xref: /freebsd/sys/dev/ral/rt2560.c (revision 0c927cdd8e6e05387fc5a9ffcb5dbe128d4ad749)
1 /*	$FreeBSD$	*/
2 
3 /*-
4  * Copyright (c) 2005, 2006
5  *	Damien Bergamini <damien.bergamini@free.fr>
6  *
7  * Permission to use, copy, modify, and distribute this software for any
8  * purpose with or without fee is hereby granted, provided that the above
9  * copyright notice and this permission notice appear in all copies.
10  *
11  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18  */
19 
20 #include <sys/cdefs.h>
21 __FBSDID("$FreeBSD$");
22 
23 /*-
24  * Ralink Technology RT2560 chipset driver
25  * http://www.ralinktech.com/
26  */
27 
28 #include <sys/param.h>
29 #include <sys/sysctl.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/module.h>
39 #include <sys/bus.h>
40 #include <sys/endian.h>
41 
42 #include <machine/bus.h>
43 #include <machine/resource.h>
44 #include <sys/rman.h>
45 
46 #include <net/bpf.h>
47 #include <net/if.h>
48 #include <net/if_arp.h>
49 #include <net/ethernet.h>
50 #include <net/if_dl.h>
51 #include <net/if_media.h>
52 #include <net/if_types.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_radiotap.h>
56 #include <net80211/ieee80211_regdomain.h>
57 
58 #include <netinet/in.h>
59 #include <netinet/in_systm.h>
60 #include <netinet/in_var.h>
61 #include <netinet/ip.h>
62 #include <netinet/if_ether.h>
63 
64 #include <dev/ral/if_ralrate.h>
65 #include <dev/ral/rt2560reg.h>
66 #include <dev/ral/rt2560var.h>
67 
68 #define RT2560_RSSI(sc, rssi)					\
69 	((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ?	\
70 	 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0)
71 
72 #ifdef RAL_DEBUG
73 #define DPRINTF(x)	do { if (ral_debug > 0) printf x; } while (0)
74 #define DPRINTFN(n, x)	do { if (ral_debug >= (n)) printf x; } while (0)
75 extern int ral_debug;
76 #else
77 #define DPRINTF(x)
78 #define DPRINTFN(n, x)
79 #endif
80 
81 static void		rt2560_dma_map_addr(void *, bus_dma_segment_t *, int,
82 			    int);
83 static int		rt2560_alloc_tx_ring(struct rt2560_softc *,
84 			    struct rt2560_tx_ring *, int);
85 static void		rt2560_reset_tx_ring(struct rt2560_softc *,
86 			    struct rt2560_tx_ring *);
87 static void		rt2560_free_tx_ring(struct rt2560_softc *,
88 			    struct rt2560_tx_ring *);
89 static int		rt2560_alloc_rx_ring(struct rt2560_softc *,
90 			    struct rt2560_rx_ring *, int);
91 static void		rt2560_reset_rx_ring(struct rt2560_softc *,
92 			    struct rt2560_rx_ring *);
93 static void		rt2560_free_rx_ring(struct rt2560_softc *,
94 			    struct rt2560_rx_ring *);
95 static struct		ieee80211_node *rt2560_node_alloc(
96 			    struct ieee80211_node_table *);
97 static int		rt2560_media_change(struct ifnet *);
98 static void		rt2560_iter_func(void *, struct ieee80211_node *);
99 static void		rt2560_update_rssadapt(void *);
100 static int		rt2560_newstate(struct ieee80211com *,
101 			    enum ieee80211_state, int);
102 static uint16_t		rt2560_eeprom_read(struct rt2560_softc *, uint8_t);
103 static void		rt2560_encryption_intr(struct rt2560_softc *);
104 static void		rt2560_tx_intr(struct rt2560_softc *);
105 static void		rt2560_prio_intr(struct rt2560_softc *);
106 static void		rt2560_decryption_intr(struct rt2560_softc *);
107 static void		rt2560_rx_intr(struct rt2560_softc *);
108 static void		rt2560_beacon_expire(struct rt2560_softc *);
109 static void		rt2560_wakeup_expire(struct rt2560_softc *);
110 static uint8_t		rt2560_rxrate(struct rt2560_rx_desc *);
111 static int		rt2560_ack_rate(struct ieee80211com *, int);
112 static void		rt2560_scan_start(struct ieee80211com *);
113 static void		rt2560_scan_end(struct ieee80211com *);
114 static void		rt2560_set_channel(struct ieee80211com *);
115 static uint16_t		rt2560_txtime(int, int, uint32_t);
116 static uint8_t		rt2560_plcp_signal(int);
117 static void		rt2560_setup_tx_desc(struct rt2560_softc *,
118 			    struct rt2560_tx_desc *, uint32_t, int, int, int,
119 			    bus_addr_t);
120 static int		rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *,
121 			    struct ieee80211_node *);
122 static int		rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *,
123 			    struct ieee80211_node *);
124 static struct		mbuf *rt2560_get_rts(struct rt2560_softc *,
125 			    struct ieee80211_frame *, uint16_t);
126 static int		rt2560_tx_data(struct rt2560_softc *, struct mbuf *,
127 			    struct ieee80211_node *);
128 static void		rt2560_start(struct ifnet *);
129 static void		rt2560_watchdog(void *);
130 static int		rt2560_reset(struct ifnet *);
131 static int		rt2560_ioctl(struct ifnet *, u_long, caddr_t);
132 static void		rt2560_bbp_write(struct rt2560_softc *, uint8_t,
133 			    uint8_t);
134 static uint8_t		rt2560_bbp_read(struct rt2560_softc *, uint8_t);
135 static void		rt2560_rf_write(struct rt2560_softc *, uint8_t,
136 			    uint32_t);
137 static void		rt2560_set_chan(struct rt2560_softc *,
138 			    struct ieee80211_channel *);
139 #if 0
140 static void		rt2560_disable_rf_tune(struct rt2560_softc *);
141 #endif
142 static void		rt2560_enable_tsf_sync(struct rt2560_softc *);
143 static void		rt2560_update_plcp(struct rt2560_softc *);
144 static void		rt2560_update_slot(struct ifnet *);
145 static void		rt2560_set_basicrates(struct rt2560_softc *);
146 static void		rt2560_update_led(struct rt2560_softc *, int, int);
147 static void		rt2560_set_bssid(struct rt2560_softc *, const uint8_t *);
148 static void		rt2560_set_macaddr(struct rt2560_softc *, uint8_t *);
149 static void		rt2560_get_macaddr(struct rt2560_softc *, uint8_t *);
150 static void		rt2560_update_promisc(struct rt2560_softc *);
151 static const char	*rt2560_get_rf(int);
152 static void		rt2560_read_eeprom(struct rt2560_softc *);
153 static int		rt2560_bbp_init(struct rt2560_softc *);
154 static void		rt2560_set_txantenna(struct rt2560_softc *, int);
155 static void		rt2560_set_rxantenna(struct rt2560_softc *, int);
156 static void		rt2560_init(void *);
157 static int		rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *,
158 				const struct ieee80211_bpf_params *);
159 
160 static const struct {
161 	uint32_t	reg;
162 	uint32_t	val;
163 } rt2560_def_mac[] = {
164 	RT2560_DEF_MAC
165 };
166 
167 static const struct {
168 	uint8_t	reg;
169 	uint8_t	val;
170 } rt2560_def_bbp[] = {
171 	RT2560_DEF_BBP
172 };
173 
174 static const uint32_t rt2560_rf2522_r2[]    = RT2560_RF2522_R2;
175 static const uint32_t rt2560_rf2523_r2[]    = RT2560_RF2523_R2;
176 static const uint32_t rt2560_rf2524_r2[]    = RT2560_RF2524_R2;
177 static const uint32_t rt2560_rf2525_r2[]    = RT2560_RF2525_R2;
178 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2;
179 static const uint32_t rt2560_rf2525e_r2[]   = RT2560_RF2525E_R2;
180 static const uint32_t rt2560_rf2526_r2[]    = RT2560_RF2526_R2;
181 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2;
182 
183 static const struct {
184 	uint8_t		chan;
185 	uint32_t	r1, r2, r4;
186 } rt2560_rf5222[] = {
187 	RT2560_RF5222
188 };
189 
190 int
191 rt2560_attach(device_t dev, int id)
192 {
193 	struct rt2560_softc *sc = device_get_softc(dev);
194 	struct ieee80211com *ic = &sc->sc_ic;
195 	struct ifnet *ifp;
196 	int error, bands;
197 
198 	sc->sc_dev = dev;
199 
200 	mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
201 	    MTX_DEF | MTX_RECURSE);
202 
203 	callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0);
204 	callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE);
205 
206 	/* retrieve RT2560 rev. no */
207 	sc->asic_rev = RAL_READ(sc, RT2560_CSR0);
208 
209 	/* retrieve MAC address */
210 	rt2560_get_macaddr(sc, ic->ic_myaddr);
211 
212 	/* retrieve RF rev. no and various other things from EEPROM */
213 	rt2560_read_eeprom(sc);
214 
215 	device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n",
216 	    sc->asic_rev, rt2560_get_rf(sc->rf_rev));
217 
218 	/*
219 	 * Allocate Tx and Rx rings.
220 	 */
221 	error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT);
222 	if (error != 0) {
223 		device_printf(sc->sc_dev, "could not allocate Tx ring\n");
224 		goto fail1;
225 	}
226 
227 	error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT);
228 	if (error != 0) {
229 		device_printf(sc->sc_dev, "could not allocate ATIM ring\n");
230 		goto fail2;
231 	}
232 
233 	error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT);
234 	if (error != 0) {
235 		device_printf(sc->sc_dev, "could not allocate Prio ring\n");
236 		goto fail3;
237 	}
238 
239 	error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT);
240 	if (error != 0) {
241 		device_printf(sc->sc_dev, "could not allocate Beacon ring\n");
242 		goto fail4;
243 	}
244 
245 	error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT);
246 	if (error != 0) {
247 		device_printf(sc->sc_dev, "could not allocate Rx ring\n");
248 		goto fail5;
249 	}
250 
251 	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
252 	if (ifp == NULL) {
253 		device_printf(sc->sc_dev, "can not if_alloc()\n");
254 		goto fail6;
255 	}
256 
257 	ifp->if_softc = sc;
258 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
259 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
260 	ifp->if_init = rt2560_init;
261 	ifp->if_ioctl = rt2560_ioctl;
262 	ifp->if_start = rt2560_start;
263 	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
264 	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
265 	IFQ_SET_READY(&ifp->if_snd);
266 
267 	ic->ic_ifp = ifp;
268 	ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
269 	ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
270 	ic->ic_state = IEEE80211_S_INIT;
271 
272 	/* set device capabilities */
273 	ic->ic_caps =
274 	    IEEE80211_C_IBSS |		/* IBSS mode supported */
275 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
276 	    IEEE80211_C_HOSTAP |	/* HostAp mode supported */
277 	    IEEE80211_C_TXPMGT |	/* tx power management */
278 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
279 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
280 	    IEEE80211_C_BGSCAN |	/* bg scanning support */
281 	    IEEE80211_C_WPA;		/* 802.11i */
282 
283 	bands = 0;
284 	setbit(&bands, IEEE80211_MODE_11B);
285 	setbit(&bands, IEEE80211_MODE_11G);
286 	if (sc->rf_rev == RT2560_RF_5222)
287 		setbit(&bands, IEEE80211_MODE_11A);
288 	ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1);
289 
290 	ieee80211_ifattach(ic);
291 	ic->ic_scan_start = rt2560_scan_start;
292 	ic->ic_scan_end = rt2560_scan_end;
293 	ic->ic_set_channel = rt2560_set_channel;
294 	ic->ic_node_alloc = rt2560_node_alloc;
295 	ic->ic_updateslot = rt2560_update_slot;
296 	ic->ic_reset = rt2560_reset;
297 	/* enable s/w bmiss handling in sta mode */
298 	ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS;
299 
300 	/* override state transition machine */
301 	sc->sc_newstate = ic->ic_newstate;
302 	ic->ic_newstate = rt2560_newstate;
303 	ic->ic_raw_xmit = rt2560_raw_xmit;
304 	ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status);
305 
306 	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
307 	    sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
308 
309 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
310 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
311 	sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT);
312 
313 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
314 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
315 	sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT);
316 
317 	/*
318 	 * Add a few sysctl knobs.
319 	 */
320 	sc->dwelltime = 200;
321 
322 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
323 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
324 	    "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)");
325 
326 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
327 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
328 	    "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)");
329 
330 	SYSCTL_ADD_INT(device_get_sysctl_ctx(dev),
331 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell",
332 	    CTLFLAG_RW, &sc->dwelltime, 0,
333 	    "channel dwell time (ms) for AP/station scanning");
334 
335 	if (bootverbose)
336 		ieee80211_announce(ic);
337 
338 	return 0;
339 
340 fail6:	rt2560_free_rx_ring(sc, &sc->rxq);
341 fail5:	rt2560_free_tx_ring(sc, &sc->bcnq);
342 fail4:	rt2560_free_tx_ring(sc, &sc->prioq);
343 fail3:	rt2560_free_tx_ring(sc, &sc->atimq);
344 fail2:	rt2560_free_tx_ring(sc, &sc->txq);
345 fail1:	mtx_destroy(&sc->sc_mtx);
346 
347 	return ENXIO;
348 }
349 
350 int
351 rt2560_detach(void *xsc)
352 {
353 	struct rt2560_softc *sc = xsc;
354 	struct ieee80211com *ic = &sc->sc_ic;
355 	struct ifnet *ifp = ic->ic_ifp;
356 
357 	rt2560_stop(sc);
358 	callout_stop(&sc->watchdog_ch);
359 	callout_stop(&sc->rssadapt_ch);
360 
361 	bpfdetach(ifp);
362 	ieee80211_ifdetach(ic);
363 
364 	rt2560_free_tx_ring(sc, &sc->txq);
365 	rt2560_free_tx_ring(sc, &sc->atimq);
366 	rt2560_free_tx_ring(sc, &sc->prioq);
367 	rt2560_free_tx_ring(sc, &sc->bcnq);
368 	rt2560_free_rx_ring(sc, &sc->rxq);
369 
370 	if_free(ifp);
371 
372 	mtx_destroy(&sc->sc_mtx);
373 
374 	return 0;
375 }
376 
377 void
378 rt2560_resume(void *xsc)
379 {
380 	struct rt2560_softc *sc = xsc;
381 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
382 
383 	if (ifp->if_flags & IFF_UP) {
384 		ifp->if_init(ifp->if_softc);
385 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
386 			ifp->if_start(ifp);
387 	}
388 }
389 
390 static void
391 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
392 {
393 	if (error != 0)
394 		return;
395 
396 	KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
397 
398 	*(bus_addr_t *)arg = segs[0].ds_addr;
399 }
400 
401 static int
402 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring,
403     int count)
404 {
405 	int i, error;
406 
407 	ring->count = count;
408 	ring->queued = 0;
409 	ring->cur = ring->next = 0;
410 	ring->cur_encrypt = ring->next_encrypt = 0;
411 
412 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
413 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1,
414 	    count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
415 	if (error != 0) {
416 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
417 		goto fail;
418 	}
419 
420 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
421 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
422 	if (error != 0) {
423 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
424 		goto fail;
425 	}
426 
427 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
428 	    count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
429 	    0);
430 	if (error != 0) {
431 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
432 		goto fail;
433 	}
434 
435 	ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF,
436 	    M_NOWAIT | M_ZERO);
437 	if (ring->data == NULL) {
438 		device_printf(sc->sc_dev, "could not allocate soft data\n");
439 		error = ENOMEM;
440 		goto fail;
441 	}
442 
443 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
444 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER,
445 	    MCLBYTES, 0, NULL, NULL, &ring->data_dmat);
446 	if (error != 0) {
447 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
448 		goto fail;
449 	}
450 
451 	for (i = 0; i < count; i++) {
452 		error = bus_dmamap_create(ring->data_dmat, 0,
453 		    &ring->data[i].map);
454 		if (error != 0) {
455 			device_printf(sc->sc_dev, "could not create DMA map\n");
456 			goto fail;
457 		}
458 	}
459 
460 	return 0;
461 
462 fail:	rt2560_free_tx_ring(sc, ring);
463 	return error;
464 }
465 
466 static void
467 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
468 {
469 	struct rt2560_tx_desc *desc;
470 	struct rt2560_tx_data *data;
471 	int i;
472 
473 	for (i = 0; i < ring->count; i++) {
474 		desc = &ring->desc[i];
475 		data = &ring->data[i];
476 
477 		if (data->m != NULL) {
478 			bus_dmamap_sync(ring->data_dmat, data->map,
479 			    BUS_DMASYNC_POSTWRITE);
480 			bus_dmamap_unload(ring->data_dmat, data->map);
481 			m_freem(data->m);
482 			data->m = NULL;
483 		}
484 
485 		if (data->ni != NULL) {
486 			ieee80211_free_node(data->ni);
487 			data->ni = NULL;
488 		}
489 
490 		desc->flags = 0;
491 	}
492 
493 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
494 
495 	ring->queued = 0;
496 	ring->cur = ring->next = 0;
497 	ring->cur_encrypt = ring->next_encrypt = 0;
498 }
499 
500 static void
501 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring)
502 {
503 	struct rt2560_tx_data *data;
504 	int i;
505 
506 	if (ring->desc != NULL) {
507 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
508 		    BUS_DMASYNC_POSTWRITE);
509 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
510 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
511 	}
512 
513 	if (ring->desc_dmat != NULL)
514 		bus_dma_tag_destroy(ring->desc_dmat);
515 
516 	if (ring->data != NULL) {
517 		for (i = 0; i < ring->count; i++) {
518 			data = &ring->data[i];
519 
520 			if (data->m != NULL) {
521 				bus_dmamap_sync(ring->data_dmat, data->map,
522 				    BUS_DMASYNC_POSTWRITE);
523 				bus_dmamap_unload(ring->data_dmat, data->map);
524 				m_freem(data->m);
525 			}
526 
527 			if (data->ni != NULL)
528 				ieee80211_free_node(data->ni);
529 
530 			if (data->map != NULL)
531 				bus_dmamap_destroy(ring->data_dmat, data->map);
532 		}
533 
534 		free(ring->data, M_DEVBUF);
535 	}
536 
537 	if (ring->data_dmat != NULL)
538 		bus_dma_tag_destroy(ring->data_dmat);
539 }
540 
541 static int
542 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring,
543     int count)
544 {
545 	struct rt2560_rx_desc *desc;
546 	struct rt2560_rx_data *data;
547 	bus_addr_t physaddr;
548 	int i, error;
549 
550 	ring->count = count;
551 	ring->cur = ring->next = 0;
552 	ring->cur_decrypt = 0;
553 
554 	error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT,
555 	    BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1,
556 	    count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat);
557 	if (error != 0) {
558 		device_printf(sc->sc_dev, "could not create desc DMA tag\n");
559 		goto fail;
560 	}
561 
562 	error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc,
563 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map);
564 	if (error != 0) {
565 		device_printf(sc->sc_dev, "could not allocate DMA memory\n");
566 		goto fail;
567 	}
568 
569 	error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc,
570 	    count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr,
571 	    0);
572 	if (error != 0) {
573 		device_printf(sc->sc_dev, "could not load desc DMA map\n");
574 		goto fail;
575 	}
576 
577 	ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF,
578 	    M_NOWAIT | M_ZERO);
579 	if (ring->data == NULL) {
580 		device_printf(sc->sc_dev, "could not allocate soft data\n");
581 		error = ENOMEM;
582 		goto fail;
583 	}
584 
585 	/*
586 	 * Pre-allocate Rx buffers and populate Rx ring.
587 	 */
588 	error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT,
589 	    BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL,
590 	    NULL, &ring->data_dmat);
591 	if (error != 0) {
592 		device_printf(sc->sc_dev, "could not create data DMA tag\n");
593 		goto fail;
594 	}
595 
596 	for (i = 0; i < count; i++) {
597 		desc = &sc->rxq.desc[i];
598 		data = &sc->rxq.data[i];
599 
600 		error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
601 		if (error != 0) {
602 			device_printf(sc->sc_dev, "could not create DMA map\n");
603 			goto fail;
604 		}
605 
606 		data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
607 		if (data->m == NULL) {
608 			device_printf(sc->sc_dev,
609 			    "could not allocate rx mbuf\n");
610 			error = ENOMEM;
611 			goto fail;
612 		}
613 
614 		error = bus_dmamap_load(ring->data_dmat, data->map,
615 		    mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr,
616 		    &physaddr, 0);
617 		if (error != 0) {
618 			device_printf(sc->sc_dev,
619 			    "could not load rx buf DMA map");
620 			goto fail;
621 		}
622 
623 		desc->flags = htole32(RT2560_RX_BUSY);
624 		desc->physaddr = htole32(physaddr);
625 	}
626 
627 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
628 
629 	return 0;
630 
631 fail:	rt2560_free_rx_ring(sc, ring);
632 	return error;
633 }
634 
635 static void
636 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
637 {
638 	int i;
639 
640 	for (i = 0; i < ring->count; i++) {
641 		ring->desc[i].flags = htole32(RT2560_RX_BUSY);
642 		ring->data[i].drop = 0;
643 	}
644 
645 	bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE);
646 
647 	ring->cur = ring->next = 0;
648 	ring->cur_decrypt = 0;
649 }
650 
651 static void
652 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring)
653 {
654 	struct rt2560_rx_data *data;
655 	int i;
656 
657 	if (ring->desc != NULL) {
658 		bus_dmamap_sync(ring->desc_dmat, ring->desc_map,
659 		    BUS_DMASYNC_POSTWRITE);
660 		bus_dmamap_unload(ring->desc_dmat, ring->desc_map);
661 		bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map);
662 	}
663 
664 	if (ring->desc_dmat != NULL)
665 		bus_dma_tag_destroy(ring->desc_dmat);
666 
667 	if (ring->data != NULL) {
668 		for (i = 0; i < ring->count; i++) {
669 			data = &ring->data[i];
670 
671 			if (data->m != NULL) {
672 				bus_dmamap_sync(ring->data_dmat, data->map,
673 				    BUS_DMASYNC_POSTREAD);
674 				bus_dmamap_unload(ring->data_dmat, data->map);
675 				m_freem(data->m);
676 			}
677 
678 			if (data->map != NULL)
679 				bus_dmamap_destroy(ring->data_dmat, data->map);
680 		}
681 
682 		free(ring->data, M_DEVBUF);
683 	}
684 
685 	if (ring->data_dmat != NULL)
686 		bus_dma_tag_destroy(ring->data_dmat);
687 }
688 
689 static struct ieee80211_node *
690 rt2560_node_alloc(struct ieee80211_node_table *nt)
691 {
692 	struct rt2560_node *rn;
693 
694 	rn = malloc(sizeof (struct rt2560_node), M_80211_NODE,
695 	    M_NOWAIT | M_ZERO);
696 
697 	return (rn != NULL) ? &rn->ni : NULL;
698 }
699 
700 static int
701 rt2560_media_change(struct ifnet *ifp)
702 {
703 	struct rt2560_softc *sc = ifp->if_softc;
704 	int error;
705 
706 	error = ieee80211_media_change(ifp);
707 
708 	if (error == ENETRESET) {
709 		if ((ifp->if_flags & IFF_UP) &&
710 		    (ifp->if_drv_flags & IFF_DRV_RUNNING))
711 		        rt2560_init(sc);
712 	}
713 	return error;
714 }
715 
716 /*
717  * This function is called for each node present in the node station table.
718  */
719 static void
720 rt2560_iter_func(void *arg, struct ieee80211_node *ni)
721 {
722 	struct rt2560_node *rn = (struct rt2560_node *)ni;
723 
724 	ral_rssadapt_updatestats(&rn->rssadapt);
725 }
726 
727 /*
728  * This function is called periodically (every 100ms) in RUN state to update
729  * the rate adaptation statistics.
730  */
731 static void
732 rt2560_update_rssadapt(void *arg)
733 {
734 	struct rt2560_softc *sc = arg;
735 	struct ieee80211com *ic = &sc->sc_ic;
736 
737 	RAL_LOCK(sc);
738 
739 	ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg);
740 	callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc);
741 
742 	RAL_UNLOCK(sc);
743 }
744 
745 static int
746 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
747 {
748 	struct rt2560_softc *sc = ic->ic_ifp->if_softc;
749 	enum ieee80211_state ostate;
750 	struct ieee80211_node *ni;
751 	struct mbuf *m;
752 	int error = 0;
753 
754 	ostate = ic->ic_state;
755 
756 	switch (nstate) {
757 	case IEEE80211_S_INIT:
758 		callout_stop(&sc->rssadapt_ch);
759 
760 		if (ostate == IEEE80211_S_RUN) {
761 			/* abort TSF synchronization */
762 			RAL_WRITE(sc, RT2560_CSR14, 0);
763 
764 			/* turn association led off */
765 			rt2560_update_led(sc, 0, 0);
766 		}
767 		break;
768 	case IEEE80211_S_RUN:
769 		ni = ic->ic_bss;
770 
771 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
772 			rt2560_update_plcp(sc);
773 			rt2560_set_basicrates(sc);
774 			rt2560_set_bssid(sc, ni->ni_bssid);
775 		}
776 
777 		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
778 		    ic->ic_opmode == IEEE80211_M_IBSS) {
779 			m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo);
780 			if (m == NULL) {
781 				device_printf(sc->sc_dev,
782 				    "could not allocate beacon\n");
783 				error = ENOBUFS;
784 				break;
785 			}
786 
787 			ieee80211_ref_node(ni);
788 			error = rt2560_tx_bcn(sc, m, ni);
789 			if (error != 0)
790 				break;
791 		}
792 
793 		/* turn assocation led on */
794 		rt2560_update_led(sc, 1, 0);
795 
796 		if (ic->ic_opmode != IEEE80211_M_MONITOR) {
797 			callout_reset(&sc->rssadapt_ch, hz / 10,
798 			    rt2560_update_rssadapt, sc);
799 
800 			rt2560_enable_tsf_sync(sc);
801 		}
802 		break;
803 	case IEEE80211_S_SCAN:
804 	case IEEE80211_S_AUTH:
805 	case IEEE80211_S_ASSOC:
806 		break;
807 	}
808 
809 	return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg);
810 }
811 
812 /*
813  * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or
814  * 93C66).
815  */
816 static uint16_t
817 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr)
818 {
819 	uint32_t tmp;
820 	uint16_t val;
821 	int n;
822 
823 	/* clock C once before the first command */
824 	RT2560_EEPROM_CTL(sc, 0);
825 
826 	RT2560_EEPROM_CTL(sc, RT2560_S);
827 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
828 	RT2560_EEPROM_CTL(sc, RT2560_S);
829 
830 	/* write start bit (1) */
831 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
832 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
833 
834 	/* write READ opcode (10) */
835 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D);
836 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C);
837 	RT2560_EEPROM_CTL(sc, RT2560_S);
838 	RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
839 
840 	/* write address (A5-A0 or A7-A0) */
841 	n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7;
842 	for (; n >= 0; n--) {
843 		RT2560_EEPROM_CTL(sc, RT2560_S |
844 		    (((addr >> n) & 1) << RT2560_SHIFT_D));
845 		RT2560_EEPROM_CTL(sc, RT2560_S |
846 		    (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C);
847 	}
848 
849 	RT2560_EEPROM_CTL(sc, RT2560_S);
850 
851 	/* read data Q15-Q0 */
852 	val = 0;
853 	for (n = 15; n >= 0; n--) {
854 		RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C);
855 		tmp = RAL_READ(sc, RT2560_CSR21);
856 		val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n;
857 		RT2560_EEPROM_CTL(sc, RT2560_S);
858 	}
859 
860 	RT2560_EEPROM_CTL(sc, 0);
861 
862 	/* clear Chip Select and clock C */
863 	RT2560_EEPROM_CTL(sc, RT2560_S);
864 	RT2560_EEPROM_CTL(sc, 0);
865 	RT2560_EEPROM_CTL(sc, RT2560_C);
866 
867 	return val;
868 }
869 
870 /*
871  * Some frames were processed by the hardware cipher engine and are ready for
872  * transmission.
873  */
874 static void
875 rt2560_encryption_intr(struct rt2560_softc *sc)
876 {
877 	struct rt2560_tx_desc *desc;
878 	int hw;
879 
880 	/* retrieve last descriptor index processed by cipher engine */
881 	hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr;
882 	hw /= RT2560_TX_DESC_SIZE;
883 
884 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
885 	    BUS_DMASYNC_POSTREAD);
886 
887 	for (; sc->txq.next_encrypt != hw;) {
888 		desc = &sc->txq.desc[sc->txq.next_encrypt];
889 
890 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
891 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY))
892 			break;
893 
894 		/* for TKIP, swap eiv field to fix a bug in ASIC */
895 		if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) ==
896 		    RT2560_TX_CIPHER_TKIP)
897 			desc->eiv = bswap32(desc->eiv);
898 
899 		/* mark the frame ready for transmission */
900 		desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
901 
902 		DPRINTFN(15, ("encryption done idx=%u\n",
903 		    sc->txq.next_encrypt));
904 
905 		sc->txq.next_encrypt =
906 		    (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT;
907 	}
908 
909 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
910 	    BUS_DMASYNC_PREWRITE);
911 
912 	/* kick Tx */
913 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX);
914 }
915 
916 static void
917 rt2560_tx_intr(struct rt2560_softc *sc)
918 {
919 	struct ieee80211com *ic = &sc->sc_ic;
920 	struct ifnet *ifp = ic->ic_ifp;
921 	struct rt2560_tx_desc *desc;
922 	struct rt2560_tx_data *data;
923 	struct rt2560_node *rn;
924 
925 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
926 	    BUS_DMASYNC_POSTREAD);
927 
928 	for (;;) {
929 		desc = &sc->txq.desc[sc->txq.next];
930 		data = &sc->txq.data[sc->txq.next];
931 
932 		if ((le32toh(desc->flags) & RT2560_TX_BUSY) ||
933 		    (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) ||
934 		    !(le32toh(desc->flags) & RT2560_TX_VALID))
935 			break;
936 
937 		rn = (struct rt2560_node *)data->ni;
938 
939 		switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) {
940 		case RT2560_TX_SUCCESS:
941 			DPRINTFN(10, ("data frame sent successfully\n"));
942 			if (data->id.id_node != NULL) {
943 				ral_rssadapt_raise_rate(ic, &rn->rssadapt,
944 				    &data->id);
945 			}
946 			ifp->if_opackets++;
947 			break;
948 
949 		case RT2560_TX_SUCCESS_RETRY:
950 			DPRINTFN(9, ("data frame sent after %u retries\n",
951 			    (le32toh(desc->flags) >> 5) & 0x7));
952 			ifp->if_opackets++;
953 			break;
954 
955 		case RT2560_TX_FAIL_RETRY:
956 			DPRINTFN(9, ("sending data frame failed (too much "
957 			    "retries)\n"));
958 			if (data->id.id_node != NULL) {
959 				ral_rssadapt_lower_rate(ic, data->ni,
960 				    &rn->rssadapt, &data->id);
961 			}
962 			ifp->if_oerrors++;
963 			break;
964 
965 		case RT2560_TX_FAIL_INVALID:
966 		case RT2560_TX_FAIL_OTHER:
967 		default:
968 			device_printf(sc->sc_dev, "sending data frame failed "
969 			    "0x%08x\n", le32toh(desc->flags));
970 			ifp->if_oerrors++;
971 		}
972 
973 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
974 		    BUS_DMASYNC_POSTWRITE);
975 		bus_dmamap_unload(sc->txq.data_dmat, data->map);
976 		m_freem(data->m);
977 		data->m = NULL;
978 		ieee80211_free_node(data->ni);
979 		data->ni = NULL;
980 
981 		/* descriptor is no longer valid */
982 		desc->flags &= ~htole32(RT2560_TX_VALID);
983 
984 		DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next));
985 
986 		sc->txq.queued--;
987 		sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT;
988 	}
989 
990 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
991 	    BUS_DMASYNC_PREWRITE);
992 
993 	sc->sc_tx_timer = 0;
994 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
995 	rt2560_start(ifp);
996 }
997 
998 static void
999 rt2560_prio_intr(struct rt2560_softc *sc)
1000 {
1001 	struct ieee80211com *ic = &sc->sc_ic;
1002 	struct ifnet *ifp = ic->ic_ifp;
1003 	struct rt2560_tx_desc *desc;
1004 	struct rt2560_tx_data *data;
1005 	struct ieee80211_node *ni;
1006 	struct mbuf *m;
1007 	int flags;
1008 
1009 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1010 	    BUS_DMASYNC_POSTREAD);
1011 
1012 	for (;;) {
1013 		desc = &sc->prioq.desc[sc->prioq.next];
1014 		data = &sc->prioq.data[sc->prioq.next];
1015 
1016 		flags = le32toh(desc->flags);
1017 		if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0)
1018 			break;
1019 
1020 		switch (flags & RT2560_TX_RESULT_MASK) {
1021 		case RT2560_TX_SUCCESS:
1022 			DPRINTFN(10, ("mgt frame sent successfully\n"));
1023 			break;
1024 
1025 		case RT2560_TX_SUCCESS_RETRY:
1026 			DPRINTFN(9, ("mgt frame sent after %u retries\n",
1027 			    (flags >> 5) & 0x7));
1028 			break;
1029 
1030 		case RT2560_TX_FAIL_RETRY:
1031 			DPRINTFN(9, ("sending mgt frame failed (too much "
1032 			    "retries)\n"));
1033 			break;
1034 
1035 		case RT2560_TX_FAIL_INVALID:
1036 		case RT2560_TX_FAIL_OTHER:
1037 		default:
1038 			device_printf(sc->sc_dev, "sending mgt frame failed "
1039 			    "0x%08x\n", flags);
1040 			break;
1041 		}
1042 
1043 		bus_dmamap_sync(sc->prioq.data_dmat, data->map,
1044 		    BUS_DMASYNC_POSTWRITE);
1045 		bus_dmamap_unload(sc->prioq.data_dmat, data->map);
1046 
1047 		m = data->m;
1048 		data->m = NULL;
1049 		ni = data->ni;
1050 		data->ni = NULL;
1051 
1052 		/* descriptor is no longer valid */
1053 		desc->flags &= ~htole32(RT2560_TX_VALID);
1054 
1055 		DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next));
1056 
1057 		sc->prioq.queued--;
1058 		sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT;
1059 
1060 		if (m->m_flags & M_TXCB)
1061 			ieee80211_process_callback(ni, m,
1062 				(flags & RT2560_TX_RESULT_MASK) &~
1063 				(RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY));
1064 		m_freem(m);
1065 		ieee80211_free_node(ni);
1066 	}
1067 
1068 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1069 	    BUS_DMASYNC_PREWRITE);
1070 
1071 	sc->sc_tx_timer = 0;
1072 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1073 	rt2560_start(ifp);
1074 }
1075 
1076 /*
1077  * Some frames were processed by the hardware cipher engine and are ready for
1078  * transmission to the IEEE802.11 layer.
1079  */
1080 static void
1081 rt2560_decryption_intr(struct rt2560_softc *sc)
1082 {
1083 	struct ieee80211com *ic = &sc->sc_ic;
1084 	struct ifnet *ifp = ic->ic_ifp;
1085 	struct rt2560_rx_desc *desc;
1086 	struct rt2560_rx_data *data;
1087 	bus_addr_t physaddr;
1088 	struct ieee80211_frame *wh;
1089 	struct ieee80211_node *ni;
1090 	struct rt2560_node *rn;
1091 	struct mbuf *mnew, *m;
1092 	int hw, error;
1093 
1094 	/* retrieve last decriptor index processed by cipher engine */
1095 	hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr;
1096 	hw /= RT2560_RX_DESC_SIZE;
1097 
1098 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1099 	    BUS_DMASYNC_POSTREAD);
1100 
1101 	for (; sc->rxq.cur_decrypt != hw;) {
1102 		desc = &sc->rxq.desc[sc->rxq.cur_decrypt];
1103 		data = &sc->rxq.data[sc->rxq.cur_decrypt];
1104 
1105 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1106 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1107 			break;
1108 
1109 		if (data->drop) {
1110 			ifp->if_ierrors++;
1111 			goto skip;
1112 		}
1113 
1114 		if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 &&
1115 		    (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) {
1116 			ifp->if_ierrors++;
1117 			goto skip;
1118 		}
1119 
1120 		/*
1121 		 * Try to allocate a new mbuf for this ring element and load it
1122 		 * before processing the current mbuf. If the ring element
1123 		 * cannot be loaded, drop the received packet and reuse the old
1124 		 * mbuf. In the unlikely case that the old mbuf can't be
1125 		 * reloaded either, explicitly panic.
1126 		 */
1127 		mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1128 		if (mnew == NULL) {
1129 			ifp->if_ierrors++;
1130 			goto skip;
1131 		}
1132 
1133 		bus_dmamap_sync(sc->rxq.data_dmat, data->map,
1134 		    BUS_DMASYNC_POSTREAD);
1135 		bus_dmamap_unload(sc->rxq.data_dmat, data->map);
1136 
1137 		error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1138 		    mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr,
1139 		    &physaddr, 0);
1140 		if (error != 0) {
1141 			m_freem(mnew);
1142 
1143 			/* try to reload the old mbuf */
1144 			error = bus_dmamap_load(sc->rxq.data_dmat, data->map,
1145 			    mtod(data->m, void *), MCLBYTES,
1146 			    rt2560_dma_map_addr, &physaddr, 0);
1147 			if (error != 0) {
1148 				/* very unlikely that it will fail... */
1149 				panic("%s: could not load old rx mbuf",
1150 				    device_get_name(sc->sc_dev));
1151 			}
1152 			ifp->if_ierrors++;
1153 			goto skip;
1154 		}
1155 
1156 		/*
1157 	 	 * New mbuf successfully loaded, update Rx ring and continue
1158 		 * processing.
1159 		 */
1160 		m = data->m;
1161 		data->m = mnew;
1162 		desc->physaddr = htole32(physaddr);
1163 
1164 		/* finalize mbuf */
1165 		m->m_pkthdr.rcvif = ifp;
1166 		m->m_pkthdr.len = m->m_len =
1167 		    (le32toh(desc->flags) >> 16) & 0xfff;
1168 
1169 		if (bpf_peers_present(sc->sc_drvbpf)) {
1170 			struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap;
1171 			uint32_t tsf_lo, tsf_hi;
1172 
1173 			/* get timestamp (low and high 32 bits) */
1174 			tsf_hi = RAL_READ(sc, RT2560_CSR17);
1175 			tsf_lo = RAL_READ(sc, RT2560_CSR16);
1176 
1177 			tap->wr_tsf =
1178 			    htole64(((uint64_t)tsf_hi << 32) | tsf_lo);
1179 			tap->wr_flags = 0;
1180 			tap->wr_rate = rt2560_rxrate(desc);
1181 			tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
1182 			tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
1183 			tap->wr_antenna = sc->rx_ant;
1184 			tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi);
1185 
1186 			bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
1187 		}
1188 
1189 		sc->sc_flags |= RAL_INPUT_RUNNING;
1190 		RAL_UNLOCK(sc);
1191 		wh = mtod(m, struct ieee80211_frame *);
1192 		ni = ieee80211_find_rxnode(ic,
1193 		    (struct ieee80211_frame_min *)wh);
1194 
1195 		/* send the frame to the 802.11 layer */
1196 		ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi),
1197 				RT2560_NOISE_FLOOR, 0);
1198 
1199 		/* give rssi to the rate adatation algorithm */
1200 		rn = (struct rt2560_node *)ni;
1201 		ral_rssadapt_input(ic, ni, &rn->rssadapt,
1202 				   RT2560_RSSI(sc, desc->rssi));
1203 
1204 		/* node is no longer needed */
1205 		ieee80211_free_node(ni);
1206 
1207 		RAL_LOCK(sc);
1208 		sc->sc_flags &= ~RAL_INPUT_RUNNING;
1209 skip:		desc->flags = htole32(RT2560_RX_BUSY);
1210 
1211 		DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt));
1212 
1213 		sc->rxq.cur_decrypt =
1214 		    (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT;
1215 	}
1216 
1217 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1218 	    BUS_DMASYNC_PREWRITE);
1219 }
1220 
1221 /*
1222  * Some frames were received. Pass them to the hardware cipher engine before
1223  * sending them to the 802.11 layer.
1224  */
1225 static void
1226 rt2560_rx_intr(struct rt2560_softc *sc)
1227 {
1228 	struct rt2560_rx_desc *desc;
1229 	struct rt2560_rx_data *data;
1230 
1231 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1232 	    BUS_DMASYNC_POSTREAD);
1233 
1234 	for (;;) {
1235 		desc = &sc->rxq.desc[sc->rxq.cur];
1236 		data = &sc->rxq.data[sc->rxq.cur];
1237 
1238 		if ((le32toh(desc->flags) & RT2560_RX_BUSY) ||
1239 		    (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY))
1240 			break;
1241 
1242 		data->drop = 0;
1243 
1244 		if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) ||
1245 		    (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) {
1246 			/*
1247 			 * This should not happen since we did not request
1248 			 * to receive those frames when we filled RXCSR0.
1249 			 */
1250 			DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n",
1251 			    le32toh(desc->flags)));
1252 			data->drop = 1;
1253 		}
1254 
1255 		if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) {
1256 			DPRINTFN(5, ("bad length\n"));
1257 			data->drop = 1;
1258 		}
1259 
1260 		/* mark the frame for decryption */
1261 		desc->flags |= htole32(RT2560_RX_CIPHER_BUSY);
1262 
1263 		DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur));
1264 
1265 		sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT;
1266 	}
1267 
1268 	bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map,
1269 	    BUS_DMASYNC_PREWRITE);
1270 
1271 	/* kick decrypt */
1272 	RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT);
1273 }
1274 
1275 /*
1276  * This function is called periodically in IBSS mode when a new beacon must be
1277  * sent out.
1278  */
1279 static void
1280 rt2560_beacon_expire(struct rt2560_softc *sc)
1281 {
1282 	struct ieee80211com *ic = &sc->sc_ic;
1283 	struct rt2560_tx_data *data;
1284 
1285 	if (ic->ic_opmode != IEEE80211_M_IBSS &&
1286 	    ic->ic_opmode != IEEE80211_M_HOSTAP)
1287 		return;
1288 
1289 	data = &sc->bcnq.data[sc->bcnq.next];
1290 	/*
1291 	 * Don't send beacon if bsschan isn't set
1292 	 */
1293 	if (data->ni == NULL)
1294 	        return;
1295 
1296 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
1297 	bus_dmamap_unload(sc->bcnq.data_dmat, data->map);
1298 
1299 	ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1);
1300 
1301 	if (bpf_peers_present(ic->ic_rawbpf))
1302 		bpf_mtap(ic->ic_rawbpf, data->m);
1303 
1304 	rt2560_tx_bcn(sc, data->m, data->ni);
1305 
1306 	DPRINTFN(15, ("beacon expired\n"));
1307 
1308 	sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT;
1309 }
1310 
1311 /* ARGSUSED */
1312 static void
1313 rt2560_wakeup_expire(struct rt2560_softc *sc)
1314 {
1315 	DPRINTFN(2, ("wakeup expired\n"));
1316 }
1317 
1318 void
1319 rt2560_intr(void *arg)
1320 {
1321 	struct rt2560_softc *sc = arg;
1322 	struct ifnet *ifp = sc->sc_ifp;
1323 	uint32_t r;
1324 
1325 	RAL_LOCK(sc);
1326 
1327 	/* disable interrupts */
1328 	RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
1329 
1330 	/* don't re-enable interrupts if we're shutting down */
1331 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1332 		RAL_UNLOCK(sc);
1333 		return;
1334 	}
1335 
1336 	r = RAL_READ(sc, RT2560_CSR7);
1337 	RAL_WRITE(sc, RT2560_CSR7, r);
1338 
1339 	if (r & RT2560_BEACON_EXPIRE)
1340 		rt2560_beacon_expire(sc);
1341 
1342 	if (r & RT2560_WAKEUP_EXPIRE)
1343 		rt2560_wakeup_expire(sc);
1344 
1345 	if (r & RT2560_ENCRYPTION_DONE)
1346 		rt2560_encryption_intr(sc);
1347 
1348 	if (r & RT2560_TX_DONE)
1349 		rt2560_tx_intr(sc);
1350 
1351 	if (r & RT2560_PRIO_DONE)
1352 		rt2560_prio_intr(sc);
1353 
1354 	if (r & RT2560_DECRYPTION_DONE)
1355 		rt2560_decryption_intr(sc);
1356 
1357 	if (r & RT2560_RX_DONE)
1358 		rt2560_rx_intr(sc);
1359 
1360 	/* re-enable interrupts */
1361 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
1362 
1363 	RAL_UNLOCK(sc);
1364 }
1365 
1366 /* quickly determine if a given rate is CCK or OFDM */
1367 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
1368 
1369 #define RAL_ACK_SIZE	14	/* 10 + 4(FCS) */
1370 #define RAL_CTS_SIZE	14	/* 10 + 4(FCS) */
1371 
1372 #define RAL_SIFS		10	/* us */
1373 
1374 #define RT2560_TXRX_TURNAROUND	10	/* us */
1375 
1376 /*
1377  * This function is only used by the Rx radiotap code.
1378  */
1379 static uint8_t
1380 rt2560_rxrate(struct rt2560_rx_desc *desc)
1381 {
1382 	if (le32toh(desc->flags) & RT2560_RX_OFDM) {
1383 		/* reverse function of rt2560_plcp_signal */
1384 		switch (desc->rate) {
1385 		case 0xb:	return 12;
1386 		case 0xf:	return 18;
1387 		case 0xa:	return 24;
1388 		case 0xe:	return 36;
1389 		case 0x9:	return 48;
1390 		case 0xd:	return 72;
1391 		case 0x8:	return 96;
1392 		case 0xc:	return 108;
1393 		}
1394 	} else {
1395 		if (desc->rate == 10)
1396 			return 2;
1397 		if (desc->rate == 20)
1398 			return 4;
1399 		if (desc->rate == 55)
1400 			return 11;
1401 		if (desc->rate == 110)
1402 			return 22;
1403 	}
1404 	return 2;	/* should not get there */
1405 }
1406 
1407 /*
1408  * Return the expected ack rate for a frame transmitted at rate `rate'.
1409  * XXX: this should depend on the destination node basic rate set.
1410  */
1411 static int
1412 rt2560_ack_rate(struct ieee80211com *ic, int rate)
1413 {
1414 	switch (rate) {
1415 	/* CCK rates */
1416 	case 2:
1417 		return 2;
1418 	case 4:
1419 	case 11:
1420 	case 22:
1421 		return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate;
1422 
1423 	/* OFDM rates */
1424 	case 12:
1425 	case 18:
1426 		return 12;
1427 	case 24:
1428 	case 36:
1429 		return 24;
1430 	case 48:
1431 	case 72:
1432 	case 96:
1433 	case 108:
1434 		return 48;
1435 	}
1436 
1437 	/* default to 1Mbps */
1438 	return 2;
1439 }
1440 
1441 /*
1442  * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'.
1443  * The function automatically determines the operating mode depending on the
1444  * given rate. `flags' indicates whether short preamble is in use or not.
1445  */
1446 static uint16_t
1447 rt2560_txtime(int len, int rate, uint32_t flags)
1448 {
1449 	uint16_t txtime;
1450 
1451 	if (RAL_RATE_IS_OFDM(rate)) {
1452 		/* IEEE Std 802.11a-1999, pp. 37 */
1453 		txtime = (8 + 4 * len + 3 + rate - 1) / rate;
1454 		txtime = 16 + 4 + 4 * txtime + 6;
1455 	} else {
1456 		/* IEEE Std 802.11b-1999, pp. 28 */
1457 		txtime = (16 * len + rate - 1) / rate;
1458 		if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE))
1459 			txtime +=  72 + 24;
1460 		else
1461 			txtime += 144 + 48;
1462 	}
1463 
1464 	return txtime;
1465 }
1466 
1467 static uint8_t
1468 rt2560_plcp_signal(int rate)
1469 {
1470 	switch (rate) {
1471 	/* CCK rates (returned values are device-dependent) */
1472 	case 2:		return 0x0;
1473 	case 4:		return 0x1;
1474 	case 11:	return 0x2;
1475 	case 22:	return 0x3;
1476 
1477 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
1478 	case 12:	return 0xb;
1479 	case 18:	return 0xf;
1480 	case 24:	return 0xa;
1481 	case 36:	return 0xe;
1482 	case 48:	return 0x9;
1483 	case 72:	return 0xd;
1484 	case 96:	return 0x8;
1485 	case 108:	return 0xc;
1486 
1487 	/* unsupported rates (should not get there) */
1488 	default:	return 0xff;
1489 	}
1490 }
1491 
1492 static void
1493 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc,
1494     uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr)
1495 {
1496 	struct ieee80211com *ic = &sc->sc_ic;
1497 	uint16_t plcp_length;
1498 	int remainder;
1499 
1500 	desc->flags = htole32(flags);
1501 	desc->flags |= htole32(len << 16);
1502 	desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) :
1503 	    htole32(RT2560_TX_BUSY | RT2560_TX_VALID);
1504 
1505 	desc->physaddr = htole32(physaddr);
1506 	desc->wme = htole16(
1507 	    RT2560_AIFSN(2) |
1508 	    RT2560_LOGCWMIN(3) |
1509 	    RT2560_LOGCWMAX(8));
1510 
1511 	/* setup PLCP fields */
1512 	desc->plcp_signal  = rt2560_plcp_signal(rate);
1513 	desc->plcp_service = 4;
1514 
1515 	len += IEEE80211_CRC_LEN;
1516 	if (RAL_RATE_IS_OFDM(rate)) {
1517 		desc->flags |= htole32(RT2560_TX_OFDM);
1518 
1519 		plcp_length = len & 0xfff;
1520 		desc->plcp_length_hi = plcp_length >> 6;
1521 		desc->plcp_length_lo = plcp_length & 0x3f;
1522 	} else {
1523 		plcp_length = (16 * len + rate - 1) / rate;
1524 		if (rate == 22) {
1525 			remainder = (16 * len) % 22;
1526 			if (remainder != 0 && remainder < 7)
1527 				desc->plcp_service |= RT2560_PLCP_LENGEXT;
1528 		}
1529 		desc->plcp_length_hi = plcp_length >> 8;
1530 		desc->plcp_length_lo = plcp_length & 0xff;
1531 
1532 		if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1533 			desc->plcp_signal |= 0x08;
1534 	}
1535 }
1536 
1537 static int
1538 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0,
1539     struct ieee80211_node *ni)
1540 {
1541 	struct ieee80211com *ic = &sc->sc_ic;
1542 	struct rt2560_tx_desc *desc;
1543 	struct rt2560_tx_data *data;
1544 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1545 	int nsegs, rate, error;
1546 
1547 	desc = &sc->bcnq.desc[sc->bcnq.cur];
1548 	data = &sc->bcnq.data[sc->bcnq.cur];
1549 
1550 	rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2;
1551 
1552 	error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0,
1553 	    segs, &nsegs, BUS_DMA_NOWAIT);
1554 	if (error != 0) {
1555 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1556 		    error);
1557 		m_freem(m0);
1558 		return error;
1559 	}
1560 
1561 	if (bpf_peers_present(sc->sc_drvbpf)) {
1562 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1563 
1564 		tap->wt_flags = 0;
1565 		tap->wt_rate = rate;
1566 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1567 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1568 		tap->wt_antenna = sc->tx_ant;
1569 
1570 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1571 	}
1572 
1573 	data->m = m0;
1574 	data->ni = ni;
1575 
1576 	rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF |
1577 	    RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr);
1578 
1579 	DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n",
1580 	    m0->m_pkthdr.len, sc->bcnq.cur, rate));
1581 
1582 	bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1583 	bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map,
1584 	    BUS_DMASYNC_PREWRITE);
1585 
1586 	sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT;
1587 
1588 	return 0;
1589 }
1590 
1591 static int
1592 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0,
1593     struct ieee80211_node *ni)
1594 {
1595 	struct ieee80211com *ic = &sc->sc_ic;
1596 	struct rt2560_tx_desc *desc;
1597 	struct rt2560_tx_data *data;
1598 	struct ieee80211_frame *wh;
1599 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1600 	uint16_t dur;
1601 	uint32_t flags = 0;
1602 	int nsegs, rate, error;
1603 
1604 	desc = &sc->prioq.desc[sc->prioq.cur];
1605 	data = &sc->prioq.data[sc->prioq.cur];
1606 
1607 	rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1608 
1609 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1610 	    segs, &nsegs, 0);
1611 	if (error != 0) {
1612 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1613 		    error);
1614 		m_freem(m0);
1615 		return error;
1616 	}
1617 
1618 	if (bpf_peers_present(sc->sc_drvbpf)) {
1619 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1620 
1621 		tap->wt_flags = 0;
1622 		tap->wt_rate = rate;
1623 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1624 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1625 		tap->wt_antenna = sc->tx_ant;
1626 
1627 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1628 	}
1629 
1630 	data->m = m0;
1631 	data->ni = ni;
1632 
1633 	wh = mtod(m0, struct ieee80211_frame *);
1634 
1635 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1636 		flags |= RT2560_TX_ACK;
1637 
1638 		dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) +
1639 		      RAL_SIFS;
1640 		*(uint16_t *)wh->i_dur = htole16(dur);
1641 
1642 		/* tell hardware to add timestamp for probe responses */
1643 		if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1644 		    IEEE80211_FC0_TYPE_MGT &&
1645 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1646 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1647 			flags |= RT2560_TX_TIMESTAMP;
1648 	}
1649 
1650 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0,
1651 	    segs->ds_addr);
1652 
1653 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1654 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1655 	    BUS_DMASYNC_PREWRITE);
1656 
1657 	DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n",
1658 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1659 
1660 	/* kick prio */
1661 	sc->prioq.queued++;
1662 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1663 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1664 
1665 	return 0;
1666 }
1667 
1668 static int
1669 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0,
1670     struct ieee80211_node *ni, const struct ieee80211_bpf_params *params)
1671 {
1672 	struct ieee80211com *ic = &sc->sc_ic;
1673 	struct rt2560_tx_desc *desc;
1674 	struct rt2560_tx_data *data;
1675 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1676 	uint32_t flags;
1677 	int nsegs, rate, error;
1678 
1679 	desc = &sc->prioq.desc[sc->prioq.cur];
1680 	data = &sc->prioq.data[sc->prioq.cur];
1681 
1682 	rate = params->ibp_rate0 & IEEE80211_RATE_VAL;
1683 	/* XXX validate */
1684 	if (rate == 0) {
1685 		m_freem(m0);
1686 		return EINVAL;
1687 	}
1688 
1689 	error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0,
1690 	    segs, &nsegs, 0);
1691 	if (error != 0) {
1692 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1693 		    error);
1694 		m_freem(m0);
1695 		return error;
1696 	}
1697 
1698 	if (bpf_peers_present(sc->sc_drvbpf)) {
1699 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1700 
1701 		tap->wt_flags = 0;
1702 		tap->wt_rate = rate;
1703 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1704 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1705 		tap->wt_antenna = sc->tx_ant;
1706 
1707 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1708 	}
1709 
1710 	data->m = m0;
1711 	data->ni = ni;
1712 
1713 	flags = 0;
1714 	if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
1715 		flags |= RT2560_TX_ACK;
1716 
1717 	/* XXX need to setup descriptor ourself */
1718 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len,
1719 	    rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0,
1720 	    segs->ds_addr);
1721 
1722 	bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1723 	bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map,
1724 	    BUS_DMASYNC_PREWRITE);
1725 
1726 	DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n",
1727 	    m0->m_pkthdr.len, sc->prioq.cur, rate));
1728 
1729 	/* kick prio */
1730 	sc->prioq.queued++;
1731 	sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT;
1732 	RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO);
1733 
1734 	return 0;
1735 }
1736 
1737 /*
1738  * Build a RTS control frame.
1739  */
1740 static struct mbuf *
1741 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh,
1742     uint16_t dur)
1743 {
1744 	struct ieee80211_frame_rts *rts;
1745 	struct mbuf *m;
1746 
1747 	MGETHDR(m, M_DONTWAIT, MT_DATA);
1748 	if (m == NULL) {
1749 		sc->sc_ic.ic_stats.is_tx_nobuf++;
1750 		device_printf(sc->sc_dev, "could not allocate RTS frame\n");
1751 		return NULL;
1752 	}
1753 
1754 	rts = mtod(m, struct ieee80211_frame_rts *);
1755 
1756 	rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL |
1757 	    IEEE80211_FC0_SUBTYPE_RTS;
1758 	rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1759 	*(uint16_t *)rts->i_dur = htole16(dur);
1760 	IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1);
1761 	IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2);
1762 
1763 	m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts);
1764 
1765 	return m;
1766 }
1767 
1768 static int
1769 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0,
1770     struct ieee80211_node *ni)
1771 {
1772 	struct ieee80211com *ic = &sc->sc_ic;
1773 	struct rt2560_tx_desc *desc;
1774 	struct rt2560_tx_data *data;
1775 	struct rt2560_node *rn;
1776 	struct ieee80211_frame *wh;
1777 	struct ieee80211_key *k;
1778 	struct mbuf *mnew;
1779 	bus_dma_segment_t segs[RT2560_MAX_SCATTER];
1780 	uint16_t dur;
1781 	uint32_t flags = 0;
1782 	int nsegs, rate, error;
1783 
1784 	wh = mtod(m0, struct ieee80211_frame *);
1785 
1786 	if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
1787 		rate = ic->ic_fixed_rate;
1788 	} else {
1789 		struct ieee80211_rateset *rs;
1790 
1791 		rs = &ni->ni_rates;
1792 		rn = (struct rt2560_node *)ni;
1793 		ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh,
1794 		    m0->m_pkthdr.len, NULL, 0);
1795 		rate = rs->rs_rates[ni->ni_txrate];
1796 	}
1797 	rate &= IEEE80211_RATE_VAL;
1798 
1799 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1800 		k = ieee80211_crypto_encap(ic, ni, m0);
1801 		if (k == NULL) {
1802 			m_freem(m0);
1803 			return ENOBUFS;
1804 		}
1805 
1806 		/* packet header may have moved, reset our local pointer */
1807 		wh = mtod(m0, struct ieee80211_frame *);
1808 	}
1809 
1810 	/*
1811 	 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange
1812 	 * for directed frames only when the length of the MPDU is greater
1813 	 * than the length threshold indicated by [...]" ic_rtsthreshold.
1814 	 */
1815 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1816 	    m0->m_pkthdr.len > ic->ic_rtsthreshold) {
1817 		struct mbuf *m;
1818 		uint16_t dur;
1819 		int rtsrate, ackrate;
1820 
1821 		rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2;
1822 		ackrate = rt2560_ack_rate(ic, rate);
1823 
1824 		dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) +
1825 		      rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) +
1826 		      rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) +
1827 		      3 * RAL_SIFS;
1828 
1829 		m = rt2560_get_rts(sc, wh, dur);
1830 
1831 		desc = &sc->txq.desc[sc->txq.cur_encrypt];
1832 		data = &sc->txq.data[sc->txq.cur_encrypt];
1833 
1834 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1835 		    m, segs, &nsegs, 0);
1836 		if (error != 0) {
1837 			device_printf(sc->sc_dev,
1838 			    "could not map mbuf (error %d)\n", error);
1839 			m_freem(m);
1840 			m_freem(m0);
1841 			return error;
1842 		}
1843 
1844 		/* avoid multiple free() of the same node for each fragment */
1845 		ieee80211_ref_node(ni);
1846 
1847 		data->m = m;
1848 		data->ni = ni;
1849 
1850 		/* RTS frames are not taken into account for rssadapt */
1851 		data->id.id_node = NULL;
1852 
1853 		rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK |
1854 		    RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1,
1855 		    segs->ds_addr);
1856 
1857 		bus_dmamap_sync(sc->txq.data_dmat, data->map,
1858 		    BUS_DMASYNC_PREWRITE);
1859 
1860 		sc->txq.queued++;
1861 		sc->txq.cur_encrypt =
1862 		    (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1863 
1864 		/*
1865 		 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the
1866 		 * asynchronous data frame shall be transmitted after the CTS
1867 		 * frame and a SIFS period.
1868 		 */
1869 		flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS;
1870 	}
1871 
1872 	data = &sc->txq.data[sc->txq.cur_encrypt];
1873 	desc = &sc->txq.desc[sc->txq.cur_encrypt];
1874 
1875 	error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0,
1876 	    segs, &nsegs, 0);
1877 	if (error != 0 && error != EFBIG) {
1878 		device_printf(sc->sc_dev, "could not map mbuf (error %d)\n",
1879 		    error);
1880 		m_freem(m0);
1881 		return error;
1882 	}
1883 	if (error != 0) {
1884 		mnew = m_defrag(m0, M_DONTWAIT);
1885 		if (mnew == NULL) {
1886 			device_printf(sc->sc_dev,
1887 			    "could not defragment mbuf\n");
1888 			m_freem(m0);
1889 			return ENOBUFS;
1890 		}
1891 		m0 = mnew;
1892 
1893 		error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map,
1894 		    m0, segs, &nsegs, 0);
1895 		if (error != 0) {
1896 			device_printf(sc->sc_dev,
1897 			    "could not map mbuf (error %d)\n", error);
1898 			m_freem(m0);
1899 			return error;
1900 		}
1901 
1902 		/* packet header may have moved, reset our local pointer */
1903 		wh = mtod(m0, struct ieee80211_frame *);
1904 	}
1905 
1906 	if (bpf_peers_present(sc->sc_drvbpf)) {
1907 		struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap;
1908 
1909 		tap->wt_flags = 0;
1910 		tap->wt_rate = rate;
1911 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1912 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1913 		tap->wt_antenna = sc->tx_ant;
1914 
1915 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
1916 	}
1917 
1918 	data->m = m0;
1919 	data->ni = ni;
1920 
1921 	/* remember link conditions for rate adaptation algorithm */
1922 	if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) {
1923 		data->id.id_len = m0->m_pkthdr.len;
1924 		data->id.id_rateidx = ni->ni_txrate;
1925 		data->id.id_node = ni;
1926 		data->id.id_rssi = ni->ni_rssi;
1927 	} else
1928 		data->id.id_node = NULL;
1929 
1930 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1931 		flags |= RT2560_TX_ACK;
1932 
1933 		dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate),
1934 		    ic->ic_flags) + RAL_SIFS;
1935 		*(uint16_t *)wh->i_dur = htole16(dur);
1936 	}
1937 
1938 	rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1,
1939 	    segs->ds_addr);
1940 
1941 	bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE);
1942 	bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map,
1943 	    BUS_DMASYNC_PREWRITE);
1944 
1945 	DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n",
1946 	    m0->m_pkthdr.len, sc->txq.cur_encrypt, rate));
1947 
1948 	/* kick encrypt */
1949 	sc->txq.queued++;
1950 	sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT;
1951 	RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT);
1952 
1953 	return 0;
1954 }
1955 
1956 static void
1957 rt2560_start(struct ifnet *ifp)
1958 {
1959 	struct rt2560_softc *sc = ifp->if_softc;
1960 	struct ieee80211com *ic = &sc->sc_ic;
1961 	struct mbuf *m0;
1962 	struct ether_header *eh;
1963 	struct ieee80211_node *ni;
1964 
1965 	RAL_LOCK(sc);
1966 
1967 	/* prevent management frames from being sent if we're not ready */
1968 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1969 		RAL_UNLOCK(sc);
1970 		return;
1971 	}
1972 
1973 	for (;;) {
1974 		IF_POLL(&ic->ic_mgtq, m0);
1975 		if (m0 != NULL) {
1976 			if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
1977 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1978 				break;
1979 			}
1980 			IF_DEQUEUE(&ic->ic_mgtq, m0);
1981 
1982 			ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
1983 			m0->m_pkthdr.rcvif = NULL;
1984 
1985 			if (bpf_peers_present(ic->ic_rawbpf))
1986 				bpf_mtap(ic->ic_rawbpf, m0);
1987 
1988 			if (rt2560_tx_mgt(sc, m0, ni) != 0) {
1989 				ieee80211_free_node(ni);
1990 				break;
1991 			}
1992 		} else {
1993 			if (ic->ic_state != IEEE80211_S_RUN)
1994 				break;
1995 			IFQ_DRV_DEQUEUE(&ifp->if_snd, m0);
1996 			if (m0 == NULL)
1997 				break;
1998 			if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) {
1999 				IFQ_DRV_PREPEND(&ifp->if_snd, m0);
2000 				ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2001 				break;
2002 			}
2003 
2004 			if (m0->m_len < sizeof (struct ether_header) &&
2005 			    !(m0 = m_pullup(m0, sizeof (struct ether_header))))
2006 				continue;
2007 
2008 			eh = mtod(m0, struct ether_header *);
2009 			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
2010 			if (ni == NULL) {
2011 				m_freem(m0);
2012 				continue;
2013 			}
2014 			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
2015 			    (m0->m_flags & M_PWR_SAV) == 0) {
2016 				/*
2017 				 * Station in power save mode; pass the frame
2018 				 * to the 802.11 layer and continue.  We'll get
2019 				 * the frame back when the time is right.
2020 				 */
2021 				ieee80211_pwrsave(ni, m0);
2022 				/*
2023 				 * If we're in power save mode 'cuz of a bg
2024 				 * scan cancel it so the traffic can flow.
2025 				 * The packet we just queued will automatically
2026 				 * get sent when we drop out of power save.
2027 				 * XXX locking
2028 				 */
2029 				if (ic->ic_flags & IEEE80211_F_SCAN)
2030 					ieee80211_cancel_scan(ic);
2031 				ieee80211_free_node(ni);
2032 				continue;
2033 
2034 			}
2035 
2036 			BPF_MTAP(ifp, m0);
2037 
2038 			m0 = ieee80211_encap(ic, m0, ni);
2039 			if (m0 == NULL) {
2040 				ieee80211_free_node(ni);
2041 				continue;
2042 			}
2043 
2044 			if (bpf_peers_present(ic->ic_rawbpf))
2045 				bpf_mtap(ic->ic_rawbpf, m0);
2046 
2047 			if (rt2560_tx_data(sc, m0, ni) != 0) {
2048 				ieee80211_free_node(ni);
2049 				ifp->if_oerrors++;
2050 				break;
2051 			}
2052 		}
2053 
2054 		sc->sc_tx_timer = 5;
2055 		callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2056 	}
2057 
2058 	RAL_UNLOCK(sc);
2059 }
2060 
2061 static void
2062 rt2560_watchdog(void *arg)
2063 {
2064 	struct rt2560_softc *sc = arg;
2065 
2066 	if (sc->sc_tx_timer > 0) {
2067 		if (--sc->sc_tx_timer == 0) {
2068 			device_printf(sc->sc_dev, "device timeout\n");
2069 			rt2560_init(sc);
2070 			sc->sc_ifp->if_oerrors++;
2071 			return;
2072 		}
2073 		callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2074 	}
2075 }
2076 
2077 /*
2078  * This function allows for fast channel switching in monitor mode (used by
2079  * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to
2080  * generate a new beacon frame.
2081  */
2082 static int
2083 rt2560_reset(struct ifnet *ifp)
2084 {
2085 	struct rt2560_softc *sc = ifp->if_softc;
2086 	struct ieee80211com *ic = &sc->sc_ic;
2087 
2088 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
2089 		return ENETRESET;
2090 
2091 	rt2560_set_chan(sc, ic->ic_curchan);
2092 
2093 	return 0;
2094 }
2095 
2096 static int
2097 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
2098 {
2099 	struct rt2560_softc *sc = ifp->if_softc;
2100 	struct ieee80211com *ic = &sc->sc_ic;
2101 	int error = 0;
2102 
2103 
2104 
2105 	switch (cmd) {
2106 	case SIOCSIFFLAGS:
2107 		if (ifp->if_flags & IFF_UP) {
2108 			RAL_LOCK(sc);
2109 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2110 				rt2560_update_promisc(sc);
2111 			else
2112 				rt2560_init(sc);
2113 			RAL_UNLOCK(sc);
2114 		} else {
2115 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
2116 				rt2560_stop(sc);
2117 		}
2118 
2119 		break;
2120 
2121 	default:
2122 		error = ieee80211_ioctl(ic, cmd, data);
2123 	}
2124 
2125 	if (error == ENETRESET) {
2126 		if ((ifp->if_flags & IFF_UP) &&
2127 		    (ifp->if_drv_flags & IFF_DRV_RUNNING) &&
2128 		    (ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
2129 			rt2560_init(sc);
2130 		error = 0;
2131 	}
2132 
2133 
2134 	return error;
2135 }
2136 
2137 static void
2138 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val)
2139 {
2140 	uint32_t tmp;
2141 	int ntries;
2142 
2143 	for (ntries = 0; ntries < 100; ntries++) {
2144 		if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY))
2145 			break;
2146 		DELAY(1);
2147 	}
2148 	if (ntries == 100) {
2149 		device_printf(sc->sc_dev, "could not write to BBP\n");
2150 		return;
2151 	}
2152 
2153 	tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val;
2154 	RAL_WRITE(sc, RT2560_BBPCSR, tmp);
2155 
2156 	DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val));
2157 }
2158 
2159 static uint8_t
2160 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg)
2161 {
2162 	uint32_t val;
2163 	int ntries;
2164 
2165 	val = RT2560_BBP_BUSY | reg << 8;
2166 	RAL_WRITE(sc, RT2560_BBPCSR, val);
2167 
2168 	for (ntries = 0; ntries < 100; ntries++) {
2169 		val = RAL_READ(sc, RT2560_BBPCSR);
2170 		if (!(val & RT2560_BBP_BUSY))
2171 			return val & 0xff;
2172 		DELAY(1);
2173 	}
2174 
2175 	device_printf(sc->sc_dev, "could not read from BBP\n");
2176 	return 0;
2177 }
2178 
2179 static void
2180 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val)
2181 {
2182 	uint32_t tmp;
2183 	int ntries;
2184 
2185 	for (ntries = 0; ntries < 100; ntries++) {
2186 		if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY))
2187 			break;
2188 		DELAY(1);
2189 	}
2190 	if (ntries == 100) {
2191 		device_printf(sc->sc_dev, "could not write to RF\n");
2192 		return;
2193 	}
2194 
2195 	tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 |
2196 	    (reg & 0x3);
2197 	RAL_WRITE(sc, RT2560_RFCSR, tmp);
2198 
2199 	/* remember last written value in sc */
2200 	sc->rf_regs[reg] = val;
2201 
2202 	DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff));
2203 }
2204 
2205 static void
2206 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c)
2207 {
2208 	struct ieee80211com *ic = &sc->sc_ic;
2209 	uint8_t power, tmp;
2210 	u_int i, chan;
2211 
2212 	chan = ieee80211_chan2ieee(ic, c);
2213 	if (chan == 0 || chan == IEEE80211_CHAN_ANY)
2214 		return;
2215 
2216 	if (IEEE80211_IS_CHAN_2GHZ(c))
2217 		power = min(sc->txpow[chan - 1], 31);
2218 	else
2219 		power = 31;
2220 
2221 	/* adjust txpower using ifconfig settings */
2222 	power -= (100 - ic->ic_txpowlimit) / 8;
2223 
2224 	DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power));
2225 
2226 	switch (sc->rf_rev) {
2227 	case RT2560_RF_2522:
2228 		rt2560_rf_write(sc, RAL_RF1, 0x00814);
2229 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]);
2230 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2231 		break;
2232 
2233 	case RT2560_RF_2523:
2234 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2235 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]);
2236 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044);
2237 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2238 		break;
2239 
2240 	case RT2560_RF_2524:
2241 		rt2560_rf_write(sc, RAL_RF1, 0x0c808);
2242 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]);
2243 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2244 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2245 		break;
2246 
2247 	case RT2560_RF_2525:
2248 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2249 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]);
2250 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2251 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2252 
2253 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2254 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]);
2255 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2256 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286);
2257 		break;
2258 
2259 	case RT2560_RF_2525E:
2260 		rt2560_rf_write(sc, RAL_RF1, 0x08808);
2261 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]);
2262 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2263 		rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282);
2264 		break;
2265 
2266 	case RT2560_RF_2526:
2267 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]);
2268 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2269 		rt2560_rf_write(sc, RAL_RF1, 0x08804);
2270 
2271 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]);
2272 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044);
2273 		rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381);
2274 		break;
2275 
2276 	/* dual-band RF */
2277 	case RT2560_RF_5222:
2278 		for (i = 0; rt2560_rf5222[i].chan != chan; i++);
2279 
2280 		rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1);
2281 		rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2);
2282 		rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040);
2283 		rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4);
2284 		break;
2285 	default:
2286  	        printf("unknown ral rev=%d\n", sc->rf_rev);
2287 	}
2288 
2289 	if (ic->ic_state != IEEE80211_S_SCAN) {
2290 		/* set Japan filter bit for channel 14 */
2291 		tmp = rt2560_bbp_read(sc, 70);
2292 
2293 		tmp &= ~RT2560_JAPAN_FILTER;
2294 		if (chan == 14)
2295 			tmp |= RT2560_JAPAN_FILTER;
2296 
2297 		rt2560_bbp_write(sc, 70, tmp);
2298 
2299 		/* clear CRC errors */
2300 		RAL_READ(sc, RT2560_CNT0);
2301 	}
2302 }
2303 
2304 static void
2305 rt2560_set_channel(struct ieee80211com *ic)
2306 {
2307 	struct ifnet *ifp = ic->ic_ifp;
2308 	struct rt2560_softc *sc = ifp->if_softc;
2309 
2310 	RAL_LOCK(sc);
2311 	rt2560_set_chan(sc, ic->ic_curchan);
2312 	RAL_UNLOCK(sc);
2313 
2314 }
2315 
2316 #if 0
2317 /*
2318  * Disable RF auto-tuning.
2319  */
2320 static void
2321 rt2560_disable_rf_tune(struct rt2560_softc *sc)
2322 {
2323 	uint32_t tmp;
2324 
2325 	if (sc->rf_rev != RT2560_RF_2523) {
2326 		tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE;
2327 		rt2560_rf_write(sc, RAL_RF1, tmp);
2328 	}
2329 
2330 	tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE;
2331 	rt2560_rf_write(sc, RAL_RF3, tmp);
2332 
2333 	DPRINTFN(2, ("disabling RF autotune\n"));
2334 }
2335 #endif
2336 
2337 /*
2338  * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF
2339  * synchronization.
2340  */
2341 static void
2342 rt2560_enable_tsf_sync(struct rt2560_softc *sc)
2343 {
2344 	struct ieee80211com *ic = &sc->sc_ic;
2345 	uint16_t logcwmin, preload;
2346 	uint32_t tmp;
2347 
2348 	/* first, disable TSF synchronization */
2349 	RAL_WRITE(sc, RT2560_CSR14, 0);
2350 
2351 	tmp = 16 * ic->ic_bss->ni_intval;
2352 	RAL_WRITE(sc, RT2560_CSR12, tmp);
2353 
2354 	RAL_WRITE(sc, RT2560_CSR13, 0);
2355 
2356 	logcwmin = 5;
2357 	preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024;
2358 	tmp = logcwmin << 16 | preload;
2359 	RAL_WRITE(sc, RT2560_BCNOCSR, tmp);
2360 
2361 	/* finally, enable TSF synchronization */
2362 	tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN;
2363 	if (ic->ic_opmode == IEEE80211_M_STA)
2364 		tmp |= RT2560_ENABLE_TSF_SYNC(1);
2365 	else
2366 		tmp |= RT2560_ENABLE_TSF_SYNC(2) |
2367 		       RT2560_ENABLE_BEACON_GENERATOR;
2368 	RAL_WRITE(sc, RT2560_CSR14, tmp);
2369 
2370 	DPRINTF(("enabling TSF synchronization\n"));
2371 }
2372 
2373 static void
2374 rt2560_update_plcp(struct rt2560_softc *sc)
2375 {
2376 	struct ieee80211com *ic = &sc->sc_ic;
2377 
2378 	/* no short preamble for 1Mbps */
2379 	RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400);
2380 
2381 	if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) {
2382 		/* values taken from the reference driver */
2383 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380401);
2384 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402);
2385 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b8403);
2386 	} else {
2387 		/* same values as above or'ed 0x8 */
2388 		RAL_WRITE(sc, RT2560_PLCP2MCSR,   0x00380409);
2389 		RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a);
2390 		RAL_WRITE(sc, RT2560_PLCP11MCSR,  0x000b840b);
2391 	}
2392 
2393 	DPRINTF(("updating PLCP for %s preamble\n",
2394 	    (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long"));
2395 }
2396 
2397 /*
2398  * This function can be called by ieee80211_set_shortslottime(). Refer to
2399  * IEEE Std 802.11-1999 pp. 85 to know how these values are computed.
2400  */
2401 static void
2402 rt2560_update_slot(struct ifnet *ifp)
2403 {
2404 	struct rt2560_softc *sc = ifp->if_softc;
2405 	struct ieee80211com *ic = &sc->sc_ic;
2406 	uint8_t slottime;
2407 	uint16_t tx_sifs, tx_pifs, tx_difs, eifs;
2408 	uint32_t tmp;
2409 
2410 	slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
2411 
2412 	/* update the MAC slot boundaries */
2413 	tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND;
2414 	tx_pifs = tx_sifs + slottime;
2415 	tx_difs = tx_sifs + 2 * slottime;
2416 	eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60;
2417 
2418 	tmp = RAL_READ(sc, RT2560_CSR11);
2419 	tmp = (tmp & ~0x1f00) | slottime << 8;
2420 	RAL_WRITE(sc, RT2560_CSR11, tmp);
2421 
2422 	tmp = tx_pifs << 16 | tx_sifs;
2423 	RAL_WRITE(sc, RT2560_CSR18, tmp);
2424 
2425 	tmp = eifs << 16 | tx_difs;
2426 	RAL_WRITE(sc, RT2560_CSR19, tmp);
2427 
2428 	DPRINTF(("setting slottime to %uus\n", slottime));
2429 }
2430 
2431 static void
2432 rt2560_set_basicrates(struct rt2560_softc *sc)
2433 {
2434 	struct ieee80211com *ic = &sc->sc_ic;
2435 
2436 	/* update basic rate set */
2437 	if (ic->ic_curmode == IEEE80211_MODE_11B) {
2438 		/* 11b basic rates: 1, 2Mbps */
2439 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3);
2440 	} else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) {
2441 		/* 11a basic rates: 6, 12, 24Mbps */
2442 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150);
2443 	} else {
2444 		/* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */
2445 		RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f);
2446 	}
2447 }
2448 
2449 static void
2450 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2)
2451 {
2452 	uint32_t tmp;
2453 
2454 	/* set ON period to 70ms and OFF period to 30ms */
2455 	tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30;
2456 	RAL_WRITE(sc, RT2560_LEDCSR, tmp);
2457 }
2458 
2459 static void
2460 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid)
2461 {
2462 	uint32_t tmp;
2463 
2464 	tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24;
2465 	RAL_WRITE(sc, RT2560_CSR5, tmp);
2466 
2467 	tmp = bssid[4] | bssid[5] << 8;
2468 	RAL_WRITE(sc, RT2560_CSR6, tmp);
2469 
2470 	DPRINTF(("setting BSSID to %6D\n", bssid, ":"));
2471 }
2472 
2473 static void
2474 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2475 {
2476 	uint32_t tmp;
2477 
2478 	tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24;
2479 	RAL_WRITE(sc, RT2560_CSR3, tmp);
2480 
2481 	tmp = addr[4] | addr[5] << 8;
2482 	RAL_WRITE(sc, RT2560_CSR4, tmp);
2483 
2484 	DPRINTF(("setting MAC address to %6D\n", addr, ":"));
2485 }
2486 
2487 static void
2488 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr)
2489 {
2490 	uint32_t tmp;
2491 
2492 	tmp = RAL_READ(sc, RT2560_CSR3);
2493 	addr[0] = tmp & 0xff;
2494 	addr[1] = (tmp >>  8) & 0xff;
2495 	addr[2] = (tmp >> 16) & 0xff;
2496 	addr[3] = (tmp >> 24);
2497 
2498 	tmp = RAL_READ(sc, RT2560_CSR4);
2499 	addr[4] = tmp & 0xff;
2500 	addr[5] = (tmp >> 8) & 0xff;
2501 }
2502 
2503 static void
2504 rt2560_update_promisc(struct rt2560_softc *sc)
2505 {
2506 	struct ifnet *ifp = sc->sc_ic.ic_ifp;
2507 	uint32_t tmp;
2508 
2509 	tmp = RAL_READ(sc, RT2560_RXCSR0);
2510 
2511 	tmp &= ~RT2560_DROP_NOT_TO_ME;
2512 	if (!(ifp->if_flags & IFF_PROMISC))
2513 		tmp |= RT2560_DROP_NOT_TO_ME;
2514 
2515 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2516 
2517 	DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ?
2518 	    "entering" : "leaving"));
2519 }
2520 
2521 static const char *
2522 rt2560_get_rf(int rev)
2523 {
2524 	switch (rev) {
2525 	case RT2560_RF_2522:	return "RT2522";
2526 	case RT2560_RF_2523:	return "RT2523";
2527 	case RT2560_RF_2524:	return "RT2524";
2528 	case RT2560_RF_2525:	return "RT2525";
2529 	case RT2560_RF_2525E:	return "RT2525e";
2530 	case RT2560_RF_2526:	return "RT2526";
2531 	case RT2560_RF_5222:	return "RT5222";
2532 	default:		return "unknown";
2533 	}
2534 }
2535 
2536 static void
2537 rt2560_read_eeprom(struct rt2560_softc *sc)
2538 {
2539 	uint16_t val;
2540 	int i;
2541 
2542 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0);
2543 	sc->rf_rev =   (val >> 11) & 0x7;
2544 	sc->hw_radio = (val >> 10) & 0x1;
2545 	sc->led_mode = (val >> 6)  & 0x7;
2546 	sc->rx_ant =   (val >> 4)  & 0x3;
2547 	sc->tx_ant =   (val >> 2)  & 0x3;
2548 	sc->nb_ant =   val & 0x3;
2549 
2550 	/* read default values for BBP registers */
2551 	for (i = 0; i < 16; i++) {
2552 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i);
2553 		sc->bbp_prom[i].reg = val >> 8;
2554 		sc->bbp_prom[i].val = val & 0xff;
2555 	}
2556 
2557 	/* read Tx power for all b/g channels */
2558 	for (i = 0; i < 14 / 2; i++) {
2559 		val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i);
2560 		sc->txpow[i * 2] = val >> 8;
2561 		sc->txpow[i * 2 + 1] = val & 0xff;
2562 	}
2563 
2564 	val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE);
2565 	if ((val & 0xff) == 0xff)
2566 		sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR;
2567 	else
2568 		sc->rssi_corr = val & 0xff;
2569 	DPRINTF(("rssi correction %d, calibrate 0x%02x\n",
2570 		 sc->rssi_corr, val));
2571 }
2572 
2573 
2574 static void
2575 rt2560_scan_start(struct ieee80211com *ic)
2576 {
2577 	struct ifnet *ifp = ic->ic_ifp;
2578 	struct rt2560_softc *sc = ifp->if_softc;
2579 
2580 	/* abort TSF synchronization */
2581 	RAL_WRITE(sc, RT2560_CSR14, 0);
2582 	rt2560_set_bssid(sc, ifp->if_broadcastaddr);
2583 }
2584 
2585 static void
2586 rt2560_scan_end(struct ieee80211com *ic)
2587 {
2588 	struct ifnet *ifp = ic->ic_ifp;
2589 	struct rt2560_softc *sc = ifp->if_softc;
2590 
2591 	rt2560_enable_tsf_sync(sc);
2592 	/* XXX keep local copy */
2593 	rt2560_set_bssid(sc, ic->ic_bss->ni_bssid);
2594 }
2595 
2596 static int
2597 rt2560_bbp_init(struct rt2560_softc *sc)
2598 {
2599 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2600 	int i, ntries;
2601 
2602 	/* wait for BBP to be ready */
2603 	for (ntries = 0; ntries < 100; ntries++) {
2604 		if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0)
2605 			break;
2606 		DELAY(1);
2607 	}
2608 	if (ntries == 100) {
2609 		device_printf(sc->sc_dev, "timeout waiting for BBP\n");
2610 		return EIO;
2611 	}
2612 
2613 	/* initialize BBP registers to default values */
2614 	for (i = 0; i < N(rt2560_def_bbp); i++) {
2615 		rt2560_bbp_write(sc, rt2560_def_bbp[i].reg,
2616 		    rt2560_def_bbp[i].val);
2617 	}
2618 #if 0
2619 	/* initialize BBP registers to values stored in EEPROM */
2620 	for (i = 0; i < 16; i++) {
2621 		if (sc->bbp_prom[i].reg == 0xff)
2622 			continue;
2623 		rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val);
2624 	}
2625 #endif
2626 
2627 	return 0;
2628 #undef N
2629 }
2630 
2631 static void
2632 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna)
2633 {
2634 	uint32_t tmp;
2635 	uint8_t tx;
2636 
2637 	tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK;
2638 	if (antenna == 1)
2639 		tx |= RT2560_BBP_ANTA;
2640 	else if (antenna == 2)
2641 		tx |= RT2560_BBP_ANTB;
2642 	else
2643 		tx |= RT2560_BBP_DIVERSITY;
2644 
2645 	/* need to force I/Q flip for RF 2525e, 2526 and 5222 */
2646 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 ||
2647 	    sc->rf_rev == RT2560_RF_5222)
2648 		tx |= RT2560_BBP_FLIPIQ;
2649 
2650 	rt2560_bbp_write(sc, RT2560_BBP_TX, tx);
2651 
2652 	/* update values for CCK and OFDM in BBPCSR1 */
2653 	tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007;
2654 	tmp |= (tx & 0x7) << 16 | (tx & 0x7);
2655 	RAL_WRITE(sc, RT2560_BBPCSR1, tmp);
2656 }
2657 
2658 static void
2659 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna)
2660 {
2661 	uint8_t rx;
2662 
2663 	rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK;
2664 	if (antenna == 1)
2665 		rx |= RT2560_BBP_ANTA;
2666 	else if (antenna == 2)
2667 		rx |= RT2560_BBP_ANTB;
2668 	else
2669 		rx |= RT2560_BBP_DIVERSITY;
2670 
2671 	/* need to force no I/Q flip for RF 2525e and 2526 */
2672 	if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526)
2673 		rx &= ~RT2560_BBP_FLIPIQ;
2674 
2675 	rt2560_bbp_write(sc, RT2560_BBP_RX, rx);
2676 }
2677 
2678 static void
2679 rt2560_init(void *priv)
2680 {
2681 #define N(a)	(sizeof (a) / sizeof ((a)[0]))
2682 	struct rt2560_softc *sc = priv;
2683 	struct ieee80211com *ic = &sc->sc_ic;
2684 	struct ifnet *ifp = ic->ic_ifp;
2685 	uint32_t tmp;
2686 	int i;
2687 
2688 
2689 
2690 	rt2560_stop(sc);
2691 
2692 	RAL_LOCK(sc);
2693 	/* setup tx rings */
2694 	tmp = RT2560_PRIO_RING_COUNT << 24 |
2695 	      RT2560_ATIM_RING_COUNT << 16 |
2696 	      RT2560_TX_RING_COUNT   <<  8 |
2697 	      RT2560_TX_DESC_SIZE;
2698 
2699 	/* rings must be initialized in this exact order */
2700 	RAL_WRITE(sc, RT2560_TXCSR2, tmp);
2701 	RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr);
2702 	RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr);
2703 	RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr);
2704 	RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr);
2705 
2706 	/* setup rx ring */
2707 	tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE;
2708 
2709 	RAL_WRITE(sc, RT2560_RXCSR1, tmp);
2710 	RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr);
2711 
2712 	/* initialize MAC registers to default values */
2713 	for (i = 0; i < N(rt2560_def_mac); i++)
2714 		RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val);
2715 
2716 	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2717 	rt2560_set_macaddr(sc, ic->ic_myaddr);
2718 
2719 	/* set basic rate set (will be updated later) */
2720 	RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153);
2721 
2722 	rt2560_set_txantenna(sc, sc->tx_ant);
2723 	rt2560_set_rxantenna(sc, sc->rx_ant);
2724 	rt2560_update_slot(ifp);
2725 	rt2560_update_plcp(sc);
2726 	rt2560_update_led(sc, 0, 0);
2727 
2728 	RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2729 	RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY);
2730 
2731 	if (rt2560_bbp_init(sc) != 0) {
2732 		rt2560_stop(sc);
2733 		RAL_UNLOCK(sc);
2734 		return;
2735 	}
2736 
2737 	/* set default BSS channel */
2738 	rt2560_set_chan(sc, ic->ic_curchan);
2739 
2740 	/* kick Rx */
2741 	tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR;
2742 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2743 		tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR;
2744 		if (ic->ic_opmode != IEEE80211_M_HOSTAP)
2745 			tmp |= RT2560_DROP_TODS;
2746 		if (!(ifp->if_flags & IFF_PROMISC))
2747 			tmp |= RT2560_DROP_NOT_TO_ME;
2748 	}
2749 	RAL_WRITE(sc, RT2560_RXCSR0, tmp);
2750 
2751 	/* clear old FCS and Rx FIFO errors */
2752 	RAL_READ(sc, RT2560_CNT0);
2753 	RAL_READ(sc, RT2560_CNT4);
2754 
2755 	/* clear any pending interrupts */
2756 	RAL_WRITE(sc, RT2560_CSR7, 0xffffffff);
2757 
2758 	/* enable interrupts */
2759 	RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK);
2760 
2761 	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2762 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2763 
2764 	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2765 		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
2766 			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
2767 	} else
2768 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
2769 
2770 	RAL_UNLOCK(sc);
2771 #undef N
2772 }
2773 
2774 void
2775 rt2560_stop(void *arg)
2776 {
2777 	struct rt2560_softc *sc = arg;
2778 	struct ieee80211com *ic = &sc->sc_ic;
2779 	struct ifnet *ifp = ic->ic_ifp;
2780 	volatile int *flags = &sc->sc_flags;
2781 
2782 	while (*flags & RAL_INPUT_RUNNING) {
2783 		tsleep(sc, 0, "ralrunning", hz/10);
2784 	}
2785 
2786 	RAL_LOCK(sc);
2787 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2788 		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
2789 		sc->sc_tx_timer = 0;
2790 		ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2791 
2792 		/* abort Tx */
2793 		RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX);
2794 
2795 		/* disable Rx */
2796 		RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX);
2797 
2798 		/* reset ASIC (imply reset BBP) */
2799 		RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC);
2800 		RAL_WRITE(sc, RT2560_CSR1, 0);
2801 
2802 		/* disable interrupts */
2803 		RAL_WRITE(sc, RT2560_CSR8, 0xffffffff);
2804 
2805 		/* reset Tx and Rx rings */
2806 		rt2560_reset_tx_ring(sc, &sc->txq);
2807 		rt2560_reset_tx_ring(sc, &sc->atimq);
2808 		rt2560_reset_tx_ring(sc, &sc->prioq);
2809 		rt2560_reset_tx_ring(sc, &sc->bcnq);
2810 		rt2560_reset_rx_ring(sc, &sc->rxq);
2811 	}
2812 	RAL_UNLOCK(sc);
2813 }
2814 
2815 static int
2816 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
2817 	const struct ieee80211_bpf_params *params)
2818 {
2819 	struct ieee80211com *ic = ni->ni_ic;
2820 	struct ifnet *ifp = ic->ic_ifp;
2821 	struct rt2560_softc *sc = ifp->if_softc;
2822 
2823 	RAL_LOCK(sc);
2824 
2825 	/* prevent management frames from being sent if we're not ready */
2826 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
2827 		RAL_UNLOCK(sc);
2828 		m_freem(m);
2829 		ieee80211_free_node(ni);
2830 		return ENETDOWN;
2831 	}
2832 	if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) {
2833 		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2834 		RAL_UNLOCK(sc);
2835 		m_freem(m);
2836 		ieee80211_free_node(ni);
2837 		return ENOBUFS;		/* XXX */
2838 	}
2839 
2840 	if (bpf_peers_present(ic->ic_rawbpf))
2841 		bpf_mtap(ic->ic_rawbpf, m);
2842 
2843 	ifp->if_opackets++;
2844 
2845 	if (params == NULL) {
2846 		/*
2847 		 * Legacy path; interpret frame contents to decide
2848 		 * precisely how to send the frame.
2849 		 */
2850 		if (rt2560_tx_mgt(sc, m, ni) != 0)
2851 			goto bad;
2852 	} else {
2853 		/*
2854 		 * Caller supplied explicit parameters to use in
2855 		 * sending the frame.
2856 		 */
2857 		if (rt2560_tx_raw(sc, m, ni, params))
2858 			goto bad;
2859 	}
2860 	sc->sc_tx_timer = 5;
2861 	callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc);
2862 
2863 	RAL_UNLOCK(sc);
2864 
2865 	return 0;
2866 bad:
2867 	ifp->if_oerrors++;
2868 	ieee80211_free_node(ni);
2869 	RAL_UNLOCK(sc);
2870 	return EIO;		/* XXX */
2871 }
2872 
2873