xref: /freebsd/sys/dev/qlxgbe/ql_os.c (revision e3514747256465c52c3b2aedc9795f52c0d3efe9)
1 /*
2  * Copyright (c) 2013-2016 Qlogic Corporation
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File: ql_os.c
30  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 
37 #include "ql_os.h"
38 #include "ql_hw.h"
39 #include "ql_def.h"
40 #include "ql_inline.h"
41 #include "ql_ver.h"
42 #include "ql_glbl.h"
43 #include "ql_dbg.h"
44 #include <sys/smp.h>
45 
46 /*
47  * Some PCI Configuration Space Related Defines
48  */
49 
50 #ifndef PCI_VENDOR_QLOGIC
51 #define PCI_VENDOR_QLOGIC	0x1077
52 #endif
53 
54 #ifndef PCI_PRODUCT_QLOGIC_ISP8030
55 #define PCI_PRODUCT_QLOGIC_ISP8030	0x8030
56 #endif
57 
58 #define PCI_QLOGIC_ISP8030 \
59 	((PCI_PRODUCT_QLOGIC_ISP8030 << 16) | PCI_VENDOR_QLOGIC)
60 
61 /*
62  * static functions
63  */
64 static int qla_alloc_parent_dma_tag(qla_host_t *ha);
65 static void qla_free_parent_dma_tag(qla_host_t *ha);
66 static int qla_alloc_xmt_bufs(qla_host_t *ha);
67 static void qla_free_xmt_bufs(qla_host_t *ha);
68 static int qla_alloc_rcv_bufs(qla_host_t *ha);
69 static void qla_free_rcv_bufs(qla_host_t *ha);
70 static void qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb);
71 
72 static void qla_init_ifnet(device_t dev, qla_host_t *ha);
73 static int qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS);
74 static int qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS);
75 static void qla_release(qla_host_t *ha);
76 static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
77 		int error);
78 static void qla_stop(qla_host_t *ha);
79 static void qla_get_peer(qla_host_t *ha);
80 static void qla_error_recovery(void *context, int pending);
81 static void qla_async_event(void *context, int pending);
82 static int qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
83 		uint32_t iscsi_pdu);
84 
85 /*
86  * Hooks to the Operating Systems
87  */
88 static int qla_pci_probe (device_t);
89 static int qla_pci_attach (device_t);
90 static int qla_pci_detach (device_t);
91 
92 static void qla_init(void *arg);
93 static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
94 static int qla_media_change(struct ifnet *ifp);
95 static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
96 
97 static int qla_transmit(struct ifnet *ifp, struct mbuf  *mp);
98 static void qla_qflush(struct ifnet *ifp);
99 static int qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
100 static void qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
101 static int qla_create_fp_taskqueues(qla_host_t *ha);
102 static void qla_destroy_fp_taskqueues(qla_host_t *ha);
103 static void qla_drain_fp_taskqueues(qla_host_t *ha);
104 
105 static device_method_t qla_pci_methods[] = {
106 	/* Device interface */
107 	DEVMETHOD(device_probe, qla_pci_probe),
108 	DEVMETHOD(device_attach, qla_pci_attach),
109 	DEVMETHOD(device_detach, qla_pci_detach),
110 	{ 0, 0 }
111 };
112 
113 static driver_t qla_pci_driver = {
114 	"ql", qla_pci_methods, sizeof (qla_host_t),
115 };
116 
117 static devclass_t qla83xx_devclass;
118 
119 DRIVER_MODULE(qla83xx, pci, qla_pci_driver, qla83xx_devclass, 0, 0);
120 
121 MODULE_DEPEND(qla83xx, pci, 1, 1, 1);
122 MODULE_DEPEND(qla83xx, ether, 1, 1, 1);
123 
124 MALLOC_DEFINE(M_QLA83XXBUF, "qla83xxbuf", "Buffers for qla83xx driver");
125 
126 #define QL_STD_REPLENISH_THRES		0
127 #define QL_JUMBO_REPLENISH_THRES	32
128 
129 
130 static char dev_str[64];
131 static char ver_str[64];
132 
133 /*
134  * Name:	qla_pci_probe
135  * Function:	Validate the PCI device to be a QLA80XX device
136  */
137 static int
138 qla_pci_probe(device_t dev)
139 {
140         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
141         case PCI_QLOGIC_ISP8030:
142 		snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
143 			"Qlogic ISP 83xx PCI CNA Adapter-Ethernet Function",
144 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
145 			QLA_VERSION_BUILD);
146 		snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
147 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
148 			QLA_VERSION_BUILD);
149                 device_set_desc(dev, dev_str);
150                 break;
151         default:
152                 return (ENXIO);
153         }
154 
155         if (bootverbose)
156                 printf("%s: %s\n ", __func__, dev_str);
157 
158         return (BUS_PROBE_DEFAULT);
159 }
160 
161 static void
162 qla_add_sysctls(qla_host_t *ha)
163 {
164         device_t dev = ha->pci_dev;
165 
166 	SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
167 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
168 		OID_AUTO, "version", CTLFLAG_RD,
169 		ver_str, 0, "Driver Version");
170 
171         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
172                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
173                 OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW,
174                 (void *)ha, 0,
175                 qla_sysctl_get_stats, "I", "Statistics");
176 
177         SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
178                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
179                 OID_AUTO, "fw_version", CTLFLAG_RD,
180                 ha->fw_ver_str, 0, "firmware version");
181 
182         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
183                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
184                 OID_AUTO, "link_status", CTLTYPE_INT | CTLFLAG_RW,
185                 (void *)ha, 0,
186                 qla_sysctl_get_link_status, "I", "Link Status");
187 
188 	ha->dbg_level = 0;
189         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
190                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
191                 OID_AUTO, "debug", CTLFLAG_RW,
192                 &ha->dbg_level, ha->dbg_level, "Debug Level");
193 
194 	ha->std_replenish = QL_STD_REPLENISH_THRES;
195         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
196                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
197                 OID_AUTO, "std_replenish", CTLFLAG_RW,
198                 &ha->std_replenish, ha->std_replenish,
199                 "Threshold for Replenishing Standard Frames");
200 
201         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
202                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
203                 OID_AUTO, "ipv4_lro",
204                 CTLFLAG_RD, &ha->ipv4_lro,
205                 "number of ipv4 lro completions");
206 
207         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
208                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
209                 OID_AUTO, "ipv6_lro",
210                 CTLFLAG_RD, &ha->ipv6_lro,
211                 "number of ipv6 lro completions");
212 
213 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
214 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
215 		OID_AUTO, "tx_tso_frames",
216 		CTLFLAG_RD, &ha->tx_tso_frames,
217 		"number of Tx TSO Frames");
218 
219 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
220                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
221 		OID_AUTO, "hw_vlan_tx_frames",
222 		CTLFLAG_RD, &ha->hw_vlan_tx_frames,
223 		"number of Tx VLAN Frames");
224 
225         return;
226 }
227 
228 static void
229 qla_watchdog(void *arg)
230 {
231 	qla_host_t *ha = arg;
232 	qla_hw_t *hw;
233 	struct ifnet *ifp;
234 	uint32_t i;
235 
236 	hw = &ha->hw;
237 	ifp = ha->ifp;
238 
239         if (ha->flags.qla_watchdog_exit) {
240 		ha->qla_watchdog_exited = 1;
241 		return;
242 	}
243 	ha->qla_watchdog_exited = 0;
244 
245 	if (!ha->flags.qla_watchdog_pause) {
246 		if (ql_hw_check_health(ha) || ha->qla_initiate_recovery ||
247 			(ha->msg_from_peer == QL_PEER_MSG_RESET)) {
248 			ha->qla_watchdog_paused = 1;
249 			ha->flags.qla_watchdog_pause = 1;
250 			ha->qla_initiate_recovery = 0;
251 			ha->err_inject = 0;
252 			device_printf(ha->pci_dev,
253 				"%s: taskqueue_enqueue(err_task) \n", __func__);
254 			taskqueue_enqueue(ha->err_tq, &ha->err_task);
255 		} else if (ha->flags.qla_interface_up) {
256 
257                         if (ha->async_event) {
258                                 ha->async_event = 0;
259                                 taskqueue_enqueue(ha->async_event_tq,
260                                         &ha->async_event_task);
261                         }
262 
263 			for (i = 0; i < ha->hw.num_sds_rings; i++) {
264 				qla_tx_fp_t *fp = &ha->tx_fp[i];
265 
266 				if (fp->fp_taskqueue != NULL)
267 					taskqueue_enqueue(fp->fp_taskqueue,
268 						&fp->fp_task);
269 			}
270 
271 			ha->qla_watchdog_paused = 0;
272 		} else {
273 			ha->qla_watchdog_paused = 0;
274 		}
275 	} else {
276 		ha->qla_watchdog_paused = 1;
277 	}
278 
279 	ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
280 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
281 		qla_watchdog, ha);
282 }
283 
284 /*
285  * Name:	qla_pci_attach
286  * Function:	attaches the device to the operating system
287  */
288 static int
289 qla_pci_attach(device_t dev)
290 {
291 	qla_host_t *ha = NULL;
292 	uint32_t rsrc_len;
293 	int i;
294 	uint32_t num_rcvq = 0;
295 
296         if ((ha = device_get_softc(dev)) == NULL) {
297                 device_printf(dev, "cannot get softc\n");
298                 return (ENOMEM);
299         }
300 
301         memset(ha, 0, sizeof (qla_host_t));
302 
303         if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8030) {
304                 device_printf(dev, "device is not ISP8030\n");
305                 return (ENXIO);
306 	}
307 
308         ha->pci_func = pci_get_function(dev) & 0x1;
309 
310         ha->pci_dev = dev;
311 
312 	pci_enable_busmaster(dev);
313 
314 	ha->reg_rid = PCIR_BAR(0);
315 	ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
316 				RF_ACTIVE);
317 
318         if (ha->pci_reg == NULL) {
319                 device_printf(dev, "unable to map any ports\n");
320                 goto qla_pci_attach_err;
321         }
322 
323 	rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
324 					ha->reg_rid);
325 
326 	mtx_init(&ha->hw_lock, "qla83xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
327 
328 	qla_add_sysctls(ha);
329 	ql_hw_add_sysctls(ha);
330 
331 	ha->flags.lock_init = 1;
332 
333 	ha->reg_rid1 = PCIR_BAR(2);
334 	ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
335 			&ha->reg_rid1, RF_ACTIVE);
336 
337 	ha->msix_count = pci_msix_count(dev);
338 
339 	if (ha->msix_count < (ha->hw.num_sds_rings + 1)) {
340 		device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
341 			ha->msix_count);
342 		goto qla_pci_attach_err;
343 	}
344 
345 	QL_DPRINT2(ha, (dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
346 		" msix_count 0x%x pci_reg %p pci_reg1 %p\n", __func__, ha,
347 		ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg,
348 		ha->pci_reg1));
349 
350         /* initialize hardware */
351         if (ql_init_hw(ha)) {
352                 device_printf(dev, "%s: ql_init_hw failed\n", __func__);
353                 goto qla_pci_attach_err;
354         }
355 
356         device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__,
357                 ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
358                 ha->fw_ver_build);
359         snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d",
360                         ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
361                         ha->fw_ver_build);
362 
363         if (qla_get_nic_partition(ha, NULL, &num_rcvq)) {
364                 device_printf(dev, "%s: qla_get_nic_partition failed\n",
365                         __func__);
366                 goto qla_pci_attach_err;
367         }
368         device_printf(dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
369                 " msix_count 0x%x pci_reg %p pci_reg1 %p num_rcvq = %d\n",
370 		__func__, ha, ha->pci_func, rsrc_len, ha->msix_count,
371 		ha->pci_reg, ha->pci_reg1, num_rcvq);
372 
373 
374 #ifdef QL_ENABLE_ISCSI_TLV
375         if ((ha->msix_count  < 64) || (num_rcvq != 32)) {
376                 ha->hw.num_sds_rings = 15;
377                 ha->hw.num_tx_rings = ha->hw.num_sds_rings * 2;
378         }
379 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
380 	ha->hw.num_rds_rings = ha->hw.num_sds_rings;
381 
382 	ha->msix_count = ha->hw.num_sds_rings + 1;
383 
384 	if (pci_alloc_msix(dev, &ha->msix_count)) {
385 		device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
386 			ha->msix_count);
387 		ha->msix_count = 0;
388 		goto qla_pci_attach_err;
389 	}
390 
391 	ha->mbx_irq_rid = 1;
392 	ha->mbx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
393 				&ha->mbx_irq_rid,
394 				(RF_ACTIVE | RF_SHAREABLE));
395 	if (ha->mbx_irq == NULL) {
396 		device_printf(dev, "could not allocate mbx interrupt\n");
397 		goto qla_pci_attach_err;
398 	}
399 	if (bus_setup_intr(dev, ha->mbx_irq, (INTR_TYPE_NET | INTR_MPSAFE),
400 		NULL, ql_mbx_isr, ha, &ha->mbx_handle)) {
401 		device_printf(dev, "could not setup mbx interrupt\n");
402 		goto qla_pci_attach_err;
403 	}
404 
405 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
406 		ha->irq_vec[i].sds_idx = i;
407                 ha->irq_vec[i].ha = ha;
408                 ha->irq_vec[i].irq_rid = 2 + i;
409 
410 		ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
411 				&ha->irq_vec[i].irq_rid,
412 				(RF_ACTIVE | RF_SHAREABLE));
413 
414 		if (ha->irq_vec[i].irq == NULL) {
415 			device_printf(dev, "could not allocate interrupt\n");
416 			goto qla_pci_attach_err;
417 		}
418 		if (bus_setup_intr(dev, ha->irq_vec[i].irq,
419 			(INTR_TYPE_NET | INTR_MPSAFE),
420 			NULL, ql_isr, &ha->irq_vec[i],
421 			&ha->irq_vec[i].handle)) {
422 			device_printf(dev, "could not setup interrupt\n");
423 			goto qla_pci_attach_err;
424 		}
425 
426 		ha->tx_fp[i].ha = ha;
427 		ha->tx_fp[i].txr_idx = i;
428 
429 		if (qla_alloc_tx_br(ha, &ha->tx_fp[i])) {
430 			device_printf(dev, "%s: could not allocate tx_br[%d]\n",
431 				__func__, i);
432 			goto qla_pci_attach_err;
433 		}
434 	}
435 
436 	if (qla_create_fp_taskqueues(ha) != 0)
437 		goto qla_pci_attach_err;
438 
439 	printf("%s: mp__ncpus %d sds %d rds %d msi-x %d\n", __func__, mp_ncpus,
440 		ha->hw.num_sds_rings, ha->hw.num_rds_rings, ha->msix_count);
441 
442 	ql_read_mac_addr(ha);
443 
444 	/* allocate parent dma tag */
445 	if (qla_alloc_parent_dma_tag(ha)) {
446 		device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n",
447 			__func__);
448 		goto qla_pci_attach_err;
449 	}
450 
451 	/* alloc all dma buffers */
452 	if (ql_alloc_dma(ha)) {
453 		device_printf(dev, "%s: ql_alloc_dma failed\n", __func__);
454 		goto qla_pci_attach_err;
455 	}
456 	qla_get_peer(ha);
457 
458 	if (ql_minidump_init(ha) != 0) {
459 		device_printf(dev, "%s: ql_minidump_init failed\n", __func__);
460 		goto qla_pci_attach_err;
461 	}
462 	/* create the o.s ethernet interface */
463 	qla_init_ifnet(dev, ha);
464 
465 	ha->flags.qla_watchdog_active = 1;
466 	ha->flags.qla_watchdog_pause = 0;
467 
468 	callout_init(&ha->tx_callout, TRUE);
469 	ha->flags.qla_callout_init = 1;
470 
471 	/* create ioctl device interface */
472 	if (ql_make_cdev(ha)) {
473 		device_printf(dev, "%s: ql_make_cdev failed\n", __func__);
474 		goto qla_pci_attach_err;
475 	}
476 
477 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
478 		qla_watchdog, ha);
479 
480 	TASK_INIT(&ha->err_task, 0, qla_error_recovery, ha);
481 	ha->err_tq = taskqueue_create("qla_errq", M_NOWAIT,
482 			taskqueue_thread_enqueue, &ha->err_tq);
483 	taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
484 		device_get_nameunit(ha->pci_dev));
485 
486         TASK_INIT(&ha->async_event_task, 0, qla_async_event, ha);
487         ha->async_event_tq = taskqueue_create("qla_asyncq", M_NOWAIT,
488                         taskqueue_thread_enqueue, &ha->async_event_tq);
489         taskqueue_start_threads(&ha->async_event_tq, 1, PI_NET, "%s asyncq",
490                 device_get_nameunit(ha->pci_dev));
491 
492 	QL_DPRINT2(ha, (dev, "%s: exit 0\n", __func__));
493         return (0);
494 
495 qla_pci_attach_err:
496 
497 	qla_release(ha);
498 
499 	QL_DPRINT2(ha, (dev, "%s: exit ENXIO\n", __func__));
500         return (ENXIO);
501 }
502 
503 /*
504  * Name:	qla_pci_detach
505  * Function:	Unhooks the device from the operating system
506  */
507 static int
508 qla_pci_detach(device_t dev)
509 {
510 	qla_host_t *ha = NULL;
511 	struct ifnet *ifp;
512 
513 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
514 
515         if ((ha = device_get_softc(dev)) == NULL) {
516                 device_printf(dev, "cannot get softc\n");
517                 return (ENOMEM);
518         }
519 
520 	ifp = ha->ifp;
521 
522 	QLA_LOCK(ha);
523 	qla_stop(ha);
524 	QLA_UNLOCK(ha);
525 
526 	qla_release(ha);
527 
528 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
529 
530         return (0);
531 }
532 
533 /*
534  * SYSCTL Related Callbacks
535  */
536 static int
537 qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS)
538 {
539 	int err, ret = 0;
540 	qla_host_t *ha;
541 
542 	err = sysctl_handle_int(oidp, &ret, 0, req);
543 
544 	if (err || !req->newptr)
545 		return (err);
546 
547 	if (ret == 1) {
548 		ha = (qla_host_t *)arg1;
549 		ql_get_stats(ha);
550 	}
551 	return (err);
552 }
553 static int
554 qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS)
555 {
556 	int err, ret = 0;
557 	qla_host_t *ha;
558 
559 	err = sysctl_handle_int(oidp, &ret, 0, req);
560 
561 	if (err || !req->newptr)
562 		return (err);
563 
564 	if (ret == 1) {
565 		ha = (qla_host_t *)arg1;
566 		ql_hw_link_status(ha);
567 	}
568 	return (err);
569 }
570 
571 /*
572  * Name:	qla_release
573  * Function:	Releases the resources allocated for the device
574  */
575 static void
576 qla_release(qla_host_t *ha)
577 {
578 	device_t dev;
579 	int i;
580 
581 	dev = ha->pci_dev;
582 
583         if (ha->async_event_tq) {
584                 taskqueue_drain(ha->async_event_tq, &ha->async_event_task);
585                 taskqueue_free(ha->async_event_tq);
586         }
587 
588 	if (ha->err_tq) {
589 		taskqueue_drain(ha->err_tq, &ha->err_task);
590 		taskqueue_free(ha->err_tq);
591 	}
592 
593 	ql_del_cdev(ha);
594 
595 	if (ha->flags.qla_watchdog_active) {
596 		ha->flags.qla_watchdog_exit = 1;
597 
598 		while (ha->qla_watchdog_exited == 0)
599 			qla_mdelay(__func__, 1);
600 	}
601 
602 	if (ha->flags.qla_callout_init)
603 		callout_stop(&ha->tx_callout);
604 
605 	if (ha->ifp != NULL)
606 		ether_ifdetach(ha->ifp);
607 
608 	ql_free_dma(ha);
609 	qla_free_parent_dma_tag(ha);
610 
611 	if (ha->mbx_handle)
612 		(void)bus_teardown_intr(dev, ha->mbx_irq, ha->mbx_handle);
613 
614 	if (ha->mbx_irq)
615 		(void) bus_release_resource(dev, SYS_RES_IRQ, ha->mbx_irq_rid,
616 				ha->mbx_irq);
617 
618 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
619 
620 		if (ha->irq_vec[i].handle) {
621 			(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
622 					ha->irq_vec[i].handle);
623 		}
624 
625 		if (ha->irq_vec[i].irq) {
626 			(void)bus_release_resource(dev, SYS_RES_IRQ,
627 				ha->irq_vec[i].irq_rid,
628 				ha->irq_vec[i].irq);
629 		}
630 
631 		qla_free_tx_br(ha, &ha->tx_fp[i]);
632 	}
633 	qla_destroy_fp_taskqueues(ha);
634 
635 	if (ha->msix_count)
636 		pci_release_msi(dev);
637 
638 	if (ha->flags.lock_init) {
639 		mtx_destroy(&ha->hw_lock);
640 	}
641 
642         if (ha->pci_reg)
643                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
644 				ha->pci_reg);
645 
646         if (ha->pci_reg1)
647                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
648 				ha->pci_reg1);
649 }
650 
651 /*
652  * DMA Related Functions
653  */
654 
655 static void
656 qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
657 {
658         *((bus_addr_t *)arg) = 0;
659 
660         if (error) {
661                 printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
662                 return;
663 	}
664 
665         *((bus_addr_t *)arg) = segs[0].ds_addr;
666 
667 	return;
668 }
669 
670 int
671 ql_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
672 {
673         int             ret = 0;
674         device_t        dev;
675         bus_addr_t      b_addr;
676 
677         dev = ha->pci_dev;
678 
679         QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
680 
681         ret = bus_dma_tag_create(
682                         ha->parent_tag,/* parent */
683                         dma_buf->alignment,
684                         ((bus_size_t)(1ULL << 32)),/* boundary */
685                         BUS_SPACE_MAXADDR,      /* lowaddr */
686                         BUS_SPACE_MAXADDR,      /* highaddr */
687                         NULL, NULL,             /* filter, filterarg */
688                         dma_buf->size,          /* maxsize */
689                         1,                      /* nsegments */
690                         dma_buf->size,          /* maxsegsize */
691                         0,                      /* flags */
692                         NULL, NULL,             /* lockfunc, lockarg */
693                         &dma_buf->dma_tag);
694 
695         if (ret) {
696                 device_printf(dev, "%s: could not create dma tag\n", __func__);
697                 goto ql_alloc_dmabuf_exit;
698         }
699         ret = bus_dmamem_alloc(dma_buf->dma_tag,
700                         (void **)&dma_buf->dma_b,
701                         (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
702                         &dma_buf->dma_map);
703         if (ret) {
704                 bus_dma_tag_destroy(dma_buf->dma_tag);
705                 device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
706                 goto ql_alloc_dmabuf_exit;
707         }
708 
709         ret = bus_dmamap_load(dma_buf->dma_tag,
710                         dma_buf->dma_map,
711                         dma_buf->dma_b,
712                         dma_buf->size,
713                         qla_dmamap_callback,
714                         &b_addr, BUS_DMA_NOWAIT);
715 
716         if (ret || !b_addr) {
717                 bus_dma_tag_destroy(dma_buf->dma_tag);
718                 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
719                         dma_buf->dma_map);
720                 ret = -1;
721                 goto ql_alloc_dmabuf_exit;
722         }
723 
724         dma_buf->dma_addr = b_addr;
725 
726 ql_alloc_dmabuf_exit:
727         QL_DPRINT2(ha, (dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
728                 __func__, ret, (void *)dma_buf->dma_tag,
729                 (void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
730 		dma_buf->size));
731 
732         return ret;
733 }
734 
735 void
736 ql_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
737 {
738 	bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
739         bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
740         bus_dma_tag_destroy(dma_buf->dma_tag);
741 }
742 
743 static int
744 qla_alloc_parent_dma_tag(qla_host_t *ha)
745 {
746 	int		ret;
747 	device_t	dev;
748 
749 	dev = ha->pci_dev;
750 
751         /*
752          * Allocate parent DMA Tag
753          */
754         ret = bus_dma_tag_create(
755                         bus_get_dma_tag(dev),   /* parent */
756                         1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
757                         BUS_SPACE_MAXADDR,      /* lowaddr */
758                         BUS_SPACE_MAXADDR,      /* highaddr */
759                         NULL, NULL,             /* filter, filterarg */
760                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
761                         0,                      /* nsegments */
762                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
763                         0,                      /* flags */
764                         NULL, NULL,             /* lockfunc, lockarg */
765                         &ha->parent_tag);
766 
767         if (ret) {
768                 device_printf(dev, "%s: could not create parent dma tag\n",
769                         __func__);
770 		return (-1);
771         }
772 
773         ha->flags.parent_tag = 1;
774 
775 	return (0);
776 }
777 
778 static void
779 qla_free_parent_dma_tag(qla_host_t *ha)
780 {
781         if (ha->flags.parent_tag) {
782                 bus_dma_tag_destroy(ha->parent_tag);
783                 ha->flags.parent_tag = 0;
784         }
785 }
786 
787 /*
788  * Name: qla_init_ifnet
789  * Function: Creates the Network Device Interface and Registers it with the O.S
790  */
791 
792 static void
793 qla_init_ifnet(device_t dev, qla_host_t *ha)
794 {
795 	struct ifnet *ifp;
796 
797 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
798 
799 	ifp = ha->ifp = if_alloc(IFT_ETHER);
800 
801 	if (ifp == NULL)
802 		panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
803 
804 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
805 
806 	ifp->if_baudrate = IF_Gbps(10);
807 	ifp->if_capabilities = IFCAP_LINKSTATE;
808 	ifp->if_mtu = ETHERMTU;
809 
810 	ifp->if_init = qla_init;
811 	ifp->if_softc = ha;
812 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
813 	ifp->if_ioctl = qla_ioctl;
814 
815 	ifp->if_transmit = qla_transmit;
816 	ifp->if_qflush = qla_qflush;
817 
818 	IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha));
819 	ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha);
820 	IFQ_SET_READY(&ifp->if_snd);
821 
822 	ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
823 
824 	ether_ifattach(ifp, qla_get_mac_addr(ha));
825 
826 	ifp->if_capabilities |= IFCAP_HWCSUM |
827 				IFCAP_TSO4 |
828 				IFCAP_JUMBO_MTU |
829 				IFCAP_VLAN_HWTAGGING |
830 				IFCAP_VLAN_MTU |
831 				IFCAP_VLAN_HWTSO |
832 				IFCAP_LRO;
833 
834 	ifp->if_capenable = ifp->if_capabilities;
835 
836 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
837 
838 	ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status);
839 
840 	ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0,
841 		NULL);
842 	ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
843 
844 	ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
845 
846 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
847 
848 	return;
849 }
850 
851 static void
852 qla_init_locked(qla_host_t *ha)
853 {
854 	struct ifnet *ifp = ha->ifp;
855 
856 	qla_stop(ha);
857 
858 	if (qla_alloc_xmt_bufs(ha) != 0)
859 		return;
860 
861 	qla_confirm_9kb_enable(ha);
862 
863 	if (qla_alloc_rcv_bufs(ha) != 0)
864 		return;
865 
866 	bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN);
867 
868 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO;
869 
870 	ha->flags.stop_rcv = 0;
871  	if (ql_init_hw_if(ha) == 0) {
872 		ifp = ha->ifp;
873 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
874 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
875 		ha->flags.qla_watchdog_pause = 0;
876 		ha->hw_vlan_tx_frames = 0;
877 		ha->tx_tso_frames = 0;
878 		ha->flags.qla_interface_up = 1;
879 	}
880 
881 	return;
882 }
883 
884 static void
885 qla_init(void *arg)
886 {
887 	qla_host_t *ha;
888 
889 	ha = (qla_host_t *)arg;
890 
891 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
892 
893 	QLA_LOCK(ha);
894 	qla_init_locked(ha);
895 	QLA_UNLOCK(ha);
896 
897 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
898 }
899 
900 static int
901 qla_set_multi(qla_host_t *ha, uint32_t add_multi)
902 {
903 	uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
904 	struct ifmultiaddr *ifma;
905 	int mcnt = 0;
906 	struct ifnet *ifp = ha->ifp;
907 	int ret = 0;
908 
909 	if_maddr_rlock(ifp);
910 
911 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
912 
913 		if (ifma->ifma_addr->sa_family != AF_LINK)
914 			continue;
915 
916 		if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
917 			break;
918 
919 		bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
920 			&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
921 
922 		mcnt++;
923 	}
924 
925 	if_maddr_runlock(ifp);
926 
927 	QLA_LOCK(ha);
928 	ret = ql_hw_set_multi(ha, mta, mcnt, add_multi);
929 	QLA_UNLOCK(ha);
930 
931 	return (ret);
932 }
933 
934 static int
935 qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
936 {
937 	int ret = 0;
938 	struct ifreq *ifr = (struct ifreq *)data;
939 	struct ifaddr *ifa = (struct ifaddr *)data;
940 	qla_host_t *ha;
941 
942 	ha = (qla_host_t *)ifp->if_softc;
943 
944 	switch (cmd) {
945 	case SIOCSIFADDR:
946 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
947 			__func__, cmd));
948 
949 		if (ifa->ifa_addr->sa_family == AF_INET) {
950 			ifp->if_flags |= IFF_UP;
951 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
952 				QLA_LOCK(ha);
953 				qla_init_locked(ha);
954 				QLA_UNLOCK(ha);
955 			}
956 			QL_DPRINT4(ha, (ha->pci_dev,
957 				"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
958 				__func__, cmd,
959 				ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
960 
961 			arp_ifinit(ifp, ifa);
962 		} else {
963 			ether_ioctl(ifp, cmd, data);
964 		}
965 		break;
966 
967 	case SIOCSIFMTU:
968 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
969 			__func__, cmd));
970 
971 		if (ifr->ifr_mtu > QLA_MAX_MTU) {
972 			ret = EINVAL;
973 		} else {
974 			QLA_LOCK(ha);
975 
976 			ifp->if_mtu = ifr->ifr_mtu;
977 			ha->max_frame_size =
978 				ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
979 
980 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
981 				ret = ql_set_max_mtu(ha, ha->max_frame_size,
982 					ha->hw.rcv_cntxt_id);
983 			}
984 
985 			if (ifp->if_mtu > ETHERMTU)
986 				ha->std_replenish = QL_JUMBO_REPLENISH_THRES;
987 			else
988 				ha->std_replenish = QL_STD_REPLENISH_THRES;
989 
990 
991 			QLA_UNLOCK(ha);
992 
993 			if (ret)
994 				ret = EINVAL;
995 		}
996 
997 		break;
998 
999 	case SIOCSIFFLAGS:
1000 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
1001 			__func__, cmd));
1002 
1003 		QLA_LOCK(ha);
1004 
1005 		if (ifp->if_flags & IFF_UP) {
1006 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1007 				if ((ifp->if_flags ^ ha->if_flags) &
1008 					IFF_PROMISC) {
1009 					ret = ql_set_promisc(ha);
1010 				} else if ((ifp->if_flags ^ ha->if_flags) &
1011 					IFF_ALLMULTI) {
1012 					ret = ql_set_allmulti(ha);
1013 				}
1014 			} else {
1015 				qla_init_locked(ha);
1016 				ha->max_frame_size = ifp->if_mtu +
1017 					ETHER_HDR_LEN + ETHER_CRC_LEN;
1018 				ret = ql_set_max_mtu(ha, ha->max_frame_size,
1019 					ha->hw.rcv_cntxt_id);
1020 			}
1021 		} else {
1022 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1023 				qla_stop(ha);
1024 			ha->if_flags = ifp->if_flags;
1025 		}
1026 
1027 		QLA_UNLOCK(ha);
1028 		break;
1029 
1030 	case SIOCADDMULTI:
1031 		QL_DPRINT4(ha, (ha->pci_dev,
1032 			"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
1033 
1034 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1035 			if (qla_set_multi(ha, 1))
1036 				ret = EINVAL;
1037 		}
1038 		break;
1039 
1040 	case SIOCDELMULTI:
1041 		QL_DPRINT4(ha, (ha->pci_dev,
1042 			"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
1043 
1044 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1045 			if (qla_set_multi(ha, 0))
1046 				ret = EINVAL;
1047 		}
1048 		break;
1049 
1050 	case SIOCSIFMEDIA:
1051 	case SIOCGIFMEDIA:
1052 		QL_DPRINT4(ha, (ha->pci_dev,
1053 			"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
1054 			__func__, cmd));
1055 		ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
1056 		break;
1057 
1058 	case SIOCSIFCAP:
1059 	{
1060 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1061 
1062 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
1063 			__func__, cmd));
1064 
1065 		if (mask & IFCAP_HWCSUM)
1066 			ifp->if_capenable ^= IFCAP_HWCSUM;
1067 		if (mask & IFCAP_TSO4)
1068 			ifp->if_capenable ^= IFCAP_TSO4;
1069 		if (mask & IFCAP_VLAN_HWTAGGING)
1070 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1071 		if (mask & IFCAP_VLAN_HWTSO)
1072 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1073 		if (mask & IFCAP_LRO)
1074 			ifp->if_capenable ^= IFCAP_LRO;
1075 
1076 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1077 			qla_init(ha);
1078 
1079 		VLAN_CAPABILITIES(ifp);
1080 		break;
1081 	}
1082 
1083 	default:
1084 		QL_DPRINT4(ha, (ha->pci_dev, "%s: default (0x%lx)\n",
1085 			__func__, cmd));
1086 		ret = ether_ioctl(ifp, cmd, data);
1087 		break;
1088 	}
1089 
1090 	return (ret);
1091 }
1092 
1093 static int
1094 qla_media_change(struct ifnet *ifp)
1095 {
1096 	qla_host_t *ha;
1097 	struct ifmedia *ifm;
1098 	int ret = 0;
1099 
1100 	ha = (qla_host_t *)ifp->if_softc;
1101 
1102 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1103 
1104 	ifm = &ha->media;
1105 
1106 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1107 		ret = EINVAL;
1108 
1109 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1110 
1111 	return (ret);
1112 }
1113 
1114 static void
1115 qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1116 {
1117 	qla_host_t *ha;
1118 
1119 	ha = (qla_host_t *)ifp->if_softc;
1120 
1121 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1122 
1123 	ifmr->ifm_status = IFM_AVALID;
1124 	ifmr->ifm_active = IFM_ETHER;
1125 
1126 	ql_update_link_state(ha);
1127 	if (ha->hw.link_up) {
1128 		ifmr->ifm_status |= IFM_ACTIVE;
1129 		ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha));
1130 	}
1131 
1132 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit (%s)\n", __func__,\
1133 		(ha->hw.link_up ? "link_up" : "link_down")));
1134 
1135 	return;
1136 }
1137 
1138 
1139 static int
1140 qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
1141 	uint32_t iscsi_pdu)
1142 {
1143 	bus_dma_segment_t	segs[QLA_MAX_SEGMENTS];
1144 	bus_dmamap_t		map;
1145 	int			nsegs;
1146 	int			ret = -1;
1147 	uint32_t		tx_idx;
1148 	struct mbuf		*m_head = *m_headp;
1149 
1150 	QL_DPRINT8(ha, (ha->pci_dev, "%s: enter\n", __func__));
1151 
1152 	tx_idx = ha->hw.tx_cntxt[txr_idx].txr_next;
1153 	map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
1154 
1155 	ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
1156 			BUS_DMA_NOWAIT);
1157 
1158 	if (ret == EFBIG) {
1159 
1160 		struct mbuf *m;
1161 
1162 		QL_DPRINT8(ha, (ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
1163 			m_head->m_pkthdr.len));
1164 
1165 		m = m_defrag(m_head, M_NOWAIT);
1166 		if (m == NULL) {
1167 			ha->err_tx_defrag++;
1168 			m_freem(m_head);
1169 			*m_headp = NULL;
1170 			device_printf(ha->pci_dev,
1171 				"%s: m_defrag() = NULL [%d]\n",
1172 				__func__, ret);
1173 			return (ENOBUFS);
1174 		}
1175 		m_head = m;
1176 		*m_headp = m_head;
1177 
1178 		if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
1179 					segs, &nsegs, BUS_DMA_NOWAIT))) {
1180 
1181 			ha->err_tx_dmamap_load++;
1182 
1183 			device_printf(ha->pci_dev,
1184 				"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
1185 				__func__, ret, m_head->m_pkthdr.len);
1186 
1187 			if (ret != ENOMEM) {
1188 				m_freem(m_head);
1189 				*m_headp = NULL;
1190 			}
1191 			return (ret);
1192 		}
1193 
1194 	} else if (ret) {
1195 
1196 		ha->err_tx_dmamap_load++;
1197 
1198 		device_printf(ha->pci_dev,
1199 			"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
1200 			__func__, ret, m_head->m_pkthdr.len);
1201 
1202 		if (ret != ENOMEM) {
1203 			m_freem(m_head);
1204 			*m_headp = NULL;
1205 		}
1206 		return (ret);
1207 	}
1208 
1209 	QL_ASSERT(ha, (nsegs != 0), ("qla_send: empty packet"));
1210 
1211 	bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
1212 
1213         if (!(ret = ql_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx,
1214 				iscsi_pdu))) {
1215 		ha->tx_ring[txr_idx].count++;
1216 		ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
1217 	} else {
1218 		if (ret == EINVAL) {
1219 			if (m_head)
1220 				m_freem(m_head);
1221 			*m_headp = NULL;
1222 		}
1223 	}
1224 
1225 	QL_DPRINT8(ha, (ha->pci_dev, "%s: exit\n", __func__));
1226 	return (ret);
1227 }
1228 
1229 static int
1230 qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
1231 {
1232         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
1233                 "qla%d_fp%d_tx_mq_lock", ha->pci_func, fp->txr_idx);
1234 
1235         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
1236 
1237         fp->tx_br = buf_ring_alloc(NUM_TX_DESCRIPTORS, M_DEVBUF,
1238                                    M_NOWAIT, &fp->tx_mtx);
1239         if (fp->tx_br == NULL) {
1240             QL_DPRINT1(ha, (ha->pci_dev, "buf_ring_alloc failed for "
1241                 " fp[%d, %d]\n", ha->pci_func, fp->txr_idx));
1242             return (-ENOMEM);
1243         }
1244         return 0;
1245 }
1246 
1247 static void
1248 qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
1249 {
1250         struct mbuf *mp;
1251         struct ifnet *ifp = ha->ifp;
1252 
1253         if (mtx_initialized(&fp->tx_mtx)) {
1254 
1255                 if (fp->tx_br != NULL) {
1256 
1257                         mtx_lock(&fp->tx_mtx);
1258 
1259                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
1260                                 m_freem(mp);
1261                         }
1262 
1263                         mtx_unlock(&fp->tx_mtx);
1264 
1265                         buf_ring_free(fp->tx_br, M_DEVBUF);
1266                         fp->tx_br = NULL;
1267                 }
1268                 mtx_destroy(&fp->tx_mtx);
1269         }
1270         return;
1271 }
1272 
1273 static void
1274 qla_fp_taskqueue(void *context, int pending)
1275 {
1276         qla_tx_fp_t *fp;
1277         qla_host_t *ha;
1278         struct ifnet *ifp;
1279         struct mbuf  *mp;
1280         int ret;
1281 	uint32_t txr_idx;
1282 	uint32_t iscsi_pdu = 0;
1283 	uint32_t rx_pkts_left;
1284 
1285         fp = context;
1286 
1287         if (fp == NULL)
1288                 return;
1289 
1290         ha = (qla_host_t *)fp->ha;
1291 
1292         ifp = ha->ifp;
1293 
1294 	txr_idx = fp->txr_idx;
1295 
1296         mtx_lock(&fp->tx_mtx);
1297 
1298         if (((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1299                 IFF_DRV_RUNNING) || (!ha->hw.link_up)) {
1300                 mtx_unlock(&fp->tx_mtx);
1301                 goto qla_fp_taskqueue_exit;
1302         }
1303 
1304 	rx_pkts_left = ql_rcv_isr(ha, fp->txr_idx, 64);
1305 
1306 #ifdef QL_ENABLE_ISCSI_TLV
1307 	ql_hw_tx_done_locked(ha, fp->txr_idx);
1308 	ql_hw_tx_done_locked(ha, (fp->txr_idx + (ha->hw.num_tx_rings >> 1)));
1309 	txr_idx = txr_idx + (ha->hw.num_tx_rings >> 1);
1310 #else
1311 	ql_hw_tx_done_locked(ha, fp->txr_idx);
1312 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
1313 
1314         mp = drbr_peek(ifp, fp->tx_br);
1315 
1316         while (mp != NULL) {
1317 
1318 		if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE) {
1319 #ifdef QL_ENABLE_ISCSI_TLV
1320 			if (ql_iscsi_pdu(ha, mp) == 0) {
1321 				iscsi_pdu = 1;
1322 			}
1323 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
1324 		}
1325 
1326 		ret = qla_send(ha, &mp, txr_idx, iscsi_pdu);
1327 
1328                 if (ret) {
1329                         if (mp != NULL)
1330                                 drbr_putback(ifp, fp->tx_br, mp);
1331                         else {
1332                                 drbr_advance(ifp, fp->tx_br);
1333                         }
1334 
1335                         mtx_unlock(&fp->tx_mtx);
1336 
1337                         goto qla_fp_taskqueue_exit0;
1338                 } else {
1339                         drbr_advance(ifp, fp->tx_br);
1340                 }
1341 
1342                 mp = drbr_peek(ifp, fp->tx_br);
1343         }
1344 
1345         mtx_unlock(&fp->tx_mtx);
1346 
1347 qla_fp_taskqueue_exit0:
1348 
1349 	if (rx_pkts_left || ((mp != NULL) && ret)) {
1350 		taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
1351 	} else {
1352 		if (!ha->flags.stop_rcv) {
1353 			QL_ENABLE_INTERRUPTS(ha, fp->txr_idx);
1354 		}
1355 	}
1356 
1357 qla_fp_taskqueue_exit:
1358 
1359         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
1360         return;
1361 }
1362 
1363 static int
1364 qla_create_fp_taskqueues(qla_host_t *ha)
1365 {
1366         int     i;
1367         uint8_t tq_name[32];
1368 
1369         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1370 
1371                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1372 
1373                 bzero(tq_name, sizeof (tq_name));
1374                 snprintf(tq_name, sizeof (tq_name), "ql_fp_tq_%d", i);
1375 
1376                 TASK_INIT(&fp->fp_task, 0, qla_fp_taskqueue, fp);
1377 
1378                 fp->fp_taskqueue = taskqueue_create_fast(tq_name, M_NOWAIT,
1379                                         taskqueue_thread_enqueue,
1380                                         &fp->fp_taskqueue);
1381 
1382                 if (fp->fp_taskqueue == NULL)
1383                         return (-1);
1384 
1385                 taskqueue_start_threads(&fp->fp_taskqueue, 1, PI_NET, "%s",
1386                         tq_name);
1387 
1388                 QL_DPRINT1(ha, (ha->pci_dev, "%s: %p\n", __func__,
1389                         fp->fp_taskqueue));
1390         }
1391 
1392         return (0);
1393 }
1394 
1395 static void
1396 qla_destroy_fp_taskqueues(qla_host_t *ha)
1397 {
1398         int     i;
1399 
1400         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1401 
1402                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1403 
1404                 if (fp->fp_taskqueue != NULL) {
1405                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
1406                         taskqueue_free(fp->fp_taskqueue);
1407                         fp->fp_taskqueue = NULL;
1408                 }
1409         }
1410         return;
1411 }
1412 
1413 static void
1414 qla_drain_fp_taskqueues(qla_host_t *ha)
1415 {
1416         int     i;
1417 
1418         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1419                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1420 
1421                 if (fp->fp_taskqueue != NULL) {
1422                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
1423                 }
1424         }
1425         return;
1426 }
1427 
1428 static int
1429 qla_transmit(struct ifnet *ifp, struct mbuf  *mp)
1430 {
1431 	qla_host_t *ha = (qla_host_t *)ifp->if_softc;
1432         qla_tx_fp_t *fp;
1433         int rss_id = 0;
1434         int ret = 0;
1435 
1436         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1437 
1438 #if __FreeBSD_version >= 1100000
1439         if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE)
1440 #else
1441         if (mp->m_flags & M_FLOWID)
1442 #endif
1443                 rss_id = (mp->m_pkthdr.flowid & Q8_RSS_IND_TBL_MAX_IDX) %
1444                                         ha->hw.num_sds_rings;
1445         fp = &ha->tx_fp[rss_id];
1446 
1447         if (fp->tx_br == NULL) {
1448                 ret = EINVAL;
1449                 goto qla_transmit_exit;
1450         }
1451 
1452         if (mp != NULL) {
1453                 ret = drbr_enqueue(ifp, fp->tx_br, mp);
1454         }
1455 
1456         if (fp->fp_taskqueue != NULL)
1457                 taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
1458 
1459         ret = 0;
1460 
1461 qla_transmit_exit:
1462 
1463         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
1464         return ret;
1465 }
1466 
1467 static void
1468 qla_qflush(struct ifnet *ifp)
1469 {
1470         int                     i;
1471         qla_tx_fp_t		*fp;
1472         struct mbuf             *mp;
1473         qla_host_t              *ha;
1474 
1475         ha = (qla_host_t *)ifp->if_softc;
1476 
1477         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1478 
1479         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1480 
1481                 fp = &ha->tx_fp[i];
1482 
1483                 if (fp == NULL)
1484                         continue;
1485 
1486                 if (fp->tx_br) {
1487                         mtx_lock(&fp->tx_mtx);
1488 
1489                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
1490                                 m_freem(mp);
1491                         }
1492                         mtx_unlock(&fp->tx_mtx);
1493                 }
1494         }
1495         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1496 
1497         return;
1498 }
1499 
1500 static void
1501 qla_stop(qla_host_t *ha)
1502 {
1503 	struct ifnet *ifp = ha->ifp;
1504 	device_t	dev;
1505 	int i = 0;
1506 
1507 	dev = ha->pci_dev;
1508 
1509 	ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1510 
1511         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1512         	qla_tx_fp_t *fp;
1513 
1514 		fp = &ha->tx_fp[i];
1515 
1516                 if (fp == NULL)
1517                         continue;
1518 
1519 		if (fp->tx_br != NULL) {
1520                         mtx_lock(&fp->tx_mtx);
1521                         mtx_unlock(&fp->tx_mtx);
1522 		}
1523 	}
1524 
1525 	ha->flags.qla_watchdog_pause = 1;
1526 
1527 	while (!ha->qla_watchdog_paused)
1528 		qla_mdelay(__func__, 1);
1529 
1530 	ha->flags.qla_interface_up = 0;
1531 
1532 	qla_drain_fp_taskqueues(ha);
1533 
1534 	ql_hw_stop_rcv(ha);
1535 
1536 	ql_del_hw_if(ha);
1537 
1538 	qla_free_xmt_bufs(ha);
1539 	qla_free_rcv_bufs(ha);
1540 
1541 	return;
1542 }
1543 
1544 /*
1545  * Buffer Management Functions for Transmit and Receive Rings
1546  */
1547 static int
1548 qla_alloc_xmt_bufs(qla_host_t *ha)
1549 {
1550 	int ret = 0;
1551 	uint32_t i, j;
1552 	qla_tx_buf_t *txb;
1553 
1554 	if (bus_dma_tag_create(NULL,    /* parent */
1555 		1, 0,    /* alignment, bounds */
1556 		BUS_SPACE_MAXADDR,       /* lowaddr */
1557 		BUS_SPACE_MAXADDR,       /* highaddr */
1558 		NULL, NULL,      /* filter, filterarg */
1559 		QLA_MAX_TSO_FRAME_SIZE,     /* maxsize */
1560 		QLA_MAX_SEGMENTS,        /* nsegments */
1561 		PAGE_SIZE,        /* maxsegsize */
1562 		BUS_DMA_ALLOCNOW,        /* flags */
1563 		NULL,    /* lockfunc */
1564 		NULL,    /* lockfuncarg */
1565 		&ha->tx_tag)) {
1566 		device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
1567 			__func__);
1568 		return (ENOMEM);
1569 	}
1570 
1571 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
1572 		bzero((void *)ha->tx_ring[i].tx_buf,
1573 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
1574 	}
1575 
1576 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
1577 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++) {
1578 
1579 			txb = &ha->tx_ring[j].tx_buf[i];
1580 
1581 			if ((ret = bus_dmamap_create(ha->tx_tag,
1582 					BUS_DMA_NOWAIT, &txb->map))) {
1583 
1584 				ha->err_tx_dmamap_create++;
1585 				device_printf(ha->pci_dev,
1586 					"%s: bus_dmamap_create failed[%d]\n",
1587 					__func__, ret);
1588 
1589 				qla_free_xmt_bufs(ha);
1590 
1591 				return (ret);
1592 			}
1593 		}
1594 	}
1595 
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Release mbuf after it sent on the wire
1601  */
1602 static void
1603 qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
1604 {
1605 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1606 
1607 	if (txb->m_head && txb->map) {
1608 
1609 		bus_dmamap_unload(ha->tx_tag, txb->map);
1610 
1611 		m_freem(txb->m_head);
1612 		txb->m_head = NULL;
1613 	}
1614 
1615 	if (txb->map)
1616 		bus_dmamap_destroy(ha->tx_tag, txb->map);
1617 
1618 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1619 }
1620 
1621 static void
1622 qla_free_xmt_bufs(qla_host_t *ha)
1623 {
1624 	int		i, j;
1625 
1626 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
1627 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
1628 			qla_clear_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
1629 	}
1630 
1631 	if (ha->tx_tag != NULL) {
1632 		bus_dma_tag_destroy(ha->tx_tag);
1633 		ha->tx_tag = NULL;
1634 	}
1635 
1636 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
1637 		bzero((void *)ha->tx_ring[i].tx_buf,
1638 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
1639 	}
1640 	return;
1641 }
1642 
1643 
1644 static int
1645 qla_alloc_rcv_std(qla_host_t *ha)
1646 {
1647 	int		i, j, k, r, ret = 0;
1648 	qla_rx_buf_t	*rxb;
1649 	qla_rx_ring_t	*rx_ring;
1650 
1651 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1652 
1653 		rx_ring = &ha->rx_ring[r];
1654 
1655 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1656 
1657 			rxb = &rx_ring->rx_buf[i];
1658 
1659 			ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT,
1660 					&rxb->map);
1661 
1662 			if (ret) {
1663 				device_printf(ha->pci_dev,
1664 					"%s: dmamap[%d, %d] failed\n",
1665 					__func__, r, i);
1666 
1667 				for (k = 0; k < r; k++) {
1668 					for (j = 0; j < NUM_RX_DESCRIPTORS;
1669 						j++) {
1670 						rxb = &ha->rx_ring[k].rx_buf[j];
1671 						bus_dmamap_destroy(ha->rx_tag,
1672 							rxb->map);
1673 					}
1674 				}
1675 
1676 				for (j = 0; j < i; j++) {
1677 					bus_dmamap_destroy(ha->rx_tag,
1678 						rx_ring->rx_buf[j].map);
1679 				}
1680 				goto qla_alloc_rcv_std_err;
1681 			}
1682 		}
1683 	}
1684 
1685 	qla_init_hw_rcv_descriptors(ha);
1686 
1687 
1688 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1689 
1690 		rx_ring = &ha->rx_ring[r];
1691 
1692 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1693 			rxb = &rx_ring->rx_buf[i];
1694 			rxb->handle = i;
1695 			if (!(ret = ql_get_mbuf(ha, rxb, NULL))) {
1696 				/*
1697 			 	 * set the physical address in the
1698 				 * corresponding descriptor entry in the
1699 				 * receive ring/queue for the hba
1700 				 */
1701 				qla_set_hw_rcv_desc(ha, r, i, rxb->handle,
1702 					rxb->paddr,
1703 					(rxb->m_head)->m_pkthdr.len);
1704 			} else {
1705 				device_printf(ha->pci_dev,
1706 					"%s: ql_get_mbuf [%d, %d] failed\n",
1707 					__func__, r, i);
1708 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1709 				goto qla_alloc_rcv_std_err;
1710 			}
1711 		}
1712 	}
1713 	return 0;
1714 
1715 qla_alloc_rcv_std_err:
1716 	return (-1);
1717 }
1718 
1719 static void
1720 qla_free_rcv_std(qla_host_t *ha)
1721 {
1722 	int		i, r;
1723 	qla_rx_buf_t	*rxb;
1724 
1725 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1726 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1727 			rxb = &ha->rx_ring[r].rx_buf[i];
1728 			if (rxb->m_head != NULL) {
1729 				bus_dmamap_unload(ha->rx_tag, rxb->map);
1730 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1731 				m_freem(rxb->m_head);
1732 				rxb->m_head = NULL;
1733 			}
1734 		}
1735 	}
1736 	return;
1737 }
1738 
1739 static int
1740 qla_alloc_rcv_bufs(qla_host_t *ha)
1741 {
1742 	int		i, ret = 0;
1743 
1744 	if (bus_dma_tag_create(NULL,    /* parent */
1745 			1, 0,    /* alignment, bounds */
1746 			BUS_SPACE_MAXADDR,       /* lowaddr */
1747 			BUS_SPACE_MAXADDR,       /* highaddr */
1748 			NULL, NULL,      /* filter, filterarg */
1749 			MJUM9BYTES,     /* maxsize */
1750 			1,        /* nsegments */
1751 			MJUM9BYTES,        /* maxsegsize */
1752 			BUS_DMA_ALLOCNOW,        /* flags */
1753 			NULL,    /* lockfunc */
1754 			NULL,    /* lockfuncarg */
1755 			&ha->rx_tag)) {
1756 
1757 		device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
1758 			__func__);
1759 
1760 		return (ENOMEM);
1761 	}
1762 
1763 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
1764 
1765 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1766 		ha->hw.sds[i].sdsr_next = 0;
1767 		ha->hw.sds[i].rxb_free = NULL;
1768 		ha->hw.sds[i].rx_free = 0;
1769 	}
1770 
1771 	ret = qla_alloc_rcv_std(ha);
1772 
1773 	return (ret);
1774 }
1775 
1776 static void
1777 qla_free_rcv_bufs(qla_host_t *ha)
1778 {
1779 	int		i;
1780 
1781 	qla_free_rcv_std(ha);
1782 
1783 	if (ha->rx_tag != NULL) {
1784 		bus_dma_tag_destroy(ha->rx_tag);
1785 		ha->rx_tag = NULL;
1786 	}
1787 
1788 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
1789 
1790 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1791 		ha->hw.sds[i].sdsr_next = 0;
1792 		ha->hw.sds[i].rxb_free = NULL;
1793 		ha->hw.sds[i].rx_free = 0;
1794 	}
1795 
1796 	return;
1797 }
1798 
1799 int
1800 ql_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
1801 {
1802 	register struct mbuf *mp = nmp;
1803 	struct ifnet   		*ifp;
1804 	int            		ret = 0;
1805 	uint32_t		offset;
1806 	bus_dma_segment_t	segs[1];
1807 	int			nsegs, mbuf_size;
1808 
1809 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1810 
1811 	ifp = ha->ifp;
1812 
1813         if (ha->hw.enable_9kb)
1814                 mbuf_size = MJUM9BYTES;
1815         else
1816                 mbuf_size = MCLBYTES;
1817 
1818 	if (mp == NULL) {
1819 
1820 		if (QL_ERR_INJECT(ha, INJCT_M_GETCL_M_GETJCL_FAILURE))
1821 			return(-1);
1822 
1823                 if (ha->hw.enable_9kb)
1824                         mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, mbuf_size);
1825                 else
1826                         mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1827 
1828 		if (mp == NULL) {
1829 			ha->err_m_getcl++;
1830 			ret = ENOBUFS;
1831 			device_printf(ha->pci_dev,
1832 					"%s: m_getcl failed\n", __func__);
1833 			goto exit_ql_get_mbuf;
1834 		}
1835 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
1836 	} else {
1837 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
1838 		mp->m_data = mp->m_ext.ext_buf;
1839 		mp->m_next = NULL;
1840 	}
1841 
1842 	offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
1843 	if (offset) {
1844 		offset = 8 - offset;
1845 		m_adj(mp, offset);
1846 	}
1847 
1848 	/*
1849 	 * Using memory from the mbuf cluster pool, invoke the bus_dma
1850 	 * machinery to arrange the memory mapping.
1851 	 */
1852 	ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
1853 			mp, segs, &nsegs, BUS_DMA_NOWAIT);
1854 	rxb->paddr = segs[0].ds_addr;
1855 
1856 	if (ret || !rxb->paddr || (nsegs != 1)) {
1857 		m_free(mp);
1858 		rxb->m_head = NULL;
1859 		device_printf(ha->pci_dev,
1860 			"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
1861 			__func__, ret, (long long unsigned int)rxb->paddr,
1862 			nsegs);
1863                 ret = -1;
1864 		goto exit_ql_get_mbuf;
1865 	}
1866 	rxb->m_head = mp;
1867 	bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
1868 
1869 exit_ql_get_mbuf:
1870 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
1871 	return (ret);
1872 }
1873 
1874 
1875 static void
1876 qla_get_peer(qla_host_t *ha)
1877 {
1878 	device_t *peers;
1879 	int count, i, slot;
1880 	int my_slot = pci_get_slot(ha->pci_dev);
1881 
1882 	if (device_get_children(device_get_parent(ha->pci_dev), &peers, &count))
1883 		return;
1884 
1885 	for (i = 0; i < count; i++) {
1886 		slot = pci_get_slot(peers[i]);
1887 
1888 		if ((slot >= 0) && (slot == my_slot) &&
1889 			(pci_get_device(peers[i]) ==
1890 				pci_get_device(ha->pci_dev))) {
1891 			if (ha->pci_dev != peers[i])
1892 				ha->peer_dev = peers[i];
1893 		}
1894 	}
1895 }
1896 
1897 static void
1898 qla_send_msg_to_peer(qla_host_t *ha, uint32_t msg_to_peer)
1899 {
1900 	qla_host_t *ha_peer;
1901 
1902 	if (ha->peer_dev) {
1903         	if ((ha_peer = device_get_softc(ha->peer_dev)) != NULL) {
1904 
1905 			ha_peer->msg_from_peer = msg_to_peer;
1906 		}
1907 	}
1908 }
1909 
1910 static void
1911 qla_error_recovery(void *context, int pending)
1912 {
1913 	qla_host_t *ha = context;
1914 	uint32_t msecs_100 = 100;
1915 	struct ifnet *ifp = ha->ifp;
1916 	int i = 0;
1917 
1918         QLA_LOCK(ha);
1919 
1920 	if (ha->flags.qla_interface_up) {
1921 
1922 		ha->hw.imd_compl = 1;
1923 		qla_mdelay(__func__, 300);
1924 
1925 		ql_hw_stop_rcv(ha);
1926 
1927 	        ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1928 
1929 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1930 	        	qla_tx_fp_t *fp;
1931 
1932 			fp = &ha->tx_fp[i];
1933 
1934 			if (fp == NULL)
1935 				continue;
1936 
1937 			if (fp->tx_br != NULL) {
1938 				mtx_lock(&fp->tx_mtx);
1939 				mtx_unlock(&fp->tx_mtx);
1940 			}
1941 		}
1942 	}
1943 
1944         QLA_UNLOCK(ha);
1945 
1946 	if ((ha->pci_func & 0x1) == 0) {
1947 
1948 		if (!ha->msg_from_peer) {
1949 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
1950 
1951 			while ((ha->msg_from_peer != QL_PEER_MSG_ACK) &&
1952 				msecs_100--)
1953 				qla_mdelay(__func__, 100);
1954 		}
1955 
1956 		ha->msg_from_peer = 0;
1957 
1958         	QLA_LOCK(ha);
1959 
1960 		ql_minidump(ha);
1961 
1962         	QLA_UNLOCK(ha);
1963 
1964 		(void) ql_init_hw(ha);
1965 
1966         	QLA_LOCK(ha);
1967 
1968 		if (ha->flags.qla_interface_up) {
1969 			qla_free_xmt_bufs(ha);
1970 			qla_free_rcv_bufs(ha);
1971 		}
1972 
1973         	QLA_UNLOCK(ha);
1974 
1975 		qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
1976 
1977 	} else {
1978 		if (ha->msg_from_peer == QL_PEER_MSG_RESET) {
1979 
1980 			ha->msg_from_peer = 0;
1981 
1982 			qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
1983 		} else {
1984 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
1985 		}
1986 
1987 		while ((ha->msg_from_peer != QL_PEER_MSG_ACK)  && msecs_100--)
1988 			qla_mdelay(__func__, 100);
1989 		ha->msg_from_peer = 0;
1990 
1991 		(void) ql_init_hw(ha);
1992 
1993         	QLA_LOCK(ha);
1994 
1995 		if (ha->flags.qla_interface_up) {
1996 			qla_free_xmt_bufs(ha);
1997 			qla_free_rcv_bufs(ha);
1998 		}
1999 
2000         	QLA_UNLOCK(ha);
2001 	}
2002 
2003         QLA_LOCK(ha);
2004 
2005 	if (ha->flags.qla_interface_up) {
2006 
2007 		if (qla_alloc_xmt_bufs(ha) != 0) {
2008 			QLA_UNLOCK(ha);
2009 			return;
2010 		}
2011 		qla_confirm_9kb_enable(ha);
2012 
2013 		if (qla_alloc_rcv_bufs(ha) != 0) {
2014 			QLA_UNLOCK(ha);
2015 			return;
2016 		}
2017 
2018 		ha->flags.stop_rcv = 0;
2019 
2020 		if (ql_init_hw_if(ha) == 0) {
2021 			ifp = ha->ifp;
2022 			ifp->if_drv_flags |= IFF_DRV_RUNNING;
2023 			ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2024 			ha->flags.qla_watchdog_pause = 0;
2025 		}
2026 	} else
2027 		ha->flags.qla_watchdog_pause = 0;
2028 
2029         QLA_UNLOCK(ha);
2030 }
2031 
2032 static void
2033 qla_async_event(void *context, int pending)
2034 {
2035         qla_host_t *ha = context;
2036 
2037         QLA_LOCK(ha);
2038         qla_hw_async_event(ha);
2039         QLA_UNLOCK(ha);
2040 }
2041 
2042