xref: /freebsd/sys/dev/qlxgb/qla_hw.c (revision 70e0bbedef95258a4dadc996d641a9bebd3f107d)
1 /*
2  * Copyright (c) 2010-2011 Qlogic Corporation
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File: qla_hw.c
30  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31  * Content: Contains Hardware dependant functions
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "qla_os.h"
38 #include "qla_reg.h"
39 #include "qla_hw.h"
40 #include "qla_def.h"
41 #include "qla_inline.h"
42 #include "qla_ver.h"
43 #include "qla_glbl.h"
44 #include "qla_dbg.h"
45 
46 static uint32_t sysctl_num_rds_rings = 2;
47 static uint32_t sysctl_num_sds_rings = 4;
48 
49 /*
50  * Static Functions
51  */
52 
53 static void qla_init_cntxt_regions(qla_host_t *ha);
54 static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
55 static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
56 static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
57 		uint16_t cntxt_id, uint32_t add_multi);
58 static void qla_del_rcv_cntxt(qla_host_t *ha);
59 static int qla_init_rcv_cntxt(qla_host_t *ha);
60 static void qla_del_xmt_cntxt(qla_host_t *ha);
61 static int qla_init_xmt_cntxt(qla_host_t *ha);
62 static int qla_get_max_rds(qla_host_t *ha);
63 static int qla_get_max_sds(qla_host_t *ha);
64 static int qla_get_max_rules(qla_host_t *ha);
65 static int qla_get_max_rcv_cntxts(qla_host_t *ha);
66 static int qla_get_max_tx_cntxts(qla_host_t *ha);
67 static int qla_get_max_mtu(qla_host_t *ha);
68 static int qla_get_max_lro(qla_host_t *ha);
69 static int qla_get_flow_control(qla_host_t *ha);
70 static void qla_hw_tx_done_locked(qla_host_t *ha);
71 
72 int
73 qla_get_msix_count(qla_host_t *ha)
74 {
75 	return (sysctl_num_sds_rings);
76 }
77 
78 /*
79  * Name: qla_hw_add_sysctls
80  * Function: Add P3Plus specific sysctls
81  */
82 void
83 qla_hw_add_sysctls(qla_host_t *ha)
84 {
85         device_t	dev;
86 
87         dev = ha->pci_dev;
88 
89         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
90                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
91                 OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
92 		sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
93 
94         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
95                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
96                 OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
97 		sysctl_num_sds_rings, "Number of Status Descriptor Rings");
98 }
99 
100 /*
101  * Name: qla_free_dma
102  * Function: Frees the DMA'able memory allocated in qla_alloc_dma()
103  */
104 void
105 qla_free_dma(qla_host_t *ha)
106 {
107 	uint32_t i;
108 
109         if (ha->hw.dma_buf.flags.context) {
110 		qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
111         	ha->hw.dma_buf.flags.context = 0;
112 	}
113 
114         if (ha->hw.dma_buf.flags.sds_ring) {
115 		for (i = 0; i < ha->hw.num_sds_rings; i++)
116 			qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
117         	ha->hw.dma_buf.flags.sds_ring = 0;
118 	}
119 
120         if (ha->hw.dma_buf.flags.rds_ring) {
121 		for (i = 0; i < ha->hw.num_rds_rings; i++)
122 			qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
123         	ha->hw.dma_buf.flags.rds_ring = 0;
124 	}
125 
126         if (ha->hw.dma_buf.flags.tx_ring) {
127 		qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
128         	ha->hw.dma_buf.flags.tx_ring = 0;
129 	}
130 }
131 
132 /*
133  * Name: qla_alloc_dma
134  * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
135  */
136 int
137 qla_alloc_dma(qla_host_t *ha)
138 {
139         device_t                dev;
140 	uint32_t		i, j, size;
141 
142         dev = ha->pci_dev;
143 
144         QL_DPRINT2((dev, "%s: enter\n", __func__));
145 
146 	ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
147 	ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
148 
149 	/*
150 	 * Allocate Transmit Ring
151 	 */
152 
153 	ha->hw.dma_buf.tx_ring.alignment = 8;
154 	ha->hw.dma_buf.tx_ring.size =
155 		(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
156 
157         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
158                 device_printf(dev, "%s: tx ring alloc failed\n", __func__);
159                 goto qla_alloc_dma_exit;
160         }
161         ha->hw.dma_buf.flags.tx_ring = 1;
162 
163 	QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
164 		__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
165 		ha->hw.dma_buf.tx_ring.dma_b));
166 	/*
167 	 * Allocate Receive Descriptor Rings
168 	 */
169 
170 	for (i = 0; i < ha->hw.num_rds_rings; i++) {
171 		ha->hw.dma_buf.rds_ring[i].alignment = 8;
172 
173 		if (i == RDS_RING_INDEX_NORMAL) {
174 			ha->hw.dma_buf.rds_ring[i].size =
175 				(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
176 		} else if (i == RDS_RING_INDEX_JUMBO) {
177 			ha->hw.dma_buf.rds_ring[i].size =
178 				(sizeof(q80_recv_desc_t)) *
179 					NUM_RX_JUMBO_DESCRIPTORS;
180 		} else
181 			break;
182 
183 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
184 			QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
185 				__func__));
186 
187 			for (j = 0; j < i; j++)
188 				qla_free_dmabuf(ha,
189 					&ha->hw.dma_buf.rds_ring[j]);
190 
191 			goto qla_alloc_dma_exit;
192 		}
193 		QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
194 			__func__, i,
195 			(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
196 			ha->hw.dma_buf.rds_ring[i].dma_b));
197 	}
198 	ha->hw.dma_buf.flags.rds_ring = 1;
199 
200 	/*
201 	 * Allocate Status Descriptor Rings
202 	 */
203 
204 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
205 		ha->hw.dma_buf.sds_ring[i].alignment = 8;
206 		ha->hw.dma_buf.sds_ring[i].size =
207 			(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
208 
209 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
210 			device_printf(dev, "%s: sds ring alloc failed\n",
211 				__func__);
212 
213 			for (j = 0; j < i; j++)
214 				qla_free_dmabuf(ha,
215 					&ha->hw.dma_buf.sds_ring[j]);
216 
217 			goto qla_alloc_dma_exit;
218 		}
219 		QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
220 			__func__, i,
221 			(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
222 			ha->hw.dma_buf.sds_ring[i].dma_b));
223 	}
224 	ha->hw.dma_buf.flags.sds_ring = 1;
225 
226 	/*
227 	 * Allocate Context Area
228 	 */
229 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
230 
231 	size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
232 
233 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
234 
235 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
236 
237 	size += sizeof (uint32_t); /* for tx consumer index */
238 
239 	size = QL_ALIGN(size, PAGE_SIZE);
240 
241 	ha->hw.dma_buf.context.alignment = 8;
242 	ha->hw.dma_buf.context.size = size;
243 
244         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
245                 device_printf(dev, "%s: context alloc failed\n", __func__);
246                 goto qla_alloc_dma_exit;
247         }
248         ha->hw.dma_buf.flags.context = 1;
249 	QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
250 		__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
251 		ha->hw.dma_buf.context.dma_b));
252 
253 	qla_init_cntxt_regions(ha);
254 
255 	return 0;
256 
257 qla_alloc_dma_exit:
258 	qla_free_dma(ha);
259 	return -1;
260 }
261 
262 /*
263  * Name: qla_init_cntxt_regions
264  * Function: Initializes Tx/Rx Contexts.
265  */
266 static void
267 qla_init_cntxt_regions(qla_host_t *ha)
268 {
269 	qla_hw_t		*hw;
270 	q80_tx_cntxt_req_t	*tx_cntxt_req;
271 	q80_rcv_cntxt_req_t	*rx_cntxt_req;
272 	bus_addr_t		phys_addr;
273 	uint32_t		i;
274         device_t                dev;
275 	uint32_t		size;
276 
277         dev = ha->pci_dev;
278 
279 	hw = &ha->hw;
280 
281 	hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
282 
283 	for (i = 0; i < ha->hw.num_sds_rings; i++)
284 		hw->sds[i].sds_ring_base =
285 			(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
286 
287 
288 	phys_addr = hw->dma_buf.context.dma_addr;
289 
290 	memset((void *)hw->dma_buf.context.dma_b, 0,
291 		ha->hw.dma_buf.context.size);
292 
293 	hw->tx_cntxt_req	=
294 		(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
295 	hw->tx_cntxt_req_paddr	= phys_addr;
296 
297 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
298 
299 	hw->tx_cntxt_rsp	=
300 		(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
301 	hw->tx_cntxt_rsp_paddr	= hw->tx_cntxt_req_paddr + size;
302 
303 	size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
304 
305 	hw->rx_cntxt_req =
306 		(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
307 	hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
308 
309 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
310 
311 	hw->rx_cntxt_rsp =
312 		(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
313 	hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
314 
315 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
316 
317 	hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
318 	hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
319 
320 	/*
321 	 * Initialize the Transmit Context Request so that we don't need to
322 	 * do it everytime we need to create a context
323 	 */
324 	tx_cntxt_req = hw->tx_cntxt_req;
325 
326 	tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
327 
328 	tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
329 
330 	tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
331 					CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
332 
333 	tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
334 
335 	tx_cntxt_req->phys_addr =
336 		qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
337 
338 	tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
339 
340 	/*
341 	 * Initialize the Receive Context Request
342 	 */
343 
344 	rx_cntxt_req = hw->rx_cntxt_req;
345 
346 	rx_cntxt_req->rx_req.rsp_dma_addr =
347 		qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
348 
349 	rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
350 						CNTXT_CAP0_LEGACY_MN |
351 						CNTXT_CAP0_JUMBO |
352 						CNTXT_CAP0_LRO|
353 						CNTXT_CAP0_HW_LRO);
354 
355 	rx_cntxt_req->rx_req.intr_mode =
356 		qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
357 
358 	rx_cntxt_req->rx_req.rds_intr_mode =
359 		qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
360 
361 	rx_cntxt_req->rx_req.rds_ring_offset = 0;
362 	rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
363 		(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
364 	rx_cntxt_req->rx_req.num_rds_rings =
365 		qla_host_to_le16(hw->num_rds_rings);
366 	rx_cntxt_req->rx_req.num_sds_rings =
367 		qla_host_to_le16(hw->num_sds_rings);
368 
369 	for (i = 0; i < hw->num_rds_rings; i++) {
370 		rx_cntxt_req->rds_req[i].phys_addr =
371 			qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
372 
373 		if (i == RDS_RING_INDEX_NORMAL) {
374 			rx_cntxt_req->rds_req[i].buf_size =
375 				qla_host_to_le64(MCLBYTES);
376 			rx_cntxt_req->rds_req[i].size =
377 				qla_host_to_le32(NUM_RX_DESCRIPTORS);
378 		} else {
379 			rx_cntxt_req->rds_req[i].buf_size =
380 				qla_host_to_le64(MJUM9BYTES);
381 			rx_cntxt_req->rds_req[i].size =
382 				qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
383 		}
384 	}
385 
386 	for (i = 0; i < hw->num_sds_rings; i++) {
387 		rx_cntxt_req->sds_req[i].phys_addr =
388 			qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
389 		rx_cntxt_req->sds_req[i].size =
390 			qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
391 		rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
392 	}
393 
394 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
395 		__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
396 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
397 		__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
398 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
399 		__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
400 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
401 		__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
402 	QL_DPRINT2((ha->pci_dev, "%s: tx_cons      = %p paddr %p\n",
403 		__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
404 }
405 
406 /*
407  * Name: qla_issue_cmd
408  * Function: Issues commands on the CDRP interface and returns responses.
409  */
410 static int
411 qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
412 {
413 	int	ret = 0;
414 	uint32_t signature;
415 	uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
416 	uint32_t data;
417 	device_t dev;
418 
419 	dev = ha->pci_dev;
420 
421 	signature = 0xcafe0000 | 0x0100 | ha->pci_func;
422 
423 	ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
424 
425 	if (ret) {
426 		device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
427 		return (ret);
428 	}
429 
430 	WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
431 
432 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
433 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
434 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
435 
436 	WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
437 
438 	while (count) {
439 		qla_mdelay(__func__, 10);
440 
441 		data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
442 
443 		if ((!(data & 0x80000000)))
444 			break;
445 		count--;
446 	}
447 	if ((!count) || (data != 1))
448 		ret = -1;
449 
450 	cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
451 	cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
452 	cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
453 	cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
454 
455 	qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
456 
457 	if (ret) {
458 		device_printf(dev, "%s: "
459 			"cmd[0x%08x] = 0x%08x\n"
460 			"\tsig[0x%08x] = 0x%08x\n"
461 			"\targ1[0x%08x] = 0x%08x\n"
462 			"\targ2[0x%08x] = 0x%08x\n"
463 			"\targ3[0x%08x] = 0x%08x\n",
464 			__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
465 			Q8_NX_CDRP_SIGNATURE, signature,
466 			Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
467 			Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
468 			Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
469 
470 		device_printf(dev, "%s: exit (ret = 0x%x)\n"
471 			"\t\t rsp = 0x%08x\n"
472 			"\t\t arg1 = 0x%08x\n"
473 			"\t\t arg2 = 0x%08x\n"
474 			"\t\t arg3 = 0x%08x\n",
475 			__func__, ret, cdrp->rsp,
476 			cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
477 	}
478 
479 	return (ret);
480 }
481 
482 #define QLA_TX_MIN_FREE	2
483 
484 /*
485  * Name: qla_fw_cmd
486  * Function: Issues firmware control commands on the Tx Ring.
487  */
488 static int
489 qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
490 {
491 	device_t dev;
492         q80_tx_cmd_t *tx_cmd;
493         qla_hw_t *hw = &ha->hw;
494 	int count = 100;
495 
496 	dev = ha->pci_dev;
497 
498 	QLA_TX_LOCK(ha);
499 
500         if (hw->txr_free <= QLA_TX_MIN_FREE) {
501 		while (count--) {
502 			qla_hw_tx_done_locked(ha);
503 			if (hw->txr_free > QLA_TX_MIN_FREE)
504 				break;
505 
506 			QLA_TX_UNLOCK(ha);
507 			qla_mdelay(__func__, 10);
508 			QLA_TX_LOCK(ha);
509 		}
510         	if (hw->txr_free <= QLA_TX_MIN_FREE) {
511 			QLA_TX_UNLOCK(ha);
512 			device_printf(dev, "%s: xmit queue full\n", __func__);
513                 	return (-1);
514 		}
515         }
516         tx_cmd = &hw->tx_ring_base[hw->txr_next];
517 
518         bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
519 
520 	bcopy(fw_cmd, tx_cmd, size);
521 
522 	hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
523 	hw->txr_free--;
524 
525 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
526 
527 	QLA_TX_UNLOCK(ha);
528 
529 	return (0);
530 }
531 
532 /*
533  * Name: qla_config_rss
534  * Function: Configure RSS for the context/interface.
535  */
536 const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
537 			0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
538 			0x255b0ec26d5a56daULL };
539 
540 static int
541 qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
542 {
543 	qla_fw_cds_config_rss_t rss_config;
544 	int ret, i;
545 
546 	bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
547 
548 	rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
549 	rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
550 	rss_config.hdr.cntxt_id = cntxt_id;
551 
552 	rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
553 					Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
554 	rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
555 
556 	rss_config.ind_tbl_mask = 0x7;
557 
558 	for (i = 0; i < 5; i++)
559 		rss_config.rss_key[i] = rss_key[i];
560 
561 	ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
562 
563 	return ret;
564 }
565 
566 /*
567  * Name: qla_config_intr_coalesce
568  * Function: Configure Interrupt Coalescing.
569  */
570 static int
571 qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
572 {
573 	qla_fw_cds_config_intr_coalesc_t intr_coalesce;
574 	int ret;
575 
576 	bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
577 
578 	intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
579 	intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
580 	intr_coalesce.hdr.cntxt_id = cntxt_id;
581 
582 	intr_coalesce.flags = 0x04;
583 	intr_coalesce.max_rcv_pkts = 256;
584 	intr_coalesce.max_rcv_usecs = 3;
585 	intr_coalesce.max_snd_pkts = 64;
586 	intr_coalesce.max_snd_usecs = 4;
587 
588 	if (tenable) {
589 		intr_coalesce.usecs_to = 1000; /* 1 millisecond */
590 		intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
591 		intr_coalesce.sds_ring_bitmask =
592 			Q8_FWCMD_INTR_COALESC_SDS_RING_0;
593 	}
594 
595 	ret = qla_fw_cmd(ha, &intr_coalesce,
596 			sizeof(qla_fw_cds_config_intr_coalesc_t));
597 
598 	return ret;
599 }
600 
601 
602 /*
603  * Name: qla_config_mac_addr
604  * Function: binds a MAC address to the context/interface.
605  *	Can be unicast, multicast or broadcast.
606  */
607 static int
608 qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
609 	uint32_t add_multi)
610 {
611 	qla_fw_cds_config_mac_addr_t mac_config;
612 	int ret;
613 
614 //	device_printf(ha->pci_dev,
615 //		"%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
616 //		mac_addr[0], mac_addr[1], mac_addr[2],
617 //		mac_addr[3], mac_addr[4], mac_addr[5]);
618 
619 	bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
620 
621 	mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
622 	mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
623 	mac_config.hdr.cntxt_id = cntxt_id;
624 
625 	if (add_multi)
626 		mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
627 	else
628 		mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
629 	bcopy(mac_addr, mac_config.mac_addr,6);
630 
631 	ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
632 
633 	return ret;
634 }
635 
636 
637 /*
638  * Name: qla_set_mac_rcv_mode
639  * Function: Enable/Disable AllMulticast and Promiscous Modes.
640  */
641 static int
642 qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
643 {
644 	qla_set_mac_rcv_mode_t rcv_mode;
645 	int ret;
646 
647 	bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
648 
649 	rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
650 	rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
651 	rcv_mode.hdr.cntxt_id = cntxt_id;
652 
653 	rcv_mode.mode = mode;
654 
655 	ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
656 
657 	return ret;
658 }
659 
660 void
661 qla_set_promisc(qla_host_t *ha)
662 {
663 	(void)qla_set_mac_rcv_mode(ha,
664 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
665 		Q8_MAC_RCV_ENABLE_PROMISCUOUS);
666 }
667 
668 void
669 qla_set_allmulti(qla_host_t *ha)
670 {
671 	(void)qla_set_mac_rcv_mode(ha,
672 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
673 		Q8_MAC_RCV_ENABLE_ALLMULTI);
674 }
675 
676 void
677 qla_reset_promisc_allmulti(qla_host_t *ha)
678 {
679 	(void)qla_set_mac_rcv_mode(ha,
680 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
681 		Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
682 }
683 
684 /*
685  * Name: qla_config_ipv4_addr
686  * Function: Configures the Destination IP Addr for LRO.
687  */
688 void
689 qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
690 {
691 	qla_config_ipv4_t ip_conf;
692 
693 	bzero(&ip_conf, sizeof(qla_config_ipv4_t));
694 
695 	ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
696 	ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
697 	ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
698 
699 	ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
700 	ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
701 
702 	(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
703 
704 	return;
705 }
706 
707 /*
708  * Name: qla_tx_tso
709  * Function: Checks if the packet to be transmitted is a candidate for
710  *	Large TCP Segment Offload. If yes, the appropriate fields in the Tx
711  *	Ring Structure are plugged in.
712  */
713 static int
714 qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
715 {
716 	struct ether_vlan_header *eh;
717 	struct ip *ip = NULL;
718 	struct tcphdr *th = NULL;
719 	uint32_t ehdrlen,  hdrlen, ip_hlen, tcp_hlen;
720 	uint16_t etype, opcode, offload = 1;
721 	device_t dev;
722 
723 	dev = ha->pci_dev;
724 
725 	if (mp->m_pkthdr.len <= ha->max_frame_size)
726 		return (-1);
727 
728 	eh = mtod(mp, struct ether_vlan_header *);
729 
730 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
731 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
732 		etype = ntohs(eh->evl_proto);
733 	} else {
734 		ehdrlen = ETHER_HDR_LEN;
735 		etype = ntohs(eh->evl_encap_proto);
736 	}
737 
738 	switch (etype) {
739 		case ETHERTYPE_IP:
740 			ip = (struct ip *)(mp->m_data + ehdrlen);
741 			ip_hlen = ip->ip_hl << 2;
742 			opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
743 
744 			if (ip->ip_p != IPPROTO_TCP) {
745 				offload = 0;
746 			} else
747 				th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
748 		break;
749 
750 		default:
751 			QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
752 			offload = 0;
753 		break;
754 	}
755 
756 	if (!offload)
757 		return (-1);
758 
759 	tcp_hlen = th->th_off << 2;
760 
761 	hdrlen = ehdrlen + ip_hlen + tcp_hlen;
762 
763 	if (mp->m_len < hdrlen) {
764 		device_printf(dev, "%s: (mp->m_len < hdrlen)\n", __func__);
765 		return (-1);
766 	}
767 
768 	tx_cmd->flags_opcode = opcode ;
769 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
770 	tx_cmd->ip_hdr_off = ehdrlen;
771 	tx_cmd->mss = mp->m_pkthdr.tso_segsz;
772 	tx_cmd->total_hdr_len = hdrlen;
773 
774 	/* Check for Multicast least significant bit of MSB == 1 */
775 	if (eh->evl_dhost[0] & 0x01) {
776 		tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
777 	}
778 
779 	return (0);
780 }
781 
782 /*
783  * Name: qla_tx_chksum
784  * Function: Checks if the packet to be transmitted is a candidate for
785  *	TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
786  *	Ring Structure are plugged in.
787  */
788 static int
789 qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
790 {
791 	struct ether_vlan_header *eh;
792 	struct ip *ip;
793 	struct ip6_hdr *ip6;
794 	uint32_t ehdrlen, ip_hlen;
795 	uint16_t etype, opcode, offload = 1;
796 	device_t dev;
797 
798 	dev = ha->pci_dev;
799 
800 	if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
801 		return (-1);
802 
803 	eh = mtod(mp, struct ether_vlan_header *);
804 
805 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
806 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
807 		etype = ntohs(eh->evl_proto);
808 	} else {
809 		ehdrlen = ETHER_HDR_LEN;
810 		etype = ntohs(eh->evl_encap_proto);
811 	}
812 
813 
814 	switch (etype) {
815 		case ETHERTYPE_IP:
816 			ip = (struct ip *)(mp->m_data + ehdrlen);
817 
818 			ip_hlen = ip->ip_hl << 2;
819 
820 			if (mp->m_len < (ehdrlen + ip_hlen)) {
821 				device_printf(dev, "%s: ipv4 mlen\n", __func__);
822 				offload = 0;
823 				break;
824 			}
825 
826 			if (ip->ip_p == IPPROTO_TCP)
827 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
828 			else if (ip->ip_p == IPPROTO_UDP)
829 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
830 			else {
831 				device_printf(dev, "%s: ipv4\n", __func__);
832 				offload = 0;
833 			}
834 		break;
835 
836 		case ETHERTYPE_IPV6:
837 			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
838 
839 			ip_hlen = sizeof(struct ip6_hdr);
840 
841 			if (mp->m_len < (ehdrlen + ip_hlen)) {
842 				device_printf(dev, "%s: ipv6 mlen\n", __func__);
843 				offload = 0;
844 				break;
845 			}
846 
847 			if (ip6->ip6_nxt == IPPROTO_TCP)
848 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
849 			else if (ip6->ip6_nxt == IPPROTO_UDP)
850 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
851 			else {
852 				device_printf(dev, "%s: ipv6\n", __func__);
853 				offload = 0;
854 			}
855 		break;
856 
857 		default:
858 			offload = 0;
859 		break;
860 	}
861 	if (!offload)
862 		return (-1);
863 
864 	tx_cmd->flags_opcode = opcode;
865 
866 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
867 
868 	return (0);
869 }
870 
871 /*
872  * Name: qla_hw_send
873  * Function: Transmits a packet. It first checks if the packet is a
874  *	candidate for Large TCP Segment Offload and then for UDP/TCP checksum
875  *	offload. If either of these creteria are not met, it is transmitted
876  *	as a regular ethernet frame.
877  */
878 int
879 qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
880 	uint32_t *tx_idx,  struct mbuf *mp)
881 {
882 	struct ether_vlan_header *eh;
883 	qla_hw_t *hw = &ha->hw;
884 	q80_tx_cmd_t *tx_cmd, tso_cmd;
885 	bus_dma_segment_t *c_seg;
886 	uint32_t num_tx_cmds, hdr_len = 0;
887 	uint32_t total_length = 0, bytes, tx_cmd_count = 0;
888 	device_t dev;
889 	int i;
890 
891 	dev = ha->pci_dev;
892 
893 	/*
894 	 * Always make sure there is atleast one empty slot in the tx_ring
895 	 * tx_ring is considered full when there only one entry available
896 	 */
897         num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
898 
899 	total_length = mp->m_pkthdr.len;
900 	if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
901 		device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
902 			__func__, total_length);
903 		return (-1);
904 	}
905 
906 	bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
907 
908 	if (qla_tx_tso(ha, mp, &tso_cmd) == 0) {
909 		/* find the additional tx_cmd descriptors required */
910 
911 		hdr_len = tso_cmd.total_hdr_len;
912 
913 		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
914 		bytes = QL_MIN(bytes, hdr_len);
915 
916 		num_tx_cmds++;
917 		hdr_len -= bytes;
918 
919 		while (hdr_len) {
920 			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
921 			hdr_len -= bytes;
922 			num_tx_cmds++;
923 		}
924 		hdr_len = tso_cmd.total_hdr_len;
925 	}
926 
927 	if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
928 		qla_hw_tx_done_locked(ha);
929 		if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
930         		QL_DPRINT8((dev, "%s: (hw->txr_free <= "
931 				"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
932 				__func__));
933 			return (-1);
934 		}
935 	}
936 
937 	*tx_idx = hw->txr_next;
938 
939         tx_cmd = &hw->tx_ring_base[hw->txr_next];
940 
941 	if (hdr_len == 0) {
942 		if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
943 			(mp->m_pkthdr.len > ha->max_frame_size)){
944 			/* TBD: copy into private buffer and send it */
945         		device_printf(dev,
946 				"%s: (nsegs[%d, %d, 0x%x] > Q8_TX_MAX_SEGMENTS)\n",
947 				__func__, nsegs, mp->m_pkthdr.len,
948 				mp->m_pkthdr.csum_flags);
949 			qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
950 				mtod(mp, char *), mp->m_len);
951 			return (EINVAL);
952 		}
953 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
954 		if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
955         		tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
956 	} else {
957 		bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
958 	}
959 
960 	eh = mtod(mp, struct ether_vlan_header *);
961 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
962         	tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
963 	else if (mp->m_flags & M_VLANTAG) {
964         	tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
965 						Q8_TX_CMD_FLAGS_HW_VLAN_ID);
966 		tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
967 	}
968 
969 
970         tx_cmd->n_bufs = (uint8_t)nsegs;
971         tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
972         tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
973 	tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
974 
975 	c_seg = segs;
976 
977 	while (1) {
978 		for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
979 
980 			switch (i) {
981 			case 0:
982 				tx_cmd->buf1_addr = c_seg->ds_addr;
983 				tx_cmd->buf1_len = c_seg->ds_len;
984 				break;
985 
986 			case 1:
987 				tx_cmd->buf2_addr = c_seg->ds_addr;
988 				tx_cmd->buf2_len = c_seg->ds_len;
989 				break;
990 
991 			case 2:
992 				tx_cmd->buf3_addr = c_seg->ds_addr;
993 				tx_cmd->buf3_len = c_seg->ds_len;
994 				break;
995 
996 			case 3:
997 				tx_cmd->buf4_addr = c_seg->ds_addr;
998 				tx_cmd->buf4_len = c_seg->ds_len;
999 				break;
1000 			}
1001 
1002 			c_seg++;
1003 			nsegs--;
1004 		}
1005 
1006 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1007 		tx_cmd_count++;
1008 
1009 		if (!nsegs)
1010 			break;
1011 
1012         	tx_cmd = &hw->tx_ring_base[hw->txr_next];
1013 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1014 	}
1015 
1016 	if (hdr_len) {
1017 		/* TSO : Copy the header in the following tx cmd descriptors */
1018 		uint8_t *src, *dst;
1019 
1020 		src = (uint8_t *)eh;
1021 
1022 		tx_cmd = &hw->tx_ring_base[hw->txr_next];
1023 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1024 
1025 		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
1026 		bytes = QL_MIN(bytes, hdr_len);
1027 
1028 		dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
1029 
1030 		if (mp->m_flags & M_VLANTAG) {
1031 			/* first copy the src/dst MAC addresses */
1032 			bcopy(src, dst, (ETHER_ADDR_LEN * 2));
1033 			dst += (ETHER_ADDR_LEN * 2);
1034 			src += (ETHER_ADDR_LEN * 2);
1035 
1036 			hdr_len -= (ETHER_ADDR_LEN * 2);
1037 
1038 			*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
1039 			dst += 2;
1040 			*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
1041 			dst += 2;
1042 
1043 			bytes -= ((ETHER_ADDR_LEN * 2) + 4);
1044 
1045 			bcopy(src, dst, bytes);
1046 			src += bytes;
1047 			hdr_len -= bytes;
1048 		} else {
1049 			bcopy(src, dst, bytes);
1050 			src += bytes;
1051 			hdr_len -= bytes;
1052 		}
1053 
1054 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1055 		tx_cmd_count++;
1056 
1057 		while (hdr_len) {
1058 			tx_cmd = &hw->tx_ring_base[hw->txr_next];
1059 			bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1060 
1061 			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
1062 
1063 			bcopy(src, tx_cmd, bytes);
1064 			src += bytes;
1065 			hdr_len -= bytes;
1066 			hw->txr_next =
1067 				(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1068 			tx_cmd_count++;
1069 		}
1070 	}
1071 
1072 	hw->txr_free = hw->txr_free - tx_cmd_count;
1073 
1074 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
1075        	QL_DPRINT8((dev, "%s: return\n", __func__));
1076 	return (0);
1077 }
1078 
1079 /*
1080  * Name: qla_del_hw_if
1081  * Function: Destroys the hardware specific entities corresponding to an
1082  *	Ethernet Interface
1083  */
1084 void
1085 qla_del_hw_if(qla_host_t *ha)
1086 {
1087 	int	i;
1088 
1089 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1090 		QL_DISABLE_INTERRUPTS(ha, i);
1091 
1092 	qla_del_rcv_cntxt(ha);
1093 	qla_del_xmt_cntxt(ha);
1094 
1095 	ha->hw.flags.lro = 0;
1096 }
1097 
1098 /*
1099  * Name: qla_init_hw_if
1100  * Function: Creates the hardware specific entities corresponding to an
1101  *	Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
1102  *	corresponding to the interface. Enables LRO if allowed.
1103  */
1104 int
1105 qla_init_hw_if(qla_host_t *ha)
1106 {
1107 	device_t	dev;
1108 	int		i;
1109 	uint8_t		bcast_mac[6];
1110 
1111 	qla_get_hw_caps(ha);
1112 
1113 	dev = ha->pci_dev;
1114 
1115 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1116 		bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
1117 			ha->hw.dma_buf.sds_ring[i].size);
1118 	}
1119 	/*
1120 	 * Create Receive Context
1121 	 */
1122 	if (qla_init_rcv_cntxt(ha)) {
1123 		return (-1);
1124 	}
1125 
1126 	ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
1127 	ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
1128 	ha->hw.rx_in = ha->hw.rxj_in = 0;
1129 
1130 	/* Update the RDS Producer Indices */
1131 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
1132 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
1133 
1134 	/*
1135 	 * Create Transmit Context
1136 	 */
1137 	if (qla_init_xmt_cntxt(ha)) {
1138 		qla_del_rcv_cntxt(ha);
1139 		return (-1);
1140 	}
1141 
1142 	qla_config_mac_addr(ha, ha->hw.mac_addr,
1143 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1144 
1145 	bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
1146 	bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
1147 	qla_config_mac_addr(ha, bcast_mac,
1148 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1149 
1150 	qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
1151 
1152 	qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
1153 
1154 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1155 		QL_ENABLE_INTERRUPTS(ha, i);
1156 
1157 	return (0);
1158 }
1159 
1160 /*
1161  * Name: qla_init_rcv_cntxt
1162  * Function: Creates the Receive Context.
1163  */
1164 static int
1165 qla_init_rcv_cntxt(qla_host_t *ha)
1166 {
1167 	device_t		dev;
1168 	qla_cdrp_t		cdrp;
1169 	q80_rcv_cntxt_rsp_t	*rsp;
1170 	q80_stat_desc_t		*sdesc;
1171 	bus_addr_t		phys_addr;
1172 	int			i, j;
1173         qla_hw_t		*hw = &ha->hw;
1174 
1175 	dev = ha->pci_dev;
1176 
1177 	/*
1178 	 * Create Receive Context
1179 	 */
1180 
1181 	for (i = 0; i < hw->num_sds_rings; i++) {
1182 		sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
1183 		for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
1184 			sdesc->data[0] =
1185 				Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
1186 		}
1187 	}
1188 
1189 	phys_addr = ha->hw.rx_cntxt_req_paddr;
1190 
1191 	bzero(&cdrp, sizeof(qla_cdrp_t));
1192 
1193 	cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
1194 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1195 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1196 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
1197 
1198 	if (qla_issue_cmd(ha, &cdrp)) {
1199 		device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
1200 			__func__);
1201 		return (-1);
1202 	} else {
1203 		rsp = ha->hw.rx_cntxt_rsp;
1204 
1205 		QL_DPRINT2((dev, "%s: rcv cntxt successful"
1206 			" rds_ring_offset = 0x%08x"
1207 			" sds_ring_offset = 0x%08x"
1208 			" cntxt_state = 0x%08x"
1209 			" funcs_per_port = 0x%08x"
1210 			" num_rds_rings = 0x%04x"
1211 			" num_sds_rings = 0x%04x"
1212 			" cntxt_id = 0x%04x"
1213 			" phys_port = 0x%02x"
1214 			" virt_port = 0x%02x\n",
1215 			__func__,
1216 			rsp->rx_rsp.rds_ring_offset,
1217 			rsp->rx_rsp.sds_ring_offset,
1218 			rsp->rx_rsp.cntxt_state,
1219 			rsp->rx_rsp.funcs_per_port,
1220 			rsp->rx_rsp.num_rds_rings,
1221 			rsp->rx_rsp.num_sds_rings,
1222 			rsp->rx_rsp.cntxt_id,
1223 			rsp->rx_rsp.phys_port,
1224 			rsp->rx_rsp.virt_port));
1225 
1226 		for (i = 0; i < ha->hw.num_rds_rings; i++) {
1227 			QL_DPRINT2((dev,
1228 				"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
1229 				__func__, i, rsp->rds_rsp[i].producer_reg));
1230 		}
1231 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1232 			QL_DPRINT2((dev,
1233 				"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
1234 				" sds[%i].intr_mask_reg = 0x%08x\n",
1235 				__func__, i, rsp->sds_rsp[i].consumer_reg,
1236 				i, rsp->sds_rsp[i].intr_mask_reg));
1237 		}
1238 	}
1239 	ha->hw.flags.init_rx_cnxt = 1;
1240 	return (0);
1241 }
1242 
1243 /*
1244  * Name: qla_del_rcv_cntxt
1245  * Function: Destroys the Receive Context.
1246  */
1247 void
1248 qla_del_rcv_cntxt(qla_host_t *ha)
1249 {
1250 	qla_cdrp_t	cdrp;
1251 	device_t	dev = ha->pci_dev;
1252 
1253 	if (!ha->hw.flags.init_rx_cnxt)
1254 		return;
1255 
1256 	bzero(&cdrp, sizeof(qla_cdrp_t));
1257 
1258 	cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
1259 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
1260 
1261 	if (qla_issue_cmd(ha, &cdrp)) {
1262 		device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
1263 			__func__);
1264 	}
1265 	ha->hw.flags.init_rx_cnxt = 0;
1266 }
1267 
1268 /*
1269  * Name: qla_init_xmt_cntxt
1270  * Function: Creates the Transmit Context.
1271  */
1272 static int
1273 qla_init_xmt_cntxt(qla_host_t *ha)
1274 {
1275 	bus_addr_t		phys_addr;
1276 	device_t		dev;
1277 	q80_tx_cntxt_rsp_t	*tx_rsp;
1278 	qla_cdrp_t		cdrp;
1279         qla_hw_t		*hw = &ha->hw;
1280 
1281 	dev = ha->pci_dev;
1282 
1283 	/*
1284 	 * Create Transmit Context
1285 	 */
1286 	phys_addr = ha->hw.tx_cntxt_req_paddr;
1287 	tx_rsp = ha->hw.tx_cntxt_rsp;
1288 
1289 	hw->txr_comp = hw->txr_next = 0;
1290 	*(hw->tx_cons) = 0;
1291 
1292 	bzero(&cdrp, sizeof(qla_cdrp_t));
1293 
1294 	cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
1295 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1296 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1297 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
1298 
1299 	if (qla_issue_cmd(ha, &cdrp)) {
1300 		device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
1301 			__func__);
1302 		return (-1);
1303 	} else {
1304 		ha->hw.tx_prod_reg = tx_rsp->producer_reg;
1305 
1306 		QL_DPRINT2((dev, "%s: tx cntxt successful"
1307 			" cntxt_state = 0x%08x "
1308 			" cntxt_id = 0x%04x "
1309 			" phys_port_id = 0x%02x "
1310 			" virt_port_id = 0x%02x "
1311 			" producer_reg = 0x%08x "
1312 			" intr_mask_reg = 0x%08x\n",
1313 			__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
1314 			tx_rsp->phys_port_id, tx_rsp->virt_port_id,
1315 			tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
1316 	}
1317 	ha->hw.txr_free = NUM_TX_DESCRIPTORS;
1318 
1319 	ha->hw.flags.init_tx_cnxt = 1;
1320 	return (0);
1321 }
1322 
1323 /*
1324  * Name: qla_del_xmt_cntxt
1325  * Function: Destroys the Transmit Context.
1326  */
1327 static void
1328 qla_del_xmt_cntxt(qla_host_t *ha)
1329 {
1330 	qla_cdrp_t	cdrp;
1331 	device_t	dev = ha->pci_dev;
1332 
1333 	if (!ha->hw.flags.init_tx_cnxt)
1334 		return;
1335 
1336 	bzero(&cdrp, sizeof(qla_cdrp_t));
1337 
1338 	cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
1339 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
1340 
1341 	if (qla_issue_cmd(ha, &cdrp)) {
1342 		device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
1343 			__func__);
1344 	}
1345 	ha->hw.flags.init_tx_cnxt = 0;
1346 }
1347 
1348 /*
1349  * Name: qla_get_max_rds
1350  * Function: Returns the maximum number of Receive Descriptor Rings per context.
1351  */
1352 static int
1353 qla_get_max_rds(qla_host_t *ha)
1354 {
1355 	qla_cdrp_t	cdrp;
1356 	device_t	dev;
1357 
1358 	dev = ha->pci_dev;
1359 
1360 	bzero(&cdrp, sizeof(qla_cdrp_t));
1361 
1362 	cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
1363 
1364 	if (qla_issue_cmd(ha, &cdrp)) {
1365 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1366 			__func__);
1367 		return (-1);
1368 	} else {
1369 		ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
1370 		QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
1371 			__func__, ha->hw.max_rds_per_cntxt));
1372 	}
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Name: qla_get_max_sds
1378  * Function: Returns the maximum number of Status Descriptor Rings per context.
1379  */
1380 static int
1381 qla_get_max_sds(qla_host_t *ha)
1382 {
1383 	qla_cdrp_t	cdrp;
1384 	device_t	dev;
1385 
1386 	dev = ha->pci_dev;
1387 
1388 	bzero(&cdrp, sizeof(qla_cdrp_t));
1389 
1390 	cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
1391 
1392 	if (qla_issue_cmd(ha, &cdrp)) {
1393 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1394 			__func__);
1395 		return (-1);
1396 	} else {
1397 		ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
1398 		QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
1399 			__func__, ha->hw.max_sds_per_cntxt));
1400 	}
1401 	return 0;
1402 }
1403 
1404 /*
1405  * Name: qla_get_max_rules
1406  * Function: Returns the maximum number of Rules per context.
1407  */
1408 static int
1409 qla_get_max_rules(qla_host_t *ha)
1410 {
1411 	qla_cdrp_t	cdrp;
1412 	device_t	dev;
1413 
1414 	dev = ha->pci_dev;
1415 
1416 	bzero(&cdrp, sizeof(qla_cdrp_t));
1417 
1418 	cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
1419 
1420 	if (qla_issue_cmd(ha, &cdrp)) {
1421 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
1422 			__func__);
1423 		return (-1);
1424 	} else {
1425 		ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
1426 		QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
1427 			__func__, ha->hw.max_rules_per_cntxt));
1428 	}
1429 	return 0;
1430 }
1431 
1432 /*
1433  * Name: qla_get_max_rcv_cntxts
1434  * Function: Returns the maximum number of Receive Contexts supported.
1435  */
1436 static int
1437 qla_get_max_rcv_cntxts(qla_host_t *ha)
1438 {
1439 	qla_cdrp_t	cdrp;
1440 	device_t	dev;
1441 
1442 	dev = ha->pci_dev;
1443 
1444 	bzero(&cdrp, sizeof(qla_cdrp_t));
1445 
1446 	cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
1447 
1448 	if (qla_issue_cmd(ha, &cdrp)) {
1449 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
1450 			__func__);
1451 		return (-1);
1452 	} else {
1453 		ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
1454 		QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
1455 			__func__, ha->hw.max_rcv_cntxts));
1456 	}
1457 	return 0;
1458 }
1459 
1460 /*
1461  * Name: qla_get_max_tx_cntxts
1462  * Function: Returns the maximum number of Transmit Contexts supported.
1463  */
1464 static int
1465 qla_get_max_tx_cntxts(qla_host_t *ha)
1466 {
1467 	qla_cdrp_t	cdrp;
1468 	device_t	dev;
1469 
1470 	dev = ha->pci_dev;
1471 
1472 	bzero(&cdrp, sizeof(qla_cdrp_t));
1473 
1474 	cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
1475 
1476 	if (qla_issue_cmd(ha, &cdrp)) {
1477 		device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
1478 			__func__);
1479 		return (-1);
1480 	} else {
1481 		ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
1482 		QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
1483 			__func__, ha->hw.max_xmt_cntxts));
1484 	}
1485 	return 0;
1486 }
1487 
1488 /*
1489  * Name: qla_get_max_mtu
1490  * Function: Returns the MTU supported for a context.
1491  */
1492 static int
1493 qla_get_max_mtu(qla_host_t *ha)
1494 {
1495 	qla_cdrp_t	cdrp;
1496 	device_t	dev;
1497 
1498 	dev = ha->pci_dev;
1499 
1500 	bzero(&cdrp, sizeof(qla_cdrp_t));
1501 
1502 	cdrp.cmd = Q8_CMD_RD_MAX_MTU;
1503 
1504 	if (qla_issue_cmd(ha, &cdrp)) {
1505 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1506 		return (-1);
1507 	} else {
1508 		ha->hw.max_mtu = cdrp.rsp_arg1;
1509 		QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
1510 			ha->hw.max_mtu));
1511 	}
1512 	return 0;
1513 }
1514 
1515 /*
1516  * Name: qla_set_max_mtu
1517  * Function:
1518  *	Sets the maximum transfer unit size for the specified rcv context.
1519  */
1520 int
1521 qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
1522 {
1523 	qla_cdrp_t	cdrp;
1524 	device_t	dev;
1525 
1526 	dev = ha->pci_dev;
1527 
1528 	bzero(&cdrp, sizeof(qla_cdrp_t));
1529 
1530 	cdrp.cmd = Q8_CMD_SET_MTU;
1531 	cdrp.cmd_arg1 = (uint32_t)cntxt_id;
1532 	cdrp.cmd_arg2 = mtu;
1533 
1534 	if (qla_issue_cmd(ha, &cdrp)) {
1535 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1536 		return (-1);
1537 	} else {
1538 		ha->hw.max_mtu = cdrp.rsp_arg1;
1539 	}
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Name: qla_get_max_lro
1545  * Function: Returns the maximum number of TCP Connection which can be supported
1546  *	with LRO.
1547  */
1548 static int
1549 qla_get_max_lro(qla_host_t *ha)
1550 {
1551 	qla_cdrp_t	cdrp;
1552 	device_t	dev;
1553 
1554 	dev = ha->pci_dev;
1555 
1556 	bzero(&cdrp, sizeof(qla_cdrp_t));
1557 
1558 	cdrp.cmd = Q8_CMD_RD_MAX_LRO;
1559 
1560 	if (qla_issue_cmd(ha, &cdrp)) {
1561 		device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
1562 		return (-1);
1563 	} else {
1564 		ha->hw.max_lro = cdrp.rsp_arg1;
1565 		QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
1566 			ha->hw.max_lro));
1567 	}
1568 	return 0;
1569 }
1570 
1571 /*
1572  * Name: qla_get_flow_control
1573  * Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
1574  *	PCI function.
1575  */
1576 static int
1577 qla_get_flow_control(qla_host_t *ha)
1578 {
1579 	qla_cdrp_t	cdrp;
1580 	device_t	dev;
1581 
1582 	dev = ha->pci_dev;
1583 
1584 	bzero(&cdrp, sizeof(qla_cdrp_t));
1585 
1586 	cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
1587 
1588 	if (qla_issue_cmd(ha, &cdrp)) {
1589 		device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
1590 			__func__);
1591 		return (-1);
1592 	} else {
1593 		QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
1594 			cdrp.rsp_arg1));
1595 	}
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Name: qla_get_flow_control
1601  * Function: Retrieves hardware capabilities
1602  */
1603 void
1604 qla_get_hw_caps(qla_host_t *ha)
1605 {
1606 	//qla_read_mac_addr(ha);
1607 	qla_get_max_rds(ha);
1608 	qla_get_max_sds(ha);
1609 	qla_get_max_rules(ha);
1610 	qla_get_max_rcv_cntxts(ha);
1611 	qla_get_max_tx_cntxts(ha);
1612 	qla_get_max_mtu(ha);
1613 	qla_get_max_lro(ha);
1614 	qla_get_flow_control(ha);
1615 	return;
1616 }
1617 
1618 /*
1619  * Name: qla_hw_set_multi
1620  * Function: Sets the Multicast Addresses provided the host O.S into the
1621  *	hardware (for the given interface)
1622  */
1623 void
1624 qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
1625 	uint32_t add_multi)
1626 {
1627 	q80_rcv_cntxt_rsp_t	*rsp;
1628 	int i;
1629 
1630 	rsp = ha->hw.rx_cntxt_rsp;
1631 	for (i = 0; i < mcnt; i++) {
1632 		qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
1633 		mta += Q8_MAC_ADDR_LEN;
1634 	}
1635 	return;
1636 }
1637 
1638 /*
1639  * Name: qla_hw_tx_done_locked
1640  * Function: Handle Transmit Completions
1641  */
1642 static void
1643 qla_hw_tx_done_locked(qla_host_t *ha)
1644 {
1645 	qla_tx_buf_t *txb;
1646         qla_hw_t *hw = &ha->hw;
1647 	uint32_t comp_idx, comp_count = 0;
1648 
1649 	/* retrieve index of last entry in tx ring completed */
1650 	comp_idx = qla_le32_to_host(*(hw->tx_cons));
1651 
1652 	while (comp_idx != hw->txr_comp) {
1653 
1654 		txb = &ha->tx_buf[hw->txr_comp];
1655 
1656 		hw->txr_comp++;
1657 		if (hw->txr_comp == NUM_TX_DESCRIPTORS)
1658 			hw->txr_comp = 0;
1659 
1660 		comp_count++;
1661 
1662 		if (txb->m_head) {
1663 			bus_dmamap_sync(ha->tx_tag, txb->map,
1664 				BUS_DMASYNC_POSTWRITE);
1665 			bus_dmamap_unload(ha->tx_tag, txb->map);
1666 			bus_dmamap_destroy(ha->tx_tag, txb->map);
1667 			m_freem(txb->m_head);
1668 
1669 			txb->map = (bus_dmamap_t)0;
1670 			txb->m_head = NULL;
1671 		}
1672 	}
1673 
1674 	hw->txr_free += comp_count;
1675 
1676        	QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
1677 		hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
1678 
1679 	return;
1680 }
1681 
1682 /*
1683  * Name: qla_hw_tx_done
1684  * Function: Handle Transmit Completions
1685  */
1686 void
1687 qla_hw_tx_done(qla_host_t *ha)
1688 {
1689 	if (!mtx_trylock(&ha->tx_lock)) {
1690        		QL_DPRINT8((ha->pci_dev,
1691 			"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
1692 		return;
1693 	}
1694 	qla_hw_tx_done_locked(ha);
1695 
1696 	if (ha->hw.txr_free > free_pkt_thres)
1697 		ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1698 
1699 	mtx_unlock(&ha->tx_lock);
1700 	return;
1701 }
1702 
1703 void
1704 qla_update_link_state(qla_host_t *ha)
1705 {
1706 	uint32_t link_state;
1707 
1708 	if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1709 		ha->hw.flags.link_up = 0;
1710 		return;
1711 	}
1712 	link_state = READ_REG32(ha, Q8_LINK_STATE);
1713 
1714 	if (ha->pci_func == 0)
1715 		ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
1716 	else
1717 		ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
1718 }
1719 
1720 int
1721 qla_config_lro(qla_host_t *ha)
1722 {
1723 	int i;
1724         qla_hw_t *hw = &ha->hw;
1725 	struct lro_ctrl *lro;
1726 
1727 	for (i = 0; i < hw->num_sds_rings; i++) {
1728 		lro = &hw->sds[i].lro;
1729 		if (tcp_lro_init(lro)) {
1730 			device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1731 				__func__);
1732 			return (-1);
1733 		}
1734 		lro->ifp = ha->ifp;
1735 	}
1736 	ha->flags.lro_init = 1;
1737 
1738 	QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1739 	return (0);
1740 }
1741 
1742 void
1743 qla_free_lro(qla_host_t *ha)
1744 {
1745 	int i;
1746         qla_hw_t *hw = &ha->hw;
1747 	struct lro_ctrl *lro;
1748 
1749 	if (!ha->flags.lro_init)
1750 		return;
1751 
1752 	for (i = 0; i < hw->num_sds_rings; i++) {
1753 		lro = &hw->sds[i].lro;
1754 		tcp_lro_free(lro);
1755 	}
1756 	ha->flags.lro_init = 0;
1757 }
1758 
1759 void
1760 qla_hw_stop_rcv(qla_host_t *ha)
1761 {
1762 	int i, done, count = 100;
1763 
1764 	while (count--) {
1765 		done = 1;
1766 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1767 			if (ha->hw.sds[i].rcv_active)
1768 				done = 0;
1769 		}
1770 		if (done)
1771 			break;
1772 		else
1773 			qla_mdelay(__func__, 10);
1774 	}
1775 }
1776 
1777