xref: /freebsd/sys/dev/qlxge/qls_os.c (revision fee1489eb14e022d52bea01ff4399bc6d7db3015)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2013-2014 Qlogic Corporation
5  * All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright
12  *     notice, this list of conditions and the following disclaimer.
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  *  and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  *  POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 /*
31  * File: qls_os.c
32  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 
39 #include "qls_os.h"
40 #include "qls_hw.h"
41 #include "qls_def.h"
42 #include "qls_inline.h"
43 #include "qls_ver.h"
44 #include "qls_glbl.h"
45 #include "qls_dbg.h"
46 #include <sys/smp.h>
47 
48 /*
49  * Some PCI Configuration Space Related Defines
50  */
51 
52 #ifndef PCI_VENDOR_QLOGIC
53 #define PCI_VENDOR_QLOGIC	0x1077
54 #endif
55 
56 #ifndef PCI_DEVICE_QLOGIC_8000
57 #define PCI_DEVICE_QLOGIC_8000	0x8000
58 #endif
59 
60 #define PCI_QLOGIC_DEV8000 \
61 	((PCI_DEVICE_QLOGIC_8000 << 16) | PCI_VENDOR_QLOGIC)
62 
63 /*
64  * static functions
65  */
66 static int qls_alloc_parent_dma_tag(qla_host_t *ha);
67 static void qls_free_parent_dma_tag(qla_host_t *ha);
68 
69 static void qls_flush_xmt_bufs(qla_host_t *ha);
70 
71 static int qls_alloc_rcv_bufs(qla_host_t *ha);
72 static void qls_free_rcv_bufs(qla_host_t *ha);
73 
74 static void qls_init_ifnet(device_t dev, qla_host_t *ha);
75 static void qls_release(qla_host_t *ha);
76 static void qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
77 		int error);
78 static void qls_stop(qla_host_t *ha);
79 static int qls_send(qla_host_t *ha, struct mbuf **m_headp);
80 static void qls_tx_done(void *context, int pending);
81 
82 static int qls_config_lro(qla_host_t *ha);
83 static void qls_free_lro(qla_host_t *ha);
84 
85 static void qls_error_recovery(void *context, int pending);
86 
87 /*
88  * Hooks to the Operating Systems
89  */
90 static int qls_pci_probe (device_t);
91 static int qls_pci_attach (device_t);
92 static int qls_pci_detach (device_t);
93 
94 static void qls_start(struct ifnet *ifp);
95 static void qls_init(void *arg);
96 static int qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
97 static int qls_media_change(struct ifnet *ifp);
98 static void qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
99 
100 static device_method_t qla_pci_methods[] = {
101 	/* Device interface */
102 	DEVMETHOD(device_probe, qls_pci_probe),
103 	DEVMETHOD(device_attach, qls_pci_attach),
104 	DEVMETHOD(device_detach, qls_pci_detach),
105 	{ 0, 0 }
106 };
107 
108 static driver_t qla_pci_driver = {
109 	"ql", qla_pci_methods, sizeof (qla_host_t),
110 };
111 
112 static devclass_t qla8000_devclass;
113 
114 DRIVER_MODULE(qla8000, pci, qla_pci_driver, qla8000_devclass, 0, 0);
115 
116 MODULE_DEPEND(qla8000, pci, 1, 1, 1);
117 MODULE_DEPEND(qla8000, ether, 1, 1, 1);
118 
119 MALLOC_DEFINE(M_QLA8000BUF, "qla8000buf", "Buffers for qla8000 driver");
120 
121 static char dev_str[64];
122 static char ver_str[64];
123 
124 /*
125  * Name:	qls_pci_probe
126  * Function:	Validate the PCI device to be a QLA80XX device
127  */
128 static int
129 qls_pci_probe(device_t dev)
130 {
131         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
132         case PCI_QLOGIC_DEV8000:
133 		snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
134 			"Qlogic ISP 8000 PCI CNA Adapter-Ethernet Function",
135 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
136 			QLA_VERSION_BUILD);
137 		snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
138 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
139 			QLA_VERSION_BUILD);
140                 device_set_desc(dev, dev_str);
141                 break;
142         default:
143                 return (ENXIO);
144         }
145 
146         if (bootverbose)
147                 printf("%s: %s\n ", __func__, dev_str);
148 
149         return (BUS_PROBE_DEFAULT);
150 }
151 
152 static int
153 qls_sysctl_get_drvr_stats(SYSCTL_HANDLER_ARGS)
154 {
155         int err = 0, ret;
156         qla_host_t *ha;
157         uint32_t i;
158 
159         err = sysctl_handle_int(oidp, &ret, 0, req);
160 
161         if (err || !req->newptr)
162                 return (err);
163 
164         if (ret == 1) {
165 
166                 ha = (qla_host_t *)arg1;
167 
168                 for (i = 0; i < ha->num_tx_rings; i++) {
169 
170                         device_printf(ha->pci_dev,
171                                 "%s: tx_ring[%d].tx_frames= %p\n",
172 				__func__, i,
173                                 (void *)ha->tx_ring[i].tx_frames);
174 
175                         device_printf(ha->pci_dev,
176                                 "%s: tx_ring[%d].tx_tso_frames= %p\n",
177 				__func__, i,
178                                 (void *)ha->tx_ring[i].tx_tso_frames);
179 
180                         device_printf(ha->pci_dev,
181                                 "%s: tx_ring[%d].tx_vlan_frames= %p\n",
182 				__func__, i,
183                                 (void *)ha->tx_ring[i].tx_vlan_frames);
184 
185                         device_printf(ha->pci_dev,
186                                 "%s: tx_ring[%d].txr_free= 0x%08x\n",
187 				__func__, i,
188                                 ha->tx_ring[i].txr_free);
189 
190                         device_printf(ha->pci_dev,
191                                 "%s: tx_ring[%d].txr_next= 0x%08x\n",
192 				__func__, i,
193                                 ha->tx_ring[i].txr_next);
194 
195                         device_printf(ha->pci_dev,
196                                 "%s: tx_ring[%d].txr_done= 0x%08x\n",
197 				__func__, i,
198                                 ha->tx_ring[i].txr_done);
199 
200                         device_printf(ha->pci_dev,
201                                 "%s: tx_ring[%d].txr_cons_idx= 0x%08x\n",
202 				__func__, i,
203                                 *(ha->tx_ring[i].txr_cons_vaddr));
204 		}
205 
206                 for (i = 0; i < ha->num_rx_rings; i++) {
207 
208                         device_printf(ha->pci_dev,
209                                 "%s: rx_ring[%d].rx_int= %p\n",
210 				__func__, i,
211                                 (void *)ha->rx_ring[i].rx_int);
212 
213                         device_printf(ha->pci_dev,
214                                 "%s: rx_ring[%d].rss_int= %p\n",
215 				__func__, i,
216                                 (void *)ha->rx_ring[i].rss_int);
217 
218                         device_printf(ha->pci_dev,
219                                 "%s: rx_ring[%d].lbq_next= 0x%08x\n",
220 				__func__, i,
221                                 ha->rx_ring[i].lbq_next);
222 
223                         device_printf(ha->pci_dev,
224                                 "%s: rx_ring[%d].lbq_free= 0x%08x\n",
225 				__func__, i,
226                                 ha->rx_ring[i].lbq_free);
227 
228                         device_printf(ha->pci_dev,
229                                 "%s: rx_ring[%d].lbq_in= 0x%08x\n",
230 				__func__, i,
231                                 ha->rx_ring[i].lbq_in);
232 
233                         device_printf(ha->pci_dev,
234                                 "%s: rx_ring[%d].sbq_next= 0x%08x\n",
235 				__func__, i,
236                                 ha->rx_ring[i].sbq_next);
237 
238                         device_printf(ha->pci_dev,
239                                 "%s: rx_ring[%d].sbq_free= 0x%08x\n",
240 				__func__, i,
241                                 ha->rx_ring[i].sbq_free);
242 
243                         device_printf(ha->pci_dev,
244                                 "%s: rx_ring[%d].sbq_in= 0x%08x\n",
245 				__func__, i,
246                                 ha->rx_ring[i].sbq_in);
247 		}
248 
249 		device_printf(ha->pci_dev, "%s: err_m_getcl = 0x%08x\n",
250 				__func__, ha->err_m_getcl);
251 		device_printf(ha->pci_dev, "%s: err_m_getjcl = 0x%08x\n",
252 				__func__, ha->err_m_getjcl);
253 		device_printf(ha->pci_dev,
254 				"%s: err_tx_dmamap_create = 0x%08x\n",
255 				__func__, ha->err_tx_dmamap_create);
256 		device_printf(ha->pci_dev,
257 				"%s: err_tx_dmamap_load = 0x%08x\n",
258 				__func__, ha->err_tx_dmamap_load);
259 		device_printf(ha->pci_dev,
260 				"%s: err_tx_defrag = 0x%08x\n",
261 				__func__, ha->err_tx_defrag);
262         }
263         return (err);
264 }
265 
266 static void
267 qls_add_sysctls(qla_host_t *ha)
268 {
269         device_t dev = ha->pci_dev;
270 
271 	SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
272 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
273 		OID_AUTO, "version", CTLFLAG_RD,
274 		ver_str, 0, "Driver Version");
275 
276 	qls_dbg_level = 0;
277         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
278                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
279                 OID_AUTO, "debug", CTLFLAG_RW,
280                 &qls_dbg_level, qls_dbg_level, "Debug Level");
281 
282         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
283                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
284                 OID_AUTO, "drvr_stats", CTLTYPE_INT | CTLFLAG_RW,
285                 (void *)ha, 0,
286                 qls_sysctl_get_drvr_stats, "I", "Driver Maintained Statistics");
287 
288         return;
289 }
290 
291 static void
292 qls_watchdog(void *arg)
293 {
294 	qla_host_t *ha = arg;
295 	struct ifnet *ifp;
296 
297 	ifp = ha->ifp;
298 
299         if (ha->flags.qla_watchdog_exit) {
300 		ha->qla_watchdog_exited = 1;
301 		return;
302 	}
303 	ha->qla_watchdog_exited = 0;
304 
305 	if (!ha->flags.qla_watchdog_pause) {
306 
307 		if (ha->qla_initiate_recovery) {
308 
309 			ha->qla_watchdog_paused = 1;
310 			ha->qla_initiate_recovery = 0;
311 			ha->err_inject = 0;
312 			taskqueue_enqueue(ha->err_tq, &ha->err_task);
313 
314 		} else if ((ifp->if_snd.ifq_head != NULL) && QL_RUNNING(ifp)) {
315 
316 			taskqueue_enqueue(ha->tx_tq, &ha->tx_task);
317 		}
318 
319 		ha->qla_watchdog_paused = 0;
320 	} else {
321 		ha->qla_watchdog_paused = 1;
322 	}
323 
324 	ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
325 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
326 		qls_watchdog, ha);
327 
328 	return;
329 }
330 
331 /*
332  * Name:	qls_pci_attach
333  * Function:	attaches the device to the operating system
334  */
335 static int
336 qls_pci_attach(device_t dev)
337 {
338 	qla_host_t *ha = NULL;
339 	int i;
340 
341 	QL_DPRINT2((dev, "%s: enter\n", __func__));
342 
343         if ((ha = device_get_softc(dev)) == NULL) {
344                 device_printf(dev, "cannot get softc\n");
345                 return (ENOMEM);
346         }
347 
348         memset(ha, 0, sizeof (qla_host_t));
349 
350         if (pci_get_device(dev) != PCI_DEVICE_QLOGIC_8000) {
351                 device_printf(dev, "device is not QLE8000\n");
352                 return (ENXIO);
353 	}
354 
355         ha->pci_func = pci_get_function(dev);
356 
357         ha->pci_dev = dev;
358 
359 	pci_enable_busmaster(dev);
360 
361 	ha->reg_rid = PCIR_BAR(1);
362 	ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
363 				RF_ACTIVE);
364 
365         if (ha->pci_reg == NULL) {
366                 device_printf(dev, "unable to map any ports\n");
367                 goto qls_pci_attach_err;
368         }
369 
370 	ha->reg_rid1 = PCIR_BAR(3);
371 	ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
372 			&ha->reg_rid1, RF_ACTIVE);
373 
374         if (ha->pci_reg1 == NULL) {
375                 device_printf(dev, "unable to map any ports\n");
376                 goto qls_pci_attach_err;
377         }
378 
379 	mtx_init(&ha->hw_lock, "qla80xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
380 	mtx_init(&ha->tx_lock, "qla80xx_tx_lock", MTX_NETWORK_LOCK, MTX_DEF);
381 
382 	qls_add_sysctls(ha);
383 	qls_hw_add_sysctls(ha);
384 
385 	ha->flags.lock_init = 1;
386 
387 	ha->msix_count = pci_msix_count(dev);
388 
389 	if (ha->msix_count < qls_get_msix_count(ha)) {
390 		device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
391 			ha->msix_count);
392 		goto qls_pci_attach_err;
393 	}
394 
395 	ha->msix_count = qls_get_msix_count(ha);
396 
397 	device_printf(dev, "\n%s: ha %p pci_func 0x%x  msix_count 0x%x"
398 		" pci_reg %p pci_reg1 %p\n", __func__, ha,
399 		ha->pci_func, ha->msix_count, ha->pci_reg, ha->pci_reg1);
400 
401 	if (pci_alloc_msix(dev, &ha->msix_count)) {
402 		device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
403 			ha->msix_count);
404 		ha->msix_count = 0;
405 		goto qls_pci_attach_err;
406 	}
407 
408         for (i = 0; i < ha->num_rx_rings; i++) {
409                 ha->irq_vec[i].cq_idx = i;
410                 ha->irq_vec[i].ha = ha;
411                 ha->irq_vec[i].irq_rid = 1 + i;
412 
413                 ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
414                                 &ha->irq_vec[i].irq_rid,
415                                 (RF_ACTIVE | RF_SHAREABLE));
416 
417                 if (ha->irq_vec[i].irq == NULL) {
418                         device_printf(dev, "could not allocate interrupt\n");
419                         goto qls_pci_attach_err;
420                 }
421 
422 		if (bus_setup_intr(dev, ha->irq_vec[i].irq,
423 			(INTR_TYPE_NET | INTR_MPSAFE), NULL, qls_isr,
424 			&ha->irq_vec[i], &ha->irq_vec[i].handle)) {
425 				device_printf(dev,
426 					"could not setup interrupt\n");
427 			goto qls_pci_attach_err;
428 		}
429         }
430 
431 	qls_rd_nic_params(ha);
432 
433 	/* allocate parent dma tag */
434 	if (qls_alloc_parent_dma_tag(ha)) {
435 		device_printf(dev, "%s: qls_alloc_parent_dma_tag failed\n",
436 			__func__);
437 		goto qls_pci_attach_err;
438 	}
439 
440 	/* alloc all dma buffers */
441 	if (qls_alloc_dma(ha)) {
442 		device_printf(dev, "%s: qls_alloc_dma failed\n", __func__);
443 		goto qls_pci_attach_err;
444 	}
445 
446 	/* create the o.s ethernet interface */
447 	qls_init_ifnet(dev, ha);
448 
449 	ha->flags.qla_watchdog_active = 1;
450 	ha->flags.qla_watchdog_pause = 1;
451 
452 	TASK_INIT(&ha->tx_task, 0, qls_tx_done, ha);
453 	ha->tx_tq = taskqueue_create_fast("qla_txq", M_NOWAIT,
454 			taskqueue_thread_enqueue, &ha->tx_tq);
455 	taskqueue_start_threads(&ha->tx_tq, 1, PI_NET, "%s txq",
456 		device_get_nameunit(ha->pci_dev));
457 
458 	callout_init(&ha->tx_callout, 1);
459 	ha->flags.qla_callout_init = 1;
460 
461         /* create ioctl device interface */
462         if (qls_make_cdev(ha)) {
463                 device_printf(dev, "%s: qls_make_cdev failed\n", __func__);
464                 goto qls_pci_attach_err;
465         }
466 
467 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
468 		qls_watchdog, ha);
469 
470         TASK_INIT(&ha->err_task, 0, qls_error_recovery, ha);
471         ha->err_tq = taskqueue_create_fast("qla_errq", M_NOWAIT,
472                         taskqueue_thread_enqueue, &ha->err_tq);
473         taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
474                 device_get_nameunit(ha->pci_dev));
475 
476 	QL_DPRINT2((dev, "%s: exit 0\n", __func__));
477         return (0);
478 
479 qls_pci_attach_err:
480 
481 	qls_release(ha);
482 
483 	QL_DPRINT2((dev, "%s: exit ENXIO\n", __func__));
484         return (ENXIO);
485 }
486 
487 /*
488  * Name:	qls_pci_detach
489  * Function:	Unhooks the device from the operating system
490  */
491 static int
492 qls_pci_detach(device_t dev)
493 {
494 	qla_host_t *ha = NULL;
495 	struct ifnet *ifp;
496 
497 	QL_DPRINT2((dev, "%s: enter\n", __func__));
498 
499         if ((ha = device_get_softc(dev)) == NULL) {
500                 device_printf(dev, "cannot get softc\n");
501                 return (ENOMEM);
502         }
503 
504 	ifp = ha->ifp;
505 
506 	(void)QLA_LOCK(ha, __func__, 0);
507 	qls_stop(ha);
508 	QLA_UNLOCK(ha, __func__);
509 
510 	qls_release(ha);
511 
512 	QL_DPRINT2((dev, "%s: exit\n", __func__));
513 
514         return (0);
515 }
516 
517 /*
518  * Name:	qls_release
519  * Function:	Releases the resources allocated for the device
520  */
521 static void
522 qls_release(qla_host_t *ha)
523 {
524 	device_t dev;
525 	int i;
526 
527 	dev = ha->pci_dev;
528 
529 	if (ha->err_tq) {
530 		taskqueue_drain(ha->err_tq, &ha->err_task);
531 		taskqueue_free(ha->err_tq);
532 	}
533 
534 	if (ha->tx_tq) {
535 		taskqueue_drain(ha->tx_tq, &ha->tx_task);
536 		taskqueue_free(ha->tx_tq);
537 	}
538 
539 	qls_del_cdev(ha);
540 
541 	if (ha->flags.qla_watchdog_active) {
542 		ha->flags.qla_watchdog_exit = 1;
543 
544 		while (ha->qla_watchdog_exited == 0)
545 			qls_mdelay(__func__, 1);
546 	}
547 
548 	if (ha->flags.qla_callout_init)
549 		callout_stop(&ha->tx_callout);
550 
551 	if (ha->ifp != NULL)
552 		ether_ifdetach(ha->ifp);
553 
554 	qls_free_dma(ha);
555 	qls_free_parent_dma_tag(ha);
556 
557         for (i = 0; i < ha->num_rx_rings; i++) {
558 
559                 if (ha->irq_vec[i].handle) {
560                         (void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
561                                         ha->irq_vec[i].handle);
562                 }
563 
564                 if (ha->irq_vec[i].irq) {
565                         (void)bus_release_resource(dev, SYS_RES_IRQ,
566                                 ha->irq_vec[i].irq_rid,
567                                 ha->irq_vec[i].irq);
568                 }
569         }
570 
571 	if (ha->msix_count)
572 		pci_release_msi(dev);
573 
574 	if (ha->flags.lock_init) {
575 		mtx_destroy(&ha->tx_lock);
576 		mtx_destroy(&ha->hw_lock);
577 	}
578 
579         if (ha->pci_reg)
580                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
581 				ha->pci_reg);
582 
583         if (ha->pci_reg1)
584                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
585 				ha->pci_reg1);
586 }
587 
588 /*
589  * DMA Related Functions
590  */
591 
592 static void
593 qls_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
594 {
595         *((bus_addr_t *)arg) = 0;
596 
597         if (error) {
598                 printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
599                 return;
600 	}
601 
602         *((bus_addr_t *)arg) = segs[0].ds_addr;
603 
604 	return;
605 }
606 
607 int
608 qls_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
609 {
610         int             ret = 0;
611         device_t        dev;
612         bus_addr_t      b_addr;
613 
614         dev = ha->pci_dev;
615 
616         QL_DPRINT2((dev, "%s: enter\n", __func__));
617 
618         ret = bus_dma_tag_create(
619                         ha->parent_tag,/* parent */
620                         dma_buf->alignment,
621                         ((bus_size_t)(1ULL << 32)),/* boundary */
622                         BUS_SPACE_MAXADDR,      /* lowaddr */
623                         BUS_SPACE_MAXADDR,      /* highaddr */
624                         NULL, NULL,             /* filter, filterarg */
625                         dma_buf->size,          /* maxsize */
626                         1,                      /* nsegments */
627                         dma_buf->size,          /* maxsegsize */
628                         0,                      /* flags */
629                         NULL, NULL,             /* lockfunc, lockarg */
630                         &dma_buf->dma_tag);
631 
632         if (ret) {
633                 device_printf(dev, "%s: could not create dma tag\n", __func__);
634                 goto qls_alloc_dmabuf_exit;
635         }
636         ret = bus_dmamem_alloc(dma_buf->dma_tag,
637                         (void **)&dma_buf->dma_b,
638                         (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
639                         &dma_buf->dma_map);
640         if (ret) {
641                 bus_dma_tag_destroy(dma_buf->dma_tag);
642                 device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
643                 goto qls_alloc_dmabuf_exit;
644         }
645 
646         ret = bus_dmamap_load(dma_buf->dma_tag,
647                         dma_buf->dma_map,
648                         dma_buf->dma_b,
649                         dma_buf->size,
650                         qls_dmamap_callback,
651                         &b_addr, BUS_DMA_NOWAIT);
652 
653         if (ret || !b_addr) {
654                 bus_dma_tag_destroy(dma_buf->dma_tag);
655                 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
656                         dma_buf->dma_map);
657                 ret = -1;
658                 goto qls_alloc_dmabuf_exit;
659         }
660 
661         dma_buf->dma_addr = b_addr;
662 
663 qls_alloc_dmabuf_exit:
664         QL_DPRINT2((dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
665                 __func__, ret, (void *)dma_buf->dma_tag,
666                 (void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
667 		dma_buf->size));
668 
669         return ret;
670 }
671 
672 void
673 qls_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
674 {
675         bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
676         bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
677         bus_dma_tag_destroy(dma_buf->dma_tag);
678 }
679 
680 static int
681 qls_alloc_parent_dma_tag(qla_host_t *ha)
682 {
683 	int		ret;
684 	device_t	dev;
685 
686 	dev = ha->pci_dev;
687 
688         /*
689          * Allocate parent DMA Tag
690          */
691         ret = bus_dma_tag_create(
692                         bus_get_dma_tag(dev),   /* parent */
693                         1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
694                         BUS_SPACE_MAXADDR,      /* lowaddr */
695                         BUS_SPACE_MAXADDR,      /* highaddr */
696                         NULL, NULL,             /* filter, filterarg */
697                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
698                         0,                      /* nsegments */
699                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
700                         0,                      /* flags */
701                         NULL, NULL,             /* lockfunc, lockarg */
702                         &ha->parent_tag);
703 
704         if (ret) {
705                 device_printf(dev, "%s: could not create parent dma tag\n",
706                         __func__);
707 		return (-1);
708         }
709 
710         ha->flags.parent_tag = 1;
711 
712 	return (0);
713 }
714 
715 static void
716 qls_free_parent_dma_tag(qla_host_t *ha)
717 {
718         if (ha->flags.parent_tag) {
719                 bus_dma_tag_destroy(ha->parent_tag);
720                 ha->flags.parent_tag = 0;
721         }
722 }
723 
724 /*
725  * Name: qls_init_ifnet
726  * Function: Creates the Network Device Interface and Registers it with the O.S
727  */
728 
729 static void
730 qls_init_ifnet(device_t dev, qla_host_t *ha)
731 {
732 	struct ifnet *ifp;
733 
734 	QL_DPRINT2((dev, "%s: enter\n", __func__));
735 
736 	ifp = ha->ifp = if_alloc(IFT_ETHER);
737 
738 	if (ifp == NULL)
739 		panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
740 
741 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
742 	ifp->if_baudrate = IF_Gbps(10);
743 	ifp->if_init = qls_init;
744 	ifp->if_softc = ha;
745 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
746 	ifp->if_ioctl = qls_ioctl;
747 	ifp->if_start = qls_start;
748 
749 	IFQ_SET_MAXLEN(&ifp->if_snd, qls_get_ifq_snd_maxlen(ha));
750 	ifp->if_snd.ifq_drv_maxlen = qls_get_ifq_snd_maxlen(ha);
751 	IFQ_SET_READY(&ifp->if_snd);
752 
753 	ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
754 	if (ha->max_frame_size <= MCLBYTES) {
755 		ha->msize = MCLBYTES;
756 	} else if (ha->max_frame_size <= MJUMPAGESIZE) {
757 		ha->msize = MJUMPAGESIZE;
758 	} else
759 		ha->msize = MJUM9BYTES;
760 
761 	ether_ifattach(ifp, qls_get_mac_addr(ha));
762 
763 	ifp->if_capabilities = IFCAP_JUMBO_MTU;
764 
765 	ifp->if_capabilities |= IFCAP_HWCSUM;
766 	ifp->if_capabilities |= IFCAP_VLAN_MTU;
767 
768 	ifp->if_capabilities |= IFCAP_TSO4;
769 	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
770 	ifp->if_capabilities |= IFCAP_VLAN_HWTSO;
771 	ifp->if_capabilities |= IFCAP_LINKSTATE;
772 
773 	ifp->if_capenable = ifp->if_capabilities;
774 
775 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
776 
777 	ifmedia_init(&ha->media, IFM_IMASK, qls_media_change, qls_media_status);
778 
779 	ifmedia_add(&ha->media, (IFM_ETHER | qls_get_optics(ha) | IFM_FDX), 0,
780 		NULL);
781 	ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
782 
783 	ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
784 
785 	QL_DPRINT2((dev, "%s: exit\n", __func__));
786 
787 	return;
788 }
789 
790 static void
791 qls_init_locked(qla_host_t *ha)
792 {
793 	struct ifnet *ifp = ha->ifp;
794 
795 	qls_stop(ha);
796 
797 	qls_flush_xmt_bufs(ha);
798 
799 	if (qls_alloc_rcv_bufs(ha) != 0)
800 		return;
801 
802 	if (qls_config_lro(ha))
803 		return;
804 
805 	bcopy(IF_LLADDR(ha->ifp), ha->mac_addr, ETHER_ADDR_LEN);
806 
807 	ifp->if_hwassist = CSUM_IP;
808 	ifp->if_hwassist |= CSUM_TCP;
809 	ifp->if_hwassist |= CSUM_UDP;
810 	ifp->if_hwassist |= CSUM_TSO;
811 
812  	if (qls_init_hw_if(ha) == 0) {
813 		ifp = ha->ifp;
814 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
815 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
816 		ha->flags.qla_watchdog_pause = 0;
817 	}
818 
819 	return;
820 }
821 
822 static void
823 qls_init(void *arg)
824 {
825 	qla_host_t *ha;
826 
827 	ha = (qla_host_t *)arg;
828 
829 	QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
830 
831 	(void)QLA_LOCK(ha, __func__, 0);
832 	qls_init_locked(ha);
833 	QLA_UNLOCK(ha, __func__);
834 
835 	QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
836 }
837 
838 static void
839 qls_set_multi(qla_host_t *ha, uint32_t add_multi)
840 {
841 	uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
842 	struct ifmultiaddr *ifma;
843 	int mcnt = 0;
844 	struct ifnet *ifp = ha->ifp;
845 
846 	if_maddr_rlock(ifp);
847 
848 	CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
849 
850 		if (ifma->ifma_addr->sa_family != AF_LINK)
851 			continue;
852 
853 		if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
854 			break;
855 
856 		bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
857 			&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
858 
859 		mcnt++;
860 	}
861 
862 	if_maddr_runlock(ifp);
863 
864 	if (QLA_LOCK(ha, __func__, 1) == 0) {
865 		qls_hw_set_multi(ha, mta, mcnt, add_multi);
866 		QLA_UNLOCK(ha, __func__);
867 	}
868 
869 	return;
870 }
871 
872 static int
873 qls_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
874 {
875 	int ret = 0;
876 	struct ifreq *ifr = (struct ifreq *)data;
877 	struct ifaddr *ifa = (struct ifaddr *)data;
878 	qla_host_t *ha;
879 
880 	ha = (qla_host_t *)ifp->if_softc;
881 
882 	switch (cmd) {
883 	case SIOCSIFADDR:
884 		QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
885 			__func__, cmd));
886 
887 		if (ifa->ifa_addr->sa_family == AF_INET) {
888 			ifp->if_flags |= IFF_UP;
889 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
890 				(void)QLA_LOCK(ha, __func__, 0);
891 				qls_init_locked(ha);
892 				QLA_UNLOCK(ha, __func__);
893 			}
894 			QL_DPRINT4((ha->pci_dev,
895 				"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
896 				__func__, cmd,
897 				ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
898 
899 			arp_ifinit(ifp, ifa);
900 		} else {
901 			ether_ioctl(ifp, cmd, data);
902 		}
903 		break;
904 
905 	case SIOCSIFMTU:
906 		QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
907 			__func__, cmd));
908 
909 		if (ifr->ifr_mtu > QLA_MAX_MTU) {
910 			ret = EINVAL;
911 		} else {
912 			(void) QLA_LOCK(ha, __func__, 0);
913 
914 			ifp->if_mtu = ifr->ifr_mtu;
915 			ha->max_frame_size =
916 				ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
917 
918 			QLA_UNLOCK(ha, __func__);
919 
920 			if (ret)
921 				ret = EINVAL;
922 		}
923 
924 		break;
925 
926 	case SIOCSIFFLAGS:
927 		QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
928 			__func__, cmd));
929 
930 		(void)QLA_LOCK(ha, __func__, 0);
931 
932 		if (ifp->if_flags & IFF_UP) {
933 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
934 				if ((ifp->if_flags ^ ha->if_flags) &
935 					IFF_PROMISC) {
936 					ret = qls_set_promisc(ha);
937 				} else if ((ifp->if_flags ^ ha->if_flags) &
938 					IFF_ALLMULTI) {
939 					ret = qls_set_allmulti(ha);
940 				}
941 			} else {
942 				ha->max_frame_size = ifp->if_mtu +
943 					ETHER_HDR_LEN + ETHER_CRC_LEN;
944 				qls_init_locked(ha);
945 			}
946 		} else {
947 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
948 				qls_stop(ha);
949 			ha->if_flags = ifp->if_flags;
950 		}
951 
952 		QLA_UNLOCK(ha, __func__);
953 		break;
954 
955 	case SIOCADDMULTI:
956 		QL_DPRINT4((ha->pci_dev,
957 			"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
958 
959 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
960 			qls_set_multi(ha, 1);
961 		}
962 		break;
963 
964 	case SIOCDELMULTI:
965 		QL_DPRINT4((ha->pci_dev,
966 			"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
967 
968 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
969 			qls_set_multi(ha, 0);
970 		}
971 		break;
972 
973 	case SIOCSIFMEDIA:
974 	case SIOCGIFMEDIA:
975 		QL_DPRINT4((ha->pci_dev,
976 			"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
977 			__func__, cmd));
978 		ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
979 		break;
980 
981 	case SIOCSIFCAP:
982 	{
983 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
984 
985 		QL_DPRINT4((ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
986 			__func__, cmd));
987 
988 		if (mask & IFCAP_HWCSUM)
989 			ifp->if_capenable ^= IFCAP_HWCSUM;
990 		if (mask & IFCAP_TSO4)
991 			ifp->if_capenable ^= IFCAP_TSO4;
992 		if (mask & IFCAP_VLAN_HWTAGGING)
993 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
994 		if (mask & IFCAP_VLAN_HWTSO)
995 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
996 
997 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
998 			qls_init(ha);
999 
1000 		VLAN_CAPABILITIES(ifp);
1001 		break;
1002 	}
1003 
1004 	default:
1005 		QL_DPRINT4((ha->pci_dev, "%s: default (0x%lx)\n",
1006 			__func__, cmd));
1007 		ret = ether_ioctl(ifp, cmd, data);
1008 		break;
1009 	}
1010 
1011 	return (ret);
1012 }
1013 
1014 static int
1015 qls_media_change(struct ifnet *ifp)
1016 {
1017 	qla_host_t *ha;
1018 	struct ifmedia *ifm;
1019 	int ret = 0;
1020 
1021 	ha = (qla_host_t *)ifp->if_softc;
1022 
1023 	QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1024 
1025 	ifm = &ha->media;
1026 
1027 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1028 		ret = EINVAL;
1029 
1030 	QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
1031 
1032 	return (ret);
1033 }
1034 
1035 static void
1036 qls_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1037 {
1038 	qla_host_t *ha;
1039 
1040 	ha = (qla_host_t *)ifp->if_softc;
1041 
1042 	QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1043 
1044 	ifmr->ifm_status = IFM_AVALID;
1045 	ifmr->ifm_active = IFM_ETHER;
1046 
1047 	qls_update_link_state(ha);
1048 	if (ha->link_up) {
1049 		ifmr->ifm_status |= IFM_ACTIVE;
1050 		ifmr->ifm_active |= (IFM_FDX | qls_get_optics(ha));
1051 	}
1052 
1053 	QL_DPRINT2((ha->pci_dev, "%s: exit (%s)\n", __func__,\
1054 		(ha->link_up ? "link_up" : "link_down")));
1055 
1056 	return;
1057 }
1058 
1059 static void
1060 qls_start(struct ifnet *ifp)
1061 {
1062 	int		i, ret = 0;
1063 	struct mbuf	*m_head;
1064 	qla_host_t	*ha = (qla_host_t *)ifp->if_softc;
1065 
1066 	QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
1067 
1068 	if (!mtx_trylock(&ha->tx_lock)) {
1069 		QL_DPRINT8((ha->pci_dev,
1070 			"%s: mtx_trylock(&ha->tx_lock) failed\n", __func__));
1071 		return;
1072 	}
1073 
1074 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) ==
1075 		IFF_DRV_RUNNING) {
1076 
1077 		for (i = 0; i < ha->num_tx_rings; i++) {
1078 			ret |= qls_hw_tx_done(ha, i);
1079 		}
1080 
1081 		if (ret == 0)
1082 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1083 	}
1084 
1085 	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1086 		IFF_DRV_RUNNING) {
1087 		QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
1088 		QLA_TX_UNLOCK(ha);
1089 		return;
1090 	}
1091 
1092 	if (!ha->link_up) {
1093 		qls_update_link_state(ha);
1094 		if (!ha->link_up) {
1095 			QL_DPRINT8((ha->pci_dev, "%s: link down\n", __func__));
1096 			QLA_TX_UNLOCK(ha);
1097 			return;
1098 		}
1099 	}
1100 
1101 	while (ifp->if_snd.ifq_head != NULL) {
1102 
1103 		IF_DEQUEUE(&ifp->if_snd, m_head);
1104 
1105 		if (m_head == NULL) {
1106 			QL_DPRINT8((ha->pci_dev, "%s: m_head == NULL\n",
1107 				__func__));
1108 			break;
1109 		}
1110 
1111 		if (qls_send(ha, &m_head)) {
1112 			if (m_head == NULL)
1113 				break;
1114 			QL_DPRINT8((ha->pci_dev, "%s: PREPEND\n", __func__));
1115 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1116 			IF_PREPEND(&ifp->if_snd, m_head);
1117 			break;
1118 		}
1119 		/* Send a copy of the frame to the BPF listener */
1120 		ETHER_BPF_MTAP(ifp, m_head);
1121 	}
1122 
1123 	QLA_TX_UNLOCK(ha);
1124 	QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
1125 	return;
1126 }
1127 
1128 static int
1129 qls_send(qla_host_t *ha, struct mbuf **m_headp)
1130 {
1131 	bus_dma_segment_t	segs[QLA_MAX_SEGMENTS];
1132 	bus_dmamap_t		map;
1133 	int			nsegs;
1134 	int			ret = -1;
1135 	uint32_t		tx_idx;
1136 	struct mbuf		*m_head = *m_headp;
1137 	uint32_t		txr_idx = 0;
1138 
1139 	QL_DPRINT8((ha->pci_dev, "%s: enter\n", __func__));
1140 
1141 	/* check if flowid is set */
1142 	if (M_HASHTYPE_GET(m_head) != M_HASHTYPE_NONE)
1143 		txr_idx = m_head->m_pkthdr.flowid & (ha->num_tx_rings - 1);
1144 
1145 	tx_idx = ha->tx_ring[txr_idx].txr_next;
1146 
1147 	map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
1148 
1149 	ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
1150 			BUS_DMA_NOWAIT);
1151 
1152 	if (ret == EFBIG) {
1153 
1154 		struct mbuf *m;
1155 
1156 		QL_DPRINT8((ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
1157 			m_head->m_pkthdr.len));
1158 
1159 		m = m_defrag(m_head, M_NOWAIT);
1160 		if (m == NULL) {
1161 			ha->err_tx_defrag++;
1162 			m_freem(m_head);
1163 			*m_headp = NULL;
1164 			device_printf(ha->pci_dev,
1165 				"%s: m_defrag() = NULL [%d]\n",
1166 				__func__, ret);
1167 			return (ENOBUFS);
1168 		}
1169 		m_head = m;
1170 		*m_headp = m_head;
1171 
1172 		if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
1173 					segs, &nsegs, BUS_DMA_NOWAIT))) {
1174 
1175 			ha->err_tx_dmamap_load++;
1176 
1177 			device_printf(ha->pci_dev,
1178 				"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
1179 				__func__, ret, m_head->m_pkthdr.len);
1180 
1181 			if (ret != ENOMEM) {
1182 				m_freem(m_head);
1183 				*m_headp = NULL;
1184 			}
1185 			return (ret);
1186 		}
1187 
1188 	} else if (ret) {
1189 
1190 		ha->err_tx_dmamap_load++;
1191 
1192 		device_printf(ha->pci_dev,
1193 			"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
1194 			__func__, ret, m_head->m_pkthdr.len);
1195 
1196 		if (ret != ENOMEM) {
1197 			m_freem(m_head);
1198 			*m_headp = NULL;
1199 		}
1200 		return (ret);
1201 	}
1202 
1203 	QL_ASSERT(ha, (nsegs != 0), ("qls_send: empty packet"));
1204 
1205 	bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
1206 
1207         if (!(ret = qls_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx))) {
1208 
1209 		ha->tx_ring[txr_idx].count++;
1210 		ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
1211 		ha->tx_ring[txr_idx].tx_buf[tx_idx].map = map;
1212 	} else {
1213 		if (ret == EINVAL) {
1214 			if (m_head)
1215 				m_freem(m_head);
1216 			*m_headp = NULL;
1217 		}
1218 	}
1219 
1220 	QL_DPRINT8((ha->pci_dev, "%s: exit\n", __func__));
1221 	return (ret);
1222 }
1223 
1224 static void
1225 qls_stop(qla_host_t *ha)
1226 {
1227 	struct ifnet *ifp = ha->ifp;
1228 	device_t	dev;
1229 
1230 	dev = ha->pci_dev;
1231 
1232 	ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1233 
1234 	ha->flags.qla_watchdog_pause = 1;
1235 
1236 	while (!ha->qla_watchdog_paused)
1237 		qls_mdelay(__func__, 1);
1238 
1239 	qls_del_hw_if(ha);
1240 
1241 	qls_free_lro(ha);
1242 
1243 	qls_flush_xmt_bufs(ha);
1244 	qls_free_rcv_bufs(ha);
1245 
1246 	return;
1247 }
1248 
1249 /*
1250  * Buffer Management Functions for Transmit and Receive Rings
1251  */
1252 /*
1253  * Release mbuf after it sent on the wire
1254  */
1255 static void
1256 qls_flush_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
1257 {
1258 	QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1259 
1260 	if (txb->m_head) {
1261 
1262 		bus_dmamap_unload(ha->tx_tag, txb->map);
1263 
1264 		m_freem(txb->m_head);
1265 		txb->m_head = NULL;
1266 	}
1267 
1268 	QL_DPRINT2((ha->pci_dev, "%s: exit\n", __func__));
1269 }
1270 
1271 static void
1272 qls_flush_xmt_bufs(qla_host_t *ha)
1273 {
1274 	int		i, j;
1275 
1276 	for (j = 0; j < ha->num_tx_rings; j++) {
1277 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
1278 			qls_flush_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
1279 	}
1280 
1281 	return;
1282 }
1283 
1284 
1285 static int
1286 qls_alloc_rcv_mbufs(qla_host_t *ha, int r)
1287 {
1288 	int			i, j, ret = 0;
1289 	qla_rx_buf_t		*rxb;
1290 	qla_rx_ring_t		*rx_ring;
1291 	volatile q81_bq_addr_e_t *sbq_e;
1292 
1293 
1294 	rx_ring = &ha->rx_ring[r];
1295 
1296 	for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1297 
1298 		rxb = &rx_ring->rx_buf[i];
1299 
1300 		ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT, &rxb->map);
1301 
1302 		if (ret) {
1303 			device_printf(ha->pci_dev,
1304 				"%s: dmamap[%d, %d] failed\n", __func__, r, i);
1305 
1306 			for (j = 0; j < i; j++) {
1307 				rxb = &rx_ring->rx_buf[j];
1308 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1309 			}
1310 			goto qls_alloc_rcv_mbufs_err;
1311 		}
1312 	}
1313 
1314 	rx_ring = &ha->rx_ring[r];
1315 
1316 	sbq_e = rx_ring->sbq_vaddr;
1317 
1318 	rxb = &rx_ring->rx_buf[0];
1319 
1320 	for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1321 
1322 		if (!(ret = qls_get_mbuf(ha, rxb, NULL))) {
1323 
1324 			/*
1325 		 	 * set the physical address in the
1326 			 * corresponding descriptor entry in the
1327 			 * receive ring/queue for the hba
1328 			 */
1329 
1330 			sbq_e->addr_lo = rxb->paddr & 0xFFFFFFFF;
1331 			sbq_e->addr_hi = (rxb->paddr >> 32) & 0xFFFFFFFF;
1332 
1333 		} else {
1334 			device_printf(ha->pci_dev,
1335 				"%s: qls_get_mbuf [%d, %d] failed\n",
1336 					__func__, r, i);
1337 			bus_dmamap_destroy(ha->rx_tag, rxb->map);
1338 			goto qls_alloc_rcv_mbufs_err;
1339 		}
1340 
1341 		rxb++;
1342 		sbq_e++;
1343 	}
1344 	return 0;
1345 
1346 qls_alloc_rcv_mbufs_err:
1347 	return (-1);
1348 }
1349 
1350 static void
1351 qls_free_rcv_bufs(qla_host_t *ha)
1352 {
1353 	int		i, r;
1354 	qla_rx_buf_t	*rxb;
1355 	qla_rx_ring_t	*rxr;
1356 
1357 	for (r = 0; r < ha->num_rx_rings; r++) {
1358 
1359 		rxr = &ha->rx_ring[r];
1360 
1361 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1362 
1363 			rxb = &rxr->rx_buf[i];
1364 
1365 			if (rxb->m_head != NULL) {
1366 				bus_dmamap_unload(ha->rx_tag, rxb->map);
1367 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1368 				m_freem(rxb->m_head);
1369 			}
1370 		}
1371 		bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
1372 	}
1373 	return;
1374 }
1375 
1376 static int
1377 qls_alloc_rcv_bufs(qla_host_t *ha)
1378 {
1379 	int		r, ret = 0;
1380 	qla_rx_ring_t	*rxr;
1381 
1382 	for (r = 0; r < ha->num_rx_rings; r++) {
1383 		rxr = &ha->rx_ring[r];
1384 		bzero(rxr->rx_buf, (sizeof(qla_rx_buf_t) * NUM_RX_DESCRIPTORS));
1385 	}
1386 
1387 	for (r = 0; r < ha->num_rx_rings; r++) {
1388 
1389 		ret = qls_alloc_rcv_mbufs(ha, r);
1390 
1391 		if (ret)
1392 			qls_free_rcv_bufs(ha);
1393 	}
1394 
1395 	return (ret);
1396 }
1397 
1398 int
1399 qls_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
1400 {
1401 	struct mbuf *mp = nmp;
1402 	struct ifnet   		*ifp;
1403 	int            		ret = 0;
1404 	uint32_t		offset;
1405 	bus_dma_segment_t	segs[1];
1406 	int			nsegs;
1407 
1408 	QL_DPRINT2((ha->pci_dev, "%s: enter\n", __func__));
1409 
1410 	ifp = ha->ifp;
1411 
1412 	if (mp == NULL) {
1413 
1414 		mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, ha->msize);
1415 
1416 		if (mp == NULL) {
1417 
1418 			if (ha->msize == MCLBYTES)
1419 				ha->err_m_getcl++;
1420 			else
1421 				ha->err_m_getjcl++;
1422 
1423 			ret = ENOBUFS;
1424 			device_printf(ha->pci_dev,
1425 					"%s: m_getcl failed\n", __func__);
1426 			goto exit_qls_get_mbuf;
1427 		}
1428 		mp->m_len = mp->m_pkthdr.len = ha->msize;
1429 	} else {
1430 		mp->m_len = mp->m_pkthdr.len = ha->msize;
1431 		mp->m_data = mp->m_ext.ext_buf;
1432 		mp->m_next = NULL;
1433 	}
1434 
1435 	/* align the receive buffers to 8 byte boundary */
1436 	offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
1437 	if (offset) {
1438 		offset = 8 - offset;
1439 		m_adj(mp, offset);
1440 	}
1441 
1442 	/*
1443 	 * Using memory from the mbuf cluster pool, invoke the bus_dma
1444 	 * machinery to arrange the memory mapping.
1445 	 */
1446 	ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
1447 			mp, segs, &nsegs, BUS_DMA_NOWAIT);
1448 	rxb->paddr = segs[0].ds_addr;
1449 
1450 	if (ret || !rxb->paddr || (nsegs != 1)) {
1451 		m_freem(mp);
1452 		rxb->m_head = NULL;
1453 		device_printf(ha->pci_dev,
1454 			"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
1455 			__func__, ret, (long long unsigned int)rxb->paddr,
1456 			nsegs);
1457                 ret = -1;
1458 		goto exit_qls_get_mbuf;
1459 	}
1460 	rxb->m_head = mp;
1461 	bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
1462 
1463 exit_qls_get_mbuf:
1464 	QL_DPRINT2((ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
1465 	return (ret);
1466 }
1467 
1468 static void
1469 qls_tx_done(void *context, int pending)
1470 {
1471 	qla_host_t *ha = context;
1472 	struct ifnet   *ifp;
1473 
1474 	ifp = ha->ifp;
1475 
1476 	if (!ifp)
1477 		return;
1478 
1479 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1480 		QL_DPRINT8((ha->pci_dev, "%s: !IFF_DRV_RUNNING\n", __func__));
1481 		return;
1482 	}
1483 
1484 	qls_start(ha->ifp);
1485 	return;
1486 }
1487 
1488 static int
1489 qls_config_lro(qla_host_t *ha)
1490 {
1491         int i;
1492         struct lro_ctrl *lro;
1493 
1494         for (i = 0; i < ha->num_rx_rings; i++) {
1495                 lro = &ha->rx_ring[i].lro;
1496                 if (tcp_lro_init(lro)) {
1497                         device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1498                                 __func__);
1499                         return (-1);
1500                 }
1501                 lro->ifp = ha->ifp;
1502         }
1503         ha->flags.lro_init = 1;
1504 
1505         QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1506         return (0);
1507 }
1508 
1509 static void
1510 qls_free_lro(qla_host_t *ha)
1511 {
1512         int i;
1513         struct lro_ctrl *lro;
1514 
1515         if (!ha->flags.lro_init)
1516                 return;
1517 
1518         for (i = 0; i < ha->num_rx_rings; i++) {
1519                 lro = &ha->rx_ring[i].lro;
1520                 tcp_lro_free(lro);
1521         }
1522         ha->flags.lro_init = 0;
1523 }
1524 
1525 static void
1526 qls_error_recovery(void *context, int pending)
1527 {
1528         qla_host_t *ha = context;
1529 
1530 	qls_init(ha);
1531 
1532 	return;
1533 }
1534 
1535