xref: /freebsd/sys/dev/ral/rt2560.c (revision 526e1dc1c0d052b9d2a6cd6da7a16eb09c971c54)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_radiotap.h>
56 #include <net80211/ieee80211_regdomain.h>
57 #include <net80211/ieee80211_ratectl.h>
58 
59 #include <netinet/in.h>
60 #include <netinet/in_systm.h>
61 #include <netinet/in_var.h>
62 #include <netinet/ip.h>
63 #include <netinet/if_ether.h>
64 
65 #include <dev/ral/rt2560reg.h>
66 #include <dev/ral/rt2560var.h>
67 
68 #define RT2560_RSSI(sc, rssi)					\
69 	((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ?	\
70 	 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
71 
72 #define RAL_DEBUG
73 #ifdef RAL_DEBUG
74 #define DPRINTF(sc, fmt, ...) do {				\
75 	if (sc->sc_debug > 0)					\
76 		printf(fmt, __VA_ARGS__);			\
77 } while (0)
78 #define DPRINTFN(sc, n, fmt, ...) do {				\
79 	if (sc->sc_debug >= (n))				\
80 		printf(fmt, __VA_ARGS__);			\
81 } while (0)
82 #else
83 #define DPRINTF(sc, fmt, ...)
84 #define DPRINTFN(sc, n, fmt, ...)
85 #endif
86 
87 static struct ieee80211vap *rt2560_vap_create(struct ieee80211com *,
88 			    const char [IFNAMSIZ], int, enum ieee80211_opmode,
89 			    int, const uint8_t [IEEE80211_ADDR_LEN],
90 			    const uint8_t [IEEE80211_ADDR_LEN]);
91 static void		rt2560_vap_delete(struct ieee80211vap *);
92 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
93 			    int);
94 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
95 			    struct rt2560_tx_ring *, int);
96 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
97 			    struct rt2560_tx_ring *);
98 static void		rt2560_free_tx_ring(struct rt2560_softc *,
99 			    struct rt2560_tx_ring *);
100 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
101 			    struct rt2560_rx_ring *, int);
102 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
103 			    struct rt2560_rx_ring *);
104 static void		rt2560_free_rx_ring(struct rt2560_softc *,
105 			    struct rt2560_rx_ring *);
106 static int		rt2560_newstate(struct ieee80211vap *,
107 			    enum ieee80211_state, int);
108 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
109 static void		rt2560_encryption_intr(struct rt2560_softc *);
110 static void		rt2560_tx_intr(struct rt2560_softc *);
111 static void		rt2560_prio_intr(struct rt2560_softc *);
112 static void		rt2560_decryption_intr(struct rt2560_softc *);
113 static void		rt2560_rx_intr(struct rt2560_softc *);
114 static void		rt2560_beacon_update(struct ieee80211vap *, int item);
115 static void		rt2560_beacon_expire(struct rt2560_softc *);
116 static void		rt2560_wakeup_expire(struct rt2560_softc *);
117 static void		rt2560_scan_start(struct ieee80211com *);
118 static void		rt2560_scan_end(struct ieee80211com *);
119 static void		rt2560_set_channel(struct ieee80211com *);
120 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
121 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
122 			    bus_addr_t);
123 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
124 			    struct ieee80211_node *);
125 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
126 			    struct ieee80211_node *);
127 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
128 			    struct ieee80211_node *);
129 static void		rt2560_start_locked(struct ifnet *);
130 static void		rt2560_start(struct ifnet *);
131 static void		rt2560_watchdog(void *);
132 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
133 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
134 			    uint8_t);
135 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
136 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
137 			    uint32_t);
138 static void		rt2560_set_chan(struct rt2560_softc *,
139 			    struct ieee80211_channel *);
140 #if 0
141 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
142 #endif
143 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
144 static void		rt2560_enable_tsf(struct rt2560_softc *);
145 static void		rt2560_update_plcp(struct rt2560_softc *);
146 static void		rt2560_update_slot(struct ifnet *);
147 static void		rt2560_set_basicrates(struct rt2560_softc *,
148 			    const struct ieee80211_rateset *);
149 static void		rt2560_update_led(struct rt2560_softc *, int, int);
150 static void		rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
151 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
152 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
153 static void		rt2560_update_promisc(struct ifnet *);
154 static const char	*rt2560_get_rf(int);
155 static void		rt2560_read_config(struct rt2560_softc *);
156 static int		rt2560_bbp_init(struct rt2560_softc *);
157 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
158 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
159 static void		rt2560_init_locked(struct rt2560_softc *);
160 static void		rt2560_init(void *);
161 static void		rt2560_stop_locked(struct rt2560_softc *);
162 static int		rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
163 				const struct ieee80211_bpf_params *);
164 
165 static const struct {
166 	uint32_t	reg;
167 	uint32_t	val;
168 } rt2560_def_mac[] = {
169 	RT2560_DEF_MAC
170 };
171 
172 static const struct {
173 	uint8_t	reg;
174 	uint8_t	val;
175 } rt2560_def_bbp[] = {
176 	RT2560_DEF_BBP
177 };
178 
179 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
180 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
181 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
182 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
183 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
184 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
185 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
186 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
187 
188 static const struct {
189 	uint8_t		chan;
190 	uint32_t	r1, r2, r4;
191 } rt2560_rf5222[] = {
192 	RT2560_RF5222
193 };
194 
195 int
196 rt2560_attach(device_t dev, int id)
197 {
198 	struct rt2560_softc *sc = device_get_softc(dev);
199 	struct ieee80211com *ic;
200 	struct ifnet *ifp;
201 	int error;
202 	uint8_t bands;
203 	uint8_t macaddr[IEEE80211_ADDR_LEN];
204 
205 	sc->sc_dev = dev;
206 
207 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
208 	    MTX_DEF | MTX_RECURSE);
209 
210 	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
211 
212 	/* retrieve RT2560 rev. no */
213 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
214 
215 	/* retrieve RF rev. no and various other things from EEPROM */
216 	rt2560_read_config(sc);
217 
218 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
219 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
220 
221 	/*
222 	 * Allocate Tx and Rx rings.
223 	 */
224 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
225 	if (error != 0) {
226 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
227 		goto fail1;
228 	}
229 
230 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
231 	if (error != 0) {
232 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
233 		goto fail2;
234 	}
235 
236 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
237 	if (error != 0) {
238 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
239 		goto fail3;
240 	}
241 
242 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
243 	if (error != 0) {
244 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
245 		goto fail4;
246 	}
247 
248 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
249 	if (error != 0) {
250 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
251 		goto fail5;
252 	}
253 
254 	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
255 	if (ifp == NULL) {
256 		device_printf(sc->sc_dev, "can not if_alloc()\n");
257 		goto fail6;
258 	}
259 	ic = ifp->if_l2com;
260 
261 	/* retrieve MAC address */
262 	rt2560_get_macaddr(sc, macaddr);
263 
264 	ifp->if_softc = sc;
265 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
266 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
267 	ifp->if_init = rt2560_init;
268 	ifp->if_ioctl = rt2560_ioctl;
269 	ifp->if_start = rt2560_start;
270 	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
271 	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
272 	IFQ_SET_READY(&ifp->if_snd);
273 
274 	ic->ic_ifp = ifp;
275 	ic->ic_opmode = IEEE80211_M_STA;
276 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
277 
278 	/* set device capabilities */
279 	ic->ic_caps =
280 		  IEEE80211_C_STA		/* station mode */
281 		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
282 		| IEEE80211_C_HOSTAP		/* hostap mode */
283 		| IEEE80211_C_MONITOR		/* monitor mode */
284 		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
285 		| IEEE80211_C_WDS		/* 4-address traffic works */
286 		| IEEE80211_C_MBSS		/* mesh point link mode */
287 		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
288 		| IEEE80211_C_SHSLOT		/* short slot time supported */
289 		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
290 		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
291 #ifdef notyet
292 		| IEEE80211_C_TXFRAG		/* handle tx frags */
293 #endif
294 		;
295 
296 	bands = 0;
297 	setbit(&bands, IEEE80211_MODE_11B);
298 	setbit(&bands, IEEE80211_MODE_11G);
299 	if (sc->rf_rev == RT2560_RF_5222)
300 		setbit(&bands, IEEE80211_MODE_11A);
301 	ieee80211_init_channels(ic, NULL, &bands);
302 
303 	ieee80211_ifattach(ic, macaddr);
304 	ic->ic_raw_xmit = rt2560_raw_xmit;
305 	ic->ic_updateslot = rt2560_update_slot;
306 	ic->ic_update_promisc = rt2560_update_promisc;
307 	ic->ic_scan_start = rt2560_scan_start;
308 	ic->ic_scan_end = rt2560_scan_end;
309 	ic->ic_set_channel = rt2560_set_channel;
310 
311 	ic->ic_vap_create = rt2560_vap_create;
312 	ic->ic_vap_delete = rt2560_vap_delete;
313 
314 	ieee80211_radiotap_attach(ic,
315 	    &sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
316 		RT2560_TX_RADIOTAP_PRESENT,
317 	    &sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
318 		RT2560_RX_RADIOTAP_PRESENT);
319 
320 	/*
321 	 * Add a few sysctl knobs.
322 	 */
323 #ifdef RAL_DEBUG
324 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
325 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
326 	    "debug", CTLFLAG_RW, &sc->sc_debug, 0, "debug msgs");
327 #endif
328 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
329 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
330 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
331 
332 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
333 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
334 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
335 
336 	if (bootverbose)
337 		ieee80211_announce(ic);
338 
339 	return 0;
340 
341 fail6:	rt2560_free_rx_ring(sc, &sc->rxq);
342 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
343 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
344 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
345 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
346 fail1:	mtx_destroy(&sc->sc_mtx);
347 
348 	return ENXIO;
349 }
350 
351 int
352 rt2560_detach(void *xsc)
353 {
354 	struct rt2560_softc *sc = xsc;
355 	struct ifnet *ifp = sc->sc_ifp;
356 	struct ieee80211com *ic = ifp->if_l2com;
357 
358 	rt2560_stop(sc);
359 
360 	ieee80211_ifdetach(ic);
361 
362 	rt2560_free_tx_ring(sc, &sc->txq);
363 	rt2560_free_tx_ring(sc, &sc->atimq);
364 	rt2560_free_tx_ring(sc, &sc->prioq);
365 	rt2560_free_tx_ring(sc, &sc->bcnq);
366 	rt2560_free_rx_ring(sc, &sc->rxq);
367 
368 	if_free(ifp);
369 
370 	mtx_destroy(&sc->sc_mtx);
371 
372 	return 0;
373 }
374 
375 static struct ieee80211vap *
376 rt2560_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
377     enum ieee80211_opmode opmode, int flags,
378     const uint8_t bssid[IEEE80211_ADDR_LEN],
379     const uint8_t mac[IEEE80211_ADDR_LEN])
380 {
381 	struct ifnet *ifp = ic->ic_ifp;
382 	struct rt2560_vap *rvp;
383 	struct ieee80211vap *vap;
384 
385 	switch (opmode) {
386 	case IEEE80211_M_STA:
387 	case IEEE80211_M_IBSS:
388 	case IEEE80211_M_AHDEMO:
389 	case IEEE80211_M_MONITOR:
390 	case IEEE80211_M_HOSTAP:
391 	case IEEE80211_M_MBSS:
392 		/* XXXRP: TBD */
393 		if (!TAILQ_EMPTY(&ic->ic_vaps)) {
394 			if_printf(ifp, "only 1 vap supported\n");
395 			return NULL;
396 		}
397 		if (opmode == IEEE80211_M_STA)
398 			flags |= IEEE80211_CLONE_NOBEACONS;
399 		break;
400 	case IEEE80211_M_WDS:
401 		if (TAILQ_EMPTY(&ic->ic_vaps) ||
402 		    ic->ic_opmode != IEEE80211_M_HOSTAP) {
403 			if_printf(ifp, "wds only supported in ap mode\n");
404 			return NULL;
405 		}
406 		/*
407 		 * Silently remove any request for a unique
408 		 * bssid; WDS vap's always share the local
409 		 * mac address.
410 		 */
411 		flags &= ~IEEE80211_CLONE_BSSID;
412 		break;
413 	default:
414 		if_printf(ifp, "unknown opmode %d\n", opmode);
415 		return NULL;
416 	}
417 	rvp = (struct rt2560_vap *) malloc(sizeof(struct rt2560_vap),
418 	    M_80211_VAP, M_NOWAIT | M_ZERO);
419 	if (rvp == NULL)
420 		return NULL;
421 	vap = &rvp->ral_vap;
422 	ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
423 
424 	/* override state transition machine */
425 	rvp->ral_newstate = vap->iv_newstate;
426 	vap->iv_newstate = rt2560_newstate;
427 	vap->iv_update_beacon = rt2560_beacon_update;
428 
429 	ieee80211_ratectl_init(vap);
430 	/* complete setup */
431 	ieee80211_vap_attach(vap, ieee80211_media_change, ieee80211_media_status);
432 	if (TAILQ_FIRST(&ic->ic_vaps) == vap)
433 		ic->ic_opmode = opmode;
434 	return vap;
435 }
436 
437 static void
438 rt2560_vap_delete(struct ieee80211vap *vap)
439 {
440 	struct rt2560_vap *rvp = RT2560_VAP(vap);
441 
442 	ieee80211_ratectl_deinit(vap);
443 	ieee80211_vap_detach(vap);
444 	free(rvp, M_80211_VAP);
445 }
446 
447 void
448 rt2560_resume(void *xsc)
449 {
450 	struct rt2560_softc *sc = xsc;
451 	struct ifnet *ifp = sc->sc_ifp;
452 
453 	if (ifp->if_flags & IFF_UP)
454 		rt2560_init(sc);
455 }
456 
457 static void
458 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
459 {
460 	if (error != 0)
461 		return;
462 
463 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
464 
465 	*(bus_addr_t *)arg = segs[0].ds_addr;
466 }
467 
468 static int
469 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
470     int count)
471 {
472 	int i, error;
473 
474 	ring->count = count;
475 	ring->queued = 0;
476 	ring->cur = ring->next = 0;
477 	ring->cur_encrypt = ring->next_encrypt = 0;
478 
479 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
480 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
481 	    count * RT2560_TX_DESC_SIZE, 1, count * RT2560_TX_DESC_SIZE,
482 	    0, NULL, NULL, &ring->desc_dmat);
483 	if (error != 0) {
484 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
485 		goto fail;
486 	}
487 
488 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
489 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
490 	if (error != 0) {
491 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
492 		goto fail;
493 	}
494 
495 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
496 	    count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
497 	    0);
498 	if (error != 0) {
499 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
500 		goto fail;
501 	}
502 
503 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
504 	    M_NOWAIT | M_ZERO);
505 	if (ring->data == NULL) {
506 		device_printf(sc->sc_dev, "could not allocate soft data\n");
507 		error = ENOMEM;
508 		goto fail;
509 	}
510 
511 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
512 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
513 	    MCLBYTES, RT2560_MAX_SCATTER, MCLBYTES, 0, NULL, NULL,
514 	    &ring->data_dmat);
515 	if (error != 0) {
516 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
517 		goto fail;
518 	}
519 
520 	for (i = 0; i < count; i++) {
521 		error = bus_dmamap_create(ring->data_dmat, 0,
522 		    &ring->data[i].map);
523 		if (error != 0) {
524 			device_printf(sc->sc_dev, "could not create DMA map\n");
525 			goto fail;
526 		}
527 	}
528 
529 	return 0;
530 
531 fail:	rt2560_free_tx_ring(sc, ring);
532 	return error;
533 }
534 
535 static void
536 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
537 {
538 	struct rt2560_tx_desc *desc;
539 	struct rt2560_tx_data *data;
540 	int i;
541 
542 	for (i = 0; i < ring->count; i++) {
543 		desc = &ring->desc[i];
544 		data = &ring->data[i];
545 
546 		if (data->m != NULL) {
547 			bus_dmamap_sync(ring->data_dmat, data->map,
548 			    BUS_DMASYNC_POSTWRITE);
549 			bus_dmamap_unload(ring->data_dmat, data->map);
550 			m_freem(data->m);
551 			data->m = NULL;
552 		}
553 
554 		if (data->ni != NULL) {
555 			ieee80211_free_node(data->ni);
556 			data->ni = NULL;
557 		}
558 
559 		desc->flags = 0;
560 	}
561 
562 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
563 
564 	ring->queued = 0;
565 	ring->cur = ring->next = 0;
566 	ring->cur_encrypt = ring->next_encrypt = 0;
567 }
568 
569 static void
570 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
571 {
572 	struct rt2560_tx_data *data;
573 	int i;
574 
575 	if (ring->desc != NULL) {
576 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
577 		    BUS_DMASYNC_POSTWRITE);
578 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
579 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
580 	}
581 
582 	if (ring->desc_dmat != NULL)
583 		bus_dma_tag_destroy(ring->desc_dmat);
584 
585 	if (ring->data != NULL) {
586 		for (i = 0; i < ring->count; i++) {
587 			data = &ring->data[i];
588 
589 			if (data->m != NULL) {
590 				bus_dmamap_sync(ring->data_dmat, data->map,
591 				    BUS_DMASYNC_POSTWRITE);
592 				bus_dmamap_unload(ring->data_dmat, data->map);
593 				m_freem(data->m);
594 			}
595 
596 			if (data->ni != NULL)
597 				ieee80211_free_node(data->ni);
598 
599 			if (data->map != NULL)
600 				bus_dmamap_destroy(ring->data_dmat, data->map);
601 		}
602 
603 		free(ring->data, M_DEVBUF);
604 	}
605 
606 	if (ring->data_dmat != NULL)
607 		bus_dma_tag_destroy(ring->data_dmat);
608 }
609 
610 static int
611 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
612     int count)
613 {
614 	struct rt2560_rx_desc *desc;
615 	struct rt2560_rx_data *data;
616 	bus_addr_t physaddr;
617 	int i, error;
618 
619 	ring->count = count;
620 	ring->cur = ring->next = 0;
621 	ring->cur_decrypt = 0;
622 
623 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 4, 0,
624 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
625 	    count * RT2560_RX_DESC_SIZE, 1, count * RT2560_RX_DESC_SIZE,
626 	    0, NULL, NULL, &ring->desc_dmat);
627 	if (error != 0) {
628 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
629 		goto fail;
630 	}
631 
632 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
633 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
634 	if (error != 0) {
635 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
636 		goto fail;
637 	}
638 
639 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
640 	    count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
641 	    0);
642 	if (error != 0) {
643 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
644 		goto fail;
645 	}
646 
647 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
648 	    M_NOWAIT | M_ZERO);
649 	if (ring->data == NULL) {
650 		device_printf(sc->sc_dev, "could not allocate soft data\n");
651 		error = ENOMEM;
652 		goto fail;
653 	}
654 
655 	/*
656 	 * Pre-allocate Rx buffers and populate Rx ring.
657 	 */
658 	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
659 	    BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES,
660 	    1, MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
661 	if (error != 0) {
662 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
663 		goto fail;
664 	}
665 
666 	for (i = 0; i < count; i++) {
667 		desc = &sc->rxq.desc[i];
668 		data = &sc->rxq.data[i];
669 
670 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
671 		if (error != 0) {
672 			device_printf(sc->sc_dev, "could not create DMA map\n");
673 			goto fail;
674 		}
675 
676 		data->m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
677 		if (data->m == NULL) {
678 			device_printf(sc->sc_dev,
679 			    "could not allocate rx mbuf\n");
680 			error = ENOMEM;
681 			goto fail;
682 		}
683 
684 		error = bus_dmamap_load(ring->data_dmat, data->map,
685 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
686 		    &physaddr, 0);
687 		if (error != 0) {
688 			device_printf(sc->sc_dev,
689 			    "could not load rx buf DMA map");
690 			goto fail;
691 		}
692 
693 		desc->flags = htole32(RT2560_RX_BUSY);
694 		desc->physaddr = htole32(physaddr);
695 	}
696 
697 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
698 
699 	return 0;
700 
701 fail:	rt2560_free_rx_ring(sc, ring);
702 	return error;
703 }
704 
705 static void
706 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
707 {
708 	int i;
709 
710 	for (i = 0; i < ring->count; i++) {
711 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
712 		ring->data[i].drop = 0;
713 	}
714 
715 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
716 
717 	ring->cur = ring->next = 0;
718 	ring->cur_decrypt = 0;
719 }
720 
721 static void
722 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
723 {
724 	struct rt2560_rx_data *data;
725 	int i;
726 
727 	if (ring->desc != NULL) {
728 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
729 		    BUS_DMASYNC_POSTWRITE);
730 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
731 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
732 	}
733 
734 	if (ring->desc_dmat != NULL)
735 		bus_dma_tag_destroy(ring->desc_dmat);
736 
737 	if (ring->data != NULL) {
738 		for (i = 0; i < ring->count; i++) {
739 			data = &ring->data[i];
740 
741 			if (data->m != NULL) {
742 				bus_dmamap_sync(ring->data_dmat, data->map,
743 				    BUS_DMASYNC_POSTREAD);
744 				bus_dmamap_unload(ring->data_dmat, data->map);
745 				m_freem(data->m);
746 			}
747 
748 			if (data->map != NULL)
749 				bus_dmamap_destroy(ring->data_dmat, data->map);
750 		}
751 
752 		free(ring->data, M_DEVBUF);
753 	}
754 
755 	if (ring->data_dmat != NULL)
756 		bus_dma_tag_destroy(ring->data_dmat);
757 }
758 
759 static int
760 rt2560_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
761 {
762 	struct rt2560_vap *rvp = RT2560_VAP(vap);
763 	struct ifnet *ifp = vap->iv_ic->ic_ifp;
764 	struct rt2560_softc *sc = ifp->if_softc;
765 	int error;
766 
767 	if (nstate == IEEE80211_S_INIT && vap->iv_state == IEEE80211_S_RUN) {
768 		/* abort TSF synchronization */
769 		RAL_WRITE(sc, RT2560_CSR14, 0);
770 
771 		/* turn association led off */
772 		rt2560_update_led(sc, 0, 0);
773 	}
774 
775 	error = rvp->ral_newstate(vap, nstate, arg);
776 
777 	if (error == 0 && nstate == IEEE80211_S_RUN) {
778 		struct ieee80211_node *ni = vap->iv_bss;
779 		struct mbuf *m;
780 
781 		if (vap->iv_opmode != IEEE80211_M_MONITOR) {
782 			rt2560_update_plcp(sc);
783 			rt2560_set_basicrates(sc, &ni->ni_rates);
784 			rt2560_set_bssid(sc, ni->ni_bssid);
785 		}
786 
787 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
788 		    vap->iv_opmode == IEEE80211_M_IBSS ||
789 		    vap->iv_opmode == IEEE80211_M_MBSS) {
790 			m = ieee80211_beacon_alloc(ni, &rvp->ral_bo);
791 			if (m == NULL) {
792 				if_printf(ifp, "could not allocate beacon\n");
793 				return ENOBUFS;
794 			}
795 			ieee80211_ref_node(ni);
796 			error = rt2560_tx_bcn(sc, m, ni);
797 			if (error != 0)
798 				return error;
799 		}
800 
801 		/* turn assocation led on */
802 		rt2560_update_led(sc, 1, 0);
803 
804 		if (vap->iv_opmode != IEEE80211_M_MONITOR)
805 			rt2560_enable_tsf_sync(sc);
806 		else
807 			rt2560_enable_tsf(sc);
808 	}
809 	return error;
810 }
811 
812 /*
813  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
814  * 93C66).
815  */
816 static uint16_t
817 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
818 {
819 	uint32_t tmp;
820 	uint16_t val;
821 	int n;
822 
823 	/* clock C once before the first command */
824 	RT2560_EEPROM_CTL(sc, 0);
825 
826 	RT2560_EEPROM_CTL(sc, RT2560_S);
827 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
828 	RT2560_EEPROM_CTL(sc, RT2560_S);
829 
830 	/* write start bit (1) */
831 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
832 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
833 
834 	/* write READ opcode (10) */
835 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
836 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
837 	RT2560_EEPROM_CTL(sc, RT2560_S);
838 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
839 
840 	/* write address (A5-A0 or A7-A0) */
841 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
842 	for (; n >= 0; n--) {
843 		RT2560_EEPROM_CTL(sc, RT2560_S |
844 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
845 		RT2560_EEPROM_CTL(sc, RT2560_S |
846 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
847 	}
848 
849 	RT2560_EEPROM_CTL(sc, RT2560_S);
850 
851 	/* read data Q15-Q0 */
852 	val = 0;
853 	for (n = 15; n >= 0; n--) {
854 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
855 		tmp = RAL_READ(sc, RT2560_CSR21);
856 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
857 		RT2560_EEPROM_CTL(sc, RT2560_S);
858 	}
859 
860 	RT2560_EEPROM_CTL(sc, 0);
861 
862 	/* clear Chip Select and clock C */
863 	RT2560_EEPROM_CTL(sc, RT2560_S);
864 	RT2560_EEPROM_CTL(sc, 0);
865 	RT2560_EEPROM_CTL(sc, RT2560_C);
866 
867 	return val;
868 }
869 
870 /*
871  * Some frames were processed by the hardware cipher engine and are ready for
872  * transmission.
873  */
874 static void
875 rt2560_encryption_intr(struct rt2560_softc *sc)
876 {
877 	struct rt2560_tx_desc *desc;
878 	int hw;
879 
880 	/* retrieve last descriptor index processed by cipher engine */
881 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
882 	hw /= RT2560_TX_DESC_SIZE;
883 
884 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
885 	    BUS_DMASYNC_POSTREAD);
886 
887 	while (sc->txq.next_encrypt != hw) {
888 		if (sc->txq.next_encrypt == sc->txq.cur_encrypt) {
889 			printf("hw encrypt %d, cur_encrypt %d\n", hw,
890 			    sc->txq.cur_encrypt);
891 			break;
892 		}
893 
894 		desc = &sc->txq.desc[sc->txq.next_encrypt];
895 
896 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
897 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
898 			break;
899 
900 		/* for TKIP, swap eiv field to fix a bug in ASIC */
901 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
902 		    RT2560_TX_CIPHER_TKIP)
903 			desc->eiv = bswap32(desc->eiv);
904 
905 		/* mark the frame ready for transmission */
906 		desc->flags |= htole32(RT2560_TX_VALID);
907 		desc->flags |= htole32(RT2560_TX_BUSY);
908 
909 		DPRINTFN(sc, 15, "encryption done idx=%u\n",
910 		    sc->txq.next_encrypt);
911 
912 		sc->txq.next_encrypt =
913 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
914 	}
915 
916 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
917 	    BUS_DMASYNC_PREWRITE);
918 
919 	/* kick Tx */
920 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
921 }
922 
923 static void
924 rt2560_tx_intr(struct rt2560_softc *sc)
925 {
926 	struct ifnet *ifp = sc->sc_ifp;
927 	struct rt2560_tx_desc *desc;
928 	struct rt2560_tx_data *data;
929 	struct mbuf *m;
930 	uint32_t flags;
931 	int retrycnt;
932 	struct ieee80211vap *vap;
933 	struct ieee80211_node *ni;
934 
935 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
936 	    BUS_DMASYNC_POSTREAD);
937 
938 	for (;;) {
939 		desc = &sc->txq.desc[sc->txq.next];
940 		data = &sc->txq.data[sc->txq.next];
941 
942 		flags = le32toh(desc->flags);
943 		if ((flags & RT2560_TX_BUSY) ||
944 		    (flags & RT2560_TX_CIPHER_BUSY) ||
945 		    !(flags & RT2560_TX_VALID))
946 			break;
947 
948 		m = data->m;
949 		ni = data->ni;
950 		vap = ni->ni_vap;
951 
952 		switch (flags & RT2560_TX_RESULT_MASK) {
953 		case RT2560_TX_SUCCESS:
954 			retrycnt = 0;
955 
956 			DPRINTFN(sc, 10, "%s\n", "data frame sent successfully");
957 			if (data->rix != IEEE80211_FIXED_RATE_NONE)
958 				ieee80211_ratectl_tx_complete(vap, ni,
959 				    IEEE80211_RATECTL_TX_SUCCESS,
960 				    &retrycnt, NULL);
961 			ifp->if_opackets++;
962 			break;
963 
964 		case RT2560_TX_SUCCESS_RETRY:
965 			retrycnt = RT2560_TX_RETRYCNT(flags);
966 
967 			DPRINTFN(sc, 9, "data frame sent after %u retries\n",
968 			    retrycnt);
969 			if (data->rix != IEEE80211_FIXED_RATE_NONE)
970 				ieee80211_ratectl_tx_complete(vap, ni,
971 				    IEEE80211_RATECTL_TX_SUCCESS,
972 				    &retrycnt, NULL);
973 			ifp->if_opackets++;
974 			break;
975 
976 		case RT2560_TX_FAIL_RETRY:
977 			retrycnt = RT2560_TX_RETRYCNT(flags);
978 
979 			DPRINTFN(sc, 9, "data frame failed after %d retries\n",
980 			    retrycnt);
981 			if (data->rix != IEEE80211_FIXED_RATE_NONE)
982 				ieee80211_ratectl_tx_complete(vap, ni,
983 				    IEEE80211_RATECTL_TX_FAILURE,
984 				    &retrycnt, NULL);
985 			ifp->if_oerrors++;
986 			break;
987 
988 		case RT2560_TX_FAIL_INVALID:
989 		case RT2560_TX_FAIL_OTHER:
990 		default:
991 			device_printf(sc->sc_dev, "sending data frame failed "
992 			    "0x%08x\n", flags);
993 			ifp->if_oerrors++;
994 		}
995 
996 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
997 		    BUS_DMASYNC_POSTWRITE);
998 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
999 		m_freem(m);
1000 		data->m = NULL;
1001 		ieee80211_free_node(data->ni);
1002 		data->ni = NULL;
1003 
1004 		/* descriptor is no longer valid */
1005 		desc->flags &= ~htole32(RT2560_TX_VALID);
1006 
1007 		DPRINTFN(sc, 15, "tx done idx=%u\n", sc->txq.next);
1008 
1009 		sc->txq.queued--;
1010 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
1011 	}
1012 
1013 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1014 	    BUS_DMASYNC_PREWRITE);
1015 
1016 	if (sc->prioq.queued == 0 && sc->txq.queued == 0)
1017 		sc->sc_tx_timer = 0;
1018 
1019 	if (sc->txq.queued < RT2560_TX_RING_COUNT - 1) {
1020 		sc->sc_flags &= ~RT2560_F_DATA_OACTIVE;
1021 		if ((sc->sc_flags &
1022 		     (RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
1023 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1024 		rt2560_start_locked(ifp);
1025 	}
1026 }
1027 
1028 static void
1029 rt2560_prio_intr(struct rt2560_softc *sc)
1030 {
1031 	struct ifnet *ifp = sc->sc_ifp;
1032 	struct rt2560_tx_desc *desc;
1033 	struct rt2560_tx_data *data;
1034 	struct ieee80211_node *ni;
1035 	struct mbuf *m;
1036 	int flags;
1037 
1038 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1039 	    BUS_DMASYNC_POSTREAD);
1040 
1041 	for (;;) {
1042 		desc = &sc->prioq.desc[sc->prioq.next];
1043 		data = &sc->prioq.data[sc->prioq.next];
1044 
1045 		flags = le32toh(desc->flags);
1046 		if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
1047 			break;
1048 
1049 		switch (flags & RT2560_TX_RESULT_MASK) {
1050 		case RT2560_TX_SUCCESS:
1051 			DPRINTFN(sc, 10, "%s\n", "mgt frame sent successfully");
1052 			break;
1053 
1054 		case RT2560_TX_SUCCESS_RETRY:
1055 			DPRINTFN(sc, 9, "mgt frame sent after %u retries\n",
1056 			    (flags >> 5) & 0x7);
1057 			break;
1058 
1059 		case RT2560_TX_FAIL_RETRY:
1060 			DPRINTFN(sc, 9, "%s\n",
1061 			    "sending mgt frame failed (too much retries)");
1062 			break;
1063 
1064 		case RT2560_TX_FAIL_INVALID:
1065 		case RT2560_TX_FAIL_OTHER:
1066 		default:
1067 			device_printf(sc->sc_dev, "sending mgt frame failed "
1068 			    "0x%08x\n", flags);
1069 			break;
1070 		}
1071 
1072 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1073 		    BUS_DMASYNC_POSTWRITE);
1074 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1075 
1076 		m = data->m;
1077 		data->m = NULL;
1078 		ni = data->ni;
1079 		data->ni = NULL;
1080 
1081 		/* descriptor is no longer valid */
1082 		desc->flags &= ~htole32(RT2560_TX_VALID);
1083 
1084 		DPRINTFN(sc, 15, "prio done idx=%u\n", sc->prioq.next);
1085 
1086 		sc->prioq.queued--;
1087 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1088 
1089 		if (m->m_flags & M_TXCB)
1090 			ieee80211_process_callback(ni, m,
1091 				(flags & RT2560_TX_RESULT_MASK) &~
1092 				(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
1093 		m_freem(m);
1094 		ieee80211_free_node(ni);
1095 	}
1096 
1097 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1098 	    BUS_DMASYNC_PREWRITE);
1099 
1100 	if (sc->prioq.queued == 0 && sc->txq.queued == 0)
1101 		sc->sc_tx_timer = 0;
1102 
1103 	if (sc->prioq.queued < RT2560_PRIO_RING_COUNT) {
1104 		sc->sc_flags &= ~RT2560_F_PRIO_OACTIVE;
1105 		if ((sc->sc_flags &
1106 		     (RT2560_F_DATA_OACTIVE | RT2560_F_PRIO_OACTIVE)) == 0)
1107 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1108 		rt2560_start_locked(ifp);
1109 	}
1110 }
1111 
1112 /*
1113  * Some frames were processed by the hardware cipher engine and are ready for
1114  * handoff to the IEEE802.11 layer.
1115  */
1116 static void
1117 rt2560_decryption_intr(struct rt2560_softc *sc)
1118 {
1119 	struct ifnet *ifp = sc->sc_ifp;
1120 	struct ieee80211com *ic = ifp->if_l2com;
1121 	struct rt2560_rx_desc *desc;
1122 	struct rt2560_rx_data *data;
1123 	bus_addr_t physaddr;
1124 	struct ieee80211_frame *wh;
1125 	struct ieee80211_node *ni;
1126 	struct mbuf *mnew, *m;
1127 	int hw, error;
1128 	int8_t rssi, nf;
1129 
1130 	/* retrieve last decriptor index processed by cipher engine */
1131 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1132 	hw /= RT2560_RX_DESC_SIZE;
1133 
1134 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1135 	    BUS_DMASYNC_POSTREAD);
1136 
1137 	for (; sc->rxq.cur_decrypt != hw;) {
1138 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1139 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1140 
1141 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1142 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1143 			break;
1144 
1145 		if (data->drop) {
1146 			ifp->if_ierrors++;
1147 			goto skip;
1148 		}
1149 
1150 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1151 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1152 			ifp->if_ierrors++;
1153 			goto skip;
1154 		}
1155 
1156 		/*
1157 		 * Try to allocate a new mbuf for this ring element and load it
1158 		 * before processing the current mbuf. If the ring element
1159 		 * cannot be loaded, drop the received packet and reuse the old
1160 		 * mbuf. In the unlikely case that the old mbuf can't be
1161 		 * reloaded either, explicitly panic.
1162 		 */
1163 		mnew = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1164 		if (mnew == NULL) {
1165 			ifp->if_ierrors++;
1166 			goto skip;
1167 		}
1168 
1169 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1170 		    BUS_DMASYNC_POSTREAD);
1171 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1172 
1173 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1174 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1175 		    &physaddr, 0);
1176 		if (error != 0) {
1177 			m_freem(mnew);
1178 
1179 			/* try to reload the old mbuf */
1180 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1181 			    mtod(data->m, void *), MCLBYTES,
1182 			    rt2560_dma_map_addr, &physaddr, 0);
1183 			if (error != 0) {
1184 				/* very unlikely that it will fail... */
1185 				panic("%s: could not load old rx mbuf",
1186 				    device_get_name(sc->sc_dev));
1187 			}
1188 			ifp->if_ierrors++;
1189 			goto skip;
1190 		}
1191 
1192 		/*
1193 	 	 * New mbuf successfully loaded, update Rx ring and continue
1194 		 * processing.
1195 		 */
1196 		m = data->m;
1197 		data->m = mnew;
1198 		desc->physaddr = htole32(physaddr);
1199 
1200 		/* finalize mbuf */
1201 		m->m_pkthdr.rcvif = ifp;
1202 		m->m_pkthdr.len = m->m_len =
1203 		    (le32toh(desc->flags) >> 16) & 0xfff;
1204 
1205 		rssi = RT2560_RSSI(sc, desc->rssi);
1206 		nf = RT2560_NOISE_FLOOR;
1207 		if (ieee80211_radiotap_active(ic)) {
1208 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1209 			uint32_t tsf_lo, tsf_hi;
1210 
1211 			/* get timestamp (low and high 32 bits) */
1212 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1213 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1214 
1215 			tap->wr_tsf =
1216 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1217 			tap->wr_flags = 0;
1218 			tap->wr_rate = ieee80211_plcp2rate(desc->rate,
1219 			    (desc->flags & htole32(RT2560_RX_OFDM)) ?
1220 				IEEE80211_T_OFDM : IEEE80211_T_CCK);
1221 			tap->wr_antenna = sc->rx_ant;
1222 			tap->wr_antsignal = nf + rssi;
1223 			tap->wr_antnoise = nf;
1224 		}
1225 
1226 		sc->sc_flags |= RT2560_F_INPUT_RUNNING;
1227 		RAL_UNLOCK(sc);
1228 		wh = mtod(m, struct ieee80211_frame *);
1229 		ni = ieee80211_find_rxnode(ic,
1230 		    (struct ieee80211_frame_min *)wh);
1231 		if (ni != NULL) {
1232 			(void) ieee80211_input(ni, m, rssi, nf);
1233 			ieee80211_free_node(ni);
1234 		} else
1235 			(void) ieee80211_input_all(ic, m, rssi, nf);
1236 
1237 		RAL_LOCK(sc);
1238 		sc->sc_flags &= ~RT2560_F_INPUT_RUNNING;
1239 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1240 
1241 		DPRINTFN(sc, 15, "decryption done idx=%u\n", sc->rxq.cur_decrypt);
1242 
1243 		sc->rxq.cur_decrypt =
1244 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1245 	}
1246 
1247 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1248 	    BUS_DMASYNC_PREWRITE);
1249 }
1250 
1251 /*
1252  * Some frames were received. Pass them to the hardware cipher engine before
1253  * sending them to the 802.11 layer.
1254  */
1255 static void
1256 rt2560_rx_intr(struct rt2560_softc *sc)
1257 {
1258 	struct rt2560_rx_desc *desc;
1259 	struct rt2560_rx_data *data;
1260 
1261 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1262 	    BUS_DMASYNC_POSTREAD);
1263 
1264 	for (;;) {
1265 		desc = &sc->rxq.desc[sc->rxq.cur];
1266 		data = &sc->rxq.data[sc->rxq.cur];
1267 
1268 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1269 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1270 			break;
1271 
1272 		data->drop = 0;
1273 
1274 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1275 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1276 			/*
1277 			 * This should not happen since we did not request
1278 			 * to receive those frames when we filled RXCSR0.
1279 			 */
1280 			DPRINTFN(sc, 5, "PHY or CRC error flags 0x%08x\n",
1281 			    le32toh(desc->flags));
1282 			data->drop = 1;
1283 		}
1284 
1285 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1286 			DPRINTFN(sc, 5, "%s\n", "bad length");
1287 			data->drop = 1;
1288 		}
1289 
1290 		/* mark the frame for decryption */
1291 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1292 
1293 		DPRINTFN(sc, 15, "rx done idx=%u\n", sc->rxq.cur);
1294 
1295 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1296 	}
1297 
1298 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1299 	    BUS_DMASYNC_PREWRITE);
1300 
1301 	/* kick decrypt */
1302 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1303 }
1304 
1305 static void
1306 rt2560_beacon_update(struct ieee80211vap *vap, int item)
1307 {
1308 	struct rt2560_vap *rvp = RT2560_VAP(vap);
1309 	struct ieee80211_beacon_offsets *bo = &rvp->ral_bo;
1310 
1311 	setbit(bo->bo_flags, item);
1312 }
1313 
1314 /*
1315  * This function is called periodically in IBSS mode when a new beacon must be
1316  * sent out.
1317  */
1318 static void
1319 rt2560_beacon_expire(struct rt2560_softc *sc)
1320 {
1321 	struct ifnet *ifp = sc->sc_ifp;
1322 	struct ieee80211com *ic = ifp->if_l2com;
1323 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
1324 	struct rt2560_vap *rvp = RT2560_VAP(vap);
1325 	struct rt2560_tx_data *data;
1326 
1327 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1328 	    ic->ic_opmode != IEEE80211_M_HOSTAP &&
1329 	    ic->ic_opmode != IEEE80211_M_MBSS)
1330 		return;
1331 
1332 	data = &sc->bcnq.data[sc->bcnq.next];
1333 	/*
1334 	 * Don't send beacon if bsschan isn't set
1335 	 */
1336 	if (data->ni == NULL)
1337 	        return;
1338 
1339 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1340 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1341 
1342 	/* XXX 1 =>'s mcast frames which means all PS sta's will wakeup! */
1343 	ieee80211_beacon_update(data->ni, &rvp->ral_bo, data->m, 1);
1344 
1345 	rt2560_tx_bcn(sc, data->m, data->ni);
1346 
1347 	DPRINTFN(sc, 15, "%s", "beacon expired\n");
1348 
1349 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1350 }
1351 
1352 /* ARGSUSED */
1353 static void
1354 rt2560_wakeup_expire(struct rt2560_softc *sc)
1355 {
1356 	DPRINTFN(sc, 2, "%s", "wakeup expired\n");
1357 }
1358 
1359 void
1360 rt2560_intr(void *arg)
1361 {
1362 	struct rt2560_softc *sc = arg;
1363 	struct ifnet *ifp = sc->sc_ifp;
1364 	uint32_t r;
1365 
1366 	RAL_LOCK(sc);
1367 
1368 	/* disable interrupts */
1369 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1370 
1371 	/* don't re-enable interrupts if we're shutting down */
1372 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1373 		RAL_UNLOCK(sc);
1374 		return;
1375 	}
1376 
1377 	r = RAL_READ(sc, RT2560_CSR7);
1378 	RAL_WRITE(sc, RT2560_CSR7, r);
1379 
1380 	if (r & RT2560_BEACON_EXPIRE)
1381 		rt2560_beacon_expire(sc);
1382 
1383 	if (r & RT2560_WAKEUP_EXPIRE)
1384 		rt2560_wakeup_expire(sc);
1385 
1386 	if (r & RT2560_ENCRYPTION_DONE)
1387 		rt2560_encryption_intr(sc);
1388 
1389 	if (r & RT2560_TX_DONE)
1390 		rt2560_tx_intr(sc);
1391 
1392 	if (r & RT2560_PRIO_DONE)
1393 		rt2560_prio_intr(sc);
1394 
1395 	if (r & RT2560_DECRYPTION_DONE)
1396 		rt2560_decryption_intr(sc);
1397 
1398 	if (r & RT2560_RX_DONE) {
1399 		rt2560_rx_intr(sc);
1400 		rt2560_encryption_intr(sc);
1401 	}
1402 
1403 	/* re-enable interrupts */
1404 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1405 
1406 	RAL_UNLOCK(sc);
1407 }
1408 
1409 #define RAL_SIFS		10	/* us */
1410 
1411 #define RT2560_TXRX_TURNAROUND	10	/* us */
1412 
1413 static uint8_t
1414 rt2560_plcp_signal(int rate)
1415 {
1416 	switch (rate) {
1417 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1418 	case 12:	return 0xb;
1419 	case 18:	return 0xf;
1420 	case 24:	return 0xa;
1421 	case 36:	return 0xe;
1422 	case 48:	return 0x9;
1423 	case 72:	return 0xd;
1424 	case 96:	return 0x8;
1425 	case 108:	return 0xc;
1426 
1427 	/* CCK rates (NB: not IEEE std, device-specific) */
1428 	case 2:		return 0x0;
1429 	case 4:		return 0x1;
1430 	case 11:	return 0x2;
1431 	case 22:	return 0x3;
1432 	}
1433 	return 0xff;		/* XXX unsupported/unknown rate */
1434 }
1435 
1436 static void
1437 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1438     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1439 {
1440 	struct ifnet *ifp = sc->sc_ifp;
1441 	struct ieee80211com *ic = ifp->if_l2com;
1442 	uint16_t plcp_length;
1443 	int remainder;
1444 
1445 	desc->flags = htole32(flags);
1446 	desc->flags |= htole32(len << 16);
1447 
1448 	desc->physaddr = htole32(physaddr);
1449 	desc->wme = htole16(
1450 	    RT2560_AIFSN(2) |
1451 	    RT2560_LOGCWMIN(3) |
1452 	    RT2560_LOGCWMAX(8));
1453 
1454 	/* setup PLCP fields */
1455 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1456 	desc->plcp_service = 4;
1457 
1458 	len += IEEE80211_CRC_LEN;
1459 	if (ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM) {
1460 		desc->flags |= htole32(RT2560_TX_OFDM);
1461 
1462 		plcp_length = len & 0xfff;
1463 		desc->plcp_length_hi = plcp_length >> 6;
1464 		desc->plcp_length_lo = plcp_length & 0x3f;
1465 	} else {
1466 		plcp_length = (16 * len + rate - 1) / rate;
1467 		if (rate == 22) {
1468 			remainder = (16 * len) % 22;
1469 			if (remainder != 0 && remainder < 7)
1470 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1471 		}
1472 		desc->plcp_length_hi = plcp_length >> 8;
1473 		desc->plcp_length_lo = plcp_length & 0xff;
1474 
1475 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1476 			desc->plcp_signal |= 0x08;
1477 	}
1478 
1479 	if (!encrypt)
1480 		desc->flags |= htole32(RT2560_TX_VALID);
1481 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY)
1482 			       : htole32(RT2560_TX_BUSY);
1483 }
1484 
1485 static int
1486 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1487     struct ieee80211_node *ni)
1488 {
1489 	struct ieee80211vap *vap = ni->ni_vap;
1490 	struct rt2560_tx_desc *desc;
1491 	struct rt2560_tx_data *data;
1492 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1493 	int nsegs, rate, error;
1494 
1495 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1496 	data = &sc->bcnq.data[sc->bcnq.cur];
1497 
1498 	/* XXX maybe a separate beacon rate? */
1499 	rate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].mgmtrate;
1500 
1501 	error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1502 	    segs, &nsegs, BUS_DMA_NOWAIT);
1503 	if (error != 0) {
1504 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1505 		    error);
1506 		m_freem(m0);
1507 		return error;
1508 	}
1509 
1510 	if (ieee80211_radiotap_active_vap(vap)) {
1511 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1512 
1513 		tap->wt_flags = 0;
1514 		tap->wt_rate = rate;
1515 		tap->wt_antenna = sc->tx_ant;
1516 
1517 		ieee80211_radiotap_tx(vap, m0);
1518 	}
1519 
1520 	data->m = m0;
1521 	data->ni = ni;
1522 
1523 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1524 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1525 
1526 	DPRINTFN(sc, 10, "sending beacon frame len=%u idx=%u rate=%u\n",
1527 	    m0->m_pkthdr.len, sc->bcnq.cur, rate);
1528 
1529 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1530 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1531 	    BUS_DMASYNC_PREWRITE);
1532 
1533 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1534 
1535 	return 0;
1536 }
1537 
1538 static int
1539 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1540     struct ieee80211_node *ni)
1541 {
1542 	struct ieee80211vap *vap = ni->ni_vap;
1543 	struct ieee80211com *ic = ni->ni_ic;
1544 	struct rt2560_tx_desc *desc;
1545 	struct rt2560_tx_data *data;
1546 	struct ieee80211_frame *wh;
1547 	struct ieee80211_key *k;
1548 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1549 	uint16_t dur;
1550 	uint32_t flags = 0;
1551 	int nsegs, rate, error;
1552 
1553 	desc = &sc->prioq.desc[sc->prioq.cur];
1554 	data = &sc->prioq.data[sc->prioq.cur];
1555 
1556 	rate = vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)].mgmtrate;
1557 
1558 	wh = mtod(m0, struct ieee80211_frame *);
1559 
1560 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1561 		k = ieee80211_crypto_encap(ni, m0);
1562 		if (k == NULL) {
1563 			m_freem(m0);
1564 			return ENOBUFS;
1565 		}
1566 	}
1567 
1568 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1569 	    segs, &nsegs, 0);
1570 	if (error != 0) {
1571 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1572 		    error);
1573 		m_freem(m0);
1574 		return error;
1575 	}
1576 
1577 	if (ieee80211_radiotap_active_vap(vap)) {
1578 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1579 
1580 		tap->wt_flags = 0;
1581 		tap->wt_rate = rate;
1582 		tap->wt_antenna = sc->tx_ant;
1583 
1584 		ieee80211_radiotap_tx(vap, m0);
1585 	}
1586 
1587 	data->m = m0;
1588 	data->ni = ni;
1589 	/* management frames are not taken into account for amrr */
1590 	data->rix = IEEE80211_FIXED_RATE_NONE;
1591 
1592 	wh = mtod(m0, struct ieee80211_frame *);
1593 
1594 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1595 		flags |= RT2560_TX_ACK;
1596 
1597 		dur = ieee80211_ack_duration(ic->ic_rt,
1598 		    rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1599 		*(uint16_t *)wh->i_dur = htole16(dur);
1600 
1601 		/* tell hardware to add timestamp for probe responses */
1602 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1603 		    IEEE80211_FC0_TYPE_MGT &&
1604 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1605 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1606 			flags |= RT2560_TX_TIMESTAMP;
1607 	}
1608 
1609 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1610 	    segs->ds_addr);
1611 
1612 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1613 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1614 	    BUS_DMASYNC_PREWRITE);
1615 
1616 	DPRINTFN(sc, 10, "sending mgt frame len=%u idx=%u rate=%u\n",
1617 	    m0->m_pkthdr.len, sc->prioq.cur, rate);
1618 
1619 	/* kick prio */
1620 	sc->prioq.queued++;
1621 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1622 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1623 
1624 	return 0;
1625 }
1626 
1627 static int
1628 rt2560_sendprot(struct rt2560_softc *sc,
1629     const struct mbuf *m, struct ieee80211_node *ni, int prot, int rate)
1630 {
1631 	struct ieee80211com *ic = ni->ni_ic;
1632 	const struct ieee80211_frame *wh;
1633 	struct rt2560_tx_desc *desc;
1634 	struct rt2560_tx_data *data;
1635 	struct mbuf *mprot;
1636 	int protrate, ackrate, pktlen, flags, isshort, error;
1637 	uint16_t dur;
1638 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1639 	int nsegs;
1640 
1641 	KASSERT(prot == IEEE80211_PROT_RTSCTS || prot == IEEE80211_PROT_CTSONLY,
1642 	    ("protection %d", prot));
1643 
1644 	wh = mtod(m, const struct ieee80211_frame *);
1645 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1646 
1647 	protrate = ieee80211_ctl_rate(ic->ic_rt, rate);
1648 	ackrate = ieee80211_ack_rate(ic->ic_rt, rate);
1649 
1650 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
1651 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
1652 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1653 	flags = RT2560_TX_MORE_FRAG;
1654 	if (prot == IEEE80211_PROT_RTSCTS) {
1655 		/* NB: CTS is the same size as an ACK */
1656 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
1657 		flags |= RT2560_TX_ACK;
1658 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
1659 	} else {
1660 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
1661 	}
1662 	if (mprot == NULL) {
1663 		/* XXX stat + msg */
1664 		return ENOBUFS;
1665 	}
1666 
1667 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1668 	data = &sc->txq.data[sc->txq.cur_encrypt];
1669 
1670 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1671 	    mprot, segs, &nsegs, 0);
1672 	if (error != 0) {
1673 		device_printf(sc->sc_dev,
1674 		    "could not map mbuf (error %d)\n", error);
1675 		m_freem(mprot);
1676 		return error;
1677 	}
1678 
1679 	data->m = mprot;
1680 	data->ni = ieee80211_ref_node(ni);
1681 	/* ctl frames are not taken into account for amrr */
1682 	data->rix = IEEE80211_FIXED_RATE_NONE;
1683 
1684 	rt2560_setup_tx_desc(sc, desc, flags, mprot->m_pkthdr.len, protrate, 1,
1685 	    segs->ds_addr);
1686 
1687 	bus_dmamap_sync(sc->txq.data_dmat, data->map,
1688 	    BUS_DMASYNC_PREWRITE);
1689 
1690 	sc->txq.queued++;
1691 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1692 
1693 	return 0;
1694 }
1695 
1696 static int
1697 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
1698     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
1699 {
1700 	struct ieee80211vap *vap = ni->ni_vap;
1701 	struct ieee80211com *ic = ni->ni_ic;
1702 	struct rt2560_tx_desc *desc;
1703 	struct rt2560_tx_data *data;
1704 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1705 	uint32_t flags;
1706 	int nsegs, rate, error;
1707 
1708 	desc = &sc->prioq.desc[sc->prioq.cur];
1709 	data = &sc->prioq.data[sc->prioq.cur];
1710 
1711 	rate = params->ibp_rate0;
1712 	if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
1713 		/* XXX fall back to mcast/mgmt rate? */
1714 		m_freem(m0);
1715 		return EINVAL;
1716 	}
1717 
1718 	flags = 0;
1719 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1720 		flags |= RT2560_TX_ACK;
1721 	if (params->ibp_flags & (IEEE80211_BPF_RTS|IEEE80211_BPF_CTS)) {
1722 		error = rt2560_sendprot(sc, m0, ni,
1723 		    params->ibp_flags & IEEE80211_BPF_RTS ?
1724 			 IEEE80211_PROT_RTSCTS : IEEE80211_PROT_CTSONLY,
1725 		    rate);
1726 		if (error) {
1727 			m_freem(m0);
1728 			return error;
1729 		}
1730 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1731 	}
1732 
1733 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1734 	    segs, &nsegs, 0);
1735 	if (error != 0) {
1736 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1737 		    error);
1738 		m_freem(m0);
1739 		return error;
1740 	}
1741 
1742 	if (ieee80211_radiotap_active_vap(vap)) {
1743 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1744 
1745 		tap->wt_flags = 0;
1746 		tap->wt_rate = rate;
1747 		tap->wt_antenna = sc->tx_ant;
1748 
1749 		ieee80211_radiotap_tx(ni->ni_vap, m0);
1750 	}
1751 
1752 	data->m = m0;
1753 	data->ni = ni;
1754 
1755 	/* XXX need to setup descriptor ourself */
1756 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
1757 	    rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
1758 	    segs->ds_addr);
1759 
1760 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1761 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1762 	    BUS_DMASYNC_PREWRITE);
1763 
1764 	DPRINTFN(sc, 10, "sending raw frame len=%u idx=%u rate=%u\n",
1765 	    m0->m_pkthdr.len, sc->prioq.cur, rate);
1766 
1767 	/* kick prio */
1768 	sc->prioq.queued++;
1769 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1770 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1771 
1772 	return 0;
1773 }
1774 
1775 static int
1776 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1777     struct ieee80211_node *ni)
1778 {
1779 	struct ieee80211vap *vap = ni->ni_vap;
1780 	struct ieee80211com *ic = ni->ni_ic;
1781 	struct rt2560_tx_desc *desc;
1782 	struct rt2560_tx_data *data;
1783 	struct ieee80211_frame *wh;
1784 	const struct ieee80211_txparam *tp;
1785 	struct ieee80211_key *k;
1786 	struct mbuf *mnew;
1787 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1788 	uint16_t dur;
1789 	uint32_t flags;
1790 	int nsegs, rate, error;
1791 
1792 	wh = mtod(m0, struct ieee80211_frame *);
1793 
1794 	tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
1795 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1796 		rate = tp->mcastrate;
1797 	} else if (m0->m_flags & M_EAPOL) {
1798 		rate = tp->mgmtrate;
1799 	} else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE) {
1800 		rate = tp->ucastrate;
1801 	} else {
1802 		(void) ieee80211_ratectl_rate(ni, NULL, 0);
1803 		rate = ni->ni_txrate;
1804 	}
1805 
1806 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1807 		k = ieee80211_crypto_encap(ni, m0);
1808 		if (k == NULL) {
1809 			m_freem(m0);
1810 			return ENOBUFS;
1811 		}
1812 
1813 		/* packet header may have moved, reset our local pointer */
1814 		wh = mtod(m0, struct ieee80211_frame *);
1815 	}
1816 
1817 	flags = 0;
1818 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1819 		int prot = IEEE80211_PROT_NONE;
1820 		if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > vap->iv_rtsthreshold)
1821 			prot = IEEE80211_PROT_RTSCTS;
1822 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1823 		    ieee80211_rate2phytype(ic->ic_rt, rate) == IEEE80211_T_OFDM)
1824 			prot = ic->ic_protmode;
1825 		if (prot != IEEE80211_PROT_NONE) {
1826 			error = rt2560_sendprot(sc, m0, ni, prot, rate);
1827 			if (error) {
1828 				m_freem(m0);
1829 				return error;
1830 			}
1831 			flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1832 		}
1833 	}
1834 
1835 	data = &sc->txq.data[sc->txq.cur_encrypt];
1836 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1837 
1838 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1839 	    segs, &nsegs, 0);
1840 	if (error != 0 && error != EFBIG) {
1841 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1842 		    error);
1843 		m_freem(m0);
1844 		return error;
1845 	}
1846 	if (error != 0) {
1847 		mnew = m_defrag(m0, M_NOWAIT);
1848 		if (mnew == NULL) {
1849 			device_printf(sc->sc_dev,
1850 			    "could not defragment mbuf\n");
1851 			m_freem(m0);
1852 			return ENOBUFS;
1853 		}
1854 		m0 = mnew;
1855 
1856 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1857 		    m0, segs, &nsegs, 0);
1858 		if (error != 0) {
1859 			device_printf(sc->sc_dev,
1860 			    "could not map mbuf (error %d)\n", error);
1861 			m_freem(m0);
1862 			return error;
1863 		}
1864 
1865 		/* packet header may have moved, reset our local pointer */
1866 		wh = mtod(m0, struct ieee80211_frame *);
1867 	}
1868 
1869 	if (ieee80211_radiotap_active_vap(vap)) {
1870 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1871 
1872 		tap->wt_flags = 0;
1873 		tap->wt_rate = rate;
1874 		tap->wt_antenna = sc->tx_ant;
1875 
1876 		ieee80211_radiotap_tx(vap, m0);
1877 	}
1878 
1879 	data->m = m0;
1880 	data->ni = ni;
1881 
1882 	/* remember link conditions for rate adaptation algorithm */
1883 	if (tp->ucastrate == IEEE80211_FIXED_RATE_NONE) {
1884 		data->rix = ni->ni_txrate;
1885 		/* XXX probably need last rssi value and not avg */
1886 		data->rssi = ic->ic_node_getrssi(ni);
1887 	} else
1888 		data->rix = IEEE80211_FIXED_RATE_NONE;
1889 
1890 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1891 		flags |= RT2560_TX_ACK;
1892 
1893 		dur = ieee80211_ack_duration(ic->ic_rt,
1894 		    rate, ic->ic_flags & IEEE80211_F_SHPREAMBLE);
1895 		*(uint16_t *)wh->i_dur = htole16(dur);
1896 	}
1897 
1898 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1899 	    segs->ds_addr);
1900 
1901 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1902 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1903 	    BUS_DMASYNC_PREWRITE);
1904 
1905 	DPRINTFN(sc, 10, "sending data frame len=%u idx=%u rate=%u\n",
1906 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate);
1907 
1908 	/* kick encrypt */
1909 	sc->txq.queued++;
1910 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1911 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1912 
1913 	return 0;
1914 }
1915 
1916 static void
1917 rt2560_start_locked(struct ifnet *ifp)
1918 {
1919 	struct rt2560_softc *sc = ifp->if_softc;
1920 	struct mbuf *m;
1921 	struct ieee80211_node *ni;
1922 
1923 	RAL_LOCK_ASSERT(sc);
1924 
1925 	for (;;) {
1926 		IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
1927 		if (m == NULL)
1928 			break;
1929 		if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1930 			IFQ_DRV_PREPEND(&ifp->if_snd, m);
1931 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1932 			sc->sc_flags |= RT2560_F_DATA_OACTIVE;
1933 			break;
1934 		}
1935 		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1936 		if (rt2560_tx_data(sc, m, ni) != 0) {
1937 			ieee80211_free_node(ni);
1938 			ifp->if_oerrors++;
1939 			break;
1940 		}
1941 
1942 		sc->sc_tx_timer = 5;
1943 	}
1944 }
1945 
1946 static void
1947 rt2560_start(struct ifnet *ifp)
1948 {
1949 	struct rt2560_softc *sc = ifp->if_softc;
1950 
1951 	RAL_LOCK(sc);
1952 	rt2560_start_locked(ifp);
1953 	RAL_UNLOCK(sc);
1954 }
1955 
1956 static void
1957 rt2560_watchdog(void *arg)
1958 {
1959 	struct rt2560_softc *sc = arg;
1960 	struct ifnet *ifp = sc->sc_ifp;
1961 
1962 	RAL_LOCK_ASSERT(sc);
1963 
1964 	KASSERT(ifp->if_drv_flags & IFF_DRV_RUNNING, ("not running"));
1965 
1966 	if (sc->sc_invalid)		/* card ejected */
1967 		return;
1968 
1969 	rt2560_encryption_intr(sc);
1970 	rt2560_tx_intr(sc);
1971 
1972 	if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
1973 		if_printf(ifp, "device timeout\n");
1974 		rt2560_init_locked(sc);
1975 		ifp->if_oerrors++;
1976 		/* NB: callout is reset in rt2560_init() */
1977 		return;
1978 	}
1979 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
1980 }
1981 
1982 static int
1983 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1984 {
1985 	struct rt2560_softc *sc = ifp->if_softc;
1986 	struct ieee80211com *ic = ifp->if_l2com;
1987 	struct ifreq *ifr = (struct ifreq *) data;
1988 	int error = 0, startall = 0;
1989 
1990 	switch (cmd) {
1991 	case SIOCSIFFLAGS:
1992 		RAL_LOCK(sc);
1993 		if (ifp->if_flags & IFF_UP) {
1994 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1995 				rt2560_init_locked(sc);
1996 				startall = 1;
1997 			} else
1998 				rt2560_update_promisc(ifp);
1999 		} else {
2000 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2001 				rt2560_stop_locked(sc);
2002 		}
2003 		RAL_UNLOCK(sc);
2004 		if (startall)
2005 			ieee80211_start_all(ic);
2006 		break;
2007 	case SIOCGIFMEDIA:
2008 		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
2009 		break;
2010 	case SIOCGIFADDR:
2011 		error = ether_ioctl(ifp, cmd, data);
2012 		break;
2013 	default:
2014 		error = EINVAL;
2015 		break;
2016 	}
2017 	return error;
2018 }
2019 
2020 static void
2021 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2022 {
2023 	uint32_t tmp;
2024 	int ntries;
2025 
2026 	for (ntries = 0; ntries < 100; ntries++) {
2027 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2028 			break;
2029 		DELAY(1);
2030 	}
2031 	if (ntries == 100) {
2032 		device_printf(sc->sc_dev, "could not write to BBP\n");
2033 		return;
2034 	}
2035 
2036 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2037 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2038 
2039 	DPRINTFN(sc, 15, "BBP R%u <- 0x%02x\n", reg, val);
2040 }
2041 
2042 static uint8_t
2043 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2044 {
2045 	uint32_t val;
2046 	int ntries;
2047 
2048 	for (ntries = 0; ntries < 100; ntries++) {
2049 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2050 			break;
2051 		DELAY(1);
2052 	}
2053 	if (ntries == 100) {
2054 		device_printf(sc->sc_dev, "could not read from BBP\n");
2055 		return 0;
2056 	}
2057 
2058 	val = RT2560_BBP_BUSY | reg << 8;
2059 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2060 
2061 	for (ntries = 0; ntries < 100; ntries++) {
2062 		val = RAL_READ(sc, RT2560_BBPCSR);
2063 		if (!(val & RT2560_BBP_BUSY))
2064 			return val & 0xff;
2065 		DELAY(1);
2066 	}
2067 
2068 	device_printf(sc->sc_dev, "could not read from BBP\n");
2069 	return 0;
2070 }
2071 
2072 static void
2073 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2074 {
2075 	uint32_t tmp;
2076 	int ntries;
2077 
2078 	for (ntries = 0; ntries < 100; ntries++) {
2079 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2080 			break;
2081 		DELAY(1);
2082 	}
2083 	if (ntries == 100) {
2084 		device_printf(sc->sc_dev, "could not write to RF\n");
2085 		return;
2086 	}
2087 
2088 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2089 	    (reg & 0x3);
2090 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2091 
2092 	/* remember last written value in sc */
2093 	sc->rf_regs[reg] = val;
2094 
2095 	DPRINTFN(sc, 15, "RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff);
2096 }
2097 
2098 static void
2099 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2100 {
2101 	struct ifnet *ifp = sc->sc_ifp;
2102 	struct ieee80211com *ic = ifp->if_l2com;
2103 	uint8_t power, tmp;
2104 	u_int i, chan;
2105 
2106 	chan = ieee80211_chan2ieee(ic, c);
2107 	KASSERT(chan != 0 && chan != IEEE80211_CHAN_ANY, ("chan 0x%x", chan));
2108 
2109 	if (IEEE80211_IS_CHAN_2GHZ(c))
2110 		power = min(sc->txpow[chan - 1], 31);
2111 	else
2112 		power = 31;
2113 
2114 	/* adjust txpower using ifconfig settings */
2115 	power -= (100 - ic->ic_txpowlimit) / 8;
2116 
2117 	DPRINTFN(sc, 2, "setting channel to %u, txpower to %u\n", chan, power);
2118 
2119 	switch (sc->rf_rev) {
2120 	case RT2560_RF_2522:
2121 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2122 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2123 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2124 		break;
2125 
2126 	case RT2560_RF_2523:
2127 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2128 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2129 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2130 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2131 		break;
2132 
2133 	case RT2560_RF_2524:
2134 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2135 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2136 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2137 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2138 		break;
2139 
2140 	case RT2560_RF_2525:
2141 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2142 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2143 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2144 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2145 
2146 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2147 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2148 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2149 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2150 		break;
2151 
2152 	case RT2560_RF_2525E:
2153 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2154 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2155 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2156 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2157 		break;
2158 
2159 	case RT2560_RF_2526:
2160 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2161 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2162 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2163 
2164 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2165 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2166 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2167 		break;
2168 
2169 	/* dual-band RF */
2170 	case RT2560_RF_5222:
2171 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2172 
2173 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2174 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2175 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2176 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2177 		break;
2178 	default:
2179  	        printf("unknown ral rev=%d\n", sc->rf_rev);
2180 	}
2181 
2182 	/* XXX */
2183 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2184 		/* set Japan filter bit for channel 14 */
2185 		tmp = rt2560_bbp_read(sc, 70);
2186 
2187 		tmp &= ~RT2560_JAPAN_FILTER;
2188 		if (chan == 14)
2189 			tmp |= RT2560_JAPAN_FILTER;
2190 
2191 		rt2560_bbp_write(sc, 70, tmp);
2192 
2193 		/* clear CRC errors */
2194 		RAL_READ(sc, RT2560_CNT0);
2195 	}
2196 }
2197 
2198 static void
2199 rt2560_set_channel(struct ieee80211com *ic)
2200 {
2201 	struct ifnet *ifp = ic->ic_ifp;
2202 	struct rt2560_softc *sc = ifp->if_softc;
2203 
2204 	RAL_LOCK(sc);
2205 	rt2560_set_chan(sc, ic->ic_curchan);
2206 	RAL_UNLOCK(sc);
2207 
2208 }
2209 
2210 #if 0
2211 /*
2212  * Disable RF auto-tuning.
2213  */
2214 static void
2215 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2216 {
2217 	uint32_t tmp;
2218 
2219 	if (sc->rf_rev != RT2560_RF_2523) {
2220 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2221 		rt2560_rf_write(sc, RAL_RF1, tmp);
2222 	}
2223 
2224 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2225 	rt2560_rf_write(sc, RAL_RF3, tmp);
2226 
2227 	DPRINTFN(sc, 2, "%s", "disabling RF autotune\n");
2228 }
2229 #endif
2230 
2231 /*
2232  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2233  * synchronization.
2234  */
2235 static void
2236 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2237 {
2238 	struct ifnet *ifp = sc->sc_ifp;
2239 	struct ieee80211com *ic = ifp->if_l2com;
2240 	struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
2241 	uint16_t logcwmin, preload;
2242 	uint32_t tmp;
2243 
2244 	/* first, disable TSF synchronization */
2245 	RAL_WRITE(sc, RT2560_CSR14, 0);
2246 
2247 	tmp = 16 * vap->iv_bss->ni_intval;
2248 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2249 
2250 	RAL_WRITE(sc, RT2560_CSR13, 0);
2251 
2252 	logcwmin = 5;
2253 	preload = (vap->iv_opmode == IEEE80211_M_STA) ? 384 : 1024;
2254 	tmp = logcwmin << 16 | preload;
2255 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2256 
2257 	/* finally, enable TSF synchronization */
2258 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2259 	if (ic->ic_opmode == IEEE80211_M_STA)
2260 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2261 	else
2262 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2263 		       RT2560_ENABLE_BEACON_GENERATOR;
2264 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2265 
2266 	DPRINTF(sc, "%s", "enabling TSF synchronization\n");
2267 }
2268 
2269 static void
2270 rt2560_enable_tsf(struct rt2560_softc *sc)
2271 {
2272 	RAL_WRITE(sc, RT2560_CSR14, 0);
2273 	RAL_WRITE(sc, RT2560_CSR14,
2274 	    RT2560_ENABLE_TSF_SYNC(2) | RT2560_ENABLE_TSF);
2275 }
2276 
2277 static void
2278 rt2560_update_plcp(struct rt2560_softc *sc)
2279 {
2280 	struct ifnet *ifp = sc->sc_ifp;
2281 	struct ieee80211com *ic = ifp->if_l2com;
2282 
2283 	/* no short preamble for 1Mbps */
2284 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2285 
2286 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2287 		/* values taken from the reference driver */
2288 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2289 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2290 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2291 	} else {
2292 		/* same values as above or'ed 0x8 */
2293 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2294 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2295 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2296 	}
2297 
2298 	DPRINTF(sc, "updating PLCP for %s preamble\n",
2299 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long");
2300 }
2301 
2302 /*
2303  * This function can be called by ieee80211_set_shortslottime(). Refer to
2304  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2305  */
2306 static void
2307 rt2560_update_slot(struct ifnet *ifp)
2308 {
2309 	struct rt2560_softc *sc = ifp->if_softc;
2310 	struct ieee80211com *ic = ifp->if_l2com;
2311 	uint8_t slottime;
2312 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2313 	uint32_t tmp;
2314 
2315 #ifndef FORCE_SLOTTIME
2316 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2317 #else
2318 	/*
2319 	 * Setting slot time according to "short slot time" capability
2320 	 * in beacon/probe_resp seems to cause problem to acknowledge
2321 	 * certain AP's data frames transimitted at CCK/DS rates: the
2322 	 * problematic AP keeps retransmitting data frames, probably
2323 	 * because MAC level acks are not received by hardware.
2324 	 * So we cheat a little bit here by claiming we are capable of
2325 	 * "short slot time" but setting hardware slot time to the normal
2326 	 * slot time.  ral(4) does not seem to have trouble to receive
2327 	 * frames transmitted using short slot time even if hardware
2328 	 * slot time is set to normal slot time.  If we didn't use this
2329 	 * trick, we would have to claim that short slot time is not
2330 	 * supported; this would give relative poor RX performance
2331 	 * (-1Mb~-2Mb lower) and the _whole_ BSS would stop using short
2332 	 * slot time.
2333 	 */
2334 	slottime = 20;
2335 #endif
2336 
2337 	/* update the MAC slot boundaries */
2338 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2339 	tx_pifs = tx_sifs + slottime;
2340 	tx_difs = tx_sifs + 2 * slottime;
2341 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2342 
2343 	tmp = RAL_READ(sc, RT2560_CSR11);
2344 	tmp = (tmp & ~0x1f00) | slottime << 8;
2345 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2346 
2347 	tmp = tx_pifs << 16 | tx_sifs;
2348 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2349 
2350 	tmp = eifs << 16 | tx_difs;
2351 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2352 
2353 	DPRINTF(sc, "setting slottime to %uus\n", slottime);
2354 }
2355 
2356 static void
2357 rt2560_set_basicrates(struct rt2560_softc *sc,
2358     const struct ieee80211_rateset *rs)
2359 {
2360 #define RV(r)	((r) & IEEE80211_RATE_VAL)
2361 	struct ifnet *ifp = sc->sc_ifp;
2362 	struct ieee80211com *ic = ifp->if_l2com;
2363 	uint32_t mask = 0;
2364 	uint8_t rate;
2365 	int i;
2366 
2367 	for (i = 0; i < rs->rs_nrates; i++) {
2368 		rate = rs->rs_rates[i];
2369 
2370 		if (!(rate & IEEE80211_RATE_BASIC))
2371 			continue;
2372 
2373 		mask |= 1 << ic->ic_rt->rateCodeToIndex[RV(rate)];
2374 	}
2375 
2376 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, mask);
2377 
2378 	DPRINTF(sc, "Setting basic rate mask to 0x%x\n", mask);
2379 #undef RV
2380 }
2381 
2382 static void
2383 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2384 {
2385 	uint32_t tmp;
2386 
2387 	/* set ON period to 70ms and OFF period to 30ms */
2388 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2389 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2390 }
2391 
2392 static void
2393 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
2394 {
2395 	uint32_t tmp;
2396 
2397 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2398 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2399 
2400 	tmp = bssid[4] | bssid[5] << 8;
2401 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2402 
2403 	DPRINTF(sc, "setting BSSID to %6D\n", bssid, ":");
2404 }
2405 
2406 static void
2407 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2408 {
2409 	uint32_t tmp;
2410 
2411 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2412 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2413 
2414 	tmp = addr[4] | addr[5] << 8;
2415 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2416 
2417 	DPRINTF(sc, "setting MAC address to %6D\n", addr, ":");
2418 }
2419 
2420 static void
2421 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2422 {
2423 	uint32_t tmp;
2424 
2425 	tmp = RAL_READ(sc, RT2560_CSR3);
2426 	addr[0] = tmp & 0xff;
2427 	addr[1] = (tmp >>  8) & 0xff;
2428 	addr[2] = (tmp >> 16) & 0xff;
2429 	addr[3] = (tmp >> 24);
2430 
2431 	tmp = RAL_READ(sc, RT2560_CSR4);
2432 	addr[4] = tmp & 0xff;
2433 	addr[5] = (tmp >> 8) & 0xff;
2434 }
2435 
2436 static void
2437 rt2560_update_promisc(struct ifnet *ifp)
2438 {
2439 	struct rt2560_softc *sc = ifp->if_softc;
2440 	uint32_t tmp;
2441 
2442 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2443 
2444 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2445 	if (!(ifp->if_flags & IFF_PROMISC))
2446 		tmp |= RT2560_DROP_NOT_TO_ME;
2447 
2448 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2449 
2450 	DPRINTF(sc, "%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2451 	    "entering" : "leaving");
2452 }
2453 
2454 static const char *
2455 rt2560_get_rf(int rev)
2456 {
2457 	switch (rev) {
2458 	case RT2560_RF_2522:	return "RT2522";
2459 	case RT2560_RF_2523:	return "RT2523";
2460 	case RT2560_RF_2524:	return "RT2524";
2461 	case RT2560_RF_2525:	return "RT2525";
2462 	case RT2560_RF_2525E:	return "RT2525e";
2463 	case RT2560_RF_2526:	return "RT2526";
2464 	case RT2560_RF_5222:	return "RT5222";
2465 	default:		return "unknown";
2466 	}
2467 }
2468 
2469 static void
2470 rt2560_read_config(struct rt2560_softc *sc)
2471 {
2472 	uint16_t val;
2473 	int i;
2474 
2475 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2476 	sc->rf_rev =   (val >> 11) & 0x7;
2477 	sc->hw_radio = (val >> 10) & 0x1;
2478 	sc->led_mode = (val >> 6)  & 0x7;
2479 	sc->rx_ant =   (val >> 4)  & 0x3;
2480 	sc->tx_ant =   (val >> 2)  & 0x3;
2481 	sc->nb_ant =   val & 0x3;
2482 
2483 	/* read default values for BBP registers */
2484 	for (i = 0; i < 16; i++) {
2485 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2486 		if (val == 0 || val == 0xffff)
2487 			continue;
2488 
2489 		sc->bbp_prom[i].reg = val >> 8;
2490 		sc->bbp_prom[i].val = val & 0xff;
2491 	}
2492 
2493 	/* read Tx power for all b/g channels */
2494 	for (i = 0; i < 14 / 2; i++) {
2495 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2496 		sc->txpow[i * 2] = val & 0xff;
2497 		sc->txpow[i * 2 + 1] = val >> 8;
2498 	}
2499 	for (i = 0; i < 14; ++i) {
2500 		if (sc->txpow[i] > 31)
2501 			sc->txpow[i] = 24;
2502 	}
2503 
2504 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
2505 	if ((val & 0xff) == 0xff)
2506 		sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
2507 	else
2508 		sc->rssi_corr = val & 0xff;
2509 	DPRINTF(sc, "rssi correction %d, calibrate 0x%02x\n",
2510 		 sc->rssi_corr, val);
2511 }
2512 
2513 
2514 static void
2515 rt2560_scan_start(struct ieee80211com *ic)
2516 {
2517 	struct ifnet *ifp = ic->ic_ifp;
2518 	struct rt2560_softc *sc = ifp->if_softc;
2519 
2520 	/* abort TSF synchronization */
2521 	RAL_WRITE(sc, RT2560_CSR14, 0);
2522 	rt2560_set_bssid(sc, ifp->if_broadcastaddr);
2523 }
2524 
2525 static void
2526 rt2560_scan_end(struct ieee80211com *ic)
2527 {
2528 	struct ifnet *ifp = ic->ic_ifp;
2529 	struct rt2560_softc *sc = ifp->if_softc;
2530 	struct ieee80211vap *vap = ic->ic_scan->ss_vap;
2531 
2532 	rt2560_enable_tsf_sync(sc);
2533 	/* XXX keep local copy */
2534 	rt2560_set_bssid(sc, vap->iv_bss->ni_bssid);
2535 }
2536 
2537 static int
2538 rt2560_bbp_init(struct rt2560_softc *sc)
2539 {
2540 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2541 	int i, ntries;
2542 
2543 	/* wait for BBP to be ready */
2544 	for (ntries = 0; ntries < 100; ntries++) {
2545 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2546 			break;
2547 		DELAY(1);
2548 	}
2549 	if (ntries == 100) {
2550 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2551 		return EIO;
2552 	}
2553 
2554 	/* initialize BBP registers to default values */
2555 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2556 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2557 		    rt2560_def_bbp[i].val);
2558 	}
2559 
2560 	/* initialize BBP registers to values stored in EEPROM */
2561 	for (i = 0; i < 16; i++) {
2562 		if (sc->bbp_prom[i].reg == 0 && sc->bbp_prom[i].val == 0)
2563 			break;
2564 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2565 	}
2566 	rt2560_bbp_write(sc, 17, 0x48);	/* XXX restore bbp17 */
2567 
2568 	return 0;
2569 #undef N
2570 }
2571 
2572 static void
2573 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2574 {
2575 	uint32_t tmp;
2576 	uint8_t tx;
2577 
2578 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2579 	if (antenna == 1)
2580 		tx |= RT2560_BBP_ANTA;
2581 	else if (antenna == 2)
2582 		tx |= RT2560_BBP_ANTB;
2583 	else
2584 		tx |= RT2560_BBP_DIVERSITY;
2585 
2586 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2587 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2588 	    sc->rf_rev == RT2560_RF_5222)
2589 		tx |= RT2560_BBP_FLIPIQ;
2590 
2591 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2592 
2593 	/* update values for CCK and OFDM in BBPCSR1 */
2594 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2595 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2596 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2597 }
2598 
2599 static void
2600 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2601 {
2602 	uint8_t rx;
2603 
2604 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2605 	if (antenna == 1)
2606 		rx |= RT2560_BBP_ANTA;
2607 	else if (antenna == 2)
2608 		rx |= RT2560_BBP_ANTB;
2609 	else
2610 		rx |= RT2560_BBP_DIVERSITY;
2611 
2612 	/* need to force no I/Q flip for RF 2525e and 2526 */
2613 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2614 		rx &= ~RT2560_BBP_FLIPIQ;
2615 
2616 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2617 }
2618 
2619 static void
2620 rt2560_init_locked(struct rt2560_softc *sc)
2621 {
2622 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2623 	struct ifnet *ifp = sc->sc_ifp;
2624 	struct ieee80211com *ic = ifp->if_l2com;
2625 	uint32_t tmp;
2626 	int i;
2627 
2628 	RAL_LOCK_ASSERT(sc);
2629 
2630 	rt2560_stop_locked(sc);
2631 
2632 	/* setup tx rings */
2633 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2634 	      RT2560_ATIM_RING_COUNT << 16 |
2635 	      RT2560_TX_RING_COUNT   <<  8 |
2636 	      RT2560_TX_DESC_SIZE;
2637 
2638 	/* rings must be initialized in this exact order */
2639 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2640 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2641 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2642 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2643 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2644 
2645 	/* setup rx ring */
2646 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2647 
2648 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2649 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2650 
2651 	/* initialize MAC registers to default values */
2652 	for (i = 0; i < N(rt2560_def_mac); i++)
2653 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2654 
2655 	rt2560_set_macaddr(sc, IF_LLADDR(ifp));
2656 
2657 	/* set basic rate set (will be updated later) */
2658 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2659 
2660 	rt2560_update_slot(ifp);
2661 	rt2560_update_plcp(sc);
2662 	rt2560_update_led(sc, 0, 0);
2663 
2664 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2665 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2666 
2667 	if (rt2560_bbp_init(sc) != 0) {
2668 		rt2560_stop_locked(sc);
2669 		return;
2670 	}
2671 
2672 	rt2560_set_txantenna(sc, sc->tx_ant);
2673 	rt2560_set_rxantenna(sc, sc->rx_ant);
2674 
2675 	/* set default BSS channel */
2676 	rt2560_set_chan(sc, ic->ic_curchan);
2677 
2678 	/* kick Rx */
2679 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2680 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2681 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2682 		if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
2683 		    ic->ic_opmode != IEEE80211_M_MBSS)
2684 			tmp |= RT2560_DROP_TODS;
2685 		if (!(ifp->if_flags & IFF_PROMISC))
2686 			tmp |= RT2560_DROP_NOT_TO_ME;
2687 	}
2688 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2689 
2690 	/* clear old FCS and Rx FIFO errors */
2691 	RAL_READ(sc, RT2560_CNT0);
2692 	RAL_READ(sc, RT2560_CNT4);
2693 
2694 	/* clear any pending interrupts */
2695 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2696 
2697 	/* enable interrupts */
2698 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2699 
2700 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2701 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2702 
2703 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2704 #undef N
2705 }
2706 
2707 static void
2708 rt2560_init(void *priv)
2709 {
2710 	struct rt2560_softc *sc = priv;
2711 	struct ifnet *ifp = sc->sc_ifp;
2712 	struct ieee80211com *ic = ifp->if_l2com;
2713 
2714 	RAL_LOCK(sc);
2715 	rt2560_init_locked(sc);
2716 	RAL_UNLOCK(sc);
2717 
2718 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2719 		ieee80211_start_all(ic);		/* start all vap's */
2720 }
2721 
2722 static void
2723 rt2560_stop_locked(struct rt2560_softc *sc)
2724 {
2725 	struct ifnet *ifp = sc->sc_ifp;
2726 	volatile int *flags = &sc->sc_flags;
2727 
2728 	RAL_LOCK_ASSERT(sc);
2729 
2730 	while (*flags & RT2560_F_INPUT_RUNNING)
2731 		msleep(sc, &sc->sc_mtx, 0, "ralrunning", hz/10);
2732 
2733 	callout_stop(&sc->watchdog_ch);
2734 	sc->sc_tx_timer = 0;
2735 
2736 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2737 		ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2738 
2739 		/* abort Tx */
2740 		RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2741 
2742 		/* disable Rx */
2743 		RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2744 
2745 		/* reset ASIC (imply reset BBP) */
2746 		RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2747 		RAL_WRITE(sc, RT2560_CSR1, 0);
2748 
2749 		/* disable interrupts */
2750 		RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2751 
2752 		/* reset Tx and Rx rings */
2753 		rt2560_reset_tx_ring(sc, &sc->txq);
2754 		rt2560_reset_tx_ring(sc, &sc->atimq);
2755 		rt2560_reset_tx_ring(sc, &sc->prioq);
2756 		rt2560_reset_tx_ring(sc, &sc->bcnq);
2757 		rt2560_reset_rx_ring(sc, &sc->rxq);
2758 	}
2759 	sc->sc_flags &= ~(RT2560_F_PRIO_OACTIVE | RT2560_F_DATA_OACTIVE);
2760 }
2761 
2762 void
2763 rt2560_stop(void *arg)
2764 {
2765 	struct rt2560_softc *sc = arg;
2766 
2767 	RAL_LOCK(sc);
2768 	rt2560_stop_locked(sc);
2769 	RAL_UNLOCK(sc);
2770 }
2771 
2772 static int
2773 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2774 	const struct ieee80211_bpf_params *params)
2775 {
2776 	struct ieee80211com *ic = ni->ni_ic;
2777 	struct ifnet *ifp = ic->ic_ifp;
2778 	struct rt2560_softc *sc = ifp->if_softc;
2779 
2780 	RAL_LOCK(sc);
2781 
2782 	/* prevent management frames from being sent if we're not ready */
2783 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2784 		RAL_UNLOCK(sc);
2785 		m_freem(m);
2786 		ieee80211_free_node(ni);
2787 		return ENETDOWN;
2788 	}
2789 	if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2790 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2791 		sc->sc_flags |= RT2560_F_PRIO_OACTIVE;
2792 		RAL_UNLOCK(sc);
2793 		m_freem(m);
2794 		ieee80211_free_node(ni);
2795 		return ENOBUFS;		/* XXX */
2796 	}
2797 
2798 	ifp->if_opackets++;
2799 
2800 	if (params == NULL) {
2801 		/*
2802 		 * Legacy path; interpret frame contents to decide
2803 		 * precisely how to send the frame.
2804 		 */
2805 		if (rt2560_tx_mgt(sc, m, ni) != 0)
2806 			goto bad;
2807 	} else {
2808 		/*
2809 		 * Caller supplied explicit parameters to use in
2810 		 * sending the frame.
2811 		 */
2812 		if (rt2560_tx_raw(sc, m, ni, params))
2813 			goto bad;
2814 	}
2815 	sc->sc_tx_timer = 5;
2816 
2817 	RAL_UNLOCK(sc);
2818 
2819 	return 0;
2820 bad:
2821 	ifp->if_oerrors++;
2822 	ieee80211_free_node(ni);
2823 	RAL_UNLOCK(sc);
2824 	return EIO;		/* XXX */
2825 }
2826