xref: /freebsd/sys/dev/qlxgbe/ql_os.c (revision b08fc26cbdd00df6852e71e1be58fa9cc92019f0)
1 /*
2  * Copyright (c) 2013-2016 Qlogic Corporation
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  and ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File: ql_os.c
30  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 
37 #include "ql_os.h"
38 #include "ql_hw.h"
39 #include "ql_def.h"
40 #include "ql_inline.h"
41 #include "ql_ver.h"
42 #include "ql_glbl.h"
43 #include "ql_dbg.h"
44 #include <sys/smp.h>
45 
46 /*
47  * Some PCI Configuration Space Related Defines
48  */
49 
50 #ifndef PCI_VENDOR_QLOGIC
51 #define PCI_VENDOR_QLOGIC	0x1077
52 #endif
53 
54 #ifndef PCI_PRODUCT_QLOGIC_ISP8030
55 #define PCI_PRODUCT_QLOGIC_ISP8030	0x8030
56 #endif
57 
58 #define PCI_QLOGIC_ISP8030 \
59 	((PCI_PRODUCT_QLOGIC_ISP8030 << 16) | PCI_VENDOR_QLOGIC)
60 
61 /*
62  * static functions
63  */
64 static int qla_alloc_parent_dma_tag(qla_host_t *ha);
65 static void qla_free_parent_dma_tag(qla_host_t *ha);
66 static int qla_alloc_xmt_bufs(qla_host_t *ha);
67 static void qla_free_xmt_bufs(qla_host_t *ha);
68 static int qla_alloc_rcv_bufs(qla_host_t *ha);
69 static void qla_free_rcv_bufs(qla_host_t *ha);
70 static void qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb);
71 
72 static void qla_init_ifnet(device_t dev, qla_host_t *ha);
73 static int qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS);
74 static int qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS);
75 static void qla_release(qla_host_t *ha);
76 static void qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs,
77 		int error);
78 static void qla_stop(qla_host_t *ha);
79 static void qla_get_peer(qla_host_t *ha);
80 static void qla_error_recovery(void *context, int pending);
81 static void qla_async_event(void *context, int pending);
82 static int qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
83 		uint32_t iscsi_pdu);
84 
85 /*
86  * Hooks to the Operating Systems
87  */
88 static int qla_pci_probe (device_t);
89 static int qla_pci_attach (device_t);
90 static int qla_pci_detach (device_t);
91 
92 static void qla_init(void *arg);
93 static int qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data);
94 static int qla_media_change(struct ifnet *ifp);
95 static void qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr);
96 
97 static int qla_transmit(struct ifnet *ifp, struct mbuf  *mp);
98 static void qla_qflush(struct ifnet *ifp);
99 static int qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
100 static void qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *tx_fp);
101 static int qla_create_fp_taskqueues(qla_host_t *ha);
102 static void qla_destroy_fp_taskqueues(qla_host_t *ha);
103 static void qla_drain_fp_taskqueues(qla_host_t *ha);
104 
105 static device_method_t qla_pci_methods[] = {
106 	/* Device interface */
107 	DEVMETHOD(device_probe, qla_pci_probe),
108 	DEVMETHOD(device_attach, qla_pci_attach),
109 	DEVMETHOD(device_detach, qla_pci_detach),
110 	{ 0, 0 }
111 };
112 
113 static driver_t qla_pci_driver = {
114 	"ql", qla_pci_methods, sizeof (qla_host_t),
115 };
116 
117 static devclass_t qla83xx_devclass;
118 
119 DRIVER_MODULE(qla83xx, pci, qla_pci_driver, qla83xx_devclass, 0, 0);
120 
121 MODULE_DEPEND(qla83xx, pci, 1, 1, 1);
122 MODULE_DEPEND(qla83xx, ether, 1, 1, 1);
123 
124 MALLOC_DEFINE(M_QLA83XXBUF, "qla83xxbuf", "Buffers for qla83xx driver");
125 
126 #define QL_STD_REPLENISH_THRES		0
127 #define QL_JUMBO_REPLENISH_THRES	32
128 
129 
130 static char dev_str[64];
131 static char ver_str[64];
132 
133 /*
134  * Name:	qla_pci_probe
135  * Function:	Validate the PCI device to be a QLA80XX device
136  */
137 static int
138 qla_pci_probe(device_t dev)
139 {
140         switch ((pci_get_device(dev) << 16) | (pci_get_vendor(dev))) {
141         case PCI_QLOGIC_ISP8030:
142 		snprintf(dev_str, sizeof(dev_str), "%s v%d.%d.%d",
143 			"Qlogic ISP 83xx PCI CNA Adapter-Ethernet Function",
144 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
145 			QLA_VERSION_BUILD);
146 		snprintf(ver_str, sizeof(ver_str), "v%d.%d.%d",
147 			QLA_VERSION_MAJOR, QLA_VERSION_MINOR,
148 			QLA_VERSION_BUILD);
149                 device_set_desc(dev, dev_str);
150                 break;
151         default:
152                 return (ENXIO);
153         }
154 
155         if (bootverbose)
156                 printf("%s: %s\n ", __func__, dev_str);
157 
158         return (BUS_PROBE_DEFAULT);
159 }
160 
161 static void
162 qla_add_sysctls(qla_host_t *ha)
163 {
164         device_t dev = ha->pci_dev;
165 
166 	SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
167 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
168 		OID_AUTO, "version", CTLFLAG_RD,
169 		ver_str, 0, "Driver Version");
170 
171         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
172                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
173                 OID_AUTO, "stats", CTLTYPE_INT | CTLFLAG_RW,
174                 (void *)ha, 0,
175                 qla_sysctl_get_stats, "I", "Statistics");
176 
177         SYSCTL_ADD_STRING(device_get_sysctl_ctx(dev),
178                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
179                 OID_AUTO, "fw_version", CTLFLAG_RD,
180                 ha->fw_ver_str, 0, "firmware version");
181 
182         SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
183                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
184                 OID_AUTO, "link_status", CTLTYPE_INT | CTLFLAG_RW,
185                 (void *)ha, 0,
186                 qla_sysctl_get_link_status, "I", "Link Status");
187 
188 	ha->dbg_level = 0;
189         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
190                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
191                 OID_AUTO, "debug", CTLFLAG_RW,
192                 &ha->dbg_level, ha->dbg_level, "Debug Level");
193 
194 	ha->std_replenish = QL_STD_REPLENISH_THRES;
195         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
196                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
197                 OID_AUTO, "std_replenish", CTLFLAG_RW,
198                 &ha->std_replenish, ha->std_replenish,
199                 "Threshold for Replenishing Standard Frames");
200 
201         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
202                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
203                 OID_AUTO, "ipv4_lro",
204                 CTLFLAG_RD, &ha->ipv4_lro,
205                 "number of ipv4 lro completions");
206 
207         SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
208                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
209                 OID_AUTO, "ipv6_lro",
210                 CTLFLAG_RD, &ha->ipv6_lro,
211                 "number of ipv6 lro completions");
212 
213 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
214 		SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
215 		OID_AUTO, "tx_tso_frames",
216 		CTLFLAG_RD, &ha->tx_tso_frames,
217 		"number of Tx TSO Frames");
218 
219 	SYSCTL_ADD_QUAD(device_get_sysctl_ctx(dev),
220                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
221 		OID_AUTO, "hw_vlan_tx_frames",
222 		CTLFLAG_RD, &ha->hw_vlan_tx_frames,
223 		"number of Tx VLAN Frames");
224 
225         return;
226 }
227 
228 static void
229 qla_watchdog(void *arg)
230 {
231 	qla_host_t *ha = arg;
232 	qla_hw_t *hw;
233 	struct ifnet *ifp;
234 	uint32_t i;
235 
236 	hw = &ha->hw;
237 	ifp = ha->ifp;
238 
239         if (ha->flags.qla_watchdog_exit) {
240 		ha->qla_watchdog_exited = 1;
241 		return;
242 	}
243 	ha->qla_watchdog_exited = 0;
244 
245 	if (!ha->flags.qla_watchdog_pause) {
246 		if (ql_hw_check_health(ha) || ha->qla_initiate_recovery ||
247 			(ha->msg_from_peer == QL_PEER_MSG_RESET)) {
248 			ha->qla_watchdog_paused = 1;
249 			ha->flags.qla_watchdog_pause = 1;
250 			ha->qla_initiate_recovery = 0;
251 			ha->err_inject = 0;
252 			device_printf(ha->pci_dev,
253 				"%s: taskqueue_enqueue(err_task) \n", __func__);
254 			taskqueue_enqueue(ha->err_tq, &ha->err_task);
255 		} else if (ha->flags.qla_interface_up) {
256 
257                         if (ha->async_event) {
258                                 ha->async_event = 0;
259                                 taskqueue_enqueue(ha->async_event_tq,
260                                         &ha->async_event_task);
261                         }
262 
263 			for (i = 0; i < ha->hw.num_sds_rings; i++) {
264 				qla_tx_fp_t *fp = &ha->tx_fp[i];
265 
266 				if (fp->fp_taskqueue != NULL)
267 					taskqueue_enqueue(fp->fp_taskqueue,
268 						&fp->fp_task);
269 			}
270 
271 			ha->qla_watchdog_paused = 0;
272 		} else {
273 			ha->qla_watchdog_paused = 0;
274 		}
275 	} else {
276 		ha->qla_watchdog_paused = 1;
277 	}
278 
279 	ha->watchdog_ticks = ha->watchdog_ticks++ % 1000;
280 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
281 		qla_watchdog, ha);
282 }
283 
284 /*
285  * Name:	qla_pci_attach
286  * Function:	attaches the device to the operating system
287  */
288 static int
289 qla_pci_attach(device_t dev)
290 {
291 	qla_host_t *ha = NULL;
292 	uint32_t rsrc_len;
293 	int i;
294 	uint32_t num_rcvq = 0;
295 
296         if ((ha = device_get_softc(dev)) == NULL) {
297                 device_printf(dev, "cannot get softc\n");
298                 return (ENOMEM);
299         }
300 
301         memset(ha, 0, sizeof (qla_host_t));
302 
303         if (pci_get_device(dev) != PCI_PRODUCT_QLOGIC_ISP8030) {
304                 device_printf(dev, "device is not ISP8030\n");
305                 return (ENXIO);
306 	}
307 
308         ha->pci_func = pci_get_function(dev) & 0x1;
309 
310         ha->pci_dev = dev;
311 
312 	pci_enable_busmaster(dev);
313 
314 	ha->reg_rid = PCIR_BAR(0);
315 	ha->pci_reg = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &ha->reg_rid,
316 				RF_ACTIVE);
317 
318         if (ha->pci_reg == NULL) {
319                 device_printf(dev, "unable to map any ports\n");
320                 goto qla_pci_attach_err;
321         }
322 
323 	rsrc_len = (uint32_t) bus_get_resource_count(dev, SYS_RES_MEMORY,
324 					ha->reg_rid);
325 
326 	mtx_init(&ha->hw_lock, "qla83xx_hw_lock", MTX_NETWORK_LOCK, MTX_DEF);
327 
328 	qla_add_sysctls(ha);
329 	ql_hw_add_sysctls(ha);
330 
331 	ha->flags.lock_init = 1;
332 
333 	ha->reg_rid1 = PCIR_BAR(2);
334 	ha->pci_reg1 = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
335 			&ha->reg_rid1, RF_ACTIVE);
336 
337 	ha->msix_count = pci_msix_count(dev);
338 
339 	if (ha->msix_count < (ha->hw.num_sds_rings + 1)) {
340 		device_printf(dev, "%s: msix_count[%d] not enough\n", __func__,
341 			ha->msix_count);
342 		goto qla_pci_attach_err;
343 	}
344 
345 	QL_DPRINT2(ha, (dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
346 		" msix_count 0x%x pci_reg %p pci_reg1 %p\n", __func__, ha,
347 		ha->pci_func, rsrc_len, ha->msix_count, ha->pci_reg,
348 		ha->pci_reg1));
349 
350         /* initialize hardware */
351         if (ql_init_hw(ha)) {
352                 device_printf(dev, "%s: ql_init_hw failed\n", __func__);
353                 goto qla_pci_attach_err;
354         }
355 
356         device_printf(dev, "%s: firmware[%d.%d.%d.%d]\n", __func__,
357                 ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
358                 ha->fw_ver_build);
359         snprintf(ha->fw_ver_str, sizeof(ha->fw_ver_str), "%d.%d.%d.%d",
360                         ha->fw_ver_major, ha->fw_ver_minor, ha->fw_ver_sub,
361                         ha->fw_ver_build);
362 
363         if (qla_get_nic_partition(ha, NULL, &num_rcvq)) {
364                 device_printf(dev, "%s: qla_get_nic_partition failed\n",
365                         __func__);
366                 goto qla_pci_attach_err;
367         }
368         device_printf(dev, "%s: ha %p pci_func 0x%x rsrc_count 0x%08x"
369                 " msix_count 0x%x pci_reg %p pci_reg1 %p num_rcvq = %d\n",
370 		__func__, ha, ha->pci_func, rsrc_len, ha->msix_count,
371 		ha->pci_reg, ha->pci_reg1, num_rcvq);
372 
373 
374 #ifdef QL_ENABLE_ISCSI_TLV
375         if ((ha->msix_count  < 64) || (num_rcvq != 32)) {
376                 ha->hw.num_sds_rings = 15;
377                 ha->hw.num_tx_rings = ha->hw.num_sds_rings * 2;
378         }
379 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
380 	ha->hw.num_rds_rings = ha->hw.num_sds_rings;
381 
382 	ha->msix_count = ha->hw.num_sds_rings + 1;
383 
384 	if (pci_alloc_msix(dev, &ha->msix_count)) {
385 		device_printf(dev, "%s: pci_alloc_msi[%d] failed\n", __func__,
386 			ha->msix_count);
387 		ha->msix_count = 0;
388 		goto qla_pci_attach_err;
389 	}
390 
391 	ha->mbx_irq_rid = 1;
392 	ha->mbx_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
393 				&ha->mbx_irq_rid,
394 				(RF_ACTIVE | RF_SHAREABLE));
395 	if (ha->mbx_irq == NULL) {
396 		device_printf(dev, "could not allocate mbx interrupt\n");
397 		goto qla_pci_attach_err;
398 	}
399 	if (bus_setup_intr(dev, ha->mbx_irq, (INTR_TYPE_NET | INTR_MPSAFE),
400 		NULL, ql_mbx_isr, ha, &ha->mbx_handle)) {
401 		device_printf(dev, "could not setup mbx interrupt\n");
402 		goto qla_pci_attach_err;
403 	}
404 
405 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
406 		ha->irq_vec[i].sds_idx = i;
407                 ha->irq_vec[i].ha = ha;
408                 ha->irq_vec[i].irq_rid = 2 + i;
409 
410 		ha->irq_vec[i].irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
411 				&ha->irq_vec[i].irq_rid,
412 				(RF_ACTIVE | RF_SHAREABLE));
413 
414 		if (ha->irq_vec[i].irq == NULL) {
415 			device_printf(dev, "could not allocate interrupt\n");
416 			goto qla_pci_attach_err;
417 		}
418 		if (bus_setup_intr(dev, ha->irq_vec[i].irq,
419 			(INTR_TYPE_NET | INTR_MPSAFE),
420 			NULL, ql_isr, &ha->irq_vec[i],
421 			&ha->irq_vec[i].handle)) {
422 			device_printf(dev, "could not setup interrupt\n");
423 			goto qla_pci_attach_err;
424 		}
425 
426 		ha->tx_fp[i].ha = ha;
427 		ha->tx_fp[i].txr_idx = i;
428 
429 		if (qla_alloc_tx_br(ha, &ha->tx_fp[i])) {
430 			device_printf(dev, "%s: could not allocate tx_br[%d]\n",
431 				__func__, i);
432 			goto qla_pci_attach_err;
433 		}
434 	}
435 
436 	if (qla_create_fp_taskqueues(ha) != 0)
437 		goto qla_pci_attach_err;
438 
439 	printf("%s: mp__ncpus %d sds %d rds %d msi-x %d\n", __func__, mp_ncpus,
440 		ha->hw.num_sds_rings, ha->hw.num_rds_rings, ha->msix_count);
441 
442 	ql_read_mac_addr(ha);
443 
444 	/* allocate parent dma tag */
445 	if (qla_alloc_parent_dma_tag(ha)) {
446 		device_printf(dev, "%s: qla_alloc_parent_dma_tag failed\n",
447 			__func__);
448 		goto qla_pci_attach_err;
449 	}
450 
451 	/* alloc all dma buffers */
452 	if (ql_alloc_dma(ha)) {
453 		device_printf(dev, "%s: ql_alloc_dma failed\n", __func__);
454 		goto qla_pci_attach_err;
455 	}
456 	qla_get_peer(ha);
457 
458 	if (ql_minidump_init(ha) != 0) {
459 		device_printf(dev, "%s: ql_minidump_init failed\n", __func__);
460 		goto qla_pci_attach_err;
461 	}
462 	/* create the o.s ethernet interface */
463 	qla_init_ifnet(dev, ha);
464 
465 	ha->flags.qla_watchdog_active = 1;
466 	ha->flags.qla_watchdog_pause = 0;
467 
468 	callout_init(&ha->tx_callout, TRUE);
469 	ha->flags.qla_callout_init = 1;
470 
471 	/* create ioctl device interface */
472 	if (ql_make_cdev(ha)) {
473 		device_printf(dev, "%s: ql_make_cdev failed\n", __func__);
474 		goto qla_pci_attach_err;
475 	}
476 
477 	callout_reset(&ha->tx_callout, QLA_WATCHDOG_CALLOUT_TICKS,
478 		qla_watchdog, ha);
479 
480 	TASK_INIT(&ha->err_task, 0, qla_error_recovery, ha);
481 	ha->err_tq = taskqueue_create("qla_errq", M_NOWAIT,
482 			taskqueue_thread_enqueue, &ha->err_tq);
483 	taskqueue_start_threads(&ha->err_tq, 1, PI_NET, "%s errq",
484 		device_get_nameunit(ha->pci_dev));
485 
486         TASK_INIT(&ha->async_event_task, 0, qla_async_event, ha);
487         ha->async_event_tq = taskqueue_create("qla_asyncq", M_NOWAIT,
488                         taskqueue_thread_enqueue, &ha->async_event_tq);
489         taskqueue_start_threads(&ha->async_event_tq, 1, PI_NET, "%s asyncq",
490                 device_get_nameunit(ha->pci_dev));
491 
492 	QL_DPRINT2(ha, (dev, "%s: exit 0\n", __func__));
493         return (0);
494 
495 qla_pci_attach_err:
496 
497 	qla_release(ha);
498 
499 	QL_DPRINT2(ha, (dev, "%s: exit ENXIO\n", __func__));
500         return (ENXIO);
501 }
502 
503 /*
504  * Name:	qla_pci_detach
505  * Function:	Unhooks the device from the operating system
506  */
507 static int
508 qla_pci_detach(device_t dev)
509 {
510 	qla_host_t *ha = NULL;
511 	struct ifnet *ifp;
512 
513 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
514 
515         if ((ha = device_get_softc(dev)) == NULL) {
516                 device_printf(dev, "cannot get softc\n");
517                 return (ENOMEM);
518         }
519 
520 	ifp = ha->ifp;
521 
522 	(void)QLA_LOCK(ha, __func__, 0);
523 	qla_stop(ha);
524 	QLA_UNLOCK(ha, __func__);
525 
526 	qla_release(ha);
527 
528 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
529 
530         return (0);
531 }
532 
533 /*
534  * SYSCTL Related Callbacks
535  */
536 static int
537 qla_sysctl_get_stats(SYSCTL_HANDLER_ARGS)
538 {
539 	int err, ret = 0;
540 	qla_host_t *ha;
541 
542 	err = sysctl_handle_int(oidp, &ret, 0, req);
543 
544 	if (err || !req->newptr)
545 		return (err);
546 
547 	if (ret == 1) {
548 		ha = (qla_host_t *)arg1;
549 		ql_get_stats(ha);
550 	}
551 	return (err);
552 }
553 static int
554 qla_sysctl_get_link_status(SYSCTL_HANDLER_ARGS)
555 {
556 	int err, ret = 0;
557 	qla_host_t *ha;
558 
559 	err = sysctl_handle_int(oidp, &ret, 0, req);
560 
561 	if (err || !req->newptr)
562 		return (err);
563 
564 	if (ret == 1) {
565 		ha = (qla_host_t *)arg1;
566 		ql_hw_link_status(ha);
567 	}
568 	return (err);
569 }
570 
571 /*
572  * Name:	qla_release
573  * Function:	Releases the resources allocated for the device
574  */
575 static void
576 qla_release(qla_host_t *ha)
577 {
578 	device_t dev;
579 	int i;
580 
581 	dev = ha->pci_dev;
582 
583         if (ha->async_event_tq) {
584                 taskqueue_drain(ha->async_event_tq, &ha->async_event_task);
585                 taskqueue_free(ha->async_event_tq);
586         }
587 
588 	if (ha->err_tq) {
589 		taskqueue_drain(ha->err_tq, &ha->err_task);
590 		taskqueue_free(ha->err_tq);
591 	}
592 
593 	ql_del_cdev(ha);
594 
595 	if (ha->flags.qla_watchdog_active) {
596 		ha->flags.qla_watchdog_exit = 1;
597 
598 		while (ha->qla_watchdog_exited == 0)
599 			qla_mdelay(__func__, 1);
600 	}
601 
602 	if (ha->flags.qla_callout_init)
603 		callout_stop(&ha->tx_callout);
604 
605 	if (ha->ifp != NULL)
606 		ether_ifdetach(ha->ifp);
607 
608 	ql_free_dma(ha);
609 	qla_free_parent_dma_tag(ha);
610 
611 	if (ha->mbx_handle)
612 		(void)bus_teardown_intr(dev, ha->mbx_irq, ha->mbx_handle);
613 
614 	if (ha->mbx_irq)
615 		(void) bus_release_resource(dev, SYS_RES_IRQ, ha->mbx_irq_rid,
616 				ha->mbx_irq);
617 
618 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
619 
620 		if (ha->irq_vec[i].handle) {
621 			(void)bus_teardown_intr(dev, ha->irq_vec[i].irq,
622 					ha->irq_vec[i].handle);
623 		}
624 
625 		if (ha->irq_vec[i].irq) {
626 			(void)bus_release_resource(dev, SYS_RES_IRQ,
627 				ha->irq_vec[i].irq_rid,
628 				ha->irq_vec[i].irq);
629 		}
630 
631 		qla_free_tx_br(ha, &ha->tx_fp[i]);
632 	}
633 	qla_destroy_fp_taskqueues(ha);
634 
635 	if (ha->msix_count)
636 		pci_release_msi(dev);
637 
638 	if (ha->flags.lock_init) {
639 		mtx_destroy(&ha->hw_lock);
640 	}
641 
642         if (ha->pci_reg)
643                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid,
644 				ha->pci_reg);
645 
646         if (ha->pci_reg1)
647                 (void) bus_release_resource(dev, SYS_RES_MEMORY, ha->reg_rid1,
648 				ha->pci_reg1);
649 }
650 
651 /*
652  * DMA Related Functions
653  */
654 
655 static void
656 qla_dmamap_callback(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
657 {
658         *((bus_addr_t *)arg) = 0;
659 
660         if (error) {
661                 printf("%s: bus_dmamap_load failed (%d)\n", __func__, error);
662                 return;
663 	}
664 
665         *((bus_addr_t *)arg) = segs[0].ds_addr;
666 
667 	return;
668 }
669 
670 int
671 ql_alloc_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
672 {
673         int             ret = 0;
674         device_t        dev;
675         bus_addr_t      b_addr;
676 
677         dev = ha->pci_dev;
678 
679         QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
680 
681         ret = bus_dma_tag_create(
682                         ha->parent_tag,/* parent */
683                         dma_buf->alignment,
684                         ((bus_size_t)(1ULL << 32)),/* boundary */
685                         BUS_SPACE_MAXADDR,      /* lowaddr */
686                         BUS_SPACE_MAXADDR,      /* highaddr */
687                         NULL, NULL,             /* filter, filterarg */
688                         dma_buf->size,          /* maxsize */
689                         1,                      /* nsegments */
690                         dma_buf->size,          /* maxsegsize */
691                         0,                      /* flags */
692                         NULL, NULL,             /* lockfunc, lockarg */
693                         &dma_buf->dma_tag);
694 
695         if (ret) {
696                 device_printf(dev, "%s: could not create dma tag\n", __func__);
697                 goto ql_alloc_dmabuf_exit;
698         }
699         ret = bus_dmamem_alloc(dma_buf->dma_tag,
700                         (void **)&dma_buf->dma_b,
701                         (BUS_DMA_ZERO | BUS_DMA_COHERENT | BUS_DMA_NOWAIT),
702                         &dma_buf->dma_map);
703         if (ret) {
704                 bus_dma_tag_destroy(dma_buf->dma_tag);
705                 device_printf(dev, "%s: bus_dmamem_alloc failed\n", __func__);
706                 goto ql_alloc_dmabuf_exit;
707         }
708 
709         ret = bus_dmamap_load(dma_buf->dma_tag,
710                         dma_buf->dma_map,
711                         dma_buf->dma_b,
712                         dma_buf->size,
713                         qla_dmamap_callback,
714                         &b_addr, BUS_DMA_NOWAIT);
715 
716         if (ret || !b_addr) {
717                 bus_dma_tag_destroy(dma_buf->dma_tag);
718                 bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b,
719                         dma_buf->dma_map);
720                 ret = -1;
721                 goto ql_alloc_dmabuf_exit;
722         }
723 
724         dma_buf->dma_addr = b_addr;
725 
726 ql_alloc_dmabuf_exit:
727         QL_DPRINT2(ha, (dev, "%s: exit ret 0x%08x tag %p map %p b %p sz 0x%x\n",
728                 __func__, ret, (void *)dma_buf->dma_tag,
729                 (void *)dma_buf->dma_map, (void *)dma_buf->dma_b,
730 		dma_buf->size));
731 
732         return ret;
733 }
734 
735 void
736 ql_free_dmabuf(qla_host_t *ha, qla_dma_t *dma_buf)
737 {
738 	bus_dmamap_unload(dma_buf->dma_tag, dma_buf->dma_map);
739         bus_dmamem_free(dma_buf->dma_tag, dma_buf->dma_b, dma_buf->dma_map);
740         bus_dma_tag_destroy(dma_buf->dma_tag);
741 }
742 
743 static int
744 qla_alloc_parent_dma_tag(qla_host_t *ha)
745 {
746 	int		ret;
747 	device_t	dev;
748 
749 	dev = ha->pci_dev;
750 
751         /*
752          * Allocate parent DMA Tag
753          */
754         ret = bus_dma_tag_create(
755                         bus_get_dma_tag(dev),   /* parent */
756                         1,((bus_size_t)(1ULL << 32)),/* alignment, boundary */
757                         BUS_SPACE_MAXADDR,      /* lowaddr */
758                         BUS_SPACE_MAXADDR,      /* highaddr */
759                         NULL, NULL,             /* filter, filterarg */
760                         BUS_SPACE_MAXSIZE_32BIT,/* maxsize */
761                         0,                      /* nsegments */
762                         BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */
763                         0,                      /* flags */
764                         NULL, NULL,             /* lockfunc, lockarg */
765                         &ha->parent_tag);
766 
767         if (ret) {
768                 device_printf(dev, "%s: could not create parent dma tag\n",
769                         __func__);
770 		return (-1);
771         }
772 
773         ha->flags.parent_tag = 1;
774 
775 	return (0);
776 }
777 
778 static void
779 qla_free_parent_dma_tag(qla_host_t *ha)
780 {
781         if (ha->flags.parent_tag) {
782                 bus_dma_tag_destroy(ha->parent_tag);
783                 ha->flags.parent_tag = 0;
784         }
785 }
786 
787 /*
788  * Name: qla_init_ifnet
789  * Function: Creates the Network Device Interface and Registers it with the O.S
790  */
791 
792 static void
793 qla_init_ifnet(device_t dev, qla_host_t *ha)
794 {
795 	struct ifnet *ifp;
796 
797 	QL_DPRINT2(ha, (dev, "%s: enter\n", __func__));
798 
799 	ifp = ha->ifp = if_alloc(IFT_ETHER);
800 
801 	if (ifp == NULL)
802 		panic("%s: cannot if_alloc()\n", device_get_nameunit(dev));
803 
804 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
805 
806 	ifp->if_baudrate = IF_Gbps(10);
807 	ifp->if_capabilities = IFCAP_LINKSTATE;
808 	ifp->if_mtu = ETHERMTU;
809 
810 	ifp->if_init = qla_init;
811 	ifp->if_softc = ha;
812 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
813 	ifp->if_ioctl = qla_ioctl;
814 
815 	ifp->if_transmit = qla_transmit;
816 	ifp->if_qflush = qla_qflush;
817 
818 	IFQ_SET_MAXLEN(&ifp->if_snd, qla_get_ifq_snd_maxlen(ha));
819 	ifp->if_snd.ifq_drv_maxlen = qla_get_ifq_snd_maxlen(ha);
820 	IFQ_SET_READY(&ifp->if_snd);
821 
822 	ha->max_frame_size = ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
823 
824 	ether_ifattach(ifp, qla_get_mac_addr(ha));
825 
826 	ifp->if_capabilities |= IFCAP_HWCSUM |
827 				IFCAP_TSO4 |
828 				IFCAP_JUMBO_MTU |
829 				IFCAP_VLAN_HWTAGGING |
830 				IFCAP_VLAN_MTU |
831 				IFCAP_VLAN_HWTSO |
832 				IFCAP_LRO;
833 
834 	ifp->if_capenable = ifp->if_capabilities;
835 
836 	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
837 
838 	ifmedia_init(&ha->media, IFM_IMASK, qla_media_change, qla_media_status);
839 
840 	ifmedia_add(&ha->media, (IFM_ETHER | qla_get_optics(ha) | IFM_FDX), 0,
841 		NULL);
842 	ifmedia_add(&ha->media, (IFM_ETHER | IFM_AUTO), 0, NULL);
843 
844 	ifmedia_set(&ha->media, (IFM_ETHER | IFM_AUTO));
845 
846 	QL_DPRINT2(ha, (dev, "%s: exit\n", __func__));
847 
848 	return;
849 }
850 
851 static void
852 qla_init_locked(qla_host_t *ha)
853 {
854 	struct ifnet *ifp = ha->ifp;
855 
856 	qla_stop(ha);
857 
858 	if (qla_alloc_xmt_bufs(ha) != 0)
859 		return;
860 
861 	qla_confirm_9kb_enable(ha);
862 
863 	if (qla_alloc_rcv_bufs(ha) != 0)
864 		return;
865 
866 	bcopy(IF_LLADDR(ha->ifp), ha->hw.mac_addr, ETHER_ADDR_LEN);
867 
868 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_TSO;
869 
870 	ha->flags.stop_rcv = 0;
871  	if (ql_init_hw_if(ha) == 0) {
872 		ifp = ha->ifp;
873 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
874 		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
875 		ha->flags.qla_watchdog_pause = 0;
876 		ha->hw_vlan_tx_frames = 0;
877 		ha->tx_tso_frames = 0;
878 		ha->flags.qla_interface_up = 1;
879 	}
880 
881 	return;
882 }
883 
884 static void
885 qla_init(void *arg)
886 {
887 	qla_host_t *ha;
888 
889 	ha = (qla_host_t *)arg;
890 
891 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
892 
893 	(void)QLA_LOCK(ha, __func__, 0);
894 	qla_init_locked(ha);
895 	QLA_UNLOCK(ha, __func__);
896 
897 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
898 }
899 
900 static int
901 qla_set_multi(qla_host_t *ha, uint32_t add_multi)
902 {
903 	uint8_t mta[Q8_MAX_NUM_MULTICAST_ADDRS * Q8_MAC_ADDR_LEN];
904 	struct ifmultiaddr *ifma;
905 	int mcnt = 0;
906 	struct ifnet *ifp = ha->ifp;
907 	int ret = 0;
908 
909 	if_maddr_rlock(ifp);
910 
911 	TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
912 
913 		if (ifma->ifma_addr->sa_family != AF_LINK)
914 			continue;
915 
916 		if (mcnt == Q8_MAX_NUM_MULTICAST_ADDRS)
917 			break;
918 
919 		bcopy(LLADDR((struct sockaddr_dl *) ifma->ifma_addr),
920 			&mta[mcnt * Q8_MAC_ADDR_LEN], Q8_MAC_ADDR_LEN);
921 
922 		mcnt++;
923 	}
924 
925 	if_maddr_runlock(ifp);
926 
927 	//if (QLA_LOCK(ha, __func__, 1) == 0) {
928 	//	ret = ql_hw_set_multi(ha, mta, mcnt, add_multi);
929 	//	QLA_UNLOCK(ha, __func__);
930 	//}
931 	QLA_LOCK(ha, __func__, 1);
932 	ret = ql_hw_set_multi(ha, mta, mcnt, add_multi);
933 	QLA_UNLOCK(ha, __func__);
934 
935 	return (ret);
936 }
937 
938 static int
939 qla_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
940 {
941 	int ret = 0;
942 	struct ifreq *ifr = (struct ifreq *)data;
943 	struct ifaddr *ifa = (struct ifaddr *)data;
944 	qla_host_t *ha;
945 
946 	ha = (qla_host_t *)ifp->if_softc;
947 
948 	switch (cmd) {
949 	case SIOCSIFADDR:
950 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFADDR (0x%lx)\n",
951 			__func__, cmd));
952 
953 		if (ifa->ifa_addr->sa_family == AF_INET) {
954 			ifp->if_flags |= IFF_UP;
955 			if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
956 				(void)QLA_LOCK(ha, __func__, 0);
957 				qla_init_locked(ha);
958 				QLA_UNLOCK(ha, __func__);
959 			}
960 			QL_DPRINT4(ha, (ha->pci_dev,
961 				"%s: SIOCSIFADDR (0x%lx) ipv4 [0x%08x]\n",
962 				__func__, cmd,
963 				ntohl(IA_SIN(ifa)->sin_addr.s_addr)));
964 
965 			arp_ifinit(ifp, ifa);
966 		} else {
967 			ether_ioctl(ifp, cmd, data);
968 		}
969 		break;
970 
971 	case SIOCSIFMTU:
972 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFMTU (0x%lx)\n",
973 			__func__, cmd));
974 
975 		if (ifr->ifr_mtu > QLA_MAX_MTU) {
976 			ret = EINVAL;
977 		} else {
978 			(void) QLA_LOCK(ha, __func__, 0);
979 			ifp->if_mtu = ifr->ifr_mtu;
980 			ha->max_frame_size =
981 				ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN;
982 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
983 				ret = ql_set_max_mtu(ha, ha->max_frame_size,
984 					ha->hw.rcv_cntxt_id);
985 			}
986 
987 			if (ifp->if_mtu > ETHERMTU)
988 				ha->std_replenish = QL_JUMBO_REPLENISH_THRES;
989 			else
990 				ha->std_replenish = QL_STD_REPLENISH_THRES;
991 
992 
993 			QLA_UNLOCK(ha, __func__);
994 
995 			if (ret)
996 				ret = EINVAL;
997 		}
998 
999 		break;
1000 
1001 	case SIOCSIFFLAGS:
1002 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFFLAGS (0x%lx)\n",
1003 			__func__, cmd));
1004 
1005 		(void)QLA_LOCK(ha, __func__, 0);
1006 
1007 		if (ifp->if_flags & IFF_UP) {
1008 			if ((ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1009 				if ((ifp->if_flags ^ ha->if_flags) &
1010 					IFF_PROMISC) {
1011 					ret = ql_set_promisc(ha);
1012 				} else if ((ifp->if_flags ^ ha->if_flags) &
1013 					IFF_ALLMULTI) {
1014 					ret = ql_set_allmulti(ha);
1015 				}
1016 			} else {
1017 				qla_init_locked(ha);
1018 				ha->max_frame_size = ifp->if_mtu +
1019 					ETHER_HDR_LEN + ETHER_CRC_LEN;
1020 				ret = ql_set_max_mtu(ha, ha->max_frame_size,
1021 					ha->hw.rcv_cntxt_id);
1022 			}
1023 		} else {
1024 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1025 				qla_stop(ha);
1026 			ha->if_flags = ifp->if_flags;
1027 		}
1028 
1029 		QLA_UNLOCK(ha, __func__);
1030 		break;
1031 
1032 	case SIOCADDMULTI:
1033 		QL_DPRINT4(ha, (ha->pci_dev,
1034 			"%s: %s (0x%lx)\n", __func__, "SIOCADDMULTI", cmd));
1035 
1036 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1037 			if (qla_set_multi(ha, 1))
1038 				ret = EINVAL;
1039 		}
1040 		break;
1041 
1042 	case SIOCDELMULTI:
1043 		QL_DPRINT4(ha, (ha->pci_dev,
1044 			"%s: %s (0x%lx)\n", __func__, "SIOCDELMULTI", cmd));
1045 
1046 		if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1047 			if (qla_set_multi(ha, 0))
1048 				ret = EINVAL;
1049 		}
1050 		break;
1051 
1052 	case SIOCSIFMEDIA:
1053 	case SIOCGIFMEDIA:
1054 		QL_DPRINT4(ha, (ha->pci_dev,
1055 			"%s: SIOCSIFMEDIA/SIOCGIFMEDIA (0x%lx)\n",
1056 			__func__, cmd));
1057 		ret = ifmedia_ioctl(ifp, ifr, &ha->media, cmd);
1058 		break;
1059 
1060 	case SIOCSIFCAP:
1061 	{
1062 		int mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1063 
1064 		QL_DPRINT4(ha, (ha->pci_dev, "%s: SIOCSIFCAP (0x%lx)\n",
1065 			__func__, cmd));
1066 
1067 		if (mask & IFCAP_HWCSUM)
1068 			ifp->if_capenable ^= IFCAP_HWCSUM;
1069 		if (mask & IFCAP_TSO4)
1070 			ifp->if_capenable ^= IFCAP_TSO4;
1071 		if (mask & IFCAP_VLAN_HWTAGGING)
1072 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1073 		if (mask & IFCAP_VLAN_HWTSO)
1074 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1075 
1076 		if (!(ifp->if_drv_flags & IFF_DRV_RUNNING))
1077 			qla_init(ha);
1078 
1079 		VLAN_CAPABILITIES(ifp);
1080 		break;
1081 	}
1082 
1083 	default:
1084 		QL_DPRINT4(ha, (ha->pci_dev, "%s: default (0x%lx)\n",
1085 			__func__, cmd));
1086 		ret = ether_ioctl(ifp, cmd, data);
1087 		break;
1088 	}
1089 
1090 	return (ret);
1091 }
1092 
1093 static int
1094 qla_media_change(struct ifnet *ifp)
1095 {
1096 	qla_host_t *ha;
1097 	struct ifmedia *ifm;
1098 	int ret = 0;
1099 
1100 	ha = (qla_host_t *)ifp->if_softc;
1101 
1102 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1103 
1104 	ifm = &ha->media;
1105 
1106 	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
1107 		ret = EINVAL;
1108 
1109 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1110 
1111 	return (ret);
1112 }
1113 
1114 static void
1115 qla_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
1116 {
1117 	qla_host_t *ha;
1118 
1119 	ha = (qla_host_t *)ifp->if_softc;
1120 
1121 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1122 
1123 	ifmr->ifm_status = IFM_AVALID;
1124 	ifmr->ifm_active = IFM_ETHER;
1125 
1126 	ql_update_link_state(ha);
1127 	if (ha->hw.link_up) {
1128 		ifmr->ifm_status |= IFM_ACTIVE;
1129 		ifmr->ifm_active |= (IFM_FDX | qla_get_optics(ha));
1130 	}
1131 
1132 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit (%s)\n", __func__,\
1133 		(ha->hw.link_up ? "link_up" : "link_down")));
1134 
1135 	return;
1136 }
1137 
1138 
1139 static int
1140 qla_send(qla_host_t *ha, struct mbuf **m_headp, uint32_t txr_idx,
1141 	uint32_t iscsi_pdu)
1142 {
1143 	bus_dma_segment_t	segs[QLA_MAX_SEGMENTS];
1144 	bus_dmamap_t		map;
1145 	int			nsegs;
1146 	int			ret = -1;
1147 	uint32_t		tx_idx;
1148 	struct mbuf		*m_head = *m_headp;
1149 
1150 	QL_DPRINT8(ha, (ha->pci_dev, "%s: enter\n", __func__));
1151 
1152 	tx_idx = ha->hw.tx_cntxt[txr_idx].txr_next;
1153 	map = ha->tx_ring[txr_idx].tx_buf[tx_idx].map;
1154 
1155 	ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head, segs, &nsegs,
1156 			BUS_DMA_NOWAIT);
1157 
1158 	if (ret == EFBIG) {
1159 
1160 		struct mbuf *m;
1161 
1162 		QL_DPRINT8(ha, (ha->pci_dev, "%s: EFBIG [%d]\n", __func__,
1163 			m_head->m_pkthdr.len));
1164 
1165 		m = m_defrag(m_head, M_NOWAIT);
1166 		if (m == NULL) {
1167 			ha->err_tx_defrag++;
1168 			m_freem(m_head);
1169 			*m_headp = NULL;
1170 			device_printf(ha->pci_dev,
1171 				"%s: m_defrag() = NULL [%d]\n",
1172 				__func__, ret);
1173 			return (ENOBUFS);
1174 		}
1175 		m_head = m;
1176 		*m_headp = m_head;
1177 
1178 		if ((ret = bus_dmamap_load_mbuf_sg(ha->tx_tag, map, m_head,
1179 					segs, &nsegs, BUS_DMA_NOWAIT))) {
1180 
1181 			ha->err_tx_dmamap_load++;
1182 
1183 			device_printf(ha->pci_dev,
1184 				"%s: bus_dmamap_load_mbuf_sg failed0[%d, %d]\n",
1185 				__func__, ret, m_head->m_pkthdr.len);
1186 
1187 			if (ret != ENOMEM) {
1188 				m_freem(m_head);
1189 				*m_headp = NULL;
1190 			}
1191 			return (ret);
1192 		}
1193 
1194 	} else if (ret) {
1195 
1196 		ha->err_tx_dmamap_load++;
1197 
1198 		device_printf(ha->pci_dev,
1199 			"%s: bus_dmamap_load_mbuf_sg failed1[%d, %d]\n",
1200 			__func__, ret, m_head->m_pkthdr.len);
1201 
1202 		if (ret != ENOMEM) {
1203 			m_freem(m_head);
1204 			*m_headp = NULL;
1205 		}
1206 		return (ret);
1207 	}
1208 
1209 	QL_ASSERT(ha, (nsegs != 0), ("qla_send: empty packet"));
1210 
1211 	bus_dmamap_sync(ha->tx_tag, map, BUS_DMASYNC_PREWRITE);
1212 
1213         if (!(ret = ql_hw_send(ha, segs, nsegs, tx_idx, m_head, txr_idx,
1214 				iscsi_pdu))) {
1215 		ha->tx_ring[txr_idx].count++;
1216 		ha->tx_ring[txr_idx].tx_buf[tx_idx].m_head = m_head;
1217 	} else {
1218 		if (ret == EINVAL) {
1219 			if (m_head)
1220 				m_freem(m_head);
1221 			*m_headp = NULL;
1222 		}
1223 	}
1224 
1225 	QL_DPRINT8(ha, (ha->pci_dev, "%s: exit\n", __func__));
1226 	return (ret);
1227 }
1228 
1229 static int
1230 qla_alloc_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
1231 {
1232         snprintf(fp->tx_mtx_name, sizeof(fp->tx_mtx_name),
1233                 "qla%d_fp%d_tx_mq_lock", ha->pci_func, fp->txr_idx);
1234 
1235         mtx_init(&fp->tx_mtx, fp->tx_mtx_name, NULL, MTX_DEF);
1236 
1237         fp->tx_br = buf_ring_alloc(NUM_TX_DESCRIPTORS, M_DEVBUF,
1238                                    M_NOWAIT, &fp->tx_mtx);
1239         if (fp->tx_br == NULL) {
1240             QL_DPRINT1(ha, (ha->pci_dev, "buf_ring_alloc failed for "
1241                 " fp[%d, %d]\n", ha->pci_func, fp->txr_idx));
1242             return (-ENOMEM);
1243         }
1244         return 0;
1245 }
1246 
1247 static void
1248 qla_free_tx_br(qla_host_t *ha, qla_tx_fp_t *fp)
1249 {
1250         struct mbuf *mp;
1251         struct ifnet *ifp = ha->ifp;
1252 
1253         if (mtx_initialized(&fp->tx_mtx)) {
1254 
1255                 if (fp->tx_br != NULL) {
1256 
1257                         mtx_lock(&fp->tx_mtx);
1258 
1259                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
1260                                 m_freem(mp);
1261                         }
1262 
1263                         mtx_unlock(&fp->tx_mtx);
1264 
1265                         buf_ring_free(fp->tx_br, M_DEVBUF);
1266                         fp->tx_br = NULL;
1267                 }
1268                 mtx_destroy(&fp->tx_mtx);
1269         }
1270         return;
1271 }
1272 
1273 static void
1274 qla_fp_taskqueue(void *context, int pending)
1275 {
1276         qla_tx_fp_t *fp;
1277         qla_host_t *ha;
1278         struct ifnet *ifp;
1279         struct mbuf  *mp;
1280         int ret;
1281 	uint32_t txr_idx;
1282 	uint32_t iscsi_pdu = 0;
1283 	uint32_t rx_pkts_left;
1284 
1285         fp = context;
1286 
1287         if (fp == NULL)
1288                 return;
1289 
1290         ha = (qla_host_t *)fp->ha;
1291 
1292         ifp = ha->ifp;
1293 
1294 	txr_idx = fp->txr_idx;
1295 
1296         mtx_lock(&fp->tx_mtx);
1297 
1298         if (((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1299                 IFF_DRV_RUNNING) || (!ha->hw.link_up)) {
1300                 mtx_unlock(&fp->tx_mtx);
1301                 goto qla_fp_taskqueue_exit;
1302         }
1303 
1304 	rx_pkts_left = ql_rcv_isr(ha, fp->txr_idx, 64);
1305 
1306 #ifdef QL_ENABLE_ISCSI_TLV
1307 	ql_hw_tx_done_locked(ha, fp->txr_idx);
1308 	ql_hw_tx_done_locked(ha, (fp->txr_idx + (ha->hw.num_tx_rings >> 1)));
1309 	txr_idx = txr_idx + (ha->hw.num_tx_rings >> 1);
1310 #else
1311 	ql_hw_tx_done_locked(ha, fp->txr_idx);
1312 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
1313 
1314         mp = drbr_peek(ifp, fp->tx_br);
1315 
1316         while (mp != NULL) {
1317 
1318 		if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE) {
1319 #ifdef QL_ENABLE_ISCSI_TLV
1320 			if (ql_iscsi_pdu(ha, mp) == 0) {
1321 				iscsi_pdu = 1;
1322 			}
1323 #endif /* #ifdef QL_ENABLE_ISCSI_TLV */
1324 		}
1325 
1326 		ret = qla_send(ha, &mp, txr_idx, iscsi_pdu);
1327 
1328                 if (ret) {
1329                         if (mp != NULL)
1330                                 drbr_putback(ifp, fp->tx_br, mp);
1331                         else {
1332                                 drbr_advance(ifp, fp->tx_br);
1333                         }
1334 
1335                         mtx_unlock(&fp->tx_mtx);
1336 
1337                         goto qla_fp_taskqueue_exit0;
1338                 } else {
1339                         drbr_advance(ifp, fp->tx_br);
1340                 }
1341 
1342                 mp = drbr_peek(ifp, fp->tx_br);
1343         }
1344 
1345         mtx_unlock(&fp->tx_mtx);
1346 
1347 qla_fp_taskqueue_exit0:
1348 
1349 	if (rx_pkts_left || ((mp != NULL) && ret)) {
1350 		taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
1351 	} else {
1352 		if (!ha->flags.stop_rcv) {
1353 			QL_ENABLE_INTERRUPTS(ha, fp->txr_idx);
1354 		}
1355 	}
1356 
1357 qla_fp_taskqueue_exit:
1358 
1359         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
1360         return;
1361 }
1362 
1363 static int
1364 qla_create_fp_taskqueues(qla_host_t *ha)
1365 {
1366         int     i;
1367         uint8_t tq_name[32];
1368 
1369         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1370 
1371                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1372 
1373                 bzero(tq_name, sizeof (tq_name));
1374                 snprintf(tq_name, sizeof (tq_name), "ql_fp_tq_%d", i);
1375 
1376                 TASK_INIT(&fp->fp_task, 0, qla_fp_taskqueue, fp);
1377 
1378                 fp->fp_taskqueue = taskqueue_create_fast(tq_name, M_NOWAIT,
1379                                         taskqueue_thread_enqueue,
1380                                         &fp->fp_taskqueue);
1381 
1382                 if (fp->fp_taskqueue == NULL)
1383                         return (-1);
1384 
1385                 taskqueue_start_threads(&fp->fp_taskqueue, 1, PI_NET, "%s",
1386                         tq_name);
1387 
1388                 QL_DPRINT1(ha, (ha->pci_dev, "%s: %p\n", __func__,
1389                         fp->fp_taskqueue));
1390         }
1391 
1392         return (0);
1393 }
1394 
1395 static void
1396 qla_destroy_fp_taskqueues(qla_host_t *ha)
1397 {
1398         int     i;
1399 
1400         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1401 
1402                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1403 
1404                 if (fp->fp_taskqueue != NULL) {
1405                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
1406                         taskqueue_free(fp->fp_taskqueue);
1407                         fp->fp_taskqueue = NULL;
1408                 }
1409         }
1410         return;
1411 }
1412 
1413 static void
1414 qla_drain_fp_taskqueues(qla_host_t *ha)
1415 {
1416         int     i;
1417 
1418         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1419                 qla_tx_fp_t *fp = &ha->tx_fp[i];
1420 
1421                 if (fp->fp_taskqueue != NULL) {
1422                         taskqueue_drain(fp->fp_taskqueue, &fp->fp_task);
1423                 }
1424         }
1425         return;
1426 }
1427 
1428 static int
1429 qla_transmit(struct ifnet *ifp, struct mbuf  *mp)
1430 {
1431 	qla_host_t *ha = (qla_host_t *)ifp->if_softc;
1432         qla_tx_fp_t *fp;
1433         int rss_id = 0;
1434         int ret = 0;
1435 
1436         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1437 
1438 #if __FreeBSD_version >= 1100000
1439         if (M_HASHTYPE_GET(mp) != M_HASHTYPE_NONE)
1440 #else
1441         if (mp->m_flags & M_FLOWID)
1442 #endif
1443                 rss_id = (mp->m_pkthdr.flowid & Q8_RSS_IND_TBL_MAX_IDX) %
1444                                         ha->hw.num_sds_rings;
1445         fp = &ha->tx_fp[rss_id];
1446 
1447         if (fp->tx_br == NULL) {
1448                 ret = EINVAL;
1449                 goto qla_transmit_exit;
1450         }
1451 
1452         if (mp != NULL) {
1453                 ret = drbr_enqueue(ifp, fp->tx_br, mp);
1454         }
1455 
1456         if (fp->fp_taskqueue != NULL)
1457                 taskqueue_enqueue(fp->fp_taskqueue, &fp->fp_task);
1458 
1459         ret = 0;
1460 
1461 qla_transmit_exit:
1462 
1463         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = %d\n", __func__, ret));
1464         return ret;
1465 }
1466 
1467 static void
1468 qla_qflush(struct ifnet *ifp)
1469 {
1470         int                     i;
1471         qla_tx_fp_t		*fp;
1472         struct mbuf             *mp;
1473         qla_host_t              *ha;
1474 
1475         ha = (qla_host_t *)ifp->if_softc;
1476 
1477         QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1478 
1479         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1480 
1481                 fp = &ha->tx_fp[i];
1482 
1483                 if (fp == NULL)
1484                         continue;
1485 
1486                 if (fp->tx_br) {
1487                         mtx_lock(&fp->tx_mtx);
1488 
1489                         while ((mp = drbr_dequeue(ifp, fp->tx_br)) != NULL) {
1490                                 m_freem(mp);
1491                         }
1492                         mtx_unlock(&fp->tx_mtx);
1493                 }
1494         }
1495         QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1496 
1497         return;
1498 }
1499 
1500 
1501 static void
1502 qla_stop(qla_host_t *ha)
1503 {
1504 	struct ifnet *ifp = ha->ifp;
1505 	device_t	dev;
1506 	int i = 0;
1507 
1508 	dev = ha->pci_dev;
1509 
1510 	ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1511 
1512         for (i = 0; i < ha->hw.num_sds_rings; i++) {
1513         	qla_tx_fp_t *fp;
1514 
1515 		fp = &ha->tx_fp[i];
1516 
1517                 if (fp == NULL)
1518                         continue;
1519 
1520 		if (fp->tx_br != NULL) {
1521                         mtx_lock(&fp->tx_mtx);
1522                         mtx_unlock(&fp->tx_mtx);
1523 		}
1524 	}
1525 
1526 	ha->flags.qla_watchdog_pause = 1;
1527 
1528 	while (!ha->qla_watchdog_paused)
1529 		qla_mdelay(__func__, 1);
1530 
1531 	ha->flags.qla_interface_up = 0;
1532 
1533 	qla_drain_fp_taskqueues(ha);
1534 
1535 	ql_hw_stop_rcv(ha);
1536 
1537 	ql_del_hw_if(ha);
1538 
1539 	qla_free_xmt_bufs(ha);
1540 	qla_free_rcv_bufs(ha);
1541 
1542 	return;
1543 }
1544 
1545 /*
1546  * Buffer Management Functions for Transmit and Receive Rings
1547  */
1548 static int
1549 qla_alloc_xmt_bufs(qla_host_t *ha)
1550 {
1551 	int ret = 0;
1552 	uint32_t i, j;
1553 	qla_tx_buf_t *txb;
1554 
1555 	if (bus_dma_tag_create(NULL,    /* parent */
1556 		1, 0,    /* alignment, bounds */
1557 		BUS_SPACE_MAXADDR,       /* lowaddr */
1558 		BUS_SPACE_MAXADDR,       /* highaddr */
1559 		NULL, NULL,      /* filter, filterarg */
1560 		QLA_MAX_TSO_FRAME_SIZE,     /* maxsize */
1561 		QLA_MAX_SEGMENTS,        /* nsegments */
1562 		PAGE_SIZE,        /* maxsegsize */
1563 		BUS_DMA_ALLOCNOW,        /* flags */
1564 		NULL,    /* lockfunc */
1565 		NULL,    /* lockfuncarg */
1566 		&ha->tx_tag)) {
1567 		device_printf(ha->pci_dev, "%s: tx_tag alloc failed\n",
1568 			__func__);
1569 		return (ENOMEM);
1570 	}
1571 
1572 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
1573 		bzero((void *)ha->tx_ring[i].tx_buf,
1574 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
1575 	}
1576 
1577 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
1578 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++) {
1579 
1580 			txb = &ha->tx_ring[j].tx_buf[i];
1581 
1582 			if ((ret = bus_dmamap_create(ha->tx_tag,
1583 					BUS_DMA_NOWAIT, &txb->map))) {
1584 
1585 				ha->err_tx_dmamap_create++;
1586 				device_printf(ha->pci_dev,
1587 					"%s: bus_dmamap_create failed[%d]\n",
1588 					__func__, ret);
1589 
1590 				qla_free_xmt_bufs(ha);
1591 
1592 				return (ret);
1593 			}
1594 		}
1595 	}
1596 
1597 	return 0;
1598 }
1599 
1600 /*
1601  * Release mbuf after it sent on the wire
1602  */
1603 static void
1604 qla_clear_tx_buf(qla_host_t *ha, qla_tx_buf_t *txb)
1605 {
1606 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1607 
1608 	if (txb->m_head && txb->map) {
1609 
1610 		bus_dmamap_unload(ha->tx_tag, txb->map);
1611 
1612 		m_freem(txb->m_head);
1613 		txb->m_head = NULL;
1614 	}
1615 
1616 	if (txb->map)
1617 		bus_dmamap_destroy(ha->tx_tag, txb->map);
1618 
1619 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit\n", __func__));
1620 }
1621 
1622 static void
1623 qla_free_xmt_bufs(qla_host_t *ha)
1624 {
1625 	int		i, j;
1626 
1627 	for (j = 0; j < ha->hw.num_tx_rings; j++) {
1628 		for (i = 0; i < NUM_TX_DESCRIPTORS; i++)
1629 			qla_clear_tx_buf(ha, &ha->tx_ring[j].tx_buf[i]);
1630 	}
1631 
1632 	if (ha->tx_tag != NULL) {
1633 		bus_dma_tag_destroy(ha->tx_tag);
1634 		ha->tx_tag = NULL;
1635 	}
1636 
1637 	for (i = 0; i < ha->hw.num_tx_rings; i++) {
1638 		bzero((void *)ha->tx_ring[i].tx_buf,
1639 			(sizeof(qla_tx_buf_t) * NUM_TX_DESCRIPTORS));
1640 	}
1641 	return;
1642 }
1643 
1644 
1645 static int
1646 qla_alloc_rcv_std(qla_host_t *ha)
1647 {
1648 	int		i, j, k, r, ret = 0;
1649 	qla_rx_buf_t	*rxb;
1650 	qla_rx_ring_t	*rx_ring;
1651 
1652 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1653 
1654 		rx_ring = &ha->rx_ring[r];
1655 
1656 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1657 
1658 			rxb = &rx_ring->rx_buf[i];
1659 
1660 			ret = bus_dmamap_create(ha->rx_tag, BUS_DMA_NOWAIT,
1661 					&rxb->map);
1662 
1663 			if (ret) {
1664 				device_printf(ha->pci_dev,
1665 					"%s: dmamap[%d, %d] failed\n",
1666 					__func__, r, i);
1667 
1668 				for (k = 0; k < r; k++) {
1669 					for (j = 0; j < NUM_RX_DESCRIPTORS;
1670 						j++) {
1671 						rxb = &ha->rx_ring[k].rx_buf[j];
1672 						bus_dmamap_destroy(ha->rx_tag,
1673 							rxb->map);
1674 					}
1675 				}
1676 
1677 				for (j = 0; j < i; j++) {
1678 					bus_dmamap_destroy(ha->rx_tag,
1679 						rx_ring->rx_buf[j].map);
1680 				}
1681 				goto qla_alloc_rcv_std_err;
1682 			}
1683 		}
1684 	}
1685 
1686 	qla_init_hw_rcv_descriptors(ha);
1687 
1688 
1689 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1690 
1691 		rx_ring = &ha->rx_ring[r];
1692 
1693 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1694 			rxb = &rx_ring->rx_buf[i];
1695 			rxb->handle = i;
1696 			if (!(ret = ql_get_mbuf(ha, rxb, NULL))) {
1697 				/*
1698 			 	 * set the physical address in the
1699 				 * corresponding descriptor entry in the
1700 				 * receive ring/queue for the hba
1701 				 */
1702 				qla_set_hw_rcv_desc(ha, r, i, rxb->handle,
1703 					rxb->paddr,
1704 					(rxb->m_head)->m_pkthdr.len);
1705 			} else {
1706 				device_printf(ha->pci_dev,
1707 					"%s: ql_get_mbuf [%d, %d] failed\n",
1708 					__func__, r, i);
1709 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1710 				goto qla_alloc_rcv_std_err;
1711 			}
1712 		}
1713 	}
1714 	return 0;
1715 
1716 qla_alloc_rcv_std_err:
1717 	return (-1);
1718 }
1719 
1720 static void
1721 qla_free_rcv_std(qla_host_t *ha)
1722 {
1723 	int		i, r;
1724 	qla_rx_buf_t	*rxb;
1725 
1726 	for (r = 0; r < ha->hw.num_rds_rings; r++) {
1727 		for (i = 0; i < NUM_RX_DESCRIPTORS; i++) {
1728 			rxb = &ha->rx_ring[r].rx_buf[i];
1729 			if (rxb->m_head != NULL) {
1730 				bus_dmamap_unload(ha->rx_tag, rxb->map);
1731 				bus_dmamap_destroy(ha->rx_tag, rxb->map);
1732 				m_freem(rxb->m_head);
1733 				rxb->m_head = NULL;
1734 			}
1735 		}
1736 	}
1737 	return;
1738 }
1739 
1740 static int
1741 qla_alloc_rcv_bufs(qla_host_t *ha)
1742 {
1743 	int		i, ret = 0;
1744 
1745 	if (bus_dma_tag_create(NULL,    /* parent */
1746 			1, 0,    /* alignment, bounds */
1747 			BUS_SPACE_MAXADDR,       /* lowaddr */
1748 			BUS_SPACE_MAXADDR,       /* highaddr */
1749 			NULL, NULL,      /* filter, filterarg */
1750 			MJUM9BYTES,     /* maxsize */
1751 			1,        /* nsegments */
1752 			MJUM9BYTES,        /* maxsegsize */
1753 			BUS_DMA_ALLOCNOW,        /* flags */
1754 			NULL,    /* lockfunc */
1755 			NULL,    /* lockfuncarg */
1756 			&ha->rx_tag)) {
1757 
1758 		device_printf(ha->pci_dev, "%s: rx_tag alloc failed\n",
1759 			__func__);
1760 
1761 		return (ENOMEM);
1762 	}
1763 
1764 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
1765 
1766 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1767 		ha->hw.sds[i].sdsr_next = 0;
1768 		ha->hw.sds[i].rxb_free = NULL;
1769 		ha->hw.sds[i].rx_free = 0;
1770 	}
1771 
1772 	ret = qla_alloc_rcv_std(ha);
1773 
1774 	return (ret);
1775 }
1776 
1777 static void
1778 qla_free_rcv_bufs(qla_host_t *ha)
1779 {
1780 	int		i;
1781 
1782 	qla_free_rcv_std(ha);
1783 
1784 	if (ha->rx_tag != NULL) {
1785 		bus_dma_tag_destroy(ha->rx_tag);
1786 		ha->rx_tag = NULL;
1787 	}
1788 
1789 	bzero((void *)ha->rx_ring, (sizeof(qla_rx_ring_t) * MAX_RDS_RINGS));
1790 
1791 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1792 		ha->hw.sds[i].sdsr_next = 0;
1793 		ha->hw.sds[i].rxb_free = NULL;
1794 		ha->hw.sds[i].rx_free = 0;
1795 	}
1796 
1797 	return;
1798 }
1799 
1800 int
1801 ql_get_mbuf(qla_host_t *ha, qla_rx_buf_t *rxb, struct mbuf *nmp)
1802 {
1803 	register struct mbuf *mp = nmp;
1804 	struct ifnet   		*ifp;
1805 	int            		ret = 0;
1806 	uint32_t		offset;
1807 	bus_dma_segment_t	segs[1];
1808 	int			nsegs, mbuf_size;
1809 
1810 	QL_DPRINT2(ha, (ha->pci_dev, "%s: enter\n", __func__));
1811 
1812 	ifp = ha->ifp;
1813 
1814         if (ha->hw.enable_9kb)
1815                 mbuf_size = MJUM9BYTES;
1816         else
1817                 mbuf_size = MCLBYTES;
1818 
1819 	if (mp == NULL) {
1820 
1821 		if (QL_ERR_INJECT(ha, INJCT_M_GETCL_M_GETJCL_FAILURE))
1822 			return(-1);
1823 
1824                 if (ha->hw.enable_9kb)
1825                         mp = m_getjcl(M_NOWAIT, MT_DATA, M_PKTHDR, mbuf_size);
1826                 else
1827                         mp = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1828 
1829 		if (mp == NULL) {
1830 			ha->err_m_getcl++;
1831 			ret = ENOBUFS;
1832 			device_printf(ha->pci_dev,
1833 					"%s: m_getcl failed\n", __func__);
1834 			goto exit_ql_get_mbuf;
1835 		}
1836 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
1837 	} else {
1838 		mp->m_len = mp->m_pkthdr.len = mbuf_size;
1839 		mp->m_data = mp->m_ext.ext_buf;
1840 		mp->m_next = NULL;
1841 	}
1842 
1843 	offset = (uint32_t)((unsigned long long)mp->m_data & 0x7ULL);
1844 	if (offset) {
1845 		offset = 8 - offset;
1846 		m_adj(mp, offset);
1847 	}
1848 
1849 	/*
1850 	 * Using memory from the mbuf cluster pool, invoke the bus_dma
1851 	 * machinery to arrange the memory mapping.
1852 	 */
1853 	ret = bus_dmamap_load_mbuf_sg(ha->rx_tag, rxb->map,
1854 			mp, segs, &nsegs, BUS_DMA_NOWAIT);
1855 	rxb->paddr = segs[0].ds_addr;
1856 
1857 	if (ret || !rxb->paddr || (nsegs != 1)) {
1858 		m_free(mp);
1859 		rxb->m_head = NULL;
1860 		device_printf(ha->pci_dev,
1861 			"%s: bus_dmamap_load failed[%d, 0x%016llx, %d]\n",
1862 			__func__, ret, (long long unsigned int)rxb->paddr,
1863 			nsegs);
1864                 ret = -1;
1865 		goto exit_ql_get_mbuf;
1866 	}
1867 	rxb->m_head = mp;
1868 	bus_dmamap_sync(ha->rx_tag, rxb->map, BUS_DMASYNC_PREREAD);
1869 
1870 exit_ql_get_mbuf:
1871 	QL_DPRINT2(ha, (ha->pci_dev, "%s: exit ret = 0x%08x\n", __func__, ret));
1872 	return (ret);
1873 }
1874 
1875 
1876 static void
1877 qla_get_peer(qla_host_t *ha)
1878 {
1879 	device_t *peers;
1880 	int count, i, slot;
1881 	int my_slot = pci_get_slot(ha->pci_dev);
1882 
1883 	if (device_get_children(device_get_parent(ha->pci_dev), &peers, &count))
1884 		return;
1885 
1886 	for (i = 0; i < count; i++) {
1887 		slot = pci_get_slot(peers[i]);
1888 
1889 		if ((slot >= 0) && (slot == my_slot) &&
1890 			(pci_get_device(peers[i]) ==
1891 				pci_get_device(ha->pci_dev))) {
1892 			if (ha->pci_dev != peers[i])
1893 				ha->peer_dev = peers[i];
1894 		}
1895 	}
1896 }
1897 
1898 static void
1899 qla_send_msg_to_peer(qla_host_t *ha, uint32_t msg_to_peer)
1900 {
1901 	qla_host_t *ha_peer;
1902 
1903 	if (ha->peer_dev) {
1904         	if ((ha_peer = device_get_softc(ha->peer_dev)) != NULL) {
1905 
1906 			ha_peer->msg_from_peer = msg_to_peer;
1907 		}
1908 	}
1909 }
1910 
1911 static void
1912 qla_error_recovery(void *context, int pending)
1913 {
1914 	qla_host_t *ha = context;
1915 	uint32_t msecs_100 = 100;
1916 	struct ifnet *ifp = ha->ifp;
1917 	int i = 0;
1918 
1919         (void)QLA_LOCK(ha, __func__, 0);
1920 
1921 	if (ha->flags.qla_interface_up) {
1922 
1923 		ha->hw.imd_compl = 1;
1924 		qla_mdelay(__func__, 300);
1925 
1926 		ql_hw_stop_rcv(ha);
1927 
1928 	        ifp->if_drv_flags &= ~(IFF_DRV_OACTIVE | IFF_DRV_RUNNING);
1929 
1930 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1931 	        	qla_tx_fp_t *fp;
1932 
1933 			fp = &ha->tx_fp[i];
1934 
1935 			if (fp == NULL)
1936 				continue;
1937 
1938 			if (fp->tx_br != NULL) {
1939 				mtx_lock(&fp->tx_mtx);
1940 				mtx_unlock(&fp->tx_mtx);
1941 			}
1942 		}
1943 	}
1944 
1945         QLA_UNLOCK(ha, __func__);
1946 
1947 	if ((ha->pci_func & 0x1) == 0) {
1948 
1949 		if (!ha->msg_from_peer) {
1950 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
1951 
1952 			while ((ha->msg_from_peer != QL_PEER_MSG_ACK) &&
1953 				msecs_100--)
1954 				qla_mdelay(__func__, 100);
1955 		}
1956 
1957 		ha->msg_from_peer = 0;
1958 
1959         	(void)QLA_LOCK(ha, __func__, 0);
1960 		ql_minidump(ha);
1961         	QLA_UNLOCK(ha, __func__);
1962 
1963 		(void) ql_init_hw(ha);
1964 
1965         	(void)QLA_LOCK(ha, __func__, 0);
1966 		if (ha->flags.qla_interface_up) {
1967         	qla_free_xmt_bufs(ha);
1968 	        qla_free_rcv_bufs(ha);
1969 		}
1970         	QLA_UNLOCK(ha, __func__);
1971 
1972 		qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
1973 
1974 	} else {
1975 		if (ha->msg_from_peer == QL_PEER_MSG_RESET) {
1976 
1977 			ha->msg_from_peer = 0;
1978 
1979 			qla_send_msg_to_peer(ha, QL_PEER_MSG_ACK);
1980 		} else {
1981 			qla_send_msg_to_peer(ha, QL_PEER_MSG_RESET);
1982 		}
1983 
1984 		while ((ha->msg_from_peer != QL_PEER_MSG_ACK)  && msecs_100--)
1985 			qla_mdelay(__func__, 100);
1986 		ha->msg_from_peer = 0;
1987 
1988 		(void) ql_init_hw(ha);
1989 
1990         	(void)QLA_LOCK(ha, __func__, 0);
1991 		if (ha->flags.qla_interface_up) {
1992         	qla_free_xmt_bufs(ha);
1993 	        qla_free_rcv_bufs(ha);
1994 	}
1995         	QLA_UNLOCK(ha, __func__);
1996 	}
1997 
1998         (void)QLA_LOCK(ha, __func__, 0);
1999 
2000 	if (ha->flags.qla_interface_up) {
2001 	if (qla_alloc_xmt_bufs(ha) != 0) {
2002         	QLA_UNLOCK(ha, __func__);
2003                 return;
2004 	}
2005 	qla_confirm_9kb_enable(ha);
2006 
2007         if (qla_alloc_rcv_bufs(ha) != 0) {
2008         	QLA_UNLOCK(ha, __func__);
2009                 return;
2010 	}
2011 
2012         ha->flags.stop_rcv = 0;
2013         if (ql_init_hw_if(ha) == 0) {
2014                 ifp = ha->ifp;
2015                 ifp->if_drv_flags |= IFF_DRV_RUNNING;
2016                 ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2017                 ha->flags.qla_watchdog_pause = 0;
2018         }
2019 	} else
2020 		ha->flags.qla_watchdog_pause = 0;
2021 
2022         QLA_UNLOCK(ha, __func__);
2023 }
2024 
2025 static void
2026 qla_async_event(void *context, int pending)
2027 {
2028         qla_host_t *ha = context;
2029 
2030         (void)QLA_LOCK(ha, __func__, 0);
2031         qla_hw_async_event(ha);
2032         QLA_UNLOCK(ha, __func__);
2033 }
2034 
2035