1 /* $FreeBSD$ */ 2 3 /*- 4 * Copyright (c) 2005, 2006 5 * Damien Bergamini <damien.bergamini@free.fr> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 #include <sys/cdefs.h> 21 __FBSDID("$FreeBSD$"); 22 23 /*- 24 * Ralink Technology RT2560 chipset driver 25 * http://www.ralinktech.com/ 26 */ 27 28 #include <sys/param.h> 29 #include <sys/sysctl.h> 30 #include <sys/sockio.h> 31 #include <sys/mbuf.h> 32 #include <sys/kernel.h> 33 #include <sys/socket.h> 34 #include <sys/systm.h> 35 #include <sys/malloc.h> 36 #include <sys/lock.h> 37 #include <sys/mutex.h> 38 #include <sys/module.h> 39 #include <sys/bus.h> 40 #include <sys/endian.h> 41 42 #include <machine/bus.h> 43 #include <machine/resource.h> 44 #include <sys/rman.h> 45 46 #include <net/bpf.h> 47 #include <net/if.h> 48 #include <net/if_arp.h> 49 #include <net/ethernet.h> 50 #include <net/if_dl.h> 51 #include <net/if_media.h> 52 #include <net/if_types.h> 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_radiotap.h> 56 #include <net80211/ieee80211_regdomain.h> 57 58 #include <netinet/in.h> 59 #include <netinet/in_systm.h> 60 #include <netinet/in_var.h> 61 #include <netinet/ip.h> 62 #include <netinet/if_ether.h> 63 64 #include <dev/ral/if_ralrate.h> 65 #include <dev/ral/rt2560reg.h> 66 #include <dev/ral/rt2560var.h> 67 68 #define RT2560_RSSI(sc, rssi) \ 69 ((rssi) > (RT2560_NOISE_FLOOR + (sc)->rssi_corr) ? \ 70 ((rssi) - RT2560_NOISE_FLOOR - (sc)->rssi_corr) : 0) 71 72 #ifdef RAL_DEBUG 73 #define DPRINTF(x) do { if (ral_debug > 0) printf x; } while (0) 74 #define DPRINTFN(n, x) do { if (ral_debug >= (n)) printf x; } while (0) 75 extern int ral_debug; 76 #else 77 #define DPRINTF(x) 78 #define DPRINTFN(n, x) 79 #endif 80 81 static void rt2560_dma_map_addr(void *, bus_dma_segment_t *, int, 82 int); 83 static int rt2560_alloc_tx_ring(struct rt2560_softc *, 84 struct rt2560_tx_ring *, int); 85 static void rt2560_reset_tx_ring(struct rt2560_softc *, 86 struct rt2560_tx_ring *); 87 static void rt2560_free_tx_ring(struct rt2560_softc *, 88 struct rt2560_tx_ring *); 89 static int rt2560_alloc_rx_ring(struct rt2560_softc *, 90 struct rt2560_rx_ring *, int); 91 static void rt2560_reset_rx_ring(struct rt2560_softc *, 92 struct rt2560_rx_ring *); 93 static void rt2560_free_rx_ring(struct rt2560_softc *, 94 struct rt2560_rx_ring *); 95 static struct ieee80211_node *rt2560_node_alloc( 96 struct ieee80211_node_table *); 97 static int rt2560_media_change(struct ifnet *); 98 static void rt2560_iter_func(void *, struct ieee80211_node *); 99 static void rt2560_update_rssadapt(void *); 100 static int rt2560_newstate(struct ieee80211com *, 101 enum ieee80211_state, int); 102 static uint16_t rt2560_eeprom_read(struct rt2560_softc *, uint8_t); 103 static void rt2560_encryption_intr(struct rt2560_softc *); 104 static void rt2560_tx_intr(struct rt2560_softc *); 105 static void rt2560_prio_intr(struct rt2560_softc *); 106 static void rt2560_decryption_intr(struct rt2560_softc *); 107 static void rt2560_rx_intr(struct rt2560_softc *); 108 static void rt2560_beacon_expire(struct rt2560_softc *); 109 static void rt2560_wakeup_expire(struct rt2560_softc *); 110 static uint8_t rt2560_rxrate(struct rt2560_rx_desc *); 111 static int rt2560_ack_rate(struct ieee80211com *, int); 112 static void rt2560_scan_start(struct ieee80211com *); 113 static void rt2560_scan_end(struct ieee80211com *); 114 static void rt2560_set_channel(struct ieee80211com *); 115 static uint16_t rt2560_txtime(int, int, uint32_t); 116 static uint8_t rt2560_plcp_signal(int); 117 static void rt2560_setup_tx_desc(struct rt2560_softc *, 118 struct rt2560_tx_desc *, uint32_t, int, int, int, 119 bus_addr_t); 120 static int rt2560_tx_bcn(struct rt2560_softc *, struct mbuf *, 121 struct ieee80211_node *); 122 static int rt2560_tx_mgt(struct rt2560_softc *, struct mbuf *, 123 struct ieee80211_node *); 124 static struct mbuf *rt2560_get_rts(struct rt2560_softc *, 125 struct ieee80211_frame *, uint16_t); 126 static int rt2560_tx_data(struct rt2560_softc *, struct mbuf *, 127 struct ieee80211_node *); 128 static void rt2560_start(struct ifnet *); 129 static void rt2560_watchdog(void *); 130 static int rt2560_reset(struct ifnet *); 131 static int rt2560_ioctl(struct ifnet *, u_long, caddr_t); 132 static void rt2560_bbp_write(struct rt2560_softc *, uint8_t, 133 uint8_t); 134 static uint8_t rt2560_bbp_read(struct rt2560_softc *, uint8_t); 135 static void rt2560_rf_write(struct rt2560_softc *, uint8_t, 136 uint32_t); 137 static void rt2560_set_chan(struct rt2560_softc *, 138 struct ieee80211_channel *); 139 #if 0 140 static void rt2560_disable_rf_tune(struct rt2560_softc *); 141 #endif 142 static void rt2560_enable_tsf_sync(struct rt2560_softc *); 143 static void rt2560_update_plcp(struct rt2560_softc *); 144 static void rt2560_update_slot(struct ifnet *); 145 static void rt2560_set_basicrates(struct rt2560_softc *); 146 static void rt2560_update_led(struct rt2560_softc *, int, int); 147 static void rt2560_set_bssid(struct rt2560_softc *, const uint8_t *); 148 static void rt2560_set_macaddr(struct rt2560_softc *, uint8_t *); 149 static void rt2560_get_macaddr(struct rt2560_softc *, uint8_t *); 150 static void rt2560_update_promisc(struct rt2560_softc *); 151 static const char *rt2560_get_rf(int); 152 static void rt2560_read_eeprom(struct rt2560_softc *); 153 static int rt2560_bbp_init(struct rt2560_softc *); 154 static void rt2560_set_txantenna(struct rt2560_softc *, int); 155 static void rt2560_set_rxantenna(struct rt2560_softc *, int); 156 static void rt2560_init(void *); 157 static int rt2560_raw_xmit(struct ieee80211_node *, struct mbuf *, 158 const struct ieee80211_bpf_params *); 159 160 static const struct { 161 uint32_t reg; 162 uint32_t val; 163 } rt2560_def_mac[] = { 164 RT2560_DEF_MAC 165 }; 166 167 static const struct { 168 uint8_t reg; 169 uint8_t val; 170 } rt2560_def_bbp[] = { 171 RT2560_DEF_BBP 172 }; 173 174 static const uint32_t rt2560_rf2522_r2[] = RT2560_RF2522_R2; 175 static const uint32_t rt2560_rf2523_r2[] = RT2560_RF2523_R2; 176 static const uint32_t rt2560_rf2524_r2[] = RT2560_RF2524_R2; 177 static const uint32_t rt2560_rf2525_r2[] = RT2560_RF2525_R2; 178 static const uint32_t rt2560_rf2525_hi_r2[] = RT2560_RF2525_HI_R2; 179 static const uint32_t rt2560_rf2525e_r2[] = RT2560_RF2525E_R2; 180 static const uint32_t rt2560_rf2526_r2[] = RT2560_RF2526_R2; 181 static const uint32_t rt2560_rf2526_hi_r2[] = RT2560_RF2526_HI_R2; 182 183 static const struct { 184 uint8_t chan; 185 uint32_t r1, r2, r4; 186 } rt2560_rf5222[] = { 187 RT2560_RF5222 188 }; 189 190 int 191 rt2560_attach(device_t dev, int id) 192 { 193 struct rt2560_softc *sc = device_get_softc(dev); 194 struct ieee80211com *ic = &sc->sc_ic; 195 struct ifnet *ifp; 196 int error, bands; 197 198 sc->sc_dev = dev; 199 200 mtx_init(&sc->sc_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, 201 MTX_DEF | MTX_RECURSE); 202 203 callout_init_mtx(&sc->watchdog_ch, &sc->sc_mtx, 0); 204 callout_init(&sc->rssadapt_ch, CALLOUT_MPSAFE); 205 206 /* retrieve RT2560 rev. no */ 207 sc->asic_rev = RAL_READ(sc, RT2560_CSR0); 208 209 /* retrieve MAC address */ 210 rt2560_get_macaddr(sc, ic->ic_myaddr); 211 212 /* retrieve RF rev. no and various other things from EEPROM */ 213 rt2560_read_eeprom(sc); 214 215 device_printf(dev, "MAC/BBP RT2560 (rev 0x%02x), RF %s\n", 216 sc->asic_rev, rt2560_get_rf(sc->rf_rev)); 217 218 /* 219 * Allocate Tx and Rx rings. 220 */ 221 error = rt2560_alloc_tx_ring(sc, &sc->txq, RT2560_TX_RING_COUNT); 222 if (error != 0) { 223 device_printf(sc->sc_dev, "could not allocate Tx ring\n"); 224 goto fail1; 225 } 226 227 error = rt2560_alloc_tx_ring(sc, &sc->atimq, RT2560_ATIM_RING_COUNT); 228 if (error != 0) { 229 device_printf(sc->sc_dev, "could not allocate ATIM ring\n"); 230 goto fail2; 231 } 232 233 error = rt2560_alloc_tx_ring(sc, &sc->prioq, RT2560_PRIO_RING_COUNT); 234 if (error != 0) { 235 device_printf(sc->sc_dev, "could not allocate Prio ring\n"); 236 goto fail3; 237 } 238 239 error = rt2560_alloc_tx_ring(sc, &sc->bcnq, RT2560_BEACON_RING_COUNT); 240 if (error != 0) { 241 device_printf(sc->sc_dev, "could not allocate Beacon ring\n"); 242 goto fail4; 243 } 244 245 error = rt2560_alloc_rx_ring(sc, &sc->rxq, RT2560_RX_RING_COUNT); 246 if (error != 0) { 247 device_printf(sc->sc_dev, "could not allocate Rx ring\n"); 248 goto fail5; 249 } 250 251 ifp = sc->sc_ifp = if_alloc(IFT_ETHER); 252 if (ifp == NULL) { 253 device_printf(sc->sc_dev, "can not if_alloc()\n"); 254 goto fail6; 255 } 256 257 ifp->if_softc = sc; 258 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 259 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 260 ifp->if_init = rt2560_init; 261 ifp->if_ioctl = rt2560_ioctl; 262 ifp->if_start = rt2560_start; 263 IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); 264 ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN; 265 IFQ_SET_READY(&ifp->if_snd); 266 267 ic->ic_ifp = ifp; 268 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 269 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 270 ic->ic_state = IEEE80211_S_INIT; 271 272 /* set device capabilities */ 273 ic->ic_caps = 274 IEEE80211_C_IBSS | /* IBSS mode supported */ 275 IEEE80211_C_MONITOR | /* monitor mode supported */ 276 IEEE80211_C_HOSTAP | /* HostAp mode supported */ 277 IEEE80211_C_TXPMGT | /* tx power management */ 278 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 279 IEEE80211_C_SHSLOT | /* short slot time supported */ 280 IEEE80211_C_BGSCAN | /* bg scanning support */ 281 IEEE80211_C_WPA; /* 802.11i */ 282 283 bands = 0; 284 setbit(&bands, IEEE80211_MODE_11B); 285 setbit(&bands, IEEE80211_MODE_11G); 286 if (sc->rf_rev == RT2560_RF_5222) 287 setbit(&bands, IEEE80211_MODE_11A); 288 ieee80211_init_channels(ic, 0, CTRY_DEFAULT, bands, 0, 1); 289 290 ieee80211_ifattach(ic); 291 ic->ic_scan_start = rt2560_scan_start; 292 ic->ic_scan_end = rt2560_scan_end; 293 ic->ic_set_channel = rt2560_set_channel; 294 ic->ic_node_alloc = rt2560_node_alloc; 295 ic->ic_updateslot = rt2560_update_slot; 296 ic->ic_reset = rt2560_reset; 297 /* enable s/w bmiss handling in sta mode */ 298 ic->ic_flags_ext |= IEEE80211_FEXT_SWBMISS; 299 300 /* override state transition machine */ 301 sc->sc_newstate = ic->ic_newstate; 302 ic->ic_newstate = rt2560_newstate; 303 ic->ic_raw_xmit = rt2560_raw_xmit; 304 ieee80211_media_init(ic, rt2560_media_change, ieee80211_media_status); 305 306 bpfattach2(ifp, DLT_IEEE802_11_RADIO, 307 sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf); 308 309 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 310 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 311 sc->sc_rxtap.wr_ihdr.it_present = htole32(RT2560_RX_RADIOTAP_PRESENT); 312 313 sc->sc_txtap_len = sizeof sc->sc_txtapu; 314 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 315 sc->sc_txtap.wt_ihdr.it_present = htole32(RT2560_TX_RADIOTAP_PRESENT); 316 317 /* 318 * Add a few sysctl knobs. 319 */ 320 sc->dwelltime = 200; 321 322 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 323 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 324 "txantenna", CTLFLAG_RW, &sc->tx_ant, 0, "tx antenna (0=auto)"); 325 326 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 327 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, 328 "rxantenna", CTLFLAG_RW, &sc->rx_ant, 0, "rx antenna (0=auto)"); 329 330 SYSCTL_ADD_INT(device_get_sysctl_ctx(dev), 331 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "dwell", 332 CTLFLAG_RW, &sc->dwelltime, 0, 333 "channel dwell time (ms) for AP/station scanning"); 334 335 if (bootverbose) 336 ieee80211_announce(ic); 337 338 return 0; 339 340 fail6: rt2560_free_rx_ring(sc, &sc->rxq); 341 fail5: rt2560_free_tx_ring(sc, &sc->bcnq); 342 fail4: rt2560_free_tx_ring(sc, &sc->prioq); 343 fail3: rt2560_free_tx_ring(sc, &sc->atimq); 344 fail2: rt2560_free_tx_ring(sc, &sc->txq); 345 fail1: mtx_destroy(&sc->sc_mtx); 346 347 return ENXIO; 348 } 349 350 int 351 rt2560_detach(void *xsc) 352 { 353 struct rt2560_softc *sc = xsc; 354 struct ieee80211com *ic = &sc->sc_ic; 355 struct ifnet *ifp = ic->ic_ifp; 356 357 rt2560_stop(sc); 358 callout_stop(&sc->watchdog_ch); 359 callout_stop(&sc->rssadapt_ch); 360 361 bpfdetach(ifp); 362 ieee80211_ifdetach(ic); 363 364 rt2560_free_tx_ring(sc, &sc->txq); 365 rt2560_free_tx_ring(sc, &sc->atimq); 366 rt2560_free_tx_ring(sc, &sc->prioq); 367 rt2560_free_tx_ring(sc, &sc->bcnq); 368 rt2560_free_rx_ring(sc, &sc->rxq); 369 370 if_free(ifp); 371 372 mtx_destroy(&sc->sc_mtx); 373 374 return 0; 375 } 376 377 void 378 rt2560_resume(void *xsc) 379 { 380 struct rt2560_softc *sc = xsc; 381 struct ifnet *ifp = sc->sc_ic.ic_ifp; 382 383 if (ifp->if_flags & IFF_UP) { 384 ifp->if_init(ifp->if_softc); 385 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 386 ifp->if_start(ifp); 387 } 388 } 389 390 static void 391 rt2560_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error) 392 { 393 if (error != 0) 394 return; 395 396 KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); 397 398 *(bus_addr_t *)arg = segs[0].ds_addr; 399 } 400 401 static int 402 rt2560_alloc_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring, 403 int count) 404 { 405 int i, error; 406 407 ring->count = count; 408 ring->queued = 0; 409 ring->cur = ring->next = 0; 410 ring->cur_encrypt = ring->next_encrypt = 0; 411 412 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 413 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_TX_DESC_SIZE, 1, 414 count * RT2560_TX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 415 if (error != 0) { 416 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 417 goto fail; 418 } 419 420 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 421 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 422 if (error != 0) { 423 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 424 goto fail; 425 } 426 427 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 428 count * RT2560_TX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 429 0); 430 if (error != 0) { 431 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 432 goto fail; 433 } 434 435 ring->data = malloc(count * sizeof (struct rt2560_tx_data), M_DEVBUF, 436 M_NOWAIT | M_ZERO); 437 if (ring->data == NULL) { 438 device_printf(sc->sc_dev, "could not allocate soft data\n"); 439 error = ENOMEM; 440 goto fail; 441 } 442 443 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 444 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, RT2560_MAX_SCATTER, 445 MCLBYTES, 0, NULL, NULL, &ring->data_dmat); 446 if (error != 0) { 447 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 448 goto fail; 449 } 450 451 for (i = 0; i < count; i++) { 452 error = bus_dmamap_create(ring->data_dmat, 0, 453 &ring->data[i].map); 454 if (error != 0) { 455 device_printf(sc->sc_dev, "could not create DMA map\n"); 456 goto fail; 457 } 458 } 459 460 return 0; 461 462 fail: rt2560_free_tx_ring(sc, ring); 463 return error; 464 } 465 466 static void 467 rt2560_reset_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 468 { 469 struct rt2560_tx_desc *desc; 470 struct rt2560_tx_data *data; 471 int i; 472 473 for (i = 0; i < ring->count; i++) { 474 desc = &ring->desc[i]; 475 data = &ring->data[i]; 476 477 if (data->m != NULL) { 478 bus_dmamap_sync(ring->data_dmat, data->map, 479 BUS_DMASYNC_POSTWRITE); 480 bus_dmamap_unload(ring->data_dmat, data->map); 481 m_freem(data->m); 482 data->m = NULL; 483 } 484 485 if (data->ni != NULL) { 486 ieee80211_free_node(data->ni); 487 data->ni = NULL; 488 } 489 490 desc->flags = 0; 491 } 492 493 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 494 495 ring->queued = 0; 496 ring->cur = ring->next = 0; 497 ring->cur_encrypt = ring->next_encrypt = 0; 498 } 499 500 static void 501 rt2560_free_tx_ring(struct rt2560_softc *sc, struct rt2560_tx_ring *ring) 502 { 503 struct rt2560_tx_data *data; 504 int i; 505 506 if (ring->desc != NULL) { 507 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 508 BUS_DMASYNC_POSTWRITE); 509 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 510 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 511 } 512 513 if (ring->desc_dmat != NULL) 514 bus_dma_tag_destroy(ring->desc_dmat); 515 516 if (ring->data != NULL) { 517 for (i = 0; i < ring->count; i++) { 518 data = &ring->data[i]; 519 520 if (data->m != NULL) { 521 bus_dmamap_sync(ring->data_dmat, data->map, 522 BUS_DMASYNC_POSTWRITE); 523 bus_dmamap_unload(ring->data_dmat, data->map); 524 m_freem(data->m); 525 } 526 527 if (data->ni != NULL) 528 ieee80211_free_node(data->ni); 529 530 if (data->map != NULL) 531 bus_dmamap_destroy(ring->data_dmat, data->map); 532 } 533 534 free(ring->data, M_DEVBUF); 535 } 536 537 if (ring->data_dmat != NULL) 538 bus_dma_tag_destroy(ring->data_dmat); 539 } 540 541 static int 542 rt2560_alloc_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring, 543 int count) 544 { 545 struct rt2560_rx_desc *desc; 546 struct rt2560_rx_data *data; 547 bus_addr_t physaddr; 548 int i, error; 549 550 ring->count = count; 551 ring->cur = ring->next = 0; 552 ring->cur_decrypt = 0; 553 554 error = bus_dma_tag_create(NULL, 4, 0, BUS_SPACE_MAXADDR_32BIT, 555 BUS_SPACE_MAXADDR, NULL, NULL, count * RT2560_RX_DESC_SIZE, 1, 556 count * RT2560_RX_DESC_SIZE, 0, NULL, NULL, &ring->desc_dmat); 557 if (error != 0) { 558 device_printf(sc->sc_dev, "could not create desc DMA tag\n"); 559 goto fail; 560 } 561 562 error = bus_dmamem_alloc(ring->desc_dmat, (void **)&ring->desc, 563 BUS_DMA_NOWAIT | BUS_DMA_ZERO, &ring->desc_map); 564 if (error != 0) { 565 device_printf(sc->sc_dev, "could not allocate DMA memory\n"); 566 goto fail; 567 } 568 569 error = bus_dmamap_load(ring->desc_dmat, ring->desc_map, ring->desc, 570 count * RT2560_RX_DESC_SIZE, rt2560_dma_map_addr, &ring->physaddr, 571 0); 572 if (error != 0) { 573 device_printf(sc->sc_dev, "could not load desc DMA map\n"); 574 goto fail; 575 } 576 577 ring->data = malloc(count * sizeof (struct rt2560_rx_data), M_DEVBUF, 578 M_NOWAIT | M_ZERO); 579 if (ring->data == NULL) { 580 device_printf(sc->sc_dev, "could not allocate soft data\n"); 581 error = ENOMEM; 582 goto fail; 583 } 584 585 /* 586 * Pre-allocate Rx buffers and populate Rx ring. 587 */ 588 error = bus_dma_tag_create(NULL, 1, 0, BUS_SPACE_MAXADDR_32BIT, 589 BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, 1, MCLBYTES, 0, NULL, 590 NULL, &ring->data_dmat); 591 if (error != 0) { 592 device_printf(sc->sc_dev, "could not create data DMA tag\n"); 593 goto fail; 594 } 595 596 for (i = 0; i < count; i++) { 597 desc = &sc->rxq.desc[i]; 598 data = &sc->rxq.data[i]; 599 600 error = bus_dmamap_create(ring->data_dmat, 0, &data->map); 601 if (error != 0) { 602 device_printf(sc->sc_dev, "could not create DMA map\n"); 603 goto fail; 604 } 605 606 data->m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 607 if (data->m == NULL) { 608 device_printf(sc->sc_dev, 609 "could not allocate rx mbuf\n"); 610 error = ENOMEM; 611 goto fail; 612 } 613 614 error = bus_dmamap_load(ring->data_dmat, data->map, 615 mtod(data->m, void *), MCLBYTES, rt2560_dma_map_addr, 616 &physaddr, 0); 617 if (error != 0) { 618 device_printf(sc->sc_dev, 619 "could not load rx buf DMA map"); 620 goto fail; 621 } 622 623 desc->flags = htole32(RT2560_RX_BUSY); 624 desc->physaddr = htole32(physaddr); 625 } 626 627 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 628 629 return 0; 630 631 fail: rt2560_free_rx_ring(sc, ring); 632 return error; 633 } 634 635 static void 636 rt2560_reset_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 637 { 638 int i; 639 640 for (i = 0; i < ring->count; i++) { 641 ring->desc[i].flags = htole32(RT2560_RX_BUSY); 642 ring->data[i].drop = 0; 643 } 644 645 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, BUS_DMASYNC_PREWRITE); 646 647 ring->cur = ring->next = 0; 648 ring->cur_decrypt = 0; 649 } 650 651 static void 652 rt2560_free_rx_ring(struct rt2560_softc *sc, struct rt2560_rx_ring *ring) 653 { 654 struct rt2560_rx_data *data; 655 int i; 656 657 if (ring->desc != NULL) { 658 bus_dmamap_sync(ring->desc_dmat, ring->desc_map, 659 BUS_DMASYNC_POSTWRITE); 660 bus_dmamap_unload(ring->desc_dmat, ring->desc_map); 661 bus_dmamem_free(ring->desc_dmat, ring->desc, ring->desc_map); 662 } 663 664 if (ring->desc_dmat != NULL) 665 bus_dma_tag_destroy(ring->desc_dmat); 666 667 if (ring->data != NULL) { 668 for (i = 0; i < ring->count; i++) { 669 data = &ring->data[i]; 670 671 if (data->m != NULL) { 672 bus_dmamap_sync(ring->data_dmat, data->map, 673 BUS_DMASYNC_POSTREAD); 674 bus_dmamap_unload(ring->data_dmat, data->map); 675 m_freem(data->m); 676 } 677 678 if (data->map != NULL) 679 bus_dmamap_destroy(ring->data_dmat, data->map); 680 } 681 682 free(ring->data, M_DEVBUF); 683 } 684 685 if (ring->data_dmat != NULL) 686 bus_dma_tag_destroy(ring->data_dmat); 687 } 688 689 static struct ieee80211_node * 690 rt2560_node_alloc(struct ieee80211_node_table *nt) 691 { 692 struct rt2560_node *rn; 693 694 rn = malloc(sizeof (struct rt2560_node), M_80211_NODE, 695 M_NOWAIT | M_ZERO); 696 697 return (rn != NULL) ? &rn->ni : NULL; 698 } 699 700 static int 701 rt2560_media_change(struct ifnet *ifp) 702 { 703 struct rt2560_softc *sc = ifp->if_softc; 704 int error; 705 706 error = ieee80211_media_change(ifp); 707 708 if (error == ENETRESET) { 709 if ((ifp->if_flags & IFF_UP) && 710 (ifp->if_drv_flags & IFF_DRV_RUNNING)) 711 rt2560_init(sc); 712 } 713 return error; 714 } 715 716 /* 717 * This function is called for each node present in the node station table. 718 */ 719 static void 720 rt2560_iter_func(void *arg, struct ieee80211_node *ni) 721 { 722 struct rt2560_node *rn = (struct rt2560_node *)ni; 723 724 ral_rssadapt_updatestats(&rn->rssadapt); 725 } 726 727 /* 728 * This function is called periodically (every 100ms) in RUN state to update 729 * the rate adaptation statistics. 730 */ 731 static void 732 rt2560_update_rssadapt(void *arg) 733 { 734 struct rt2560_softc *sc = arg; 735 struct ieee80211com *ic = &sc->sc_ic; 736 737 RAL_LOCK(sc); 738 739 ieee80211_iterate_nodes(&ic->ic_sta, rt2560_iter_func, arg); 740 callout_reset(&sc->rssadapt_ch, hz / 10, rt2560_update_rssadapt, sc); 741 742 RAL_UNLOCK(sc); 743 } 744 745 static int 746 rt2560_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 747 { 748 struct rt2560_softc *sc = ic->ic_ifp->if_softc; 749 enum ieee80211_state ostate; 750 struct ieee80211_node *ni; 751 struct mbuf *m; 752 int error = 0; 753 754 ostate = ic->ic_state; 755 756 switch (nstate) { 757 case IEEE80211_S_INIT: 758 callout_stop(&sc->rssadapt_ch); 759 760 if (ostate == IEEE80211_S_RUN) { 761 /* abort TSF synchronization */ 762 RAL_WRITE(sc, RT2560_CSR14, 0); 763 764 /* turn association led off */ 765 rt2560_update_led(sc, 0, 0); 766 } 767 break; 768 case IEEE80211_S_RUN: 769 ni = ic->ic_bss; 770 771 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 772 rt2560_update_plcp(sc); 773 rt2560_set_basicrates(sc); 774 rt2560_set_bssid(sc, ni->ni_bssid); 775 } 776 777 if (ic->ic_opmode == IEEE80211_M_HOSTAP || 778 ic->ic_opmode == IEEE80211_M_IBSS) { 779 m = ieee80211_beacon_alloc(ic, ni, &sc->sc_bo); 780 if (m == NULL) { 781 device_printf(sc->sc_dev, 782 "could not allocate beacon\n"); 783 error = ENOBUFS; 784 break; 785 } 786 787 ieee80211_ref_node(ni); 788 error = rt2560_tx_bcn(sc, m, ni); 789 if (error != 0) 790 break; 791 } 792 793 /* turn assocation led on */ 794 rt2560_update_led(sc, 1, 0); 795 796 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 797 callout_reset(&sc->rssadapt_ch, hz / 10, 798 rt2560_update_rssadapt, sc); 799 800 rt2560_enable_tsf_sync(sc); 801 } 802 break; 803 case IEEE80211_S_SCAN: 804 case IEEE80211_S_AUTH: 805 case IEEE80211_S_ASSOC: 806 break; 807 } 808 809 return (error != 0) ? error : sc->sc_newstate(ic, nstate, arg); 810 } 811 812 /* 813 * Read 16 bits at address 'addr' from the serial EEPROM (either 93C46 or 814 * 93C66). 815 */ 816 static uint16_t 817 rt2560_eeprom_read(struct rt2560_softc *sc, uint8_t addr) 818 { 819 uint32_t tmp; 820 uint16_t val; 821 int n; 822 823 /* clock C once before the first command */ 824 RT2560_EEPROM_CTL(sc, 0); 825 826 RT2560_EEPROM_CTL(sc, RT2560_S); 827 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 828 RT2560_EEPROM_CTL(sc, RT2560_S); 829 830 /* write start bit (1) */ 831 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 832 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 833 834 /* write READ opcode (10) */ 835 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D); 836 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_D | RT2560_C); 837 RT2560_EEPROM_CTL(sc, RT2560_S); 838 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 839 840 /* write address (A5-A0 or A7-A0) */ 841 n = (RAL_READ(sc, RT2560_CSR21) & RT2560_93C46) ? 5 : 7; 842 for (; n >= 0; n--) { 843 RT2560_EEPROM_CTL(sc, RT2560_S | 844 (((addr >> n) & 1) << RT2560_SHIFT_D)); 845 RT2560_EEPROM_CTL(sc, RT2560_S | 846 (((addr >> n) & 1) << RT2560_SHIFT_D) | RT2560_C); 847 } 848 849 RT2560_EEPROM_CTL(sc, RT2560_S); 850 851 /* read data Q15-Q0 */ 852 val = 0; 853 for (n = 15; n >= 0; n--) { 854 RT2560_EEPROM_CTL(sc, RT2560_S | RT2560_C); 855 tmp = RAL_READ(sc, RT2560_CSR21); 856 val |= ((tmp & RT2560_Q) >> RT2560_SHIFT_Q) << n; 857 RT2560_EEPROM_CTL(sc, RT2560_S); 858 } 859 860 RT2560_EEPROM_CTL(sc, 0); 861 862 /* clear Chip Select and clock C */ 863 RT2560_EEPROM_CTL(sc, RT2560_S); 864 RT2560_EEPROM_CTL(sc, 0); 865 RT2560_EEPROM_CTL(sc, RT2560_C); 866 867 return val; 868 } 869 870 /* 871 * Some frames were processed by the hardware cipher engine and are ready for 872 * transmission. 873 */ 874 static void 875 rt2560_encryption_intr(struct rt2560_softc *sc) 876 { 877 struct rt2560_tx_desc *desc; 878 int hw; 879 880 /* retrieve last descriptor index processed by cipher engine */ 881 hw = RAL_READ(sc, RT2560_SECCSR1) - sc->txq.physaddr; 882 hw /= RT2560_TX_DESC_SIZE; 883 884 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 885 BUS_DMASYNC_POSTREAD); 886 887 for (; sc->txq.next_encrypt != hw;) { 888 desc = &sc->txq.desc[sc->txq.next_encrypt]; 889 890 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 891 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY)) 892 break; 893 894 /* for TKIP, swap eiv field to fix a bug in ASIC */ 895 if ((le32toh(desc->flags) & RT2560_TX_CIPHER_MASK) == 896 RT2560_TX_CIPHER_TKIP) 897 desc->eiv = bswap32(desc->eiv); 898 899 /* mark the frame ready for transmission */ 900 desc->flags |= htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 901 902 DPRINTFN(15, ("encryption done idx=%u\n", 903 sc->txq.next_encrypt)); 904 905 sc->txq.next_encrypt = 906 (sc->txq.next_encrypt + 1) % RT2560_TX_RING_COUNT; 907 } 908 909 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 910 BUS_DMASYNC_PREWRITE); 911 912 /* kick Tx */ 913 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_TX); 914 } 915 916 static void 917 rt2560_tx_intr(struct rt2560_softc *sc) 918 { 919 struct ieee80211com *ic = &sc->sc_ic; 920 struct ifnet *ifp = ic->ic_ifp; 921 struct rt2560_tx_desc *desc; 922 struct rt2560_tx_data *data; 923 struct rt2560_node *rn; 924 925 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 926 BUS_DMASYNC_POSTREAD); 927 928 for (;;) { 929 desc = &sc->txq.desc[sc->txq.next]; 930 data = &sc->txq.data[sc->txq.next]; 931 932 if ((le32toh(desc->flags) & RT2560_TX_BUSY) || 933 (le32toh(desc->flags) & RT2560_TX_CIPHER_BUSY) || 934 !(le32toh(desc->flags) & RT2560_TX_VALID)) 935 break; 936 937 rn = (struct rt2560_node *)data->ni; 938 939 switch (le32toh(desc->flags) & RT2560_TX_RESULT_MASK) { 940 case RT2560_TX_SUCCESS: 941 DPRINTFN(10, ("data frame sent successfully\n")); 942 if (data->id.id_node != NULL) { 943 ral_rssadapt_raise_rate(ic, &rn->rssadapt, 944 &data->id); 945 } 946 ifp->if_opackets++; 947 break; 948 949 case RT2560_TX_SUCCESS_RETRY: 950 DPRINTFN(9, ("data frame sent after %u retries\n", 951 (le32toh(desc->flags) >> 5) & 0x7)); 952 ifp->if_opackets++; 953 break; 954 955 case RT2560_TX_FAIL_RETRY: 956 DPRINTFN(9, ("sending data frame failed (too much " 957 "retries)\n")); 958 if (data->id.id_node != NULL) { 959 ral_rssadapt_lower_rate(ic, data->ni, 960 &rn->rssadapt, &data->id); 961 } 962 ifp->if_oerrors++; 963 break; 964 965 case RT2560_TX_FAIL_INVALID: 966 case RT2560_TX_FAIL_OTHER: 967 default: 968 device_printf(sc->sc_dev, "sending data frame failed " 969 "0x%08x\n", le32toh(desc->flags)); 970 ifp->if_oerrors++; 971 } 972 973 bus_dmamap_sync(sc->txq.data_dmat, data->map, 974 BUS_DMASYNC_POSTWRITE); 975 bus_dmamap_unload(sc->txq.data_dmat, data->map); 976 m_freem(data->m); 977 data->m = NULL; 978 ieee80211_free_node(data->ni); 979 data->ni = NULL; 980 981 /* descriptor is no longer valid */ 982 desc->flags &= ~htole32(RT2560_TX_VALID); 983 984 DPRINTFN(15, ("tx done idx=%u\n", sc->txq.next)); 985 986 sc->txq.queued--; 987 sc->txq.next = (sc->txq.next + 1) % RT2560_TX_RING_COUNT; 988 } 989 990 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 991 BUS_DMASYNC_PREWRITE); 992 993 sc->sc_tx_timer = 0; 994 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 995 rt2560_start(ifp); 996 } 997 998 static void 999 rt2560_prio_intr(struct rt2560_softc *sc) 1000 { 1001 struct ieee80211com *ic = &sc->sc_ic; 1002 struct ifnet *ifp = ic->ic_ifp; 1003 struct rt2560_tx_desc *desc; 1004 struct rt2560_tx_data *data; 1005 struct ieee80211_node *ni; 1006 struct mbuf *m; 1007 int flags; 1008 1009 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1010 BUS_DMASYNC_POSTREAD); 1011 1012 for (;;) { 1013 desc = &sc->prioq.desc[sc->prioq.next]; 1014 data = &sc->prioq.data[sc->prioq.next]; 1015 1016 flags = le32toh(desc->flags); 1017 if ((flags & RT2560_TX_BUSY) || (flags & RT2560_TX_VALID) == 0) 1018 break; 1019 1020 switch (flags & RT2560_TX_RESULT_MASK) { 1021 case RT2560_TX_SUCCESS: 1022 DPRINTFN(10, ("mgt frame sent successfully\n")); 1023 break; 1024 1025 case RT2560_TX_SUCCESS_RETRY: 1026 DPRINTFN(9, ("mgt frame sent after %u retries\n", 1027 (flags >> 5) & 0x7)); 1028 break; 1029 1030 case RT2560_TX_FAIL_RETRY: 1031 DPRINTFN(9, ("sending mgt frame failed (too much " 1032 "retries)\n")); 1033 break; 1034 1035 case RT2560_TX_FAIL_INVALID: 1036 case RT2560_TX_FAIL_OTHER: 1037 default: 1038 device_printf(sc->sc_dev, "sending mgt frame failed " 1039 "0x%08x\n", flags); 1040 break; 1041 } 1042 1043 bus_dmamap_sync(sc->prioq.data_dmat, data->map, 1044 BUS_DMASYNC_POSTWRITE); 1045 bus_dmamap_unload(sc->prioq.data_dmat, data->map); 1046 1047 m = data->m; 1048 data->m = NULL; 1049 ni = data->ni; 1050 data->ni = NULL; 1051 1052 /* descriptor is no longer valid */ 1053 desc->flags &= ~htole32(RT2560_TX_VALID); 1054 1055 DPRINTFN(15, ("prio done idx=%u\n", sc->prioq.next)); 1056 1057 sc->prioq.queued--; 1058 sc->prioq.next = (sc->prioq.next + 1) % RT2560_PRIO_RING_COUNT; 1059 1060 if (m->m_flags & M_TXCB) 1061 ieee80211_process_callback(ni, m, 1062 (flags & RT2560_TX_RESULT_MASK) &~ 1063 (RT2560_TX_SUCCESS | RT2560_TX_SUCCESS_RETRY)); 1064 m_freem(m); 1065 ieee80211_free_node(ni); 1066 } 1067 1068 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1069 BUS_DMASYNC_PREWRITE); 1070 1071 sc->sc_tx_timer = 0; 1072 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1073 rt2560_start(ifp); 1074 } 1075 1076 /* 1077 * Some frames were processed by the hardware cipher engine and are ready for 1078 * transmission to the IEEE802.11 layer. 1079 */ 1080 static void 1081 rt2560_decryption_intr(struct rt2560_softc *sc) 1082 { 1083 struct ieee80211com *ic = &sc->sc_ic; 1084 struct ifnet *ifp = ic->ic_ifp; 1085 struct rt2560_rx_desc *desc; 1086 struct rt2560_rx_data *data; 1087 bus_addr_t physaddr; 1088 struct ieee80211_frame *wh; 1089 struct ieee80211_node *ni; 1090 struct rt2560_node *rn; 1091 struct mbuf *mnew, *m; 1092 int hw, error; 1093 1094 /* retrieve last decriptor index processed by cipher engine */ 1095 hw = RAL_READ(sc, RT2560_SECCSR0) - sc->rxq.physaddr; 1096 hw /= RT2560_RX_DESC_SIZE; 1097 1098 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1099 BUS_DMASYNC_POSTREAD); 1100 1101 for (; sc->rxq.cur_decrypt != hw;) { 1102 desc = &sc->rxq.desc[sc->rxq.cur_decrypt]; 1103 data = &sc->rxq.data[sc->rxq.cur_decrypt]; 1104 1105 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1106 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1107 break; 1108 1109 if (data->drop) { 1110 ifp->if_ierrors++; 1111 goto skip; 1112 } 1113 1114 if ((le32toh(desc->flags) & RT2560_RX_CIPHER_MASK) != 0 && 1115 (le32toh(desc->flags) & RT2560_RX_ICV_ERROR)) { 1116 ifp->if_ierrors++; 1117 goto skip; 1118 } 1119 1120 /* 1121 * Try to allocate a new mbuf for this ring element and load it 1122 * before processing the current mbuf. If the ring element 1123 * cannot be loaded, drop the received packet and reuse the old 1124 * mbuf. In the unlikely case that the old mbuf can't be 1125 * reloaded either, explicitly panic. 1126 */ 1127 mnew = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); 1128 if (mnew == NULL) { 1129 ifp->if_ierrors++; 1130 goto skip; 1131 } 1132 1133 bus_dmamap_sync(sc->rxq.data_dmat, data->map, 1134 BUS_DMASYNC_POSTREAD); 1135 bus_dmamap_unload(sc->rxq.data_dmat, data->map); 1136 1137 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1138 mtod(mnew, void *), MCLBYTES, rt2560_dma_map_addr, 1139 &physaddr, 0); 1140 if (error != 0) { 1141 m_freem(mnew); 1142 1143 /* try to reload the old mbuf */ 1144 error = bus_dmamap_load(sc->rxq.data_dmat, data->map, 1145 mtod(data->m, void *), MCLBYTES, 1146 rt2560_dma_map_addr, &physaddr, 0); 1147 if (error != 0) { 1148 /* very unlikely that it will fail... */ 1149 panic("%s: could not load old rx mbuf", 1150 device_get_name(sc->sc_dev)); 1151 } 1152 ifp->if_ierrors++; 1153 goto skip; 1154 } 1155 1156 /* 1157 * New mbuf successfully loaded, update Rx ring and continue 1158 * processing. 1159 */ 1160 m = data->m; 1161 data->m = mnew; 1162 desc->physaddr = htole32(physaddr); 1163 1164 /* finalize mbuf */ 1165 m->m_pkthdr.rcvif = ifp; 1166 m->m_pkthdr.len = m->m_len = 1167 (le32toh(desc->flags) >> 16) & 0xfff; 1168 1169 if (bpf_peers_present(sc->sc_drvbpf)) { 1170 struct rt2560_rx_radiotap_header *tap = &sc->sc_rxtap; 1171 uint32_t tsf_lo, tsf_hi; 1172 1173 /* get timestamp (low and high 32 bits) */ 1174 tsf_hi = RAL_READ(sc, RT2560_CSR17); 1175 tsf_lo = RAL_READ(sc, RT2560_CSR16); 1176 1177 tap->wr_tsf = 1178 htole64(((uint64_t)tsf_hi << 32) | tsf_lo); 1179 tap->wr_flags = 0; 1180 tap->wr_rate = rt2560_rxrate(desc); 1181 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq); 1182 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags); 1183 tap->wr_antenna = sc->rx_ant; 1184 tap->wr_antsignal = RT2560_RSSI(sc, desc->rssi); 1185 1186 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); 1187 } 1188 1189 sc->sc_flags |= RAL_INPUT_RUNNING; 1190 RAL_UNLOCK(sc); 1191 wh = mtod(m, struct ieee80211_frame *); 1192 ni = ieee80211_find_rxnode(ic, 1193 (struct ieee80211_frame_min *)wh); 1194 1195 /* send the frame to the 802.11 layer */ 1196 ieee80211_input(ic, m, ni, RT2560_RSSI(sc, desc->rssi), 1197 RT2560_NOISE_FLOOR, 0); 1198 1199 /* give rssi to the rate adatation algorithm */ 1200 rn = (struct rt2560_node *)ni; 1201 ral_rssadapt_input(ic, ni, &rn->rssadapt, 1202 RT2560_RSSI(sc, desc->rssi)); 1203 1204 /* node is no longer needed */ 1205 ieee80211_free_node(ni); 1206 1207 RAL_LOCK(sc); 1208 sc->sc_flags &= ~RAL_INPUT_RUNNING; 1209 skip: desc->flags = htole32(RT2560_RX_BUSY); 1210 1211 DPRINTFN(15, ("decryption done idx=%u\n", sc->rxq.cur_decrypt)); 1212 1213 sc->rxq.cur_decrypt = 1214 (sc->rxq.cur_decrypt + 1) % RT2560_RX_RING_COUNT; 1215 } 1216 1217 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1218 BUS_DMASYNC_PREWRITE); 1219 } 1220 1221 /* 1222 * Some frames were received. Pass them to the hardware cipher engine before 1223 * sending them to the 802.11 layer. 1224 */ 1225 static void 1226 rt2560_rx_intr(struct rt2560_softc *sc) 1227 { 1228 struct rt2560_rx_desc *desc; 1229 struct rt2560_rx_data *data; 1230 1231 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1232 BUS_DMASYNC_POSTREAD); 1233 1234 for (;;) { 1235 desc = &sc->rxq.desc[sc->rxq.cur]; 1236 data = &sc->rxq.data[sc->rxq.cur]; 1237 1238 if ((le32toh(desc->flags) & RT2560_RX_BUSY) || 1239 (le32toh(desc->flags) & RT2560_RX_CIPHER_BUSY)) 1240 break; 1241 1242 data->drop = 0; 1243 1244 if ((le32toh(desc->flags) & RT2560_RX_PHY_ERROR) || 1245 (le32toh(desc->flags) & RT2560_RX_CRC_ERROR)) { 1246 /* 1247 * This should not happen since we did not request 1248 * to receive those frames when we filled RXCSR0. 1249 */ 1250 DPRINTFN(5, ("PHY or CRC error flags 0x%08x\n", 1251 le32toh(desc->flags))); 1252 data->drop = 1; 1253 } 1254 1255 if (((le32toh(desc->flags) >> 16) & 0xfff) > MCLBYTES) { 1256 DPRINTFN(5, ("bad length\n")); 1257 data->drop = 1; 1258 } 1259 1260 /* mark the frame for decryption */ 1261 desc->flags |= htole32(RT2560_RX_CIPHER_BUSY); 1262 1263 DPRINTFN(15, ("rx done idx=%u\n", sc->rxq.cur)); 1264 1265 sc->rxq.cur = (sc->rxq.cur + 1) % RT2560_RX_RING_COUNT; 1266 } 1267 1268 bus_dmamap_sync(sc->rxq.desc_dmat, sc->rxq.desc_map, 1269 BUS_DMASYNC_PREWRITE); 1270 1271 /* kick decrypt */ 1272 RAL_WRITE(sc, RT2560_SECCSR0, RT2560_KICK_DECRYPT); 1273 } 1274 1275 /* 1276 * This function is called periodically in IBSS mode when a new beacon must be 1277 * sent out. 1278 */ 1279 static void 1280 rt2560_beacon_expire(struct rt2560_softc *sc) 1281 { 1282 struct ieee80211com *ic = &sc->sc_ic; 1283 struct rt2560_tx_data *data; 1284 1285 if (ic->ic_opmode != IEEE80211_M_IBSS && 1286 ic->ic_opmode != IEEE80211_M_HOSTAP) 1287 return; 1288 1289 data = &sc->bcnq.data[sc->bcnq.next]; 1290 /* 1291 * Don't send beacon if bsschan isn't set 1292 */ 1293 if (data->ni == NULL) 1294 return; 1295 1296 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_POSTWRITE); 1297 bus_dmamap_unload(sc->bcnq.data_dmat, data->map); 1298 1299 ieee80211_beacon_update(ic, data->ni, &sc->sc_bo, data->m, 1); 1300 1301 if (bpf_peers_present(ic->ic_rawbpf)) 1302 bpf_mtap(ic->ic_rawbpf, data->m); 1303 1304 rt2560_tx_bcn(sc, data->m, data->ni); 1305 1306 DPRINTFN(15, ("beacon expired\n")); 1307 1308 sc->bcnq.next = (sc->bcnq.next + 1) % RT2560_BEACON_RING_COUNT; 1309 } 1310 1311 /* ARGSUSED */ 1312 static void 1313 rt2560_wakeup_expire(struct rt2560_softc *sc) 1314 { 1315 DPRINTFN(2, ("wakeup expired\n")); 1316 } 1317 1318 void 1319 rt2560_intr(void *arg) 1320 { 1321 struct rt2560_softc *sc = arg; 1322 struct ifnet *ifp = sc->sc_ifp; 1323 uint32_t r; 1324 1325 RAL_LOCK(sc); 1326 1327 /* disable interrupts */ 1328 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 1329 1330 /* don't re-enable interrupts if we're shutting down */ 1331 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1332 RAL_UNLOCK(sc); 1333 return; 1334 } 1335 1336 r = RAL_READ(sc, RT2560_CSR7); 1337 RAL_WRITE(sc, RT2560_CSR7, r); 1338 1339 if (r & RT2560_BEACON_EXPIRE) 1340 rt2560_beacon_expire(sc); 1341 1342 if (r & RT2560_WAKEUP_EXPIRE) 1343 rt2560_wakeup_expire(sc); 1344 1345 if (r & RT2560_ENCRYPTION_DONE) 1346 rt2560_encryption_intr(sc); 1347 1348 if (r & RT2560_TX_DONE) 1349 rt2560_tx_intr(sc); 1350 1351 if (r & RT2560_PRIO_DONE) 1352 rt2560_prio_intr(sc); 1353 1354 if (r & RT2560_DECRYPTION_DONE) 1355 rt2560_decryption_intr(sc); 1356 1357 if (r & RT2560_RX_DONE) 1358 rt2560_rx_intr(sc); 1359 1360 /* re-enable interrupts */ 1361 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 1362 1363 RAL_UNLOCK(sc); 1364 } 1365 1366 /* quickly determine if a given rate is CCK or OFDM */ 1367 #define RAL_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22) 1368 1369 #define RAL_ACK_SIZE 14 /* 10 + 4(FCS) */ 1370 #define RAL_CTS_SIZE 14 /* 10 + 4(FCS) */ 1371 1372 #define RAL_SIFS 10 /* us */ 1373 1374 #define RT2560_TXRX_TURNAROUND 10 /* us */ 1375 1376 /* 1377 * This function is only used by the Rx radiotap code. 1378 */ 1379 static uint8_t 1380 rt2560_rxrate(struct rt2560_rx_desc *desc) 1381 { 1382 if (le32toh(desc->flags) & RT2560_RX_OFDM) { 1383 /* reverse function of rt2560_plcp_signal */ 1384 switch (desc->rate) { 1385 case 0xb: return 12; 1386 case 0xf: return 18; 1387 case 0xa: return 24; 1388 case 0xe: return 36; 1389 case 0x9: return 48; 1390 case 0xd: return 72; 1391 case 0x8: return 96; 1392 case 0xc: return 108; 1393 } 1394 } else { 1395 if (desc->rate == 10) 1396 return 2; 1397 if (desc->rate == 20) 1398 return 4; 1399 if (desc->rate == 55) 1400 return 11; 1401 if (desc->rate == 110) 1402 return 22; 1403 } 1404 return 2; /* should not get there */ 1405 } 1406 1407 /* 1408 * Return the expected ack rate for a frame transmitted at rate `rate'. 1409 * XXX: this should depend on the destination node basic rate set. 1410 */ 1411 static int 1412 rt2560_ack_rate(struct ieee80211com *ic, int rate) 1413 { 1414 switch (rate) { 1415 /* CCK rates */ 1416 case 2: 1417 return 2; 1418 case 4: 1419 case 11: 1420 case 22: 1421 return (ic->ic_curmode == IEEE80211_MODE_11B) ? 4 : rate; 1422 1423 /* OFDM rates */ 1424 case 12: 1425 case 18: 1426 return 12; 1427 case 24: 1428 case 36: 1429 return 24; 1430 case 48: 1431 case 72: 1432 case 96: 1433 case 108: 1434 return 48; 1435 } 1436 1437 /* default to 1Mbps */ 1438 return 2; 1439 } 1440 1441 /* 1442 * Compute the duration (in us) needed to transmit `len' bytes at rate `rate'. 1443 * The function automatically determines the operating mode depending on the 1444 * given rate. `flags' indicates whether short preamble is in use or not. 1445 */ 1446 static uint16_t 1447 rt2560_txtime(int len, int rate, uint32_t flags) 1448 { 1449 uint16_t txtime; 1450 1451 if (RAL_RATE_IS_OFDM(rate)) { 1452 /* IEEE Std 802.11a-1999, pp. 37 */ 1453 txtime = (8 + 4 * len + 3 + rate - 1) / rate; 1454 txtime = 16 + 4 + 4 * txtime + 6; 1455 } else { 1456 /* IEEE Std 802.11b-1999, pp. 28 */ 1457 txtime = (16 * len + rate - 1) / rate; 1458 if (rate != 2 && (flags & IEEE80211_F_SHPREAMBLE)) 1459 txtime += 72 + 24; 1460 else 1461 txtime += 144 + 48; 1462 } 1463 1464 return txtime; 1465 } 1466 1467 static uint8_t 1468 rt2560_plcp_signal(int rate) 1469 { 1470 switch (rate) { 1471 /* CCK rates (returned values are device-dependent) */ 1472 case 2: return 0x0; 1473 case 4: return 0x1; 1474 case 11: return 0x2; 1475 case 22: return 0x3; 1476 1477 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1478 case 12: return 0xb; 1479 case 18: return 0xf; 1480 case 24: return 0xa; 1481 case 36: return 0xe; 1482 case 48: return 0x9; 1483 case 72: return 0xd; 1484 case 96: return 0x8; 1485 case 108: return 0xc; 1486 1487 /* unsupported rates (should not get there) */ 1488 default: return 0xff; 1489 } 1490 } 1491 1492 static void 1493 rt2560_setup_tx_desc(struct rt2560_softc *sc, struct rt2560_tx_desc *desc, 1494 uint32_t flags, int len, int rate, int encrypt, bus_addr_t physaddr) 1495 { 1496 struct ieee80211com *ic = &sc->sc_ic; 1497 uint16_t plcp_length; 1498 int remainder; 1499 1500 desc->flags = htole32(flags); 1501 desc->flags |= htole32(len << 16); 1502 desc->flags |= encrypt ? htole32(RT2560_TX_CIPHER_BUSY) : 1503 htole32(RT2560_TX_BUSY | RT2560_TX_VALID); 1504 1505 desc->physaddr = htole32(physaddr); 1506 desc->wme = htole16( 1507 RT2560_AIFSN(2) | 1508 RT2560_LOGCWMIN(3) | 1509 RT2560_LOGCWMAX(8)); 1510 1511 /* setup PLCP fields */ 1512 desc->plcp_signal = rt2560_plcp_signal(rate); 1513 desc->plcp_service = 4; 1514 1515 len += IEEE80211_CRC_LEN; 1516 if (RAL_RATE_IS_OFDM(rate)) { 1517 desc->flags |= htole32(RT2560_TX_OFDM); 1518 1519 plcp_length = len & 0xfff; 1520 desc->plcp_length_hi = plcp_length >> 6; 1521 desc->plcp_length_lo = plcp_length & 0x3f; 1522 } else { 1523 plcp_length = (16 * len + rate - 1) / rate; 1524 if (rate == 22) { 1525 remainder = (16 * len) % 22; 1526 if (remainder != 0 && remainder < 7) 1527 desc->plcp_service |= RT2560_PLCP_LENGEXT; 1528 } 1529 desc->plcp_length_hi = plcp_length >> 8; 1530 desc->plcp_length_lo = plcp_length & 0xff; 1531 1532 if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 1533 desc->plcp_signal |= 0x08; 1534 } 1535 } 1536 1537 static int 1538 rt2560_tx_bcn(struct rt2560_softc *sc, struct mbuf *m0, 1539 struct ieee80211_node *ni) 1540 { 1541 struct ieee80211com *ic = &sc->sc_ic; 1542 struct rt2560_tx_desc *desc; 1543 struct rt2560_tx_data *data; 1544 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1545 int nsegs, rate, error; 1546 1547 desc = &sc->bcnq.desc[sc->bcnq.cur]; 1548 data = &sc->bcnq.data[sc->bcnq.cur]; 1549 1550 rate = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ? 12 : 2; 1551 1552 error = bus_dmamap_load_mbuf_sg(sc->bcnq.data_dmat, data->map, m0, 1553 segs, &nsegs, BUS_DMA_NOWAIT); 1554 if (error != 0) { 1555 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1556 error); 1557 m_freem(m0); 1558 return error; 1559 } 1560 1561 if (bpf_peers_present(sc->sc_drvbpf)) { 1562 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1563 1564 tap->wt_flags = 0; 1565 tap->wt_rate = rate; 1566 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1567 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1568 tap->wt_antenna = sc->tx_ant; 1569 1570 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1571 } 1572 1573 data->m = m0; 1574 data->ni = ni; 1575 1576 rt2560_setup_tx_desc(sc, desc, RT2560_TX_IFS_NEWBACKOFF | 1577 RT2560_TX_TIMESTAMP, m0->m_pkthdr.len, rate, 0, segs->ds_addr); 1578 1579 DPRINTFN(10, ("sending beacon frame len=%u idx=%u rate=%u\n", 1580 m0->m_pkthdr.len, sc->bcnq.cur, rate)); 1581 1582 bus_dmamap_sync(sc->bcnq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1583 bus_dmamap_sync(sc->bcnq.desc_dmat, sc->bcnq.desc_map, 1584 BUS_DMASYNC_PREWRITE); 1585 1586 sc->bcnq.cur = (sc->bcnq.cur + 1) % RT2560_BEACON_RING_COUNT; 1587 1588 return 0; 1589 } 1590 1591 static int 1592 rt2560_tx_mgt(struct rt2560_softc *sc, struct mbuf *m0, 1593 struct ieee80211_node *ni) 1594 { 1595 struct ieee80211com *ic = &sc->sc_ic; 1596 struct rt2560_tx_desc *desc; 1597 struct rt2560_tx_data *data; 1598 struct ieee80211_frame *wh; 1599 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1600 uint16_t dur; 1601 uint32_t flags = 0; 1602 int nsegs, rate, error; 1603 1604 desc = &sc->prioq.desc[sc->prioq.cur]; 1605 data = &sc->prioq.data[sc->prioq.cur]; 1606 1607 rate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1608 1609 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1610 segs, &nsegs, 0); 1611 if (error != 0) { 1612 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1613 error); 1614 m_freem(m0); 1615 return error; 1616 } 1617 1618 if (bpf_peers_present(sc->sc_drvbpf)) { 1619 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1620 1621 tap->wt_flags = 0; 1622 tap->wt_rate = rate; 1623 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1624 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1625 tap->wt_antenna = sc->tx_ant; 1626 1627 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1628 } 1629 1630 data->m = m0; 1631 data->ni = ni; 1632 1633 wh = mtod(m0, struct ieee80211_frame *); 1634 1635 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1636 flags |= RT2560_TX_ACK; 1637 1638 dur = rt2560_txtime(RAL_ACK_SIZE, rate, ic->ic_flags) + 1639 RAL_SIFS; 1640 *(uint16_t *)wh->i_dur = htole16(dur); 1641 1642 /* tell hardware to add timestamp for probe responses */ 1643 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 1644 IEEE80211_FC0_TYPE_MGT && 1645 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) == 1646 IEEE80211_FC0_SUBTYPE_PROBE_RESP) 1647 flags |= RT2560_TX_TIMESTAMP; 1648 } 1649 1650 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 0, 1651 segs->ds_addr); 1652 1653 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1654 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1655 BUS_DMASYNC_PREWRITE); 1656 1657 DPRINTFN(10, ("sending mgt frame len=%u idx=%u rate=%u\n", 1658 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1659 1660 /* kick prio */ 1661 sc->prioq.queued++; 1662 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1663 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1664 1665 return 0; 1666 } 1667 1668 static int 1669 rt2560_tx_raw(struct rt2560_softc *sc, struct mbuf *m0, 1670 struct ieee80211_node *ni, const struct ieee80211_bpf_params *params) 1671 { 1672 struct ieee80211com *ic = &sc->sc_ic; 1673 struct rt2560_tx_desc *desc; 1674 struct rt2560_tx_data *data; 1675 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1676 uint32_t flags; 1677 int nsegs, rate, error; 1678 1679 desc = &sc->prioq.desc[sc->prioq.cur]; 1680 data = &sc->prioq.data[sc->prioq.cur]; 1681 1682 rate = params->ibp_rate0 & IEEE80211_RATE_VAL; 1683 /* XXX validate */ 1684 if (rate == 0) { 1685 m_freem(m0); 1686 return EINVAL; 1687 } 1688 1689 error = bus_dmamap_load_mbuf_sg(sc->prioq.data_dmat, data->map, m0, 1690 segs, &nsegs, 0); 1691 if (error != 0) { 1692 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1693 error); 1694 m_freem(m0); 1695 return error; 1696 } 1697 1698 if (bpf_peers_present(sc->sc_drvbpf)) { 1699 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1700 1701 tap->wt_flags = 0; 1702 tap->wt_rate = rate; 1703 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1704 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1705 tap->wt_antenna = sc->tx_ant; 1706 1707 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1708 } 1709 1710 data->m = m0; 1711 data->ni = ni; 1712 1713 flags = 0; 1714 if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0) 1715 flags |= RT2560_TX_ACK; 1716 1717 /* XXX need to setup descriptor ourself */ 1718 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, 1719 rate, (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0, 1720 segs->ds_addr); 1721 1722 bus_dmamap_sync(sc->prioq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1723 bus_dmamap_sync(sc->prioq.desc_dmat, sc->prioq.desc_map, 1724 BUS_DMASYNC_PREWRITE); 1725 1726 DPRINTFN(10, ("sending raw frame len=%u idx=%u rate=%u\n", 1727 m0->m_pkthdr.len, sc->prioq.cur, rate)); 1728 1729 /* kick prio */ 1730 sc->prioq.queued++; 1731 sc->prioq.cur = (sc->prioq.cur + 1) % RT2560_PRIO_RING_COUNT; 1732 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_KICK_PRIO); 1733 1734 return 0; 1735 } 1736 1737 /* 1738 * Build a RTS control frame. 1739 */ 1740 static struct mbuf * 1741 rt2560_get_rts(struct rt2560_softc *sc, struct ieee80211_frame *wh, 1742 uint16_t dur) 1743 { 1744 struct ieee80211_frame_rts *rts; 1745 struct mbuf *m; 1746 1747 MGETHDR(m, M_DONTWAIT, MT_DATA); 1748 if (m == NULL) { 1749 sc->sc_ic.ic_stats.is_tx_nobuf++; 1750 device_printf(sc->sc_dev, "could not allocate RTS frame\n"); 1751 return NULL; 1752 } 1753 1754 rts = mtod(m, struct ieee80211_frame_rts *); 1755 1756 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_CTL | 1757 IEEE80211_FC0_SUBTYPE_RTS; 1758 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1759 *(uint16_t *)rts->i_dur = htole16(dur); 1760 IEEE80211_ADDR_COPY(rts->i_ra, wh->i_addr1); 1761 IEEE80211_ADDR_COPY(rts->i_ta, wh->i_addr2); 1762 1763 m->m_pkthdr.len = m->m_len = sizeof (struct ieee80211_frame_rts); 1764 1765 return m; 1766 } 1767 1768 static int 1769 rt2560_tx_data(struct rt2560_softc *sc, struct mbuf *m0, 1770 struct ieee80211_node *ni) 1771 { 1772 struct ieee80211com *ic = &sc->sc_ic; 1773 struct rt2560_tx_desc *desc; 1774 struct rt2560_tx_data *data; 1775 struct rt2560_node *rn; 1776 struct ieee80211_frame *wh; 1777 struct ieee80211_key *k; 1778 struct mbuf *mnew; 1779 bus_dma_segment_t segs[RT2560_MAX_SCATTER]; 1780 uint16_t dur; 1781 uint32_t flags = 0; 1782 int nsegs, rate, error; 1783 1784 wh = mtod(m0, struct ieee80211_frame *); 1785 1786 if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) { 1787 rate = ic->ic_fixed_rate; 1788 } else { 1789 struct ieee80211_rateset *rs; 1790 1791 rs = &ni->ni_rates; 1792 rn = (struct rt2560_node *)ni; 1793 ni->ni_txrate = ral_rssadapt_choose(&rn->rssadapt, rs, wh, 1794 m0->m_pkthdr.len, NULL, 0); 1795 rate = rs->rs_rates[ni->ni_txrate]; 1796 } 1797 rate &= IEEE80211_RATE_VAL; 1798 1799 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 1800 k = ieee80211_crypto_encap(ic, ni, m0); 1801 if (k == NULL) { 1802 m_freem(m0); 1803 return ENOBUFS; 1804 } 1805 1806 /* packet header may have moved, reset our local pointer */ 1807 wh = mtod(m0, struct ieee80211_frame *); 1808 } 1809 1810 /* 1811 * IEEE Std 802.11-1999, pp 82: "A STA shall use an RTS/CTS exchange 1812 * for directed frames only when the length of the MPDU is greater 1813 * than the length threshold indicated by [...]" ic_rtsthreshold. 1814 */ 1815 if (!IEEE80211_IS_MULTICAST(wh->i_addr1) && 1816 m0->m_pkthdr.len > ic->ic_rtsthreshold) { 1817 struct mbuf *m; 1818 uint16_t dur; 1819 int rtsrate, ackrate; 1820 1821 rtsrate = IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan) ? 12 : 2; 1822 ackrate = rt2560_ack_rate(ic, rate); 1823 1824 dur = rt2560_txtime(m0->m_pkthdr.len + 4, rate, ic->ic_flags) + 1825 rt2560_txtime(RAL_CTS_SIZE, rtsrate, ic->ic_flags) + 1826 rt2560_txtime(RAL_ACK_SIZE, ackrate, ic->ic_flags) + 1827 3 * RAL_SIFS; 1828 1829 m = rt2560_get_rts(sc, wh, dur); 1830 1831 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1832 data = &sc->txq.data[sc->txq.cur_encrypt]; 1833 1834 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1835 m, segs, &nsegs, 0); 1836 if (error != 0) { 1837 device_printf(sc->sc_dev, 1838 "could not map mbuf (error %d)\n", error); 1839 m_freem(m); 1840 m_freem(m0); 1841 return error; 1842 } 1843 1844 /* avoid multiple free() of the same node for each fragment */ 1845 ieee80211_ref_node(ni); 1846 1847 data->m = m; 1848 data->ni = ni; 1849 1850 /* RTS frames are not taken into account for rssadapt */ 1851 data->id.id_node = NULL; 1852 1853 rt2560_setup_tx_desc(sc, desc, RT2560_TX_ACK | 1854 RT2560_TX_MORE_FRAG, m->m_pkthdr.len, rtsrate, 1, 1855 segs->ds_addr); 1856 1857 bus_dmamap_sync(sc->txq.data_dmat, data->map, 1858 BUS_DMASYNC_PREWRITE); 1859 1860 sc->txq.queued++; 1861 sc->txq.cur_encrypt = 1862 (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1863 1864 /* 1865 * IEEE Std 802.11-1999: when an RTS/CTS exchange is used, the 1866 * asynchronous data frame shall be transmitted after the CTS 1867 * frame and a SIFS period. 1868 */ 1869 flags |= RT2560_TX_LONG_RETRY | RT2560_TX_IFS_SIFS; 1870 } 1871 1872 data = &sc->txq.data[sc->txq.cur_encrypt]; 1873 desc = &sc->txq.desc[sc->txq.cur_encrypt]; 1874 1875 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, m0, 1876 segs, &nsegs, 0); 1877 if (error != 0 && error != EFBIG) { 1878 device_printf(sc->sc_dev, "could not map mbuf (error %d)\n", 1879 error); 1880 m_freem(m0); 1881 return error; 1882 } 1883 if (error != 0) { 1884 mnew = m_defrag(m0, M_DONTWAIT); 1885 if (mnew == NULL) { 1886 device_printf(sc->sc_dev, 1887 "could not defragment mbuf\n"); 1888 m_freem(m0); 1889 return ENOBUFS; 1890 } 1891 m0 = mnew; 1892 1893 error = bus_dmamap_load_mbuf_sg(sc->txq.data_dmat, data->map, 1894 m0, segs, &nsegs, 0); 1895 if (error != 0) { 1896 device_printf(sc->sc_dev, 1897 "could not map mbuf (error %d)\n", error); 1898 m_freem(m0); 1899 return error; 1900 } 1901 1902 /* packet header may have moved, reset our local pointer */ 1903 wh = mtod(m0, struct ieee80211_frame *); 1904 } 1905 1906 if (bpf_peers_present(sc->sc_drvbpf)) { 1907 struct rt2560_tx_radiotap_header *tap = &sc->sc_txtap; 1908 1909 tap->wt_flags = 0; 1910 tap->wt_rate = rate; 1911 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq); 1912 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags); 1913 tap->wt_antenna = sc->tx_ant; 1914 1915 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0); 1916 } 1917 1918 data->m = m0; 1919 data->ni = ni; 1920 1921 /* remember link conditions for rate adaptation algorithm */ 1922 if (ic->ic_fixed_rate == IEEE80211_FIXED_RATE_NONE) { 1923 data->id.id_len = m0->m_pkthdr.len; 1924 data->id.id_rateidx = ni->ni_txrate; 1925 data->id.id_node = ni; 1926 data->id.id_rssi = ni->ni_rssi; 1927 } else 1928 data->id.id_node = NULL; 1929 1930 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1931 flags |= RT2560_TX_ACK; 1932 1933 dur = rt2560_txtime(RAL_ACK_SIZE, rt2560_ack_rate(ic, rate), 1934 ic->ic_flags) + RAL_SIFS; 1935 *(uint16_t *)wh->i_dur = htole16(dur); 1936 } 1937 1938 rt2560_setup_tx_desc(sc, desc, flags, m0->m_pkthdr.len, rate, 1, 1939 segs->ds_addr); 1940 1941 bus_dmamap_sync(sc->txq.data_dmat, data->map, BUS_DMASYNC_PREWRITE); 1942 bus_dmamap_sync(sc->txq.desc_dmat, sc->txq.desc_map, 1943 BUS_DMASYNC_PREWRITE); 1944 1945 DPRINTFN(10, ("sending data frame len=%u idx=%u rate=%u\n", 1946 m0->m_pkthdr.len, sc->txq.cur_encrypt, rate)); 1947 1948 /* kick encrypt */ 1949 sc->txq.queued++; 1950 sc->txq.cur_encrypt = (sc->txq.cur_encrypt + 1) % RT2560_TX_RING_COUNT; 1951 RAL_WRITE(sc, RT2560_SECCSR1, RT2560_KICK_ENCRYPT); 1952 1953 return 0; 1954 } 1955 1956 static void 1957 rt2560_start(struct ifnet *ifp) 1958 { 1959 struct rt2560_softc *sc = ifp->if_softc; 1960 struct ieee80211com *ic = &sc->sc_ic; 1961 struct mbuf *m0; 1962 struct ether_header *eh; 1963 struct ieee80211_node *ni; 1964 1965 RAL_LOCK(sc); 1966 1967 /* prevent management frames from being sent if we're not ready */ 1968 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 1969 RAL_UNLOCK(sc); 1970 return; 1971 } 1972 1973 for (;;) { 1974 IF_POLL(&ic->ic_mgtq, m0); 1975 if (m0 != NULL) { 1976 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 1977 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 1978 break; 1979 } 1980 IF_DEQUEUE(&ic->ic_mgtq, m0); 1981 1982 ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; 1983 m0->m_pkthdr.rcvif = NULL; 1984 1985 if (bpf_peers_present(ic->ic_rawbpf)) 1986 bpf_mtap(ic->ic_rawbpf, m0); 1987 1988 if (rt2560_tx_mgt(sc, m0, ni) != 0) { 1989 ieee80211_free_node(ni); 1990 break; 1991 } 1992 } else { 1993 if (ic->ic_state != IEEE80211_S_RUN) 1994 break; 1995 IFQ_DRV_DEQUEUE(&ifp->if_snd, m0); 1996 if (m0 == NULL) 1997 break; 1998 if (sc->txq.queued >= RT2560_TX_RING_COUNT - 1) { 1999 IFQ_DRV_PREPEND(&ifp->if_snd, m0); 2000 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2001 break; 2002 } 2003 2004 if (m0->m_len < sizeof (struct ether_header) && 2005 !(m0 = m_pullup(m0, sizeof (struct ether_header)))) 2006 continue; 2007 2008 eh = mtod(m0, struct ether_header *); 2009 ni = ieee80211_find_txnode(ic, eh->ether_dhost); 2010 if (ni == NULL) { 2011 m_freem(m0); 2012 continue; 2013 } 2014 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 2015 (m0->m_flags & M_PWR_SAV) == 0) { 2016 /* 2017 * Station in power save mode; pass the frame 2018 * to the 802.11 layer and continue. We'll get 2019 * the frame back when the time is right. 2020 */ 2021 ieee80211_pwrsave(ni, m0); 2022 /* 2023 * If we're in power save mode 'cuz of a bg 2024 * scan cancel it so the traffic can flow. 2025 * The packet we just queued will automatically 2026 * get sent when we drop out of power save. 2027 * XXX locking 2028 */ 2029 if (ic->ic_flags & IEEE80211_F_SCAN) 2030 ieee80211_cancel_scan(ic); 2031 ieee80211_free_node(ni); 2032 continue; 2033 2034 } 2035 2036 BPF_MTAP(ifp, m0); 2037 2038 m0 = ieee80211_encap(ic, m0, ni); 2039 if (m0 == NULL) { 2040 ieee80211_free_node(ni); 2041 continue; 2042 } 2043 2044 if (bpf_peers_present(ic->ic_rawbpf)) 2045 bpf_mtap(ic->ic_rawbpf, m0); 2046 2047 if (rt2560_tx_data(sc, m0, ni) != 0) { 2048 ieee80211_free_node(ni); 2049 ifp->if_oerrors++; 2050 break; 2051 } 2052 } 2053 2054 sc->sc_tx_timer = 5; 2055 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2056 } 2057 2058 RAL_UNLOCK(sc); 2059 } 2060 2061 static void 2062 rt2560_watchdog(void *arg) 2063 { 2064 struct rt2560_softc *sc = arg; 2065 2066 if (sc->sc_tx_timer > 0) { 2067 if (--sc->sc_tx_timer == 0) { 2068 device_printf(sc->sc_dev, "device timeout\n"); 2069 rt2560_init(sc); 2070 sc->sc_ifp->if_oerrors++; 2071 return; 2072 } 2073 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2074 } 2075 } 2076 2077 /* 2078 * This function allows for fast channel switching in monitor mode (used by 2079 * net-mgmt/kismet). In IBSS mode, we must explicitly reset the interface to 2080 * generate a new beacon frame. 2081 */ 2082 static int 2083 rt2560_reset(struct ifnet *ifp) 2084 { 2085 struct rt2560_softc *sc = ifp->if_softc; 2086 struct ieee80211com *ic = &sc->sc_ic; 2087 2088 if (ic->ic_opmode != IEEE80211_M_MONITOR) 2089 return ENETRESET; 2090 2091 rt2560_set_chan(sc, ic->ic_curchan); 2092 2093 return 0; 2094 } 2095 2096 static int 2097 rt2560_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2098 { 2099 struct rt2560_softc *sc = ifp->if_softc; 2100 struct ieee80211com *ic = &sc->sc_ic; 2101 int error = 0; 2102 2103 2104 2105 switch (cmd) { 2106 case SIOCSIFFLAGS: 2107 if (ifp->if_flags & IFF_UP) { 2108 RAL_LOCK(sc); 2109 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2110 rt2560_update_promisc(sc); 2111 else 2112 rt2560_init(sc); 2113 RAL_UNLOCK(sc); 2114 } else { 2115 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2116 rt2560_stop(sc); 2117 } 2118 2119 break; 2120 2121 default: 2122 error = ieee80211_ioctl(ic, cmd, data); 2123 } 2124 2125 if (error == ENETRESET) { 2126 if ((ifp->if_flags & IFF_UP) && 2127 (ifp->if_drv_flags & IFF_DRV_RUNNING) && 2128 (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)) 2129 rt2560_init(sc); 2130 error = 0; 2131 } 2132 2133 2134 return error; 2135 } 2136 2137 static void 2138 rt2560_bbp_write(struct rt2560_softc *sc, uint8_t reg, uint8_t val) 2139 { 2140 uint32_t tmp; 2141 int ntries; 2142 2143 for (ntries = 0; ntries < 100; ntries++) { 2144 if (!(RAL_READ(sc, RT2560_BBPCSR) & RT2560_BBP_BUSY)) 2145 break; 2146 DELAY(1); 2147 } 2148 if (ntries == 100) { 2149 device_printf(sc->sc_dev, "could not write to BBP\n"); 2150 return; 2151 } 2152 2153 tmp = RT2560_BBP_WRITE | RT2560_BBP_BUSY | reg << 8 | val; 2154 RAL_WRITE(sc, RT2560_BBPCSR, tmp); 2155 2156 DPRINTFN(15, ("BBP R%u <- 0x%02x\n", reg, val)); 2157 } 2158 2159 static uint8_t 2160 rt2560_bbp_read(struct rt2560_softc *sc, uint8_t reg) 2161 { 2162 uint32_t val; 2163 int ntries; 2164 2165 val = RT2560_BBP_BUSY | reg << 8; 2166 RAL_WRITE(sc, RT2560_BBPCSR, val); 2167 2168 for (ntries = 0; ntries < 100; ntries++) { 2169 val = RAL_READ(sc, RT2560_BBPCSR); 2170 if (!(val & RT2560_BBP_BUSY)) 2171 return val & 0xff; 2172 DELAY(1); 2173 } 2174 2175 device_printf(sc->sc_dev, "could not read from BBP\n"); 2176 return 0; 2177 } 2178 2179 static void 2180 rt2560_rf_write(struct rt2560_softc *sc, uint8_t reg, uint32_t val) 2181 { 2182 uint32_t tmp; 2183 int ntries; 2184 2185 for (ntries = 0; ntries < 100; ntries++) { 2186 if (!(RAL_READ(sc, RT2560_RFCSR) & RT2560_RF_BUSY)) 2187 break; 2188 DELAY(1); 2189 } 2190 if (ntries == 100) { 2191 device_printf(sc->sc_dev, "could not write to RF\n"); 2192 return; 2193 } 2194 2195 tmp = RT2560_RF_BUSY | RT2560_RF_20BIT | (val & 0xfffff) << 2 | 2196 (reg & 0x3); 2197 RAL_WRITE(sc, RT2560_RFCSR, tmp); 2198 2199 /* remember last written value in sc */ 2200 sc->rf_regs[reg] = val; 2201 2202 DPRINTFN(15, ("RF R[%u] <- 0x%05x\n", reg & 0x3, val & 0xfffff)); 2203 } 2204 2205 static void 2206 rt2560_set_chan(struct rt2560_softc *sc, struct ieee80211_channel *c) 2207 { 2208 struct ieee80211com *ic = &sc->sc_ic; 2209 uint8_t power, tmp; 2210 u_int i, chan; 2211 2212 chan = ieee80211_chan2ieee(ic, c); 2213 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 2214 return; 2215 2216 if (IEEE80211_IS_CHAN_2GHZ(c)) 2217 power = min(sc->txpow[chan - 1], 31); 2218 else 2219 power = 31; 2220 2221 /* adjust txpower using ifconfig settings */ 2222 power -= (100 - ic->ic_txpowlimit) / 8; 2223 2224 DPRINTFN(2, ("setting channel to %u, txpower to %u\n", chan, power)); 2225 2226 switch (sc->rf_rev) { 2227 case RT2560_RF_2522: 2228 rt2560_rf_write(sc, RAL_RF1, 0x00814); 2229 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2522_r2[chan - 1]); 2230 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2231 break; 2232 2233 case RT2560_RF_2523: 2234 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2235 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2523_r2[chan - 1]); 2236 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x38044); 2237 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2238 break; 2239 2240 case RT2560_RF_2524: 2241 rt2560_rf_write(sc, RAL_RF1, 0x0c808); 2242 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2524_r2[chan - 1]); 2243 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2244 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2245 break; 2246 2247 case RT2560_RF_2525: 2248 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2249 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_hi_r2[chan - 1]); 2250 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2251 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2252 2253 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2254 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525_r2[chan - 1]); 2255 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2256 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00280 : 0x00286); 2257 break; 2258 2259 case RT2560_RF_2525E: 2260 rt2560_rf_write(sc, RAL_RF1, 0x08808); 2261 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2525e_r2[chan - 1]); 2262 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2263 rt2560_rf_write(sc, RAL_RF4, (chan == 14) ? 0x00286 : 0x00282); 2264 break; 2265 2266 case RT2560_RF_2526: 2267 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_hi_r2[chan - 1]); 2268 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2269 rt2560_rf_write(sc, RAL_RF1, 0x08804); 2270 2271 rt2560_rf_write(sc, RAL_RF2, rt2560_rf2526_r2[chan - 1]); 2272 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x18044); 2273 rt2560_rf_write(sc, RAL_RF4, (chan & 1) ? 0x00386 : 0x00381); 2274 break; 2275 2276 /* dual-band RF */ 2277 case RT2560_RF_5222: 2278 for (i = 0; rt2560_rf5222[i].chan != chan; i++); 2279 2280 rt2560_rf_write(sc, RAL_RF1, rt2560_rf5222[i].r1); 2281 rt2560_rf_write(sc, RAL_RF2, rt2560_rf5222[i].r2); 2282 rt2560_rf_write(sc, RAL_RF3, power << 7 | 0x00040); 2283 rt2560_rf_write(sc, RAL_RF4, rt2560_rf5222[i].r4); 2284 break; 2285 default: 2286 printf("unknown ral rev=%d\n", sc->rf_rev); 2287 } 2288 2289 if (ic->ic_state != IEEE80211_S_SCAN) { 2290 /* set Japan filter bit for channel 14 */ 2291 tmp = rt2560_bbp_read(sc, 70); 2292 2293 tmp &= ~RT2560_JAPAN_FILTER; 2294 if (chan == 14) 2295 tmp |= RT2560_JAPAN_FILTER; 2296 2297 rt2560_bbp_write(sc, 70, tmp); 2298 2299 /* clear CRC errors */ 2300 RAL_READ(sc, RT2560_CNT0); 2301 } 2302 } 2303 2304 static void 2305 rt2560_set_channel(struct ieee80211com *ic) 2306 { 2307 struct ifnet *ifp = ic->ic_ifp; 2308 struct rt2560_softc *sc = ifp->if_softc; 2309 2310 RAL_LOCK(sc); 2311 rt2560_set_chan(sc, ic->ic_curchan); 2312 RAL_UNLOCK(sc); 2313 2314 } 2315 2316 #if 0 2317 /* 2318 * Disable RF auto-tuning. 2319 */ 2320 static void 2321 rt2560_disable_rf_tune(struct rt2560_softc *sc) 2322 { 2323 uint32_t tmp; 2324 2325 if (sc->rf_rev != RT2560_RF_2523) { 2326 tmp = sc->rf_regs[RAL_RF1] & ~RAL_RF1_AUTOTUNE; 2327 rt2560_rf_write(sc, RAL_RF1, tmp); 2328 } 2329 2330 tmp = sc->rf_regs[RAL_RF3] & ~RAL_RF3_AUTOTUNE; 2331 rt2560_rf_write(sc, RAL_RF3, tmp); 2332 2333 DPRINTFN(2, ("disabling RF autotune\n")); 2334 } 2335 #endif 2336 2337 /* 2338 * Refer to IEEE Std 802.11-1999 pp. 123 for more information on TSF 2339 * synchronization. 2340 */ 2341 static void 2342 rt2560_enable_tsf_sync(struct rt2560_softc *sc) 2343 { 2344 struct ieee80211com *ic = &sc->sc_ic; 2345 uint16_t logcwmin, preload; 2346 uint32_t tmp; 2347 2348 /* first, disable TSF synchronization */ 2349 RAL_WRITE(sc, RT2560_CSR14, 0); 2350 2351 tmp = 16 * ic->ic_bss->ni_intval; 2352 RAL_WRITE(sc, RT2560_CSR12, tmp); 2353 2354 RAL_WRITE(sc, RT2560_CSR13, 0); 2355 2356 logcwmin = 5; 2357 preload = (ic->ic_opmode == IEEE80211_M_STA) ? 384 : 1024; 2358 tmp = logcwmin << 16 | preload; 2359 RAL_WRITE(sc, RT2560_BCNOCSR, tmp); 2360 2361 /* finally, enable TSF synchronization */ 2362 tmp = RT2560_ENABLE_TSF | RT2560_ENABLE_TBCN; 2363 if (ic->ic_opmode == IEEE80211_M_STA) 2364 tmp |= RT2560_ENABLE_TSF_SYNC(1); 2365 else 2366 tmp |= RT2560_ENABLE_TSF_SYNC(2) | 2367 RT2560_ENABLE_BEACON_GENERATOR; 2368 RAL_WRITE(sc, RT2560_CSR14, tmp); 2369 2370 DPRINTF(("enabling TSF synchronization\n")); 2371 } 2372 2373 static void 2374 rt2560_update_plcp(struct rt2560_softc *sc) 2375 { 2376 struct ieee80211com *ic = &sc->sc_ic; 2377 2378 /* no short preamble for 1Mbps */ 2379 RAL_WRITE(sc, RT2560_PLCP1MCSR, 0x00700400); 2380 2381 if (!(ic->ic_flags & IEEE80211_F_SHPREAMBLE)) { 2382 /* values taken from the reference driver */ 2383 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380401); 2384 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x00150402); 2385 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b8403); 2386 } else { 2387 /* same values as above or'ed 0x8 */ 2388 RAL_WRITE(sc, RT2560_PLCP2MCSR, 0x00380409); 2389 RAL_WRITE(sc, RT2560_PLCP5p5MCSR, 0x0015040a); 2390 RAL_WRITE(sc, RT2560_PLCP11MCSR, 0x000b840b); 2391 } 2392 2393 DPRINTF(("updating PLCP for %s preamble\n", 2394 (ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? "short" : "long")); 2395 } 2396 2397 /* 2398 * This function can be called by ieee80211_set_shortslottime(). Refer to 2399 * IEEE Std 802.11-1999 pp. 85 to know how these values are computed. 2400 */ 2401 static void 2402 rt2560_update_slot(struct ifnet *ifp) 2403 { 2404 struct rt2560_softc *sc = ifp->if_softc; 2405 struct ieee80211com *ic = &sc->sc_ic; 2406 uint8_t slottime; 2407 uint16_t tx_sifs, tx_pifs, tx_difs, eifs; 2408 uint32_t tmp; 2409 2410 slottime = (ic->ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20; 2411 2412 /* update the MAC slot boundaries */ 2413 tx_sifs = RAL_SIFS - RT2560_TXRX_TURNAROUND; 2414 tx_pifs = tx_sifs + slottime; 2415 tx_difs = tx_sifs + 2 * slottime; 2416 eifs = (ic->ic_curmode == IEEE80211_MODE_11B) ? 364 : 60; 2417 2418 tmp = RAL_READ(sc, RT2560_CSR11); 2419 tmp = (tmp & ~0x1f00) | slottime << 8; 2420 RAL_WRITE(sc, RT2560_CSR11, tmp); 2421 2422 tmp = tx_pifs << 16 | tx_sifs; 2423 RAL_WRITE(sc, RT2560_CSR18, tmp); 2424 2425 tmp = eifs << 16 | tx_difs; 2426 RAL_WRITE(sc, RT2560_CSR19, tmp); 2427 2428 DPRINTF(("setting slottime to %uus\n", slottime)); 2429 } 2430 2431 static void 2432 rt2560_set_basicrates(struct rt2560_softc *sc) 2433 { 2434 struct ieee80211com *ic = &sc->sc_ic; 2435 2436 /* update basic rate set */ 2437 if (ic->ic_curmode == IEEE80211_MODE_11B) { 2438 /* 11b basic rates: 1, 2Mbps */ 2439 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x3); 2440 } else if (IEEE80211_IS_CHAN_5GHZ(ic->ic_curchan)) { 2441 /* 11a basic rates: 6, 12, 24Mbps */ 2442 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x150); 2443 } else { 2444 /* 11g basic rates: 1, 2, 5.5, 11, 6, 12, 24Mbps */ 2445 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x15f); 2446 } 2447 } 2448 2449 static void 2450 rt2560_update_led(struct rt2560_softc *sc, int led1, int led2) 2451 { 2452 uint32_t tmp; 2453 2454 /* set ON period to 70ms and OFF period to 30ms */ 2455 tmp = led1 << 16 | led2 << 17 | 70 << 8 | 30; 2456 RAL_WRITE(sc, RT2560_LEDCSR, tmp); 2457 } 2458 2459 static void 2460 rt2560_set_bssid(struct rt2560_softc *sc, const uint8_t *bssid) 2461 { 2462 uint32_t tmp; 2463 2464 tmp = bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24; 2465 RAL_WRITE(sc, RT2560_CSR5, tmp); 2466 2467 tmp = bssid[4] | bssid[5] << 8; 2468 RAL_WRITE(sc, RT2560_CSR6, tmp); 2469 2470 DPRINTF(("setting BSSID to %6D\n", bssid, ":")); 2471 } 2472 2473 static void 2474 rt2560_set_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2475 { 2476 uint32_t tmp; 2477 2478 tmp = addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24; 2479 RAL_WRITE(sc, RT2560_CSR3, tmp); 2480 2481 tmp = addr[4] | addr[5] << 8; 2482 RAL_WRITE(sc, RT2560_CSR4, tmp); 2483 2484 DPRINTF(("setting MAC address to %6D\n", addr, ":")); 2485 } 2486 2487 static void 2488 rt2560_get_macaddr(struct rt2560_softc *sc, uint8_t *addr) 2489 { 2490 uint32_t tmp; 2491 2492 tmp = RAL_READ(sc, RT2560_CSR3); 2493 addr[0] = tmp & 0xff; 2494 addr[1] = (tmp >> 8) & 0xff; 2495 addr[2] = (tmp >> 16) & 0xff; 2496 addr[3] = (tmp >> 24); 2497 2498 tmp = RAL_READ(sc, RT2560_CSR4); 2499 addr[4] = tmp & 0xff; 2500 addr[5] = (tmp >> 8) & 0xff; 2501 } 2502 2503 static void 2504 rt2560_update_promisc(struct rt2560_softc *sc) 2505 { 2506 struct ifnet *ifp = sc->sc_ic.ic_ifp; 2507 uint32_t tmp; 2508 2509 tmp = RAL_READ(sc, RT2560_RXCSR0); 2510 2511 tmp &= ~RT2560_DROP_NOT_TO_ME; 2512 if (!(ifp->if_flags & IFF_PROMISC)) 2513 tmp |= RT2560_DROP_NOT_TO_ME; 2514 2515 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2516 2517 DPRINTF(("%s promiscuous mode\n", (ifp->if_flags & IFF_PROMISC) ? 2518 "entering" : "leaving")); 2519 } 2520 2521 static const char * 2522 rt2560_get_rf(int rev) 2523 { 2524 switch (rev) { 2525 case RT2560_RF_2522: return "RT2522"; 2526 case RT2560_RF_2523: return "RT2523"; 2527 case RT2560_RF_2524: return "RT2524"; 2528 case RT2560_RF_2525: return "RT2525"; 2529 case RT2560_RF_2525E: return "RT2525e"; 2530 case RT2560_RF_2526: return "RT2526"; 2531 case RT2560_RF_5222: return "RT5222"; 2532 default: return "unknown"; 2533 } 2534 } 2535 2536 static void 2537 rt2560_read_eeprom(struct rt2560_softc *sc) 2538 { 2539 uint16_t val; 2540 int i; 2541 2542 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CONFIG0); 2543 sc->rf_rev = (val >> 11) & 0x7; 2544 sc->hw_radio = (val >> 10) & 0x1; 2545 sc->led_mode = (val >> 6) & 0x7; 2546 sc->rx_ant = (val >> 4) & 0x3; 2547 sc->tx_ant = (val >> 2) & 0x3; 2548 sc->nb_ant = val & 0x3; 2549 2550 /* read default values for BBP registers */ 2551 for (i = 0; i < 16; i++) { 2552 val = rt2560_eeprom_read(sc, RT2560_EEPROM_BBP_BASE + i); 2553 sc->bbp_prom[i].reg = val >> 8; 2554 sc->bbp_prom[i].val = val & 0xff; 2555 } 2556 2557 /* read Tx power for all b/g channels */ 2558 for (i = 0; i < 14 / 2; i++) { 2559 val = rt2560_eeprom_read(sc, RT2560_EEPROM_TXPOWER + i); 2560 sc->txpow[i * 2] = val >> 8; 2561 sc->txpow[i * 2 + 1] = val & 0xff; 2562 } 2563 2564 val = rt2560_eeprom_read(sc, RT2560_EEPROM_CALIBRATE); 2565 if ((val & 0xff) == 0xff) 2566 sc->rssi_corr = RT2560_DEFAULT_RSSI_CORR; 2567 else 2568 sc->rssi_corr = val & 0xff; 2569 DPRINTF(("rssi correction %d, calibrate 0x%02x\n", 2570 sc->rssi_corr, val)); 2571 } 2572 2573 2574 static void 2575 rt2560_scan_start(struct ieee80211com *ic) 2576 { 2577 struct ifnet *ifp = ic->ic_ifp; 2578 struct rt2560_softc *sc = ifp->if_softc; 2579 2580 /* abort TSF synchronization */ 2581 RAL_WRITE(sc, RT2560_CSR14, 0); 2582 rt2560_set_bssid(sc, ifp->if_broadcastaddr); 2583 } 2584 2585 static void 2586 rt2560_scan_end(struct ieee80211com *ic) 2587 { 2588 struct ifnet *ifp = ic->ic_ifp; 2589 struct rt2560_softc *sc = ifp->if_softc; 2590 2591 rt2560_enable_tsf_sync(sc); 2592 /* XXX keep local copy */ 2593 rt2560_set_bssid(sc, ic->ic_bss->ni_bssid); 2594 } 2595 2596 static int 2597 rt2560_bbp_init(struct rt2560_softc *sc) 2598 { 2599 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2600 int i, ntries; 2601 2602 /* wait for BBP to be ready */ 2603 for (ntries = 0; ntries < 100; ntries++) { 2604 if (rt2560_bbp_read(sc, RT2560_BBP_VERSION) != 0) 2605 break; 2606 DELAY(1); 2607 } 2608 if (ntries == 100) { 2609 device_printf(sc->sc_dev, "timeout waiting for BBP\n"); 2610 return EIO; 2611 } 2612 2613 /* initialize BBP registers to default values */ 2614 for (i = 0; i < N(rt2560_def_bbp); i++) { 2615 rt2560_bbp_write(sc, rt2560_def_bbp[i].reg, 2616 rt2560_def_bbp[i].val); 2617 } 2618 #if 0 2619 /* initialize BBP registers to values stored in EEPROM */ 2620 for (i = 0; i < 16; i++) { 2621 if (sc->bbp_prom[i].reg == 0xff) 2622 continue; 2623 rt2560_bbp_write(sc, sc->bbp_prom[i].reg, sc->bbp_prom[i].val); 2624 } 2625 #endif 2626 2627 return 0; 2628 #undef N 2629 } 2630 2631 static void 2632 rt2560_set_txantenna(struct rt2560_softc *sc, int antenna) 2633 { 2634 uint32_t tmp; 2635 uint8_t tx; 2636 2637 tx = rt2560_bbp_read(sc, RT2560_BBP_TX) & ~RT2560_BBP_ANTMASK; 2638 if (antenna == 1) 2639 tx |= RT2560_BBP_ANTA; 2640 else if (antenna == 2) 2641 tx |= RT2560_BBP_ANTB; 2642 else 2643 tx |= RT2560_BBP_DIVERSITY; 2644 2645 /* need to force I/Q flip for RF 2525e, 2526 and 5222 */ 2646 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526 || 2647 sc->rf_rev == RT2560_RF_5222) 2648 tx |= RT2560_BBP_FLIPIQ; 2649 2650 rt2560_bbp_write(sc, RT2560_BBP_TX, tx); 2651 2652 /* update values for CCK and OFDM in BBPCSR1 */ 2653 tmp = RAL_READ(sc, RT2560_BBPCSR1) & ~0x00070007; 2654 tmp |= (tx & 0x7) << 16 | (tx & 0x7); 2655 RAL_WRITE(sc, RT2560_BBPCSR1, tmp); 2656 } 2657 2658 static void 2659 rt2560_set_rxantenna(struct rt2560_softc *sc, int antenna) 2660 { 2661 uint8_t rx; 2662 2663 rx = rt2560_bbp_read(sc, RT2560_BBP_RX) & ~RT2560_BBP_ANTMASK; 2664 if (antenna == 1) 2665 rx |= RT2560_BBP_ANTA; 2666 else if (antenna == 2) 2667 rx |= RT2560_BBP_ANTB; 2668 else 2669 rx |= RT2560_BBP_DIVERSITY; 2670 2671 /* need to force no I/Q flip for RF 2525e and 2526 */ 2672 if (sc->rf_rev == RT2560_RF_2525E || sc->rf_rev == RT2560_RF_2526) 2673 rx &= ~RT2560_BBP_FLIPIQ; 2674 2675 rt2560_bbp_write(sc, RT2560_BBP_RX, rx); 2676 } 2677 2678 static void 2679 rt2560_init(void *priv) 2680 { 2681 #define N(a) (sizeof (a) / sizeof ((a)[0])) 2682 struct rt2560_softc *sc = priv; 2683 struct ieee80211com *ic = &sc->sc_ic; 2684 struct ifnet *ifp = ic->ic_ifp; 2685 uint32_t tmp; 2686 int i; 2687 2688 2689 2690 rt2560_stop(sc); 2691 2692 RAL_LOCK(sc); 2693 /* setup tx rings */ 2694 tmp = RT2560_PRIO_RING_COUNT << 24 | 2695 RT2560_ATIM_RING_COUNT << 16 | 2696 RT2560_TX_RING_COUNT << 8 | 2697 RT2560_TX_DESC_SIZE; 2698 2699 /* rings must be initialized in this exact order */ 2700 RAL_WRITE(sc, RT2560_TXCSR2, tmp); 2701 RAL_WRITE(sc, RT2560_TXCSR3, sc->txq.physaddr); 2702 RAL_WRITE(sc, RT2560_TXCSR5, sc->prioq.physaddr); 2703 RAL_WRITE(sc, RT2560_TXCSR4, sc->atimq.physaddr); 2704 RAL_WRITE(sc, RT2560_TXCSR6, sc->bcnq.physaddr); 2705 2706 /* setup rx ring */ 2707 tmp = RT2560_RX_RING_COUNT << 8 | RT2560_RX_DESC_SIZE; 2708 2709 RAL_WRITE(sc, RT2560_RXCSR1, tmp); 2710 RAL_WRITE(sc, RT2560_RXCSR2, sc->rxq.physaddr); 2711 2712 /* initialize MAC registers to default values */ 2713 for (i = 0; i < N(rt2560_def_mac); i++) 2714 RAL_WRITE(sc, rt2560_def_mac[i].reg, rt2560_def_mac[i].val); 2715 2716 IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp)); 2717 rt2560_set_macaddr(sc, ic->ic_myaddr); 2718 2719 /* set basic rate set (will be updated later) */ 2720 RAL_WRITE(sc, RT2560_ARSP_PLCP_1, 0x153); 2721 2722 rt2560_set_txantenna(sc, sc->tx_ant); 2723 rt2560_set_rxantenna(sc, sc->rx_ant); 2724 rt2560_update_slot(ifp); 2725 rt2560_update_plcp(sc); 2726 rt2560_update_led(sc, 0, 0); 2727 2728 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2729 RAL_WRITE(sc, RT2560_CSR1, RT2560_HOST_READY); 2730 2731 if (rt2560_bbp_init(sc) != 0) { 2732 rt2560_stop(sc); 2733 RAL_UNLOCK(sc); 2734 return; 2735 } 2736 2737 /* set default BSS channel */ 2738 rt2560_set_chan(sc, ic->ic_curchan); 2739 2740 /* kick Rx */ 2741 tmp = RT2560_DROP_PHY_ERROR | RT2560_DROP_CRC_ERROR; 2742 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2743 tmp |= RT2560_DROP_CTL | RT2560_DROP_VERSION_ERROR; 2744 if (ic->ic_opmode != IEEE80211_M_HOSTAP) 2745 tmp |= RT2560_DROP_TODS; 2746 if (!(ifp->if_flags & IFF_PROMISC)) 2747 tmp |= RT2560_DROP_NOT_TO_ME; 2748 } 2749 RAL_WRITE(sc, RT2560_RXCSR0, tmp); 2750 2751 /* clear old FCS and Rx FIFO errors */ 2752 RAL_READ(sc, RT2560_CNT0); 2753 RAL_READ(sc, RT2560_CNT4); 2754 2755 /* clear any pending interrupts */ 2756 RAL_WRITE(sc, RT2560_CSR7, 0xffffffff); 2757 2758 /* enable interrupts */ 2759 RAL_WRITE(sc, RT2560_CSR8, RT2560_INTR_MASK); 2760 2761 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2762 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2763 2764 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 2765 if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) 2766 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2767 } else 2768 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2769 2770 RAL_UNLOCK(sc); 2771 #undef N 2772 } 2773 2774 void 2775 rt2560_stop(void *arg) 2776 { 2777 struct rt2560_softc *sc = arg; 2778 struct ieee80211com *ic = &sc->sc_ic; 2779 struct ifnet *ifp = ic->ic_ifp; 2780 volatile int *flags = &sc->sc_flags; 2781 2782 while (*flags & RAL_INPUT_RUNNING) { 2783 tsleep(sc, 0, "ralrunning", hz/10); 2784 } 2785 2786 RAL_LOCK(sc); 2787 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2788 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); 2789 sc->sc_tx_timer = 0; 2790 ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); 2791 2792 /* abort Tx */ 2793 RAL_WRITE(sc, RT2560_TXCSR0, RT2560_ABORT_TX); 2794 2795 /* disable Rx */ 2796 RAL_WRITE(sc, RT2560_RXCSR0, RT2560_DISABLE_RX); 2797 2798 /* reset ASIC (imply reset BBP) */ 2799 RAL_WRITE(sc, RT2560_CSR1, RT2560_RESET_ASIC); 2800 RAL_WRITE(sc, RT2560_CSR1, 0); 2801 2802 /* disable interrupts */ 2803 RAL_WRITE(sc, RT2560_CSR8, 0xffffffff); 2804 2805 /* reset Tx and Rx rings */ 2806 rt2560_reset_tx_ring(sc, &sc->txq); 2807 rt2560_reset_tx_ring(sc, &sc->atimq); 2808 rt2560_reset_tx_ring(sc, &sc->prioq); 2809 rt2560_reset_tx_ring(sc, &sc->bcnq); 2810 rt2560_reset_rx_ring(sc, &sc->rxq); 2811 } 2812 RAL_UNLOCK(sc); 2813 } 2814 2815 static int 2816 rt2560_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 2817 const struct ieee80211_bpf_params *params) 2818 { 2819 struct ieee80211com *ic = ni->ni_ic; 2820 struct ifnet *ifp = ic->ic_ifp; 2821 struct rt2560_softc *sc = ifp->if_softc; 2822 2823 RAL_LOCK(sc); 2824 2825 /* prevent management frames from being sent if we're not ready */ 2826 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 2827 RAL_UNLOCK(sc); 2828 m_freem(m); 2829 ieee80211_free_node(ni); 2830 return ENETDOWN; 2831 } 2832 if (sc->prioq.queued >= RT2560_PRIO_RING_COUNT) { 2833 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 2834 RAL_UNLOCK(sc); 2835 m_freem(m); 2836 ieee80211_free_node(ni); 2837 return ENOBUFS; /* XXX */ 2838 } 2839 2840 if (bpf_peers_present(ic->ic_rawbpf)) 2841 bpf_mtap(ic->ic_rawbpf, m); 2842 2843 ifp->if_opackets++; 2844 2845 if (params == NULL) { 2846 /* 2847 * Legacy path; interpret frame contents to decide 2848 * precisely how to send the frame. 2849 */ 2850 if (rt2560_tx_mgt(sc, m, ni) != 0) 2851 goto bad; 2852 } else { 2853 /* 2854 * Caller supplied explicit parameters to use in 2855 * sending the frame. 2856 */ 2857 if (rt2560_tx_raw(sc, m, ni, params)) 2858 goto bad; 2859 } 2860 sc->sc_tx_timer = 5; 2861 callout_reset(&sc->watchdog_ch, hz, rt2560_watchdog, sc); 2862 2863 RAL_UNLOCK(sc); 2864 2865 return 0; 2866 bad: 2867 ifp->if_oerrors++; 2868 ieee80211_free_node(ni); 2869 RAL_UNLOCK(sc); 2870 return EIO; /* XXX */ 2871 } 2872 2873