xref: /freebsd/sys/dev/qlxgb/qla_hw.c (revision 3fc36ee018bb836bd1796067cf4ef8683f166ebc)
1 /*
2  * Copyright (c) 2011-2012 Qlogic Corporation
3  * All rights reserved.
4  *
5  *  Redistribution and use in source and binary forms, with or without
6  *  modification, are permitted provided that the following conditions
7  *  are met:
8  *
9  *  1. Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  *  2. Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  *
15  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25  *  POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 /*
29  * File: qla_hw.c
30  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
31  * Content: Contains Hardware dependent functions
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "qla_os.h"
38 #include "qla_reg.h"
39 #include "qla_hw.h"
40 #include "qla_def.h"
41 #include "qla_inline.h"
42 #include "qla_ver.h"
43 #include "qla_glbl.h"
44 #include "qla_dbg.h"
45 
46 static uint32_t sysctl_num_rds_rings = 2;
47 static uint32_t sysctl_num_sds_rings = 4;
48 
49 /*
50  * Static Functions
51  */
52 
53 static void qla_init_cntxt_regions(qla_host_t *ha);
54 static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
55 static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
56 static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
57 		uint16_t cntxt_id, uint32_t add_multi);
58 static void qla_del_rcv_cntxt(qla_host_t *ha);
59 static int qla_init_rcv_cntxt(qla_host_t *ha);
60 static void qla_del_xmt_cntxt(qla_host_t *ha);
61 static int qla_init_xmt_cntxt(qla_host_t *ha);
62 static int qla_get_max_rds(qla_host_t *ha);
63 static int qla_get_max_sds(qla_host_t *ha);
64 static int qla_get_max_rules(qla_host_t *ha);
65 static int qla_get_max_rcv_cntxts(qla_host_t *ha);
66 static int qla_get_max_tx_cntxts(qla_host_t *ha);
67 static int qla_get_max_mtu(qla_host_t *ha);
68 static int qla_get_max_lro(qla_host_t *ha);
69 static int qla_get_flow_control(qla_host_t *ha);
70 static void qla_hw_tx_done_locked(qla_host_t *ha);
71 
72 int
73 qla_get_msix_count(qla_host_t *ha)
74 {
75 	return (sysctl_num_sds_rings);
76 }
77 
78 /*
79  * Name: qla_hw_add_sysctls
80  * Function: Add P3Plus specific sysctls
81  */
82 void
83 qla_hw_add_sysctls(qla_host_t *ha)
84 {
85         device_t	dev;
86 
87         dev = ha->pci_dev;
88 
89         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
90                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
91                 OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
92 		sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
93 
94         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
95                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
96                 OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
97 		sysctl_num_sds_rings, "Number of Status Descriptor Rings");
98 }
99 
100 /*
101  * Name: qla_free_dma
102  * Function: Frees the DMA'able memory allocated in qla_alloc_dma()
103  */
104 void
105 qla_free_dma(qla_host_t *ha)
106 {
107 	uint32_t i;
108 
109         if (ha->hw.dma_buf.flags.context) {
110 		qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
111         	ha->hw.dma_buf.flags.context = 0;
112 	}
113 
114         if (ha->hw.dma_buf.flags.sds_ring) {
115 		for (i = 0; i < ha->hw.num_sds_rings; i++)
116 			qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
117         	ha->hw.dma_buf.flags.sds_ring = 0;
118 	}
119 
120         if (ha->hw.dma_buf.flags.rds_ring) {
121 		for (i = 0; i < ha->hw.num_rds_rings; i++)
122 			qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
123         	ha->hw.dma_buf.flags.rds_ring = 0;
124 	}
125 
126         if (ha->hw.dma_buf.flags.tx_ring) {
127 		qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
128         	ha->hw.dma_buf.flags.tx_ring = 0;
129 	}
130 }
131 
132 /*
133  * Name: qla_alloc_dma
134  * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
135  */
136 int
137 qla_alloc_dma(qla_host_t *ha)
138 {
139         device_t                dev;
140 	uint32_t		i, j, size;
141 
142         dev = ha->pci_dev;
143 
144         QL_DPRINT2((dev, "%s: enter\n", __func__));
145 
146 	ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
147 	ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
148 
149 	/*
150 	 * Allocate Transmit Ring
151 	 */
152 
153 	ha->hw.dma_buf.tx_ring.alignment = 8;
154 	ha->hw.dma_buf.tx_ring.size =
155 		(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
156 
157         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
158                 device_printf(dev, "%s: tx ring alloc failed\n", __func__);
159                 goto qla_alloc_dma_exit;
160         }
161         ha->hw.dma_buf.flags.tx_ring = 1;
162 
163 	QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
164 		__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
165 		ha->hw.dma_buf.tx_ring.dma_b));
166 	/*
167 	 * Allocate Receive Descriptor Rings
168 	 */
169 
170 	for (i = 0; i < ha->hw.num_rds_rings; i++) {
171 		ha->hw.dma_buf.rds_ring[i].alignment = 8;
172 
173 		if (i == RDS_RING_INDEX_NORMAL) {
174 			ha->hw.dma_buf.rds_ring[i].size =
175 				(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
176 		} else if (i == RDS_RING_INDEX_JUMBO) {
177 			ha->hw.dma_buf.rds_ring[i].size =
178 				(sizeof(q80_recv_desc_t)) *
179 					NUM_RX_JUMBO_DESCRIPTORS;
180 		} else
181 			break;
182 
183 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
184 			QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
185 				__func__));
186 
187 			for (j = 0; j < i; j++)
188 				qla_free_dmabuf(ha,
189 					&ha->hw.dma_buf.rds_ring[j]);
190 
191 			goto qla_alloc_dma_exit;
192 		}
193 		QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
194 			__func__, i,
195 			(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
196 			ha->hw.dma_buf.rds_ring[i].dma_b));
197 	}
198 	ha->hw.dma_buf.flags.rds_ring = 1;
199 
200 	/*
201 	 * Allocate Status Descriptor Rings
202 	 */
203 
204 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
205 		ha->hw.dma_buf.sds_ring[i].alignment = 8;
206 		ha->hw.dma_buf.sds_ring[i].size =
207 			(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
208 
209 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
210 			device_printf(dev, "%s: sds ring alloc failed\n",
211 				__func__);
212 
213 			for (j = 0; j < i; j++)
214 				qla_free_dmabuf(ha,
215 					&ha->hw.dma_buf.sds_ring[j]);
216 
217 			goto qla_alloc_dma_exit;
218 		}
219 		QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
220 			__func__, i,
221 			(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
222 			ha->hw.dma_buf.sds_ring[i].dma_b));
223 	}
224 	ha->hw.dma_buf.flags.sds_ring = 1;
225 
226 	/*
227 	 * Allocate Context Area
228 	 */
229 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
230 
231 	size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
232 
233 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
234 
235 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
236 
237 	size += sizeof (uint32_t); /* for tx consumer index */
238 
239 	size = QL_ALIGN(size, PAGE_SIZE);
240 
241 	ha->hw.dma_buf.context.alignment = 8;
242 	ha->hw.dma_buf.context.size = size;
243 
244         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
245                 device_printf(dev, "%s: context alloc failed\n", __func__);
246                 goto qla_alloc_dma_exit;
247         }
248         ha->hw.dma_buf.flags.context = 1;
249 	QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
250 		__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
251 		ha->hw.dma_buf.context.dma_b));
252 
253 	qla_init_cntxt_regions(ha);
254 
255 	return 0;
256 
257 qla_alloc_dma_exit:
258 	qla_free_dma(ha);
259 	return -1;
260 }
261 
262 /*
263  * Name: qla_init_cntxt_regions
264  * Function: Initializes Tx/Rx Contexts.
265  */
266 static void
267 qla_init_cntxt_regions(qla_host_t *ha)
268 {
269 	qla_hw_t		*hw;
270 	q80_tx_cntxt_req_t	*tx_cntxt_req;
271 	q80_rcv_cntxt_req_t	*rx_cntxt_req;
272 	bus_addr_t		phys_addr;
273 	uint32_t		i;
274         device_t                dev;
275 	uint32_t		size;
276 
277         dev = ha->pci_dev;
278 
279 	hw = &ha->hw;
280 
281 	hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
282 
283 	for (i = 0; i < ha->hw.num_sds_rings; i++)
284 		hw->sds[i].sds_ring_base =
285 			(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
286 
287 
288 	phys_addr = hw->dma_buf.context.dma_addr;
289 
290 	memset((void *)hw->dma_buf.context.dma_b, 0,
291 		ha->hw.dma_buf.context.size);
292 
293 	hw->tx_cntxt_req	=
294 		(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
295 	hw->tx_cntxt_req_paddr	= phys_addr;
296 
297 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
298 
299 	hw->tx_cntxt_rsp	=
300 		(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
301 	hw->tx_cntxt_rsp_paddr	= hw->tx_cntxt_req_paddr + size;
302 
303 	size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
304 
305 	hw->rx_cntxt_req =
306 		(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
307 	hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
308 
309 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
310 
311 	hw->rx_cntxt_rsp =
312 		(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
313 	hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
314 
315 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
316 
317 	hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
318 	hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
319 
320 	/*
321 	 * Initialize the Transmit Context Request so that we don't need to
322 	 * do it every time we need to create a context
323 	 */
324 	tx_cntxt_req = hw->tx_cntxt_req;
325 
326 	tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
327 
328 	tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
329 
330 	tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
331 					CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
332 
333 	tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
334 
335 	tx_cntxt_req->phys_addr =
336 		qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
337 
338 	tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
339 
340 	/*
341 	 * Initialize the Receive Context Request
342 	 */
343 
344 	rx_cntxt_req = hw->rx_cntxt_req;
345 
346 	rx_cntxt_req->rx_req.rsp_dma_addr =
347 		qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
348 
349 	rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
350 						CNTXT_CAP0_LEGACY_MN |
351 						CNTXT_CAP0_JUMBO |
352 						CNTXT_CAP0_LRO|
353 						CNTXT_CAP0_HW_LRO);
354 
355 	rx_cntxt_req->rx_req.intr_mode =
356 		qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
357 
358 	rx_cntxt_req->rx_req.rds_intr_mode =
359 		qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
360 
361 	rx_cntxt_req->rx_req.rds_ring_offset = 0;
362 	rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
363 		(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
364 	rx_cntxt_req->rx_req.num_rds_rings =
365 		qla_host_to_le16(hw->num_rds_rings);
366 	rx_cntxt_req->rx_req.num_sds_rings =
367 		qla_host_to_le16(hw->num_sds_rings);
368 
369 	for (i = 0; i < hw->num_rds_rings; i++) {
370 		rx_cntxt_req->rds_req[i].phys_addr =
371 			qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
372 
373 		if (i == RDS_RING_INDEX_NORMAL) {
374 			rx_cntxt_req->rds_req[i].buf_size =
375 				qla_host_to_le64(MCLBYTES);
376 			rx_cntxt_req->rds_req[i].size =
377 				qla_host_to_le32(NUM_RX_DESCRIPTORS);
378 		} else {
379 			rx_cntxt_req->rds_req[i].buf_size =
380 				qla_host_to_le64(MJUM9BYTES);
381 			rx_cntxt_req->rds_req[i].size =
382 				qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
383 		}
384 	}
385 
386 	for (i = 0; i < hw->num_sds_rings; i++) {
387 		rx_cntxt_req->sds_req[i].phys_addr =
388 			qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
389 		rx_cntxt_req->sds_req[i].size =
390 			qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
391 		rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
392 	}
393 
394 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
395 		__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
396 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
397 		__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
398 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
399 		__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
400 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
401 		__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
402 	QL_DPRINT2((ha->pci_dev, "%s: tx_cons      = %p paddr %p\n",
403 		__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
404 }
405 
406 /*
407  * Name: qla_issue_cmd
408  * Function: Issues commands on the CDRP interface and returns responses.
409  */
410 static int
411 qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
412 {
413 	int	ret = 0;
414 	uint32_t signature;
415 	uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
416 	uint32_t data;
417 	device_t dev;
418 
419 	dev = ha->pci_dev;
420 
421 	signature = 0xcafe0000 | 0x0100 | ha->pci_func;
422 
423 	ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
424 
425 	if (ret) {
426 		device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
427 		return (ret);
428 	}
429 
430 	WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
431 
432 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
433 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
434 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
435 
436 	WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
437 
438 	while (count) {
439 		qla_mdelay(__func__, 10);
440 
441 		data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
442 
443 		if ((!(data & 0x80000000)))
444 			break;
445 		count--;
446 	}
447 	if ((!count) || (data != 1))
448 		ret = -1;
449 
450 	cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
451 	cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
452 	cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
453 	cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
454 
455 	qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
456 
457 	if (ret) {
458 		device_printf(dev, "%s: "
459 			"cmd[0x%08x] = 0x%08x\n"
460 			"\tsig[0x%08x] = 0x%08x\n"
461 			"\targ1[0x%08x] = 0x%08x\n"
462 			"\targ2[0x%08x] = 0x%08x\n"
463 			"\targ3[0x%08x] = 0x%08x\n",
464 			__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
465 			Q8_NX_CDRP_SIGNATURE, signature,
466 			Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
467 			Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
468 			Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
469 
470 		device_printf(dev, "%s: exit (ret = 0x%x)\n"
471 			"\t\t rsp = 0x%08x\n"
472 			"\t\t arg1 = 0x%08x\n"
473 			"\t\t arg2 = 0x%08x\n"
474 			"\t\t arg3 = 0x%08x\n",
475 			__func__, ret, cdrp->rsp,
476 			cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
477 	}
478 
479 	return (ret);
480 }
481 
482 #define QLA_TX_MIN_FREE	2
483 
484 /*
485  * Name: qla_fw_cmd
486  * Function: Issues firmware control commands on the Tx Ring.
487  */
488 static int
489 qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
490 {
491 	device_t dev;
492         q80_tx_cmd_t *tx_cmd;
493         qla_hw_t *hw = &ha->hw;
494 	int count = 100;
495 
496 	dev = ha->pci_dev;
497 
498 	QLA_TX_LOCK(ha);
499 
500         if (hw->txr_free <= QLA_TX_MIN_FREE) {
501 		while (count--) {
502 			qla_hw_tx_done_locked(ha);
503 			if (hw->txr_free > QLA_TX_MIN_FREE)
504 				break;
505 
506 			QLA_TX_UNLOCK(ha);
507 			qla_mdelay(__func__, 10);
508 			QLA_TX_LOCK(ha);
509 		}
510         	if (hw->txr_free <= QLA_TX_MIN_FREE) {
511 			QLA_TX_UNLOCK(ha);
512 			device_printf(dev, "%s: xmit queue full\n", __func__);
513                 	return (-1);
514 		}
515         }
516         tx_cmd = &hw->tx_ring_base[hw->txr_next];
517 
518         bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
519 
520 	bcopy(fw_cmd, tx_cmd, size);
521 
522 	hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
523 	hw->txr_free--;
524 
525 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
526 
527 	QLA_TX_UNLOCK(ha);
528 
529 	return (0);
530 }
531 
532 /*
533  * Name: qla_config_rss
534  * Function: Configure RSS for the context/interface.
535  */
536 const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
537 			0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
538 			0x255b0ec26d5a56daULL };
539 
540 static int
541 qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
542 {
543 	qla_fw_cds_config_rss_t rss_config;
544 	int ret, i;
545 
546 	bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
547 
548 	rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
549 	rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
550 	rss_config.hdr.cntxt_id = cntxt_id;
551 
552 	rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
553 					Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
554 	rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
555 
556 	rss_config.ind_tbl_mask = 0x7;
557 
558 	for (i = 0; i < 5; i++)
559 		rss_config.rss_key[i] = rss_key[i];
560 
561 	ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
562 
563 	return ret;
564 }
565 
566 /*
567  * Name: qla_config_intr_coalesce
568  * Function: Configure Interrupt Coalescing.
569  */
570 static int
571 qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
572 {
573 	qla_fw_cds_config_intr_coalesc_t intr_coalesce;
574 	int ret;
575 
576 	bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
577 
578 	intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
579 	intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
580 	intr_coalesce.hdr.cntxt_id = cntxt_id;
581 
582 	intr_coalesce.flags = 0x04;
583 	intr_coalesce.max_rcv_pkts = 256;
584 	intr_coalesce.max_rcv_usecs = 3;
585 	intr_coalesce.max_snd_pkts = 64;
586 	intr_coalesce.max_snd_usecs = 4;
587 
588 	if (tenable) {
589 		intr_coalesce.usecs_to = 1000; /* 1 millisecond */
590 		intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
591 		intr_coalesce.sds_ring_bitmask =
592 			Q8_FWCMD_INTR_COALESC_SDS_RING_0;
593 	}
594 
595 	ret = qla_fw_cmd(ha, &intr_coalesce,
596 			sizeof(qla_fw_cds_config_intr_coalesc_t));
597 
598 	return ret;
599 }
600 
601 
602 /*
603  * Name: qla_config_mac_addr
604  * Function: binds a MAC address to the context/interface.
605  *	Can be unicast, multicast or broadcast.
606  */
607 static int
608 qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
609 	uint32_t add_multi)
610 {
611 	qla_fw_cds_config_mac_addr_t mac_config;
612 	int ret;
613 
614 //	device_printf(ha->pci_dev,
615 //		"%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
616 //		mac_addr[0], mac_addr[1], mac_addr[2],
617 //		mac_addr[3], mac_addr[4], mac_addr[5]);
618 
619 	bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
620 
621 	mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
622 	mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
623 	mac_config.hdr.cntxt_id = cntxt_id;
624 
625 	if (add_multi)
626 		mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
627 	else
628 		mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
629 	bcopy(mac_addr, mac_config.mac_addr,6);
630 
631 	ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
632 
633 	return ret;
634 }
635 
636 
637 /*
638  * Name: qla_set_mac_rcv_mode
639  * Function: Enable/Disable AllMulticast and Promiscuous Modes.
640  */
641 static int
642 qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
643 {
644 	qla_set_mac_rcv_mode_t rcv_mode;
645 	int ret;
646 
647 	bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
648 
649 	rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
650 	rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
651 	rcv_mode.hdr.cntxt_id = cntxt_id;
652 
653 	rcv_mode.mode = mode;
654 
655 	ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
656 
657 	return ret;
658 }
659 
660 void
661 qla_set_promisc(qla_host_t *ha)
662 {
663 	(void)qla_set_mac_rcv_mode(ha,
664 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
665 		Q8_MAC_RCV_ENABLE_PROMISCUOUS);
666 }
667 
668 void
669 qla_set_allmulti(qla_host_t *ha)
670 {
671 	(void)qla_set_mac_rcv_mode(ha,
672 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
673 		Q8_MAC_RCV_ENABLE_ALLMULTI);
674 }
675 
676 void
677 qla_reset_promisc_allmulti(qla_host_t *ha)
678 {
679 	(void)qla_set_mac_rcv_mode(ha,
680 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
681 		Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
682 }
683 
684 /*
685  * Name: qla_config_ipv4_addr
686  * Function: Configures the Destination IP Addr for LRO.
687  */
688 void
689 qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
690 {
691 	qla_config_ipv4_t ip_conf;
692 
693 	bzero(&ip_conf, sizeof(qla_config_ipv4_t));
694 
695 	ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
696 	ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
697 	ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
698 
699 	ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
700 	ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
701 
702 	(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
703 
704 	return;
705 }
706 
707 /*
708  * Name: qla_tx_tso
709  * Function: Checks if the packet to be transmitted is a candidate for
710  *	Large TCP Segment Offload. If yes, the appropriate fields in the Tx
711  *	Ring Structure are plugged in.
712  */
713 static int
714 qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd, uint8_t *hdr)
715 {
716 	struct ether_vlan_header *eh;
717 	struct ip *ip = NULL;
718 	struct tcphdr *th = NULL;
719 	uint32_t ehdrlen,  hdrlen = 0, ip_hlen, tcp_hlen, tcp_opt_off;
720 	uint16_t etype, opcode, offload = 1;
721 	uint8_t *tcp_opt;
722 	device_t dev;
723 
724 	dev = ha->pci_dev;
725 
726 	eh = mtod(mp, struct ether_vlan_header *);
727 
728 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
729 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
730 		etype = ntohs(eh->evl_proto);
731 	} else {
732 		ehdrlen = ETHER_HDR_LEN;
733 		etype = ntohs(eh->evl_encap_proto);
734 	}
735 
736 	switch (etype) {
737 		case ETHERTYPE_IP:
738 
739 			tcp_opt_off = ehdrlen + sizeof(struct ip) +
740 					sizeof(struct tcphdr);
741 
742 			if (mp->m_len < tcp_opt_off) {
743 				m_copydata(mp, 0, tcp_opt_off, hdr);
744 				ip = (struct ip *)hdr;
745 			} else {
746 				ip = (struct ip *)(mp->m_data + ehdrlen);
747 			}
748 
749 			ip_hlen = ip->ip_hl << 2;
750 			opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
751 
752 			if ((ip->ip_p != IPPROTO_TCP) ||
753 				(ip_hlen != sizeof (struct ip))) {
754 				offload = 0;
755 			} else {
756 				th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
757 			}
758 		break;
759 
760 		default:
761 			QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
762 			offload = 0;
763 		break;
764 	}
765 
766 	if (!offload)
767 		return (-1);
768 
769 	tcp_hlen = th->th_off << 2;
770 
771 
772 	hdrlen = ehdrlen + ip_hlen + tcp_hlen;
773 
774 	if (mp->m_len < hdrlen) {
775 		if (mp->m_len < tcp_opt_off) {
776 			if (tcp_hlen > sizeof(struct tcphdr)) {
777 				m_copydata(mp, tcp_opt_off,
778 					(tcp_hlen - sizeof(struct tcphdr)),
779 					&hdr[tcp_opt_off]);
780 			}
781 		} else {
782 			m_copydata(mp, 0, hdrlen, hdr);
783 		}
784 	}
785 
786 	if ((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
787 
788 		/* If TCP options are preset only time stamp option is supported */
789 		if ((tcp_hlen - sizeof(struct tcphdr)) != 10)
790 			return -1;
791 		else {
792 
793 			if (mp->m_len < hdrlen) {
794 				tcp_opt = &hdr[tcp_opt_off];
795 			} else {
796 				tcp_opt = (uint8_t *)(mp->m_data + tcp_opt_off);
797 			}
798 
799 			if ((*tcp_opt != 0x01) || (*(tcp_opt + 1) != 0x01) ||
800 				(*(tcp_opt + 2) != 0x08) ||
801 				(*(tcp_opt + 3) != 10)) {
802 				return -1;
803 			}
804 		}
805 
806 		tx_cmd->mss = ha->max_frame_size - ETHER_CRC_LEN - hdrlen;
807 	} else {
808 		tx_cmd->mss = mp->m_pkthdr.tso_segsz;
809 	}
810 
811 	tx_cmd->flags_opcode = opcode ;
812 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
813 	tx_cmd->ip_hdr_off = ehdrlen;
814 	tx_cmd->mss = mp->m_pkthdr.tso_segsz;
815 	tx_cmd->total_hdr_len = hdrlen;
816 
817 	/* Check for Multicast least significant bit of MSB == 1 */
818 	if (eh->evl_dhost[0] & 0x01) {
819 		tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
820 	}
821 
822 	if (mp->m_len < hdrlen) {
823 		return (1);
824 	}
825 
826 	return (0);
827 }
828 
829 /*
830  * Name: qla_tx_chksum
831  * Function: Checks if the packet to be transmitted is a candidate for
832  *	TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
833  *	Ring Structure are plugged in.
834  */
835 static int
836 qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
837 {
838 	struct ether_vlan_header *eh;
839 	struct ip *ip;
840 	struct ip6_hdr *ip6;
841 	uint32_t ehdrlen, ip_hlen;
842 	uint16_t etype, opcode, offload = 1;
843 	device_t dev;
844 
845 	dev = ha->pci_dev;
846 
847 	if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
848 		return (-1);
849 
850 	eh = mtod(mp, struct ether_vlan_header *);
851 
852 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
853 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
854 		etype = ntohs(eh->evl_proto);
855 	} else {
856 		ehdrlen = ETHER_HDR_LEN;
857 		etype = ntohs(eh->evl_encap_proto);
858 	}
859 
860 
861 	switch (etype) {
862 		case ETHERTYPE_IP:
863 			ip = (struct ip *)(mp->m_data + ehdrlen);
864 
865 			ip_hlen = sizeof (struct ip);
866 
867 			if (mp->m_len < (ehdrlen + ip_hlen)) {
868 				device_printf(dev, "%s: ipv4 mlen\n", __func__);
869 				offload = 0;
870 				break;
871 			}
872 
873 			if (ip->ip_p == IPPROTO_TCP)
874 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
875 			else if (ip->ip_p == IPPROTO_UDP)
876 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
877 			else {
878 				device_printf(dev, "%s: ipv4\n", __func__);
879 				offload = 0;
880 			}
881 		break;
882 
883 		case ETHERTYPE_IPV6:
884 			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
885 
886 			ip_hlen = sizeof(struct ip6_hdr);
887 
888 			if (mp->m_len < (ehdrlen + ip_hlen)) {
889 				device_printf(dev, "%s: ipv6 mlen\n", __func__);
890 				offload = 0;
891 				break;
892 			}
893 
894 			if (ip6->ip6_nxt == IPPROTO_TCP)
895 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
896 			else if (ip6->ip6_nxt == IPPROTO_UDP)
897 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
898 			else {
899 				device_printf(dev, "%s: ipv6\n", __func__);
900 				offload = 0;
901 			}
902 		break;
903 
904 		default:
905 			offload = 0;
906 		break;
907 	}
908 	if (!offload)
909 		return (-1);
910 
911 	tx_cmd->flags_opcode = opcode;
912 
913 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
914 
915 	return (0);
916 }
917 
918 /*
919  * Name: qla_hw_send
920  * Function: Transmits a packet. It first checks if the packet is a
921  *	candidate for Large TCP Segment Offload and then for UDP/TCP checksum
922  *	offload. If either of these creteria are not met, it is transmitted
923  *	as a regular ethernet frame.
924  */
925 int
926 qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
927 	uint32_t *tx_idx,  struct mbuf *mp)
928 {
929 	struct ether_vlan_header *eh;
930 	qla_hw_t *hw = &ha->hw;
931 	q80_tx_cmd_t *tx_cmd, tso_cmd;
932 	bus_dma_segment_t *c_seg;
933 	uint32_t num_tx_cmds, hdr_len = 0;
934 	uint32_t total_length = 0, bytes, tx_cmd_count = 0;
935 	device_t dev;
936 	int i, ret;
937 	uint8_t *src = NULL, *dst = NULL;
938 
939 	dev = ha->pci_dev;
940 
941 	/*
942 	 * Always make sure there is atleast one empty slot in the tx_ring
943 	 * tx_ring is considered full when there only one entry available
944 	 */
945         num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
946 
947 	total_length = mp->m_pkthdr.len;
948 	if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
949 		device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
950 			__func__, total_length);
951 		return (-1);
952 	}
953 	eh = mtod(mp, struct ether_vlan_header *);
954 
955 	if ((mp->m_pkthdr.len > ha->max_frame_size)||(nsegs > Q8_TX_MAX_SEGMENTS)) {
956 
957 		bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
958 
959 		src = ha->hw.frame_hdr;
960 		ret = qla_tx_tso(ha, mp, &tso_cmd, src);
961 
962 		if (!(ret & ~1)) {
963 			/* find the additional tx_cmd descriptors required */
964 
965 			hdr_len = tso_cmd.total_hdr_len;
966 
967 			bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
968 			bytes = QL_MIN(bytes, hdr_len);
969 
970 			num_tx_cmds++;
971 			hdr_len -= bytes;
972 
973 			while (hdr_len) {
974 				bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
975 				hdr_len -= bytes;
976 				num_tx_cmds++;
977 			}
978 			hdr_len = tso_cmd.total_hdr_len;
979 
980 			if (ret == 0)
981 				src = (uint8_t *)eh;
982 		}
983 	}
984 
985 	if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
986 		qla_hw_tx_done_locked(ha);
987 		if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
988         		QL_DPRINT8((dev, "%s: (hw->txr_free <= "
989 				"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
990 				__func__));
991 			return (-1);
992 		}
993 	}
994 
995 	*tx_idx = hw->txr_next;
996 
997         tx_cmd = &hw->tx_ring_base[hw->txr_next];
998 
999 	if (hdr_len == 0) {
1000 		if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
1001 			(mp->m_pkthdr.len > ha->max_frame_size)){
1002         		device_printf(dev,
1003 				"%s: (nsegs[%d, %d, 0x%b] > Q8_TX_MAX_SEGMENTS)\n",
1004 				__func__, nsegs, mp->m_pkthdr.len,
1005 				(int)mp->m_pkthdr.csum_flags, CSUM_BITS);
1006 			qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
1007 				mtod(mp, char *), mp->m_len);
1008 			return (EINVAL);
1009 		}
1010 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1011 		if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
1012         		tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
1013 	} else {
1014 		bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
1015 	}
1016 
1017 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
1018         	tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
1019 	else if (mp->m_flags & M_VLANTAG) {
1020         	tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
1021 						Q8_TX_CMD_FLAGS_HW_VLAN_ID);
1022 		tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
1023 	}
1024 
1025 
1026         tx_cmd->n_bufs = (uint8_t)nsegs;
1027         tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
1028         tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
1029 	tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
1030 
1031 	c_seg = segs;
1032 
1033 	while (1) {
1034 		for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
1035 
1036 			switch (i) {
1037 			case 0:
1038 				tx_cmd->buf1_addr = c_seg->ds_addr;
1039 				tx_cmd->buf1_len = c_seg->ds_len;
1040 				break;
1041 
1042 			case 1:
1043 				tx_cmd->buf2_addr = c_seg->ds_addr;
1044 				tx_cmd->buf2_len = c_seg->ds_len;
1045 				break;
1046 
1047 			case 2:
1048 				tx_cmd->buf3_addr = c_seg->ds_addr;
1049 				tx_cmd->buf3_len = c_seg->ds_len;
1050 				break;
1051 
1052 			case 3:
1053 				tx_cmd->buf4_addr = c_seg->ds_addr;
1054 				tx_cmd->buf4_len = c_seg->ds_len;
1055 				break;
1056 			}
1057 
1058 			c_seg++;
1059 			nsegs--;
1060 		}
1061 
1062 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1063 		tx_cmd_count++;
1064 
1065 		if (!nsegs)
1066 			break;
1067 
1068         	tx_cmd = &hw->tx_ring_base[hw->txr_next];
1069 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1070 	}
1071 
1072 	if (hdr_len) {
1073 		/* TSO : Copy the header in the following tx cmd descriptors */
1074 
1075 		tx_cmd = &hw->tx_ring_base[hw->txr_next];
1076 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1077 
1078 		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
1079 		bytes = QL_MIN(bytes, hdr_len);
1080 
1081 		dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
1082 
1083 		if (mp->m_flags & M_VLANTAG) {
1084 			/* first copy the src/dst MAC addresses */
1085 			bcopy(src, dst, (ETHER_ADDR_LEN * 2));
1086 			dst += (ETHER_ADDR_LEN * 2);
1087 			src += (ETHER_ADDR_LEN * 2);
1088 
1089 			hdr_len -= (ETHER_ADDR_LEN * 2);
1090 
1091 			*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
1092 			dst += 2;
1093 			*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
1094 			dst += 2;
1095 
1096 			bytes -= ((ETHER_ADDR_LEN * 2) + 4);
1097 
1098 			bcopy(src, dst, bytes);
1099 			src += bytes;
1100 			hdr_len -= bytes;
1101 		} else {
1102 			bcopy(src, dst, bytes);
1103 			src += bytes;
1104 			hdr_len -= bytes;
1105 		}
1106 
1107 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1108 		tx_cmd_count++;
1109 
1110 		while (hdr_len) {
1111 			tx_cmd = &hw->tx_ring_base[hw->txr_next];
1112 			bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1113 
1114 			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
1115 
1116 			bcopy(src, tx_cmd, bytes);
1117 			src += bytes;
1118 			hdr_len -= bytes;
1119 			hw->txr_next =
1120 				(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1121 			tx_cmd_count++;
1122 		}
1123 	}
1124 
1125 	hw->txr_free = hw->txr_free - tx_cmd_count;
1126 
1127 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
1128        	QL_DPRINT8((dev, "%s: return\n", __func__));
1129 	return (0);
1130 }
1131 
1132 /*
1133  * Name: qla_del_hw_if
1134  * Function: Destroys the hardware specific entities corresponding to an
1135  *	Ethernet Interface
1136  */
1137 void
1138 qla_del_hw_if(qla_host_t *ha)
1139 {
1140 	int	i;
1141 
1142 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1143 		QL_DISABLE_INTERRUPTS(ha, i);
1144 
1145 	qla_del_rcv_cntxt(ha);
1146 	qla_del_xmt_cntxt(ha);
1147 
1148 	ha->hw.flags.lro = 0;
1149 }
1150 
1151 /*
1152  * Name: qla_init_hw_if
1153  * Function: Creates the hardware specific entities corresponding to an
1154  *	Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
1155  *	corresponding to the interface. Enables LRO if allowed.
1156  */
1157 int
1158 qla_init_hw_if(qla_host_t *ha)
1159 {
1160 	device_t	dev;
1161 	int		i;
1162 	uint8_t		bcast_mac[6];
1163 
1164 	qla_get_hw_caps(ha);
1165 
1166 	dev = ha->pci_dev;
1167 
1168 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1169 		bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
1170 			ha->hw.dma_buf.sds_ring[i].size);
1171 	}
1172 	/*
1173 	 * Create Receive Context
1174 	 */
1175 	if (qla_init_rcv_cntxt(ha)) {
1176 		return (-1);
1177 	}
1178 
1179 	ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
1180 	ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
1181 	ha->hw.rx_in = ha->hw.rxj_in = 0;
1182 
1183 	/* Update the RDS Producer Indices */
1184 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
1185 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
1186 
1187 	/*
1188 	 * Create Transmit Context
1189 	 */
1190 	if (qla_init_xmt_cntxt(ha)) {
1191 		qla_del_rcv_cntxt(ha);
1192 		return (-1);
1193 	}
1194 
1195 	qla_config_mac_addr(ha, ha->hw.mac_addr,
1196 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1197 
1198 	bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
1199 	bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
1200 	qla_config_mac_addr(ha, bcast_mac,
1201 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1202 
1203 	qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
1204 
1205 	qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
1206 
1207 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1208 		QL_ENABLE_INTERRUPTS(ha, i);
1209 
1210 	return (0);
1211 }
1212 
1213 /*
1214  * Name: qla_init_rcv_cntxt
1215  * Function: Creates the Receive Context.
1216  */
1217 static int
1218 qla_init_rcv_cntxt(qla_host_t *ha)
1219 {
1220 	device_t		dev;
1221 	qla_cdrp_t		cdrp;
1222 	q80_rcv_cntxt_rsp_t	*rsp;
1223 	q80_stat_desc_t		*sdesc;
1224 	bus_addr_t		phys_addr;
1225 	int			i, j;
1226         qla_hw_t		*hw = &ha->hw;
1227 
1228 	dev = ha->pci_dev;
1229 
1230 	/*
1231 	 * Create Receive Context
1232 	 */
1233 
1234 	for (i = 0; i < hw->num_sds_rings; i++) {
1235 		sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
1236 		for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
1237 			sdesc->data[0] =
1238 				Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
1239 		}
1240 	}
1241 
1242 	phys_addr = ha->hw.rx_cntxt_req_paddr;
1243 
1244 	bzero(&cdrp, sizeof(qla_cdrp_t));
1245 
1246 	cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
1247 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1248 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1249 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
1250 
1251 	if (qla_issue_cmd(ha, &cdrp)) {
1252 		device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
1253 			__func__);
1254 		return (-1);
1255 	} else {
1256 		rsp = ha->hw.rx_cntxt_rsp;
1257 
1258 		QL_DPRINT2((dev, "%s: rcv cntxt successful"
1259 			" rds_ring_offset = 0x%08x"
1260 			" sds_ring_offset = 0x%08x"
1261 			" cntxt_state = 0x%08x"
1262 			" funcs_per_port = 0x%08x"
1263 			" num_rds_rings = 0x%04x"
1264 			" num_sds_rings = 0x%04x"
1265 			" cntxt_id = 0x%04x"
1266 			" phys_port = 0x%02x"
1267 			" virt_port = 0x%02x\n",
1268 			__func__,
1269 			rsp->rx_rsp.rds_ring_offset,
1270 			rsp->rx_rsp.sds_ring_offset,
1271 			rsp->rx_rsp.cntxt_state,
1272 			rsp->rx_rsp.funcs_per_port,
1273 			rsp->rx_rsp.num_rds_rings,
1274 			rsp->rx_rsp.num_sds_rings,
1275 			rsp->rx_rsp.cntxt_id,
1276 			rsp->rx_rsp.phys_port,
1277 			rsp->rx_rsp.virt_port));
1278 
1279 		for (i = 0; i < ha->hw.num_rds_rings; i++) {
1280 			QL_DPRINT2((dev,
1281 				"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
1282 				__func__, i, rsp->rds_rsp[i].producer_reg));
1283 		}
1284 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1285 			QL_DPRINT2((dev,
1286 				"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
1287 				" sds[%i].intr_mask_reg = 0x%08x\n",
1288 				__func__, i, rsp->sds_rsp[i].consumer_reg,
1289 				i, rsp->sds_rsp[i].intr_mask_reg));
1290 		}
1291 	}
1292 	ha->hw.flags.init_rx_cnxt = 1;
1293 	return (0);
1294 }
1295 
1296 /*
1297  * Name: qla_del_rcv_cntxt
1298  * Function: Destroys the Receive Context.
1299  */
1300 void
1301 qla_del_rcv_cntxt(qla_host_t *ha)
1302 {
1303 	qla_cdrp_t	cdrp;
1304 	device_t	dev = ha->pci_dev;
1305 
1306 	if (!ha->hw.flags.init_rx_cnxt)
1307 		return;
1308 
1309 	bzero(&cdrp, sizeof(qla_cdrp_t));
1310 
1311 	cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
1312 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
1313 
1314 	if (qla_issue_cmd(ha, &cdrp)) {
1315 		device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
1316 			__func__);
1317 	}
1318 	ha->hw.flags.init_rx_cnxt = 0;
1319 }
1320 
1321 /*
1322  * Name: qla_init_xmt_cntxt
1323  * Function: Creates the Transmit Context.
1324  */
1325 static int
1326 qla_init_xmt_cntxt(qla_host_t *ha)
1327 {
1328 	bus_addr_t		phys_addr;
1329 	device_t		dev;
1330 	q80_tx_cntxt_rsp_t	*tx_rsp;
1331 	qla_cdrp_t		cdrp;
1332         qla_hw_t		*hw = &ha->hw;
1333 
1334 	dev = ha->pci_dev;
1335 
1336 	/*
1337 	 * Create Transmit Context
1338 	 */
1339 	phys_addr = ha->hw.tx_cntxt_req_paddr;
1340 	tx_rsp = ha->hw.tx_cntxt_rsp;
1341 
1342 	hw->txr_comp = hw->txr_next = 0;
1343 	*(hw->tx_cons) = 0;
1344 
1345 	bzero(&cdrp, sizeof(qla_cdrp_t));
1346 
1347 	cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
1348 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1349 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1350 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
1351 
1352 	if (qla_issue_cmd(ha, &cdrp)) {
1353 		device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
1354 			__func__);
1355 		return (-1);
1356 	} else {
1357 		ha->hw.tx_prod_reg = tx_rsp->producer_reg;
1358 
1359 		QL_DPRINT2((dev, "%s: tx cntxt successful"
1360 			" cntxt_state = 0x%08x "
1361 			" cntxt_id = 0x%04x "
1362 			" phys_port_id = 0x%02x "
1363 			" virt_port_id = 0x%02x "
1364 			" producer_reg = 0x%08x "
1365 			" intr_mask_reg = 0x%08x\n",
1366 			__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
1367 			tx_rsp->phys_port_id, tx_rsp->virt_port_id,
1368 			tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
1369 	}
1370 	ha->hw.txr_free = NUM_TX_DESCRIPTORS;
1371 
1372 	ha->hw.flags.init_tx_cnxt = 1;
1373 	return (0);
1374 }
1375 
1376 /*
1377  * Name: qla_del_xmt_cntxt
1378  * Function: Destroys the Transmit Context.
1379  */
1380 static void
1381 qla_del_xmt_cntxt(qla_host_t *ha)
1382 {
1383 	qla_cdrp_t	cdrp;
1384 	device_t	dev = ha->pci_dev;
1385 
1386 	if (!ha->hw.flags.init_tx_cnxt)
1387 		return;
1388 
1389 	bzero(&cdrp, sizeof(qla_cdrp_t));
1390 
1391 	cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
1392 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
1393 
1394 	if (qla_issue_cmd(ha, &cdrp)) {
1395 		device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
1396 			__func__);
1397 	}
1398 	ha->hw.flags.init_tx_cnxt = 0;
1399 }
1400 
1401 /*
1402  * Name: qla_get_max_rds
1403  * Function: Returns the maximum number of Receive Descriptor Rings per context.
1404  */
1405 static int
1406 qla_get_max_rds(qla_host_t *ha)
1407 {
1408 	qla_cdrp_t	cdrp;
1409 	device_t	dev;
1410 
1411 	dev = ha->pci_dev;
1412 
1413 	bzero(&cdrp, sizeof(qla_cdrp_t));
1414 
1415 	cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
1416 
1417 	if (qla_issue_cmd(ha, &cdrp)) {
1418 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1419 			__func__);
1420 		return (-1);
1421 	} else {
1422 		ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
1423 		QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
1424 			__func__, ha->hw.max_rds_per_cntxt));
1425 	}
1426 	return 0;
1427 }
1428 
1429 /*
1430  * Name: qla_get_max_sds
1431  * Function: Returns the maximum number of Status Descriptor Rings per context.
1432  */
1433 static int
1434 qla_get_max_sds(qla_host_t *ha)
1435 {
1436 	qla_cdrp_t	cdrp;
1437 	device_t	dev;
1438 
1439 	dev = ha->pci_dev;
1440 
1441 	bzero(&cdrp, sizeof(qla_cdrp_t));
1442 
1443 	cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
1444 
1445 	if (qla_issue_cmd(ha, &cdrp)) {
1446 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1447 			__func__);
1448 		return (-1);
1449 	} else {
1450 		ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
1451 		QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
1452 			__func__, ha->hw.max_sds_per_cntxt));
1453 	}
1454 	return 0;
1455 }
1456 
1457 /*
1458  * Name: qla_get_max_rules
1459  * Function: Returns the maximum number of Rules per context.
1460  */
1461 static int
1462 qla_get_max_rules(qla_host_t *ha)
1463 {
1464 	qla_cdrp_t	cdrp;
1465 	device_t	dev;
1466 
1467 	dev = ha->pci_dev;
1468 
1469 	bzero(&cdrp, sizeof(qla_cdrp_t));
1470 
1471 	cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
1472 
1473 	if (qla_issue_cmd(ha, &cdrp)) {
1474 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
1475 			__func__);
1476 		return (-1);
1477 	} else {
1478 		ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
1479 		QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
1480 			__func__, ha->hw.max_rules_per_cntxt));
1481 	}
1482 	return 0;
1483 }
1484 
1485 /*
1486  * Name: qla_get_max_rcv_cntxts
1487  * Function: Returns the maximum number of Receive Contexts supported.
1488  */
1489 static int
1490 qla_get_max_rcv_cntxts(qla_host_t *ha)
1491 {
1492 	qla_cdrp_t	cdrp;
1493 	device_t	dev;
1494 
1495 	dev = ha->pci_dev;
1496 
1497 	bzero(&cdrp, sizeof(qla_cdrp_t));
1498 
1499 	cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
1500 
1501 	if (qla_issue_cmd(ha, &cdrp)) {
1502 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
1503 			__func__);
1504 		return (-1);
1505 	} else {
1506 		ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
1507 		QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
1508 			__func__, ha->hw.max_rcv_cntxts));
1509 	}
1510 	return 0;
1511 }
1512 
1513 /*
1514  * Name: qla_get_max_tx_cntxts
1515  * Function: Returns the maximum number of Transmit Contexts supported.
1516  */
1517 static int
1518 qla_get_max_tx_cntxts(qla_host_t *ha)
1519 {
1520 	qla_cdrp_t	cdrp;
1521 	device_t	dev;
1522 
1523 	dev = ha->pci_dev;
1524 
1525 	bzero(&cdrp, sizeof(qla_cdrp_t));
1526 
1527 	cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
1528 
1529 	if (qla_issue_cmd(ha, &cdrp)) {
1530 		device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
1531 			__func__);
1532 		return (-1);
1533 	} else {
1534 		ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
1535 		QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
1536 			__func__, ha->hw.max_xmt_cntxts));
1537 	}
1538 	return 0;
1539 }
1540 
1541 /*
1542  * Name: qla_get_max_mtu
1543  * Function: Returns the MTU supported for a context.
1544  */
1545 static int
1546 qla_get_max_mtu(qla_host_t *ha)
1547 {
1548 	qla_cdrp_t	cdrp;
1549 	device_t	dev;
1550 
1551 	dev = ha->pci_dev;
1552 
1553 	bzero(&cdrp, sizeof(qla_cdrp_t));
1554 
1555 	cdrp.cmd = Q8_CMD_RD_MAX_MTU;
1556 
1557 	if (qla_issue_cmd(ha, &cdrp)) {
1558 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1559 		return (-1);
1560 	} else {
1561 		ha->hw.max_mtu = cdrp.rsp_arg1;
1562 		QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
1563 			ha->hw.max_mtu));
1564 	}
1565 	return 0;
1566 }
1567 
1568 /*
1569  * Name: qla_set_max_mtu
1570  * Function:
1571  *	Sets the maximum transfer unit size for the specified rcv context.
1572  */
1573 int
1574 qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
1575 {
1576 	qla_cdrp_t	cdrp;
1577 	device_t	dev;
1578 
1579 	dev = ha->pci_dev;
1580 
1581 	bzero(&cdrp, sizeof(qla_cdrp_t));
1582 
1583 	cdrp.cmd = Q8_CMD_SET_MTU;
1584 	cdrp.cmd_arg1 = (uint32_t)cntxt_id;
1585 	cdrp.cmd_arg2 = mtu;
1586 
1587 	if (qla_issue_cmd(ha, &cdrp)) {
1588 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1589 		return (-1);
1590 	} else {
1591 		ha->hw.max_mtu = cdrp.rsp_arg1;
1592 	}
1593 	return 0;
1594 }
1595 
1596 /*
1597  * Name: qla_get_max_lro
1598  * Function: Returns the maximum number of TCP Connection which can be supported
1599  *	with LRO.
1600  */
1601 static int
1602 qla_get_max_lro(qla_host_t *ha)
1603 {
1604 	qla_cdrp_t	cdrp;
1605 	device_t	dev;
1606 
1607 	dev = ha->pci_dev;
1608 
1609 	bzero(&cdrp, sizeof(qla_cdrp_t));
1610 
1611 	cdrp.cmd = Q8_CMD_RD_MAX_LRO;
1612 
1613 	if (qla_issue_cmd(ha, &cdrp)) {
1614 		device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
1615 		return (-1);
1616 	} else {
1617 		ha->hw.max_lro = cdrp.rsp_arg1;
1618 		QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
1619 			ha->hw.max_lro));
1620 	}
1621 	return 0;
1622 }
1623 
1624 /*
1625  * Name: qla_get_flow_control
1626  * Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
1627  *	PCI function.
1628  */
1629 static int
1630 qla_get_flow_control(qla_host_t *ha)
1631 {
1632 	qla_cdrp_t	cdrp;
1633 	device_t	dev;
1634 
1635 	dev = ha->pci_dev;
1636 
1637 	bzero(&cdrp, sizeof(qla_cdrp_t));
1638 
1639 	cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
1640 
1641 	if (qla_issue_cmd(ha, &cdrp)) {
1642 		device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
1643 			__func__);
1644 		return (-1);
1645 	} else {
1646 		QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
1647 			cdrp.rsp_arg1));
1648 	}
1649 	return 0;
1650 }
1651 
1652 /*
1653  * Name: qla_get_flow_control
1654  * Function: Retrieves hardware capabilities
1655  */
1656 void
1657 qla_get_hw_caps(qla_host_t *ha)
1658 {
1659 	//qla_read_mac_addr(ha);
1660 	qla_get_max_rds(ha);
1661 	qla_get_max_sds(ha);
1662 	qla_get_max_rules(ha);
1663 	qla_get_max_rcv_cntxts(ha);
1664 	qla_get_max_tx_cntxts(ha);
1665 	qla_get_max_mtu(ha);
1666 	qla_get_max_lro(ha);
1667 	qla_get_flow_control(ha);
1668 	return;
1669 }
1670 
1671 /*
1672  * Name: qla_hw_set_multi
1673  * Function: Sets the Multicast Addresses provided the host O.S into the
1674  *	hardware (for the given interface)
1675  */
1676 void
1677 qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
1678 	uint32_t add_multi)
1679 {
1680 	q80_rcv_cntxt_rsp_t	*rsp;
1681 	int i;
1682 
1683 	rsp = ha->hw.rx_cntxt_rsp;
1684 	for (i = 0; i < mcnt; i++) {
1685 		qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
1686 		mta += Q8_MAC_ADDR_LEN;
1687 	}
1688 	return;
1689 }
1690 
1691 /*
1692  * Name: qla_hw_tx_done_locked
1693  * Function: Handle Transmit Completions
1694  */
1695 static void
1696 qla_hw_tx_done_locked(qla_host_t *ha)
1697 {
1698 	qla_tx_buf_t *txb;
1699         qla_hw_t *hw = &ha->hw;
1700 	uint32_t comp_idx, comp_count = 0;
1701 
1702 	/* retrieve index of last entry in tx ring completed */
1703 	comp_idx = qla_le32_to_host(*(hw->tx_cons));
1704 
1705 	while (comp_idx != hw->txr_comp) {
1706 
1707 		txb = &ha->tx_buf[hw->txr_comp];
1708 
1709 		hw->txr_comp++;
1710 		if (hw->txr_comp == NUM_TX_DESCRIPTORS)
1711 			hw->txr_comp = 0;
1712 
1713 		comp_count++;
1714 
1715 		if (txb->m_head) {
1716 			bus_dmamap_sync(ha->tx_tag, txb->map,
1717 				BUS_DMASYNC_POSTWRITE);
1718 			bus_dmamap_unload(ha->tx_tag, txb->map);
1719 			bus_dmamap_destroy(ha->tx_tag, txb->map);
1720 			m_freem(txb->m_head);
1721 
1722 			txb->map = (bus_dmamap_t)0;
1723 			txb->m_head = NULL;
1724 		}
1725 	}
1726 
1727 	hw->txr_free += comp_count;
1728 
1729        	QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
1730 		hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
1731 
1732 	return;
1733 }
1734 
1735 /*
1736  * Name: qla_hw_tx_done
1737  * Function: Handle Transmit Completions
1738  */
1739 void
1740 qla_hw_tx_done(qla_host_t *ha)
1741 {
1742 	if (!mtx_trylock(&ha->tx_lock)) {
1743        		QL_DPRINT8((ha->pci_dev,
1744 			"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
1745 		return;
1746 	}
1747 	qla_hw_tx_done_locked(ha);
1748 
1749 	if (ha->hw.txr_free > free_pkt_thres)
1750 		ha->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1751 
1752 	mtx_unlock(&ha->tx_lock);
1753 	return;
1754 }
1755 
1756 void
1757 qla_update_link_state(qla_host_t *ha)
1758 {
1759 	uint32_t link_state;
1760 	uint32_t prev_link_state;
1761 
1762 	if (!(ha->ifp->if_drv_flags & IFF_DRV_RUNNING)) {
1763 		ha->hw.flags.link_up = 0;
1764 		return;
1765 	}
1766 	link_state = READ_REG32(ha, Q8_LINK_STATE);
1767 
1768 	prev_link_state =  ha->hw.flags.link_up;
1769 
1770 	if (ha->pci_func == 0)
1771 		ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
1772 	else
1773 		ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
1774 
1775 	if (prev_link_state !=  ha->hw.flags.link_up) {
1776 		if (ha->hw.flags.link_up) {
1777 			if_link_state_change(ha->ifp, LINK_STATE_UP);
1778 		} else {
1779 			if_link_state_change(ha->ifp, LINK_STATE_DOWN);
1780 		}
1781 	}
1782 }
1783 
1784 int
1785 qla_config_lro(qla_host_t *ha)
1786 {
1787 	int i;
1788         qla_hw_t *hw = &ha->hw;
1789 	struct lro_ctrl *lro;
1790 
1791 	for (i = 0; i < hw->num_sds_rings; i++) {
1792 		lro = &hw->sds[i].lro;
1793 		if (tcp_lro_init(lro)) {
1794 			device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1795 				__func__);
1796 			return (-1);
1797 		}
1798 		lro->ifp = ha->ifp;
1799 	}
1800 	ha->flags.lro_init = 1;
1801 
1802 	QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1803 	return (0);
1804 }
1805 
1806 void
1807 qla_free_lro(qla_host_t *ha)
1808 {
1809 	int i;
1810         qla_hw_t *hw = &ha->hw;
1811 	struct lro_ctrl *lro;
1812 
1813 	if (!ha->flags.lro_init)
1814 		return;
1815 
1816 	for (i = 0; i < hw->num_sds_rings; i++) {
1817 		lro = &hw->sds[i].lro;
1818 		tcp_lro_free(lro);
1819 	}
1820 	ha->flags.lro_init = 0;
1821 }
1822 
1823 void
1824 qla_hw_stop_rcv(qla_host_t *ha)
1825 {
1826 	int i, done, count = 100;
1827 
1828 	while (count--) {
1829 		done = 1;
1830 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1831 			if (ha->hw.sds[i].rcv_active)
1832 				done = 0;
1833 		}
1834 		if (done)
1835 			break;
1836 		else
1837 			qla_mdelay(__func__, 10);
1838 	}
1839 }
1840 
1841