999, pp. 37 */
1454 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1455 		txtime = 16 + 4 + 4 * txtime + 6;
1456 	} else {
1457 		/* IEEE Std 802.11b-1999, pp. 28 */
1458 		txtime = (16 * len + rate - 1) / rate;
1459 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1460 			txtime +=  72 + 24;
1461 		else
1462 			txtime += 144 + 48;
1463 	}
1464 
1465 	return txtime;
1466 }
1467 
1468 static uint8_t
1469 rt2560_plcp_signal(int rate)
1470 {
1471 	switch (rate) {
1472 	/* CCK rates (returned values are device-dependent) */
1473 	case 2:		return 0x0;
1474 	case 4:		return 0x1;
1475 	case 11:	return 0x2;
1476 	case 22:	return 0x3;
1477 
1478 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1479 	case 12:	return 0xb;
1480 	case 18:	return 0xf;
1481 	case 24:	return 0xa;
1482 	case 36:	return 0xe;
1483 	case 48:	return 0x9;
1484 	case 72:	return 0xd;
1485 	case 96:	return 0x8;
1486 	case 108:	return 0xc;
1487 
1488 	/* unsupported rates (should not get there) */
1489 	default:	return 0xff;
1490 	}
1491 }
1492 
1493 static void
1494 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1495     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1496 {
1497 	struct ieee80211com *ic = &sc->sc_ic;
1498 	uint16_t plcp_length;
1499 	int remainder;
1500 
1501 	desc->flags = htole32(flags);
1502 	desc->flags |= htole32(len << 16);
1503 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1504 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1505 
1506 	desc->physaddr = htole32(physaddr);
1507 	desc->wme = htole16(
1508 	    RT2560_AIFSN(2) |
1509 	    RT2560_LOGCWMIN(3) |
1510 	    RT2560_LOGCWMAX(8));
1511 
1512 	/* setup PLCP fields */
1513 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1514 	desc->plcp_service = 4;
1515 
1516 	len += IEEE80211_CRC_LEN;
1517 	if (RAL_RATE_IS_OFDM(rate)) {
1518 		desc->flags |= htole32(RT2560_TX_OFDM);
1519 
1520 		plcp_length = len & 0xfff;
1521 		desc->plcp_length_hi = plcp_length >> 6;
1522 		desc->plcp_length_lo = plcp_length & 0x3f;
1523 	} else {
1524 		plcp_length = (16 * len + rate - 1) / rate;
1525 		if (rate == 22) {
1526 			remainder = (16 * len) % 22;
1527 			if (remainder != 0 && remainder < 7)
1528 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1529 		}
1530 		desc->plcp_length_hi = plcp_length >> 8;
1531 		desc->plcp_length_lo = plcp_length & 0xff;
1532 
1533 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1534 			desc->plcp_signal |= 0x08;
1535 	}
1536 }
1537 
1538 static int
1539 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1540     struct ieee80211_node *ni)
1541 {
1542 	struct ieee80211com *ic = &sc->sc_ic;
1543 	struct rt2560_tx_desc *desc;
1544 	struct rt2560_tx_data *data;
1545 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1546 	int nsegs, rate, error;
1547 
1548 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1549 	data = &sc->bcnq.data[sc->bcnq.cur];
1550 
1551 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1552 
1553 	error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1554 	    segs, &nsegs, BUS_DMA_NOWAIT);
1555 	if (error != 0) {
1556 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1557 		    error);
1558 		m_freem(m0);
1559 		return error;
1560 	}
1561 
1562 	if (bpf_peers_present(sc->sc_drvbpf)) {
1563 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1564 
1565 		tap->wt_flags = 0;
1566 		tap->wt_rate = rate;
1567 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1568 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1569 		tap->wt_antenna = sc->tx_ant;
1570 
1571 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1572 	}
1573 
1574 	data->m = m0;
1575 	data->ni = ni;
1576 
1577 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1578 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1579 
1580 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1581 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1582 
1583 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1584 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1585 	    BUS_DMASYNC_PREWRITE);
1586 
1587 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1588 
1589 	return 0;
1590 }
1591 
1592 static int
1593 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1594     struct ieee80211_node *ni)
1595 {
1596 	struct ieee80211com *ic = &sc->sc_ic;
1597 	struct rt2560_tx_desc *desc;
1598 	struct rt2560_tx_data *data;
1599 	struct ieee80211_frame *wh;
1600 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1601 	uint16_t dur;
1602 	uint32_t flags = 0;
1603 	int nsegs, rate, error;
1604 
1605 	desc = &sc->prioq.desc[sc->prioq.cur];
1606 	data = &sc->prioq.data[sc->prioq.cur];
1607 
1608 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1609 
1610 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1611 	    segs, &nsegs, 0);
1612 	if (error != 0) {
1613 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1614 		    error);
1615 		m_freem(m0);
1616 		return error;
1617 	}
1618 
1619 	if (bpf_peers_present(sc->sc_drvbpf)) {
1620 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1621 
1622 		tap->wt_flags = 0;
1623 		tap->wt_rate = rate;
1624 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1625 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1626 		tap->wt_antenna = sc->tx_ant;
1627 
1628 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1629 	}
1630 
1631 	data->m = m0;
1632 	data->ni = ni;
1633 
1634 	wh = mtod(m0, struct ieee80211_frame *);
1635 
1636 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1637 		flags |= RT2560_TX_ACK;
1638 
1639 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1640 		      RAL_SIFS;
1641 		*(uint16_t *)wh->i_dur = htole16(dur);
1642 
1643 		/* tell hardware to add timestamp for probe responses */
1644 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1645 		    IEEE80211_FC0_TYPE_MGT &&
1646 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1647 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1648 			flags |= RT2560_TX_TIMESTAMP;
1649 	}
1650 
1651 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1652 	    segs->ds_addr);
1653 
1654 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1655 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1656 	    BUS_DMASYNC_PREWRITE);
1657 
1658 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1659 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1660 
1661 	/* kick prio */
1662 	sc->prioq.queued++;
1663 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1664 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1665 
1666 	return 0;
1667 }
1668 
1669 static int
1670 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
1671     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
1672 {
1673 	struct ieee80211com *ic = &sc->sc_ic;
1674 	struct rt2560_tx_desc *desc;
1675 	struct rt2560_tx_data *data;
1676 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1677 	uint32_t flags;
1678 	int nsegs, rate, error;
1679 
1680 	desc = &sc->prioq.desc[sc->prioq.cur];
1681 	data = &sc->prioq.data[sc->prioq.cur];
1682 
1683 	rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1684 	/* XXX validate */
1685 	if (rate == 0) {
1686 		m_freem(m0);
1687 		return EINVAL;
1688 	}
1689 
1690 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1691 	    segs, &nsegs, 0);
1692 	if (error != 0) {
1693 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1694 		    error);
1695 		m_freem(m0);
1696 		return error;
1697 	}
1698 
1699 	if (bpf_peers_present(sc->sc_drvbpf)) {
1700 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1701 
1702 		tap->wt_flags = 0;
1703 		tap->wt_rate = rate;
1704 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1705 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1706 		tap->wt_antenna = sc->tx_ant;
1707 
1708 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1709 	}
1710 
1711 	data->m = m0;
1712 	data->ni = ni;
1713 
1714 	flags = 0;
1715 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1716 		flags |= RT2560_TX_ACK;
1717 
1718 	/* XXX need to setup descriptor ourself */
1719 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
1720 	    rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
1721 	    segs->ds_addr);
1722 
1723 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1724 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1725 	    BUS_DMASYNC_PREWRITE);
1726 
1727 	DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n",
1728 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1729 
1730 	/* kick prio */
1731 	sc->prioq.queued++;
1732 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1733 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1734 
1735 	return 0;
1736 }
1737 
1738 /*
1739  * Build a RTS control frame.
1740  */
1741 static struct mbuf *
1742 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1743     uint16_t dur)
1744 {
1745 	struct ieee80211_frame_rts *rts;
1746 	struct mbuf *m;
1747 
1748 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1749 	if (m == NULL) {
1750 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1751 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1752 		return NULL;
1753 	}
1754 
1755 	rts = mtod(m, struct ieee80211_frame_rts *);
1756 
1757 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1758 	    IEEE80211_FC0_SUBTYPE_RTS;
1759 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1760 	*(uint16_t *)rts->i_dur = htole16(dur);
1761 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1762 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1763 
1764 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1765 
1766 	return m;
1767 }
1768 
1769 static int
1770 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1771     struct ieee80211_node *ni)
1772 {
1773 	struct ieee80211com *ic = &sc->sc_ic;
1774 	struct rt2560_tx_desc *desc;
1775 	struct rt2560_tx_data *data;
1776 	struct rt2560_node *rn;
1777 	struct ieee80211_frame *wh;
1778 	struct ieee80211_key *k;
1779 	struct mbuf *mnew;
1780 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1781 	uint16_t dur;
1782 	uint32_t flags = 0;
1783 	int nsegs, rate, error;
1784 
1785 	wh = mtod(m0, struct ieee80211_frame *);
1786 
1787 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1788 		rate = ic->ic_fixed_rate;
1789 	} else {
1790 		struct ieee80211_rateset *rs;
1791 
1792 		rs = &ni->ni_rates;
1793 		rn = (struct rt2560_node *)ni;
1794 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1795 		    m0->m_pkthdr.len, NULL, 0);
1796 		rate = rs->rs_rates[ni->ni_txrate];
1797 	}
1798 	rate &= IEEE80211_RATE_VAL;
1799 
1800 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1801 		k = ieee80211_crypto_encap(ic, ni, m0);
1802 		if (k == NULL) {
1803 			m_freem(m0);
1804 			return ENOBUFS;
1805 		}
1806 
1807 		/* packet header may have moved, reset our local pointer */
1808 		wh = mtod(m0, struct ieee80211_frame *);
1809 	}
1810 
1811 	/*
1812 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1813 	 * for directed frames only when the length of the MPDU is greater
1814 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1815 	 */
1816 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1817 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1818 		struct mbuf *m;
1819 		uint16_t dur;
1820 		int rtsrate, ackrate;
1821 
1822 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1823 		ackrate = rt2560_ack_rate(ic, rate);
1824 
1825 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1826 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1827 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1828 		      3 * RAL_SIFS;
1829 
1830 		m = rt2560_get_rts(sc, wh, dur);
1831 
1832 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1833 		data = &sc->txq.data[sc->txq.cur_encrypt];
1834 
1835 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1836 		    m, segs, &nsegs, 0);
1837 		if (error != 0) {
1838 			device_printf(sc->sc_dev,
1839 			    "could not map mbuf (error %d)\n", error);
1840 			m_freem(m);
1841 			m_freem(m0);
1842 			return error;
1843 		}
1844 
1845 		/* avoid multiple free() of the same node for each fragment */
1846 		ieee80211_ref_node(ni);
1847 
1848 		data->m = m;
1849 		data->ni = ni;
1850 
1851 		/* RTS frames are not taken into account for rssadapt */
1852 		data->id.id_node = NULL;
1853 
1854 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1855 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1856 		    segs->ds_addr);
1857 
1858 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1859 		    BUS_DMASYNC_PREWRITE);
1860 
1861 		sc->txq.queued++;
1862 		sc->txq.cur_encrypt =
1863 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1864 
1865 		/*
1866 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1867 		 * asynchronous data frame shall be transmitted after the CTS
1868 		 * frame and a SIFS period.
1869 		 */
1870 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1871 	}
1872 
1873 	data = &sc->txq.data[sc->txq.cur_encrypt];
1874 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1875 
1876 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1877 	    segs, &nsegs, 0);
1878 	if (error != 0 && error != EFBIG) {
1879 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1880 		    error);
1881 		m_freem(m0);
1882 		return error;
1883 	}
1884 	if (error != 0) {
1885 		mnew = m_defrag(m0, M_DONTWAIT);
1886 		if (mnew == NULL) {
1887 			device_printf(sc->sc_dev,
1888 			    "could not defragment mbuf\n");
1889 			m_freem(m0);
1890 			return ENOBUFS;
1891 		}
1892 		m0 = mnew;
1893 
1894 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1895 		    m0, segs, &nsegs, 0);
1896 		if (error != 0) {
1897 			device_printf(sc->sc_dev,
1898 			    "could not map mbuf (error %d)\n", error);
1899 			m_freem(m0);
1900 			return error;
1901 		}
1902 
1903 		/* packet header may have moved, reset our local pointer */
1904 		wh = mtod(m0, struct ieee80211_frame *);
1905 	}
1906 
1907 	if (bpf_peers_present(sc->sc_drvbpf)) {
1908 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1909 
1910 		tap->wt_flags = 0;
1911 		tap->wt_rate = rate;
1912 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1913 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1914 		tap->wt_antenna = sc->tx_ant;
1915 
1916 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1917 	}
1918 
1919 	data->m = m0;
1920 	data->ni = ni;
1921 
1922 	/* remember link conditions for rate adaptation algorithm */
1923 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1924 		data->id.id_len = m0->m_pkthdr.len;
1925 		data->id.id_rateidx = ni->ni_txrate;
1926 		data->id.id_node = ni;
1927 		data->id.id_rssi = ni->ni_rssi;
1928 	} else
1929 		data->id.id_node = NULL;
1930 
1931 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1932 		flags |= RT2560_TX_ACK;
1933 
1934 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1935 		    ic->ic_flags) + RAL_SIFS;
1936 		*(uint16_t *)wh->i_dur = htole16(dur);
1937 	}
1938 
1939 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1940 	    segs->ds_addr);
1941 
1942 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1943 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1944 	    BUS_DMASYNC_PREWRITE);
1945 
1946 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1947 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1948 
1949 	/* kick encrypt */
1950 	sc->txq.queued++;
1951 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1952 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1953 
1954 	return 0;
1955 }
1956 
1957 static void
1958 rt2560_start(struct ifnet *ifp)
1959 {
1960 	struct rt2560_softc *sc = ifp->if_softc;
1961 	struct ieee80211com *ic = &sc->sc_ic;
1962 	struct mbuf *m0;
1963 	struct ether_header *eh;
1964 	struct ieee80211_node *ni;
1965 
1966 	RAL_LOCK(sc);
1967 
1968 	/* prevent management frames from being sent if we're not ready */
1969 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1970 		RAL_UNLOCK(sc);
1971 		return;
1972 	}
1973 
1974 	for (;;) {
1975 		IF_POLL(&ic->ic_mgtq, m0);
1976 		if (m0 != NULL) {
1977 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1978 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1979 				break;
1980 			}
1981 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1982 
1983 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1984 			m0->m_pkthdr.rcvif = NULL;
1985 
1986 			if (bpf_peers_present(ic->ic_rawbpf))
1987 				bpf_mtap(ic->ic_rawbpf, m0);
1988 
1989 			if (rt2560_tx_mgt(sc, m0, ni) != 0) {
1990 				ieee80211_free_node(ni);
1991 				break;
1992 			}
1993 		} else {
1994 			if (ic->ic_state != IEEE80211_S_RUN)
1995 				break;
1996 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1997 			if (m0 == NULL)
1998 				break;
1999 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
2000 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2001 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2002 				break;
2003 			}
2004 
2005 			if (m0->m_len < sizeof (struct ether_header) &&
2006 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2007 				continue;
2008 
2009 			eh = mtod(m0, struct ether_header *);
2010 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2011 			if (ni == NULL) {
2012 				m_freem(m0);
2013 				continue;
2014 			}
2015 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
2016 			    (m0->m_flags & M_PWR_SAV) == 0) {
2017 				/*
2018 				 * Station in power save mode; pass the frame
2019 				 * to the 802.11 layer and continue.  We'll get
2020 				 * the frame back when the time is right.
2021 				 */
2022 				ieee80211_pwrsave(ni, m0);
2023 				/*
2024 				 * If we're in power save mode 'cuz of a bg
2025 				 * scan cancel it so the traffic can flow.
2026 				 * The packet we just queued will automatically
2027 				 * get sent when we drop out of power save.
2028 				 * XXX locking
2029 				 */
2030 				if (ic->ic_flags & IEEE80211_F_SCAN)
2031 					ieee80211_cancel_scan(ic);
2032 				ieee80211_free_node(ni);
2033 				continue;
2034 
2035 			}
2036 
2037 			BPF_MTAP(ifp, m0);
2038 
2039 			m0 = ieee80211_encap(ic, m0, ni);
2040 			if (m0 == NULL) {
2041 				ieee80211_free_node(ni);
2042 				continue;
2043 			}
2044 
2045 			if (bpf_peers_present(ic->ic_rawbpf))
2046 				bpf_mtap(ic->ic_rawbpf, m0);
2047 
2048 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2049 				ieee80211_free_node(ni);
2050 				ifp->if_oerrors++;
2051 				break;
2052 			}
2053 		}
2054 
2055 		sc->sc_tx_timer = 5;
2056 		callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2057 	}
2058 
2059 	RAL_UNLOCK(sc);
2060 }
2061 
2062 static void
2063 rt2560_watchdog(void *arg)
2064 {
2065 	struct rt2560_softc *sc = arg;
2066 
2067 	if (sc->sc_tx_timer > 0) {
2068 		if (--sc->sc_tx_timer == 0) {
2069 			device_printf(sc->sc_dev, "device timeout\n");
2070 			rt2560_init(sc);
2071 			sc->sc_ifp->if_oerrors++;
2072 			return;
2073 		}
2074 		callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2075 	}
2076 }
2077 
2078 /*
2079  * This function allows for fast channel switching in monitor mode (used by
2080  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2081  * generate a new beacon frame.
2082  */
2083 static int
2084 rt2560_reset(struct ifnet *ifp)
2085 {
2086 	struct rt2560_softc *sc = ifp->if_softc;
2087 	struct ieee80211com *ic = &sc->sc_ic;
2088 
2089 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2090 		return ENETRESET;
2091 
2092 	rt2560_set_chan(sc, ic->ic_curchan);
2093 
2094 	return 0;
2095 }
2096 
2097 static int
2098 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2099 {
2100 	struct rt2560_softc *sc = ifp->if_softc;
2101 	struct ieee80211com *ic = &sc->sc_ic;
2102 	int error = 0;
2103 
2104 
2105 
2106 	switch (cmd) {
2107 	case SIOCSIFFLAGS:
2108 		if (ifp->if_flags & IFF_UP) {
2109 			RAL_LOCK(sc);
2110 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2111 				rt2560_update_promisc(sc);
2112 			else
2113 				rt2560_init(sc);
2114 			RAL_UNLOCK(sc);
2115 		} else {
2116 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2117 				rt2560_stop(sc);
2118 		}
2119 
2120 		break;
2121 
2122 	default:
2123 		error = ieee80211_ioctl(ic, cmd, data);
2124 	}
2125 
2126 	if (error == ENETRESET) {
2127 		if ((ifp->if_flags & IFF_UP) &&
2128 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2129 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2130 			rt2560_init(sc);
2131 		error = 0;
2132 	}
2133 
2134 
2135 	return error;
2136 }
2137 
2138 static void
2139 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2140 {
2141 	uint32_t tmp;
2142 	int ntries;
2143 
2144 	for (ntries = 0; ntries < 100; ntries++) {
2145 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2146 			break;
2147 		DELAY(1);
2148 	}
2149 	if (ntries == 100) {
2150 		device_printf(sc->sc_dev, "could not write to BBP\n");
2151 		return;
2152 	}
2153 
2154 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2155 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2156 
2157 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2158 }
2159 
2160 static uint8_t
2161 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2162 {
2163 	uint32_t val;
2164 	int ntries;
2165 
2166 	val = RT2560_BBP_BUSY | reg << 8;
2167 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2168 
2169 	for (ntries = 0; ntries < 100; ntries++) {
2170 		val = RAL_READ(sc, RT2560_BBPCSR);
2171 		if (!(val & RT2560_BBP_BUSY))
2172 			return val & 0xff;
2173 		DELAY(1);
2174 	}
2175 
2176 	device_printf(sc->sc_dev, "could not read from BBP\n");
2177 	return 0;
2178 }
2179 
2180 static void
2181 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2182 {
2183 	uint32_t tmp;
2184 	int ntries;
2185 
2186 	for (ntries = 0; ntries < 100; ntries++) {
2187 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2188 			break;
2189 		DELAY(1);
2190 	}
2191 	if (ntries == 100) {
2192 		device_printf(sc->sc_dev, "could not write to RF\n");
2193 		return;
2194 	}
2195 
2196 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2197 	    (reg & 0x3);
2198 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2199 
2200 	/* remember last written value in sc */
2201 	sc->rf_regs[reg] = val;
2202 
2203 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2204 }
2205 
2206 static void
2207 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2208 {
2209 	struct ieee80211com *ic = &sc->sc_ic;
2210 	uint8_t power, tmp;
2211 	u_int i, chan;
2212 
2213 	chan = ieee80211_chan2ieee(ic, c);
2214 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2215 		return;
2216 
2217 	if (IEEE80211_IS_CHAN_2GHZ(c))
2218 		power = min(sc->txpow[chan - 1], 31);
2219 	else
2220 		power = 31;
2221 
2222 	/* adjust txpower using ifconfig settings */
2223 	power -= (100 - ic->ic_txpowlimit) / 8;
2224 
2225 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2226 
2227 	switch (sc->rf_rev) {
2228 	case RT2560_RF_2522:
2229 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2230 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2231 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2232 		break;
2233 
2234 	case RT2560_RF_2523:
2235 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2236 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2237 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2238 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2239 		break;
2240 
2241 	case RT2560_RF_2524:
2242 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2243 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2244 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2245 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2246 		break;
2247 
2248 	case RT2560_RF_2525:
2249 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2250 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2251 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2252 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2253 
2254 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2255 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2256 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2257 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2258 		break;
2259 
2260 	case RT2560_RF_2525E:
2261 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2262 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2263 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2264 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2265 		break;
2266 
2267 	case RT2560_RF_2526:
2268 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2269 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2270 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2271 
2272 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2273 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2274 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2275 		break;
2276 
2277 	/* dual-band RF */
2278 	case RT2560_RF_5222:
2279 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2280 
2281 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2282 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2283 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2284 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2285 		break;
2286 	default:
2287  	        printf("unknown ral rev=%d\n", sc->rf_rev);
2288 	}
2289 
2290 	if (ic->ic_state != IEEE80211_S_SCAN) {
2291 		/* set Japan filter bit for channel 14 */
2292 		tmp = rt2560_bbp_read(sc, 70);
2293 
2294 		tmp &= ~RT2560_JAPAN_FILTER;
2295 		if (chan == 14)
2296 			tmp |= RT2560_JAPAN_FILTER;
2297 
2298 		rt2560_bbp_write(sc, 70, tmp);
2299 
2300 		/* clear CRC errors */
2301 		RAL_READ(sc, RT2560_CNT0);
2302 	}
2303 }
2304 
2305 static void
2306 rt2560_set_channel(struct ieee80211com *ic)
2307 {
2308 	struct ifnet *ifp = ic->ic_ifp;
2309 	struct rt2560_softc *sc = ifp->if_softc;
2310 
2311 	RAL_LOCK(sc);
2312 	rt2560_set_chan(sc, ic->ic_curchan);
2313 	RAL_UNLOCK(sc);
2314 
2315 }
2316 
2317 #if 0
2318 /*
2319  * Disable RF auto-tuning.
2320  */
2321 static void
2322 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2323 {
2324 	uint32_t tmp;
2325 
2326 	if (sc->rf_rev != RT2560_RF_2523) {
2327 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2328 		rt2560_rf_write(sc, RAL_RF1, tmp);
2329 	}
2330 
2331 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2332 	rt2560_rf_write(sc, RAL_RF3, tmp);
2333 
2334 	DPRINTFN(2, ("disabling RF autotune\n"));
2335 }
2336 #endif
2337 
2338 /*
2339  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2340  * synchronization.
2341  */
2342 static void
2343 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2344 {
2345 	struct ieee80211com *ic = &sc->sc_ic;
2346 	uint16_t logcwmin, preload;
2347 	uint32_t tmp;
2348 
2349 	/* first, disable TSF synchronization */
2350 	RAL_WRITE(sc, RT2560_CSR14, 0);
2351 
2352 	tmp = 16 * ic->ic_bss->ni_intval;
2353 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2354 
2355 	RAL_WRITE(sc, RT2560_CSR13, 0);
2356 
2357 	logcwmin = 5;
2358 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2359 	tmp = logcwmin << 16 | preload;
2360 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2361 
2362 	/* finally, enable TSF synchronization */
2363 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2364 	if (ic->ic_opmode == IEEE80211_M_STA)
2365 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2366 	else
2367 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2368 		       RT2560_ENABLE_BEACON_GENERATOR;
2369 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2370 
2371 	DPRINTF(("enabling TSF synchronization\n"));
2372 }
2373 
2374 static void
2375 rt2560_update_plcp(struct rt2560_softc *sc)
2376 {
2377 	struct ieee80211com *ic = &sc->sc_ic;
2378 
2379 	/* no short preamble for 1Mbps */
2380 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2381 
2382 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2383 		/* values taken from the reference driver */
2384 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2385 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2386 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2387 	} else {
2388 		/* same values as above or'ed 0x8 */
2389 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2390 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2391 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2392 	}
2393 
2394 	DPRINTF(("updating PLCP for %s preamble\n",
2395 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2396 }
2397 
2398 /*
2399  * This function can be called by ieee80211_set_shortslottime(). Refer to
2400  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2401  */
2402 static void
2403 rt2560_update_slot(struct ifnet *ifp)
2404 {
2405 	struct rt2560_softc *sc = ifp->if_softc;
2406 	struct ieee80211com *ic = &sc->sc_ic;
2407 	uint8_t slottime;
2408 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2409 	uint32_t tmp;
2410 
2411 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2412 
2413 	/* update the MAC slot boundaries */
2414 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2415 	tx_pifs = tx_sifs + slottime;
2416 	tx_difs = tx_sifs + 2 * slottime;
2417 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2418 
2419 	tmp = RAL_READ(sc, RT2560_CSR11);
2420 	tmp = (tmp & ~0x1f00) | slottime << 8;
2421 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2422 
2423 	tmp = tx_pifs << 16 | tx_sifs;
2424 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2425 
2426 	tmp = eifs << 16 | tx_difs;
2427 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2428 
2429 	DPRINTF(("setting slottime to %uus\n", slottime));
2430 }
2431 
2432 static void
2433 rt2560_set_basicrates(struct rt2560_softc *sc)
2434 {
2435 	struct ieee80211com *ic = &sc->sc_ic;
2436 
2437 	/* update basic rate set */
2438 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2439 		/* 11b basic rates: 1, 2Mbps */
2440 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2441 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2442 		/* 11a basic rates: 6, 12, 24Mbps */
2443 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2444 	} else {
2445 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2446 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2447 	}
2448 }
2449 
2450 static void
2451 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2452 {
2453 	uint32_t tmp;
2454 
2455 	/* set ON period to 70ms and OFF period to 30ms */
2456 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2457 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2458 }
2459 
2460 static void
2461 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
2462 {
2463 	uint32_t tmp;
2464 
2465 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2466 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2467 
2468 	tmp = bssid[4] | bssid[5] << 8;
2469 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2470 
2471 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2472 }
2473 
2474 static void
2475 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2476 {
2477 	uint32_t tmp;
2478 
2479 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2480 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2481 
2482 	tmp = addr[4] | addr[5] << 8;
2483 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2484 
2485 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2486 }
2487 
2488 static void
2489 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2490 {
2491 	uint32_t tmp;
2492 
2493 	tmp = RAL_READ(sc, RT2560_CSR3);
2494 	addr[0] = tmp & 0xff;
2495 	addr[1] = (tmp >>  8) & 0xff;
2496 	addr[2] = (tmp >> 16) & 0xff;
2497 	addr[3] = (tmp >> 24);
2498 
2499 	tmp = RAL_READ(sc, RT2560_CSR4);
2500 	addr[4] = tmp & 0xff;
2501 	addr[5] = (tmp >> 8) & 0xff;
2502 }
2503 
2504 static void
2505 rt2560_update_promisc(struct rt2560_softc *sc)
2506 {
2507 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2508 	uint32_t tmp;
2509 
2510 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2511 
2512 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2513 	if (!(ifp->if_flags & IFF_PROMISC))
2514 		tmp |= RT2560_DROP_NOT_TO_ME;
2515 
2516 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2517 
2518 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2519 	    "entering" : "leaving"));
2520 }
2521 
2522 static const char *
2523 rt2560_get_rf(int rev)
2524 {
2525 	switch (rev) {
2526 	case RT2560_RF_2522:	return "RT2522";
2527 	case RT2560_RF_2523:	return "RT2523";
2528 	case RT2560_RF_2524:	return "RT2524";
2529 	case RT2560_RF_2525:	return "RT2525";
2530 	case RT2560_RF_2525E:	return "RT2525e";
2531 	case RT2560_RF_2526:	return "RT2526";
2532 	case RT2560_RF_5222:	return "RT5222";
2533 	default:		return "unknown";
2534 	}
2535 }
2536 
2537 static void
2538 rt2560_read_eeprom(struct rt2560_softc *sc)
2539 {
2540 	uint16_t val;
2541 	int i;
2542 
2543 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2544 	sc->rf_rev =   (val >> 11) & 0x7;
2545 	sc->hw_radio = (val >> 10) & 0x1;
2546 	sc->led_mode = (val >> 6)  & 0x7;
2547 	sc->rx_ant =   (val >> 4)  & 0x3;
2548 	sc->tx_ant =   (val >> 2)  & 0x3;
2549 	sc->nb_ant =   val & 0x3;
2550 
2551 	/* read default values for BBP registers */
2552 	for (i = 0; i < 16; i++) {
2553 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2554 		sc->bbp_prom[i].reg = val >> 8;
2555 		sc->bbp_prom[i].val = val & 0xff;
2556 	}
2557 
2558 	/* read Tx power for all b/g channels */
2559 	for (i = 0; i < 14 / 2; i++) {
2560 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2561 		sc->txpow[i * 2] = val >> 8;
2562 		sc->txpow[i * 2 + 1] = val & 0xff;
2563 	}
2564 
2565 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
2566 	if ((val & 0xff) == 0xff)
2567 		sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
2568 	else
2569 		sc->rssi_corr = val & 0xff;
2570 	DPRINTF(("rssi correction %d, calibrate 0x%02x\n",
2571 		 sc->rssi_corr, val));
2572 }
2573 
2574 
2575 static void
2576 rt2560_scan_start(struct ieee80211com *ic)
2577 {
2578 	struct ifnet *ifp = ic->ic_ifp;
2579 	struct rt2560_softc *sc = ifp->if_softc;
2580 
2581 	/* abort TSF synchronization */
2582 	RAL_WRITE(sc, RT2560_CSR14, 0);
2583 	rt2560_set_bssid(sc, ifp->if_broadcastaddr);
2584 }
2585 
2586 static void
2587 rt2560_scan_end(struct ieee80211com *ic)
2588 {
2589 	struct ifnet *ifp = ic->ic_ifp;
2590 	struct rt2560_softc *sc = ifp->if_softc;
2591 
2592 	rt2560_enable_tsf_sync(sc);
2593 	/* XXX keep local copy */
2594 	rt2560_set_bssid(sc, ic->ic_bss->ni_bssid);
2595 }
2596 
2597 static int
2598 rt2560_bbp_init(struct rt2560_softc *sc)
2599 {
2600 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2601 	int i, ntries;
2602 
2603 	/* wait for BBP to be ready */
2604 	for (ntries = 0; ntries < 100; ntries++) {
2605 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2606 			break;
2607 		DELAY(1);
2608 	}
2609 	if (ntries == 100) {
2610 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2611 		return EIO;
2612 	}
2613 
2614 	/* initialize BBP registers to default values */
2615 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2616 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2617 		    rt2560_def_bbp[i].val);
2618 	}
2619 #if 0
2620 	/* initialize BBP registers to values stored in EEPROM */
2621 	for (i = 0; i < 16; i++) {
2622 		if (sc->bbp_prom[i].reg == 0xff)
2623 			continue;
2624 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2625 	}
2626 #endif
2627 
2628 	return 0;
2629 #undef N
2630 }
2631 
2632 static void
2633 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2634 {
2635 	uint32_t tmp;
2636 	uint8_t tx;
2637 
2638 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2639 	if (antenna == 1)
2640 		tx |= RT2560_BBP_ANTA;
2641 	else if (antenna == 2)
2642 		tx |= RT2560_BBP_ANTB;
2643 	else
2644 		tx |= RT2560_BBP_DIVERSITY;
2645 
2646 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2647 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2648 	    sc->rf_rev == RT2560_RF_5222)
2649 		tx |= RT2560_BBP_FLIPIQ;
2650 
2651 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2652 
2653 	/* update values for CCK and OFDM in BBPCSR1 */
2654 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2655 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2656 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2657 }
2658 
2659 static void
2660 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2661 {
2662 	uint8_t rx;
2663 
2664 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2665 	if (antenna == 1)
2666 		rx |= RT2560_BBP_ANTA;
2667 	else if (antenna == 2)
2668 		rx |= RT2560_BBP_ANTB;
2669 	else
2670 		rx |= RT2560_BBP_DIVERSITY;
2671 
2672 	/* need to force no I/Q flip for RF 2525e and 2526 */
2673 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2674 		rx &= ~RT2560_BBP_FLIPIQ;
2675 
2676 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2677 }
2678 
2679 static void
2680 rt2560_init(void *priv)
2681 {
2682 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2683 	struct rt2560_softc *sc = priv;
2684 	struct ieee80211com *ic = &sc->sc_ic;
2685 	struct ifnet *ifp = ic->ic_ifp;
2686 	uint32_t tmp;
2687 	int i;
2688 
2689 
2690 
2691 	rt2560_stop(sc);
2692 
2693 	RAL_LOCK(sc);
2694 	/* setup tx rings */
2695 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2696 	      RT2560_ATIM_RING_COUNT << 16 |
2697 	      RT2560_TX_RING_COUNT   <<  8 |
2698 	      RT2560_TX_DESC_SIZE;
2699 
2700 	/* rings must be initialized in this exact order */
2701 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2702 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2703 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2704 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2705 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2706 
2707 	/* setup rx ring */
2708 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2709 
2710 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2711 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2712 
2713 	/* initialize MAC registers to default values */
2714 	for (i = 0; i < N(rt2560_def_mac); i++)
2715 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2716 
2717 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2718 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2719 
2720 	/* set basic rate set (will be updated later) */
2721 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2722 
2723 	rt2560_set_txantenna(sc, sc->tx_ant);
2724 	rt2560_set_rxantenna(sc, sc->rx_ant);
2725 	rt2560_update_slot(ifp);
2726 	rt2560_update_plcp(sc);
2727 	rt2560_update_led(sc, 0, 0);
2728 
2729 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2730 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2731 
2732 	if (rt2560_bbp_init(sc) != 0) {
2733 		rt2560_stop(sc);
2734 		RAL_UNLOCK(sc);
2735 		return;
2736 	}
2737 
2738 	/* set default BSS channel */
2739 	rt2560_set_chan(sc, ic->ic_curchan);
2740 
2741 	/* kick Rx */
2742 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2743 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2744 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2745 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2746 			tmp |= RT2560_DROP_TODS;
2747 		if (!(ifp->if_flags & IFF_PROMISC))
2748 			tmp |= RT2560_DROP_NOT_TO_ME;
2749 	}
2750 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2751 
2752 	/* clear old FCS and Rx FIFO errors */
2753 	RAL_READ(sc, RT2560_CNT0);
2754 	RAL_READ(sc, RT2560_CNT4);
2755 
2756 	/* clear any pending interrupts */
2757 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2758 
2759 	/* enable interrupts */
2760 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2761 
2762 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2763 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2764 
2765 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2766 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2767 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2768 	} else
2769 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2770 
2771 	RAL_UNLOCK(sc);
2772 #undef N
2773 }
2774 
2775 void
2776 rt2560_stop(void *arg)
2777 {
2778 	struct rt2560_softc *sc = arg;
2779 	struct ieee80211com *ic = &sc->sc_ic;
2780 	struct ifnet *ifp = ic->ic_ifp;
2781 	volatile int *flags = &sc->sc_flags;
2782 
2783 	while (*flags & RAL_INPUT_RUNNING) {
2784 		tsleep(sc, 0, "ralrunning", hz/10);
2785 	}
2786 
2787 	RAL_LOCK(sc);
2788 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2789 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2790 		sc->sc_tx_timer = 0;
2791 		ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2792 
2793 		/* abort Tx */
2794 		RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2795 
2796 		/* disable Rx */
2797 		RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2798 
2799 		/* reset ASIC (imply reset BBP) */
2800 		RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2801 		RAL_WRITE(sc, RT2560_CSR1, 0);
2802 
2803 		/* disable interrupts */
2804 		RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2805 
2806 		/* reset Tx and Rx rings */
2807 		rt2560_reset_tx_ring(sc, &sc->txq);
2808 		rt2560_reset_tx_ring(sc, &sc->atimq);
2809 		rt2560_reset_tx_ring(sc, &sc->prioq);
2810 		rt2560_reset_tx_ring(sc, &sc->bcnq);
2811 		rt2560_reset_rx_ring(sc, &sc->rxq);
2812 	}
2813 	RAL_UNLOCK(sc);
2814 }
2815 
2816 static int
2817 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2818 	const struct ieee80211_bpf_params *params)
2819 {
2820 	struct ieee80211com *ic = ni->ni_ic;
2821 	struct ifnet *ifp = ic->ic_ifp;
2822 	struct rt2560_softc *sc = ifp->if_softc;
2823 
2824 	RAL_LOCK(sc);
2825 
2826 	/* prevent management frames from being sent if we're not ready */
2827 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2828 		RAL_UNLOCK(sc);
2829 		m_freem(m);
2830 		ieee80211_free_node(ni);
2831 		return ENETDOWN;
2832 	}
2833 	if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2834 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2835 		RAL_UNLOCK(sc);
2836 		m_freem(m);
2837 		ieee80211_free_node(ni);
2838 		return ENOBUFS;		/* XXX */
2839 	}
2840 
2841 	if (bpf_peers_present(ic->ic_rawbpf))
2842 		bpf_mtap(ic->ic_rawbpf, m);
2843 
2844 	ifp->if_opackets++;
2845 
2846 	if (params == NULL) {
2847 		/*
2848 		 * Legacy path; interpret frame contents to decide
2849 		 * precisely how to send the frame.
2850 		 */
2851 		if (rt2560_tx_mgt(sc, m, ni) != 0)
2852 			goto bad;
2853 	} else {
2854 		/*
2855 		 * Caller supplied explicit parameters to use in
2856 		 * sending the frame.
2857 		 */
2858 		if (rt2560_tx_raw(sc, m, ni, params))
2859 			goto bad;
2860 	}
2861 	sc->sc_tx_timer = 5;
2862 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2863 
2864 	RAL_UNLOCK(sc);
2865 
2866 	return 0;
2867 bad:
2868 	ifp->if_oerrors++;
2869 	ieee80211_free_node(ni);
2870 	RAL_UNLOCK(sc);
2871 	return EIO;		/* XXX */
2872 }
2873 
2874