xref: /freebsd/sys/dev/qlxgb/qla_hw.c (revision 0e8011faf58b743cc652e3b2ad0f7671227610df)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011-2012 Qlogic Corporation
5  * All rights reserved.
6  *
7  *  Redistribution and use in source and binary forms, with or without
8  *  modification, are permitted provided that the following conditions
9  *  are met:
10  *
11  *  1. Redistributions of source code must retain the above copyright
12  *     notice, this list of conditions and the following disclaimer.
13  *  2. Redistributions in binary form must reproduce the above copyright
14  *     notice, this list of conditions and the following disclaimer in the
15  *     documentation and/or other materials provided with the distribution.
16  *
17  *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  *  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  *  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  *  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  *  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  *  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  *  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  *  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  *  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  *  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  *  POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 /*
31  * File: qla_hw.c
32  * Author : David C Somayajulu, Qlogic Corporation, Aliso Viejo, CA 92656.
33  * Content: Contains Hardware dependent functions
34  */
35 
36 #include <sys/cdefs.h>
37 #include "qla_os.h"
38 #include "qla_reg.h"
39 #include "qla_hw.h"
40 #include "qla_def.h"
41 #include "qla_inline.h"
42 #include "qla_ver.h"
43 #include "qla_glbl.h"
44 #include "qla_dbg.h"
45 
46 static uint32_t sysctl_num_rds_rings = 2;
47 static uint32_t sysctl_num_sds_rings = 4;
48 
49 /*
50  * Static Functions
51  */
52 
53 static void qla_init_cntxt_regions(qla_host_t *ha);
54 static int qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp);
55 static int qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size);
56 static int qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr,
57 		uint16_t cntxt_id, uint32_t add_multi);
58 static void qla_del_rcv_cntxt(qla_host_t *ha);
59 static int qla_init_rcv_cntxt(qla_host_t *ha);
60 static void qla_del_xmt_cntxt(qla_host_t *ha);
61 static int qla_init_xmt_cntxt(qla_host_t *ha);
62 static int qla_get_max_rds(qla_host_t *ha);
63 static int qla_get_max_sds(qla_host_t *ha);
64 static int qla_get_max_rules(qla_host_t *ha);
65 static int qla_get_max_rcv_cntxts(qla_host_t *ha);
66 static int qla_get_max_tx_cntxts(qla_host_t *ha);
67 static int qla_get_max_mtu(qla_host_t *ha);
68 static int qla_get_max_lro(qla_host_t *ha);
69 static int qla_get_flow_control(qla_host_t *ha);
70 static void qla_hw_tx_done_locked(qla_host_t *ha);
71 
72 int
73 qla_get_msix_count(qla_host_t *ha)
74 {
75 	return (sysctl_num_sds_rings);
76 }
77 
78 /*
79  * Name: qla_hw_add_sysctls
80  * Function: Add P3Plus specific sysctls
81  */
82 void
83 qla_hw_add_sysctls(qla_host_t *ha)
84 {
85         device_t	dev;
86 
87         dev = ha->pci_dev;
88 
89         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
90                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
91                 OID_AUTO, "num_rds_rings", CTLFLAG_RD, &sysctl_num_rds_rings,
92 		sysctl_num_rds_rings, "Number of Rcv Descriptor Rings");
93 
94         SYSCTL_ADD_UINT(device_get_sysctl_ctx(dev),
95                 SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
96                 OID_AUTO, "num_sds_rings", CTLFLAG_RD, &sysctl_num_sds_rings,
97 		sysctl_num_sds_rings, "Number of Status Descriptor Rings");
98 }
99 
100 /*
101  * Name: qla_free_dma
102  * Function: Frees the DMA'able memory allocated in qla_alloc_dma()
103  */
104 void
105 qla_free_dma(qla_host_t *ha)
106 {
107 	uint32_t i;
108 
109         if (ha->hw.dma_buf.flags.context) {
110 		qla_free_dmabuf(ha, &ha->hw.dma_buf.context);
111         	ha->hw.dma_buf.flags.context = 0;
112 	}
113 
114         if (ha->hw.dma_buf.flags.sds_ring) {
115 		for (i = 0; i < ha->hw.num_sds_rings; i++)
116 			qla_free_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i]);
117         	ha->hw.dma_buf.flags.sds_ring = 0;
118 	}
119 
120         if (ha->hw.dma_buf.flags.rds_ring) {
121 		for (i = 0; i < ha->hw.num_rds_rings; i++)
122 			qla_free_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i]);
123         	ha->hw.dma_buf.flags.rds_ring = 0;
124 	}
125 
126         if (ha->hw.dma_buf.flags.tx_ring) {
127 		qla_free_dmabuf(ha, &ha->hw.dma_buf.tx_ring);
128         	ha->hw.dma_buf.flags.tx_ring = 0;
129 	}
130 }
131 
132 /*
133  * Name: qla_alloc_dma
134  * Function: Allocates DMA'able memory for Tx/Rx Rings, Tx/Rx Contexts.
135  */
136 int
137 qla_alloc_dma(qla_host_t *ha)
138 {
139         device_t                dev;
140 	uint32_t		i, j, size;
141 
142         dev = ha->pci_dev;
143 
144         QL_DPRINT2((dev, "%s: enter\n", __func__));
145 
146 	ha->hw.num_rds_rings = (uint16_t)sysctl_num_rds_rings;
147 	ha->hw.num_sds_rings = (uint16_t)sysctl_num_sds_rings;
148 
149 	/*
150 	 * Allocate Transmit Ring
151 	 */
152 
153 	ha->hw.dma_buf.tx_ring.alignment = 8;
154 	ha->hw.dma_buf.tx_ring.size =
155 		(sizeof(q80_tx_cmd_t)) * NUM_TX_DESCRIPTORS;
156 
157         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.tx_ring)) {
158                 device_printf(dev, "%s: tx ring alloc failed\n", __func__);
159                 goto qla_alloc_dma_exit;
160         }
161         ha->hw.dma_buf.flags.tx_ring = 1;
162 
163 	QL_DPRINT2((dev, "%s: tx_ring phys %p virt %p\n",
164 		__func__, (void *)(ha->hw.dma_buf.tx_ring.dma_addr),
165 		ha->hw.dma_buf.tx_ring.dma_b));
166 	/*
167 	 * Allocate Receive Descriptor Rings
168 	 */
169 
170 	for (i = 0; i < ha->hw.num_rds_rings; i++) {
171 		ha->hw.dma_buf.rds_ring[i].alignment = 8;
172 
173 		if (i == RDS_RING_INDEX_NORMAL) {
174 			ha->hw.dma_buf.rds_ring[i].size =
175 				(sizeof(q80_recv_desc_t)) * NUM_RX_DESCRIPTORS;
176 		} else if (i == RDS_RING_INDEX_JUMBO) {
177 			ha->hw.dma_buf.rds_ring[i].size =
178 				(sizeof(q80_recv_desc_t)) *
179 					NUM_RX_JUMBO_DESCRIPTORS;
180 		} else
181 			break;
182 
183 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.rds_ring[i])) {
184 			QL_DPRINT4((dev, "%s: rds ring alloc failed\n",
185 				__func__));
186 
187 			for (j = 0; j < i; j++)
188 				qla_free_dmabuf(ha,
189 					&ha->hw.dma_buf.rds_ring[j]);
190 
191 			goto qla_alloc_dma_exit;
192 		}
193 		QL_DPRINT4((dev, "%s: rx_ring[%d] phys %p virt %p\n",
194 			__func__, i,
195 			(void *)(ha->hw.dma_buf.rds_ring[i].dma_addr),
196 			ha->hw.dma_buf.rds_ring[i].dma_b));
197 	}
198 	ha->hw.dma_buf.flags.rds_ring = 1;
199 
200 	/*
201 	 * Allocate Status Descriptor Rings
202 	 */
203 
204 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
205 		ha->hw.dma_buf.sds_ring[i].alignment = 8;
206 		ha->hw.dma_buf.sds_ring[i].size =
207 			(sizeof(q80_stat_desc_t)) * NUM_STATUS_DESCRIPTORS;
208 
209 		if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.sds_ring[i])) {
210 			device_printf(dev, "%s: sds ring alloc failed\n",
211 				__func__);
212 
213 			for (j = 0; j < i; j++)
214 				qla_free_dmabuf(ha,
215 					&ha->hw.dma_buf.sds_ring[j]);
216 
217 			goto qla_alloc_dma_exit;
218 		}
219 		QL_DPRINT4((dev, "%s: sds_ring[%d] phys %p virt %p\n",
220 			__func__, i,
221 			(void *)(ha->hw.dma_buf.sds_ring[i].dma_addr),
222 			ha->hw.dma_buf.sds_ring[i].dma_b));
223 	}
224 	ha->hw.dma_buf.flags.sds_ring = 1;
225 
226 	/*
227 	 * Allocate Context Area
228 	 */
229 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
230 
231 	size += QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
232 
233 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
234 
235 	size += QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
236 
237 	size += sizeof (uint32_t); /* for tx consumer index */
238 
239 	size = QL_ALIGN(size, PAGE_SIZE);
240 
241 	ha->hw.dma_buf.context.alignment = 8;
242 	ha->hw.dma_buf.context.size = size;
243 
244         if (qla_alloc_dmabuf(ha, &ha->hw.dma_buf.context)) {
245                 device_printf(dev, "%s: context alloc failed\n", __func__);
246                 goto qla_alloc_dma_exit;
247         }
248         ha->hw.dma_buf.flags.context = 1;
249 	QL_DPRINT2((dev, "%s: context phys %p virt %p\n",
250 		__func__, (void *)(ha->hw.dma_buf.context.dma_addr),
251 		ha->hw.dma_buf.context.dma_b));
252 
253 	qla_init_cntxt_regions(ha);
254 
255 	return 0;
256 
257 qla_alloc_dma_exit:
258 	qla_free_dma(ha);
259 	return -1;
260 }
261 
262 /*
263  * Name: qla_init_cntxt_regions
264  * Function: Initializes Tx/Rx Contexts.
265  */
266 static void
267 qla_init_cntxt_regions(qla_host_t *ha)
268 {
269 	qla_hw_t		*hw;
270 	q80_tx_cntxt_req_t	*tx_cntxt_req;
271 	q80_rcv_cntxt_req_t	*rx_cntxt_req;
272 	bus_addr_t		phys_addr;
273 	uint32_t		i;
274 	uint32_t		size;
275 
276 	hw = &ha->hw;
277 
278 	hw->tx_ring_base = hw->dma_buf.tx_ring.dma_b;
279 
280 	for (i = 0; i < ha->hw.num_sds_rings; i++)
281 		hw->sds[i].sds_ring_base =
282 			(q80_stat_desc_t *)hw->dma_buf.sds_ring[i].dma_b;
283 
284 	phys_addr = hw->dma_buf.context.dma_addr;
285 
286 	memset((void *)hw->dma_buf.context.dma_b, 0,
287 		ha->hw.dma_buf.context.size);
288 
289 	hw->tx_cntxt_req	=
290 		(q80_tx_cntxt_req_t *)hw->dma_buf.context.dma_b;
291 	hw->tx_cntxt_req_paddr	= phys_addr;
292 
293 	size = QL_ALIGN((sizeof (q80_tx_cntxt_req_t)), QL_BUFFER_ALIGN);
294 
295 	hw->tx_cntxt_rsp	=
296 		(q80_tx_cntxt_rsp_t *)((uint8_t *)hw->tx_cntxt_req + size);
297 	hw->tx_cntxt_rsp_paddr	= hw->tx_cntxt_req_paddr + size;
298 
299 	size = QL_ALIGN((sizeof (q80_tx_cntxt_rsp_t)), QL_BUFFER_ALIGN);
300 
301 	hw->rx_cntxt_req =
302 		(q80_rcv_cntxt_req_t *)((uint8_t *)hw->tx_cntxt_rsp + size);
303 	hw->rx_cntxt_req_paddr = hw->tx_cntxt_rsp_paddr + size;
304 
305 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_req_t)), QL_BUFFER_ALIGN);
306 
307 	hw->rx_cntxt_rsp =
308 		(q80_rcv_cntxt_rsp_t *)((uint8_t *)hw->rx_cntxt_req + size);
309 	hw->rx_cntxt_rsp_paddr = hw->rx_cntxt_req_paddr + size;
310 
311 	size = QL_ALIGN((sizeof (q80_rcv_cntxt_rsp_t)), QL_BUFFER_ALIGN);
312 
313 	hw->tx_cons = (uint32_t *)((uint8_t *)hw->rx_cntxt_rsp + size);
314 	hw->tx_cons_paddr = hw->rx_cntxt_rsp_paddr + size;
315 
316 	/*
317 	 * Initialize the Transmit Context Request so that we don't need to
318 	 * do it every time we need to create a context
319 	 */
320 	tx_cntxt_req = hw->tx_cntxt_req;
321 
322 	tx_cntxt_req->rsp_dma_addr = qla_host_to_le64(hw->tx_cntxt_rsp_paddr);
323 
324 	tx_cntxt_req->cmd_cons_dma_addr = qla_host_to_le64(hw->tx_cons_paddr);
325 
326 	tx_cntxt_req->caps[0] = qla_host_to_le32((CNTXT_CAP0_BASEFW |
327 					CNTXT_CAP0_LEGACY_MN | CNTXT_CAP0_LSO));
328 
329 	tx_cntxt_req->intr_mode = qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
330 
331 	tx_cntxt_req->phys_addr =
332 		qla_host_to_le64(hw->dma_buf.tx_ring.dma_addr);
333 
334 	tx_cntxt_req->num_entries = qla_host_to_le32(NUM_TX_DESCRIPTORS);
335 
336 	/*
337 	 * Initialize the Receive Context Request
338 	 */
339 
340 	rx_cntxt_req = hw->rx_cntxt_req;
341 
342 	rx_cntxt_req->rx_req.rsp_dma_addr =
343 		qla_host_to_le64(hw->rx_cntxt_rsp_paddr);
344 
345 	rx_cntxt_req->rx_req.caps[0] = qla_host_to_le32(CNTXT_CAP0_BASEFW |
346 						CNTXT_CAP0_LEGACY_MN |
347 						CNTXT_CAP0_JUMBO |
348 						CNTXT_CAP0_LRO|
349 						CNTXT_CAP0_HW_LRO);
350 
351 	rx_cntxt_req->rx_req.intr_mode =
352 		qla_host_to_le32(CNTXT_INTR_MODE_SHARED);
353 
354 	rx_cntxt_req->rx_req.rds_intr_mode =
355 		qla_host_to_le32(CNTXT_INTR_MODE_UNIQUE);
356 
357 	rx_cntxt_req->rx_req.rds_ring_offset = 0;
358 	rx_cntxt_req->rx_req.sds_ring_offset = qla_host_to_le32(
359 		(hw->num_rds_rings * sizeof(q80_rq_rds_ring_t)));
360 	rx_cntxt_req->rx_req.num_rds_rings =
361 		qla_host_to_le16(hw->num_rds_rings);
362 	rx_cntxt_req->rx_req.num_sds_rings =
363 		qla_host_to_le16(hw->num_sds_rings);
364 
365 	for (i = 0; i < hw->num_rds_rings; i++) {
366 		rx_cntxt_req->rds_req[i].phys_addr =
367 			qla_host_to_le64(hw->dma_buf.rds_ring[i].dma_addr);
368 
369 		if (i == RDS_RING_INDEX_NORMAL) {
370 			rx_cntxt_req->rds_req[i].buf_size =
371 				qla_host_to_le64(MCLBYTES);
372 			rx_cntxt_req->rds_req[i].size =
373 				qla_host_to_le32(NUM_RX_DESCRIPTORS);
374 		} else {
375 			rx_cntxt_req->rds_req[i].buf_size =
376 				qla_host_to_le64(MJUM9BYTES);
377 			rx_cntxt_req->rds_req[i].size =
378 				qla_host_to_le32(NUM_RX_JUMBO_DESCRIPTORS);
379 		}
380 	}
381 
382 	for (i = 0; i < hw->num_sds_rings; i++) {
383 		rx_cntxt_req->sds_req[i].phys_addr =
384 			qla_host_to_le64(hw->dma_buf.sds_ring[i].dma_addr);
385 		rx_cntxt_req->sds_req[i].size =
386 			qla_host_to_le32(NUM_STATUS_DESCRIPTORS);
387 		rx_cntxt_req->sds_req[i].msi_index = qla_host_to_le16(i);
388 	}
389 
390 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_req = %p paddr %p\n",
391 		__func__, hw->tx_cntxt_req, (void *)hw->tx_cntxt_req_paddr));
392 	QL_DPRINT2((ha->pci_dev, "%s: tx_cntxt_rsp = %p paddr %p\n",
393 		__func__, hw->tx_cntxt_rsp, (void *)hw->tx_cntxt_rsp_paddr));
394 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_req = %p paddr %p\n",
395 		__func__, hw->rx_cntxt_req, (void *)hw->rx_cntxt_req_paddr));
396 	QL_DPRINT2((ha->pci_dev, "%s: rx_cntxt_rsp = %p paddr %p\n",
397 		__func__, hw->rx_cntxt_rsp, (void *)hw->rx_cntxt_rsp_paddr));
398 	QL_DPRINT2((ha->pci_dev, "%s: tx_cons      = %p paddr %p\n",
399 		__func__, hw->tx_cons, (void *)hw->tx_cons_paddr));
400 }
401 
402 /*
403  * Name: qla_issue_cmd
404  * Function: Issues commands on the CDRP interface and returns responses.
405  */
406 static int
407 qla_issue_cmd(qla_host_t *ha, qla_cdrp_t *cdrp)
408 {
409 	int	ret = 0;
410 	uint32_t signature;
411 	uint32_t count = 400; /* 4 seconds or 400 10ms intervals */
412 	uint32_t data;
413 	device_t dev;
414 
415 	dev = ha->pci_dev;
416 
417 	signature = 0xcafe0000 | 0x0100 | ha->pci_func;
418 
419 	ret = qla_sem_lock(ha, Q8_SEM5_LOCK, 0, (uint32_t)ha->pci_func);
420 
421 	if (ret) {
422 		device_printf(dev, "%s: SEM5_LOCK lock failed\n", __func__);
423 		return (ret);
424 	}
425 
426 	WRITE_OFFSET32(ha, Q8_NX_CDRP_SIGNATURE, signature);
427 
428 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG1, (cdrp->cmd_arg1));
429 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG2, (cdrp->cmd_arg2));
430 	WRITE_OFFSET32(ha, Q8_NX_CDRP_ARG3, (cdrp->cmd_arg3));
431 
432 	WRITE_OFFSET32(ha, Q8_NX_CDRP_CMD_RSP, cdrp->cmd);
433 
434 	while (count) {
435 		qla_mdelay(__func__, 10);
436 
437 		data = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
438 
439 		if ((!(data & 0x80000000)))
440 			break;
441 		count--;
442 	}
443 	if ((!count) || (data != 1))
444 		ret = -1;
445 
446 	cdrp->rsp = READ_REG32(ha, Q8_NX_CDRP_CMD_RSP);
447 	cdrp->rsp_arg1 = READ_REG32(ha, Q8_NX_CDRP_ARG1);
448 	cdrp->rsp_arg2 = READ_REG32(ha, Q8_NX_CDRP_ARG2);
449 	cdrp->rsp_arg3 = READ_REG32(ha, Q8_NX_CDRP_ARG3);
450 
451 	qla_sem_unlock(ha, Q8_SEM5_UNLOCK);
452 
453 	if (ret) {
454 		device_printf(dev, "%s: "
455 			"cmd[0x%08x] = 0x%08x\n"
456 			"\tsig[0x%08x] = 0x%08x\n"
457 			"\targ1[0x%08x] = 0x%08x\n"
458 			"\targ2[0x%08x] = 0x%08x\n"
459 			"\targ3[0x%08x] = 0x%08x\n",
460 			__func__, Q8_NX_CDRP_CMD_RSP, cdrp->cmd,
461 			Q8_NX_CDRP_SIGNATURE, signature,
462 			Q8_NX_CDRP_ARG1, cdrp->cmd_arg1,
463 			Q8_NX_CDRP_ARG2, cdrp->cmd_arg2,
464 			Q8_NX_CDRP_ARG3, cdrp->cmd_arg3);
465 
466 		device_printf(dev, "%s: exit (ret = 0x%x)\n"
467 			"\t\t rsp = 0x%08x\n"
468 			"\t\t arg1 = 0x%08x\n"
469 			"\t\t arg2 = 0x%08x\n"
470 			"\t\t arg3 = 0x%08x\n",
471 			__func__, ret, cdrp->rsp,
472 			cdrp->rsp_arg1, cdrp->rsp_arg2, cdrp->rsp_arg3);
473 	}
474 
475 	return (ret);
476 }
477 
478 #define QLA_TX_MIN_FREE	2
479 
480 /*
481  * Name: qla_fw_cmd
482  * Function: Issues firmware control commands on the Tx Ring.
483  */
484 static int
485 qla_fw_cmd(qla_host_t *ha, void *fw_cmd, uint32_t size)
486 {
487 	device_t dev;
488         q80_tx_cmd_t *tx_cmd;
489         qla_hw_t *hw = &ha->hw;
490 	int count = 100;
491 
492 	dev = ha->pci_dev;
493 
494 	QLA_TX_LOCK(ha);
495 
496         if (hw->txr_free <= QLA_TX_MIN_FREE) {
497 		while (count--) {
498 			qla_hw_tx_done_locked(ha);
499 			if (hw->txr_free > QLA_TX_MIN_FREE)
500 				break;
501 
502 			QLA_TX_UNLOCK(ha);
503 			qla_mdelay(__func__, 10);
504 			QLA_TX_LOCK(ha);
505 		}
506         	if (hw->txr_free <= QLA_TX_MIN_FREE) {
507 			QLA_TX_UNLOCK(ha);
508 			device_printf(dev, "%s: xmit queue full\n", __func__);
509                 	return (-1);
510 		}
511         }
512         tx_cmd = &hw->tx_ring_base[hw->txr_next];
513 
514         bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
515 
516 	bcopy(fw_cmd, tx_cmd, size);
517 
518 	hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
519 	hw->txr_free--;
520 
521 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
522 
523 	QLA_TX_UNLOCK(ha);
524 
525 	return (0);
526 }
527 
528 /*
529  * Name: qla_config_rss
530  * Function: Configure RSS for the context/interface.
531  */
532 const uint64_t rss_key[] = { 0xbeac01fa6a42b73bULL, 0x8030f20c77cb2da3ULL,
533 			0xae7b30b4d0ca2bcbULL, 0x43a38fb04167253dULL,
534 			0x255b0ec26d5a56daULL };
535 
536 static int
537 qla_config_rss(qla_host_t *ha, uint16_t cntxt_id)
538 {
539 	qla_fw_cds_config_rss_t rss_config;
540 	int ret, i;
541 
542 	bzero(&rss_config, sizeof(qla_fw_cds_config_rss_t));
543 
544 	rss_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
545 	rss_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_RSS;
546 	rss_config.hdr.cntxt_id = cntxt_id;
547 
548 	rss_config.hash_type = (Q8_FWCD_RSS_HASH_TYPE_IPV4_TCP_IP |
549 					Q8_FWCD_RSS_HASH_TYPE_IPV6_TCP_IP);
550 	rss_config.flags = Q8_FWCD_RSS_FLAGS_ENABLE_RSS;
551 
552 	rss_config.ind_tbl_mask = 0x7;
553 
554 	for (i = 0; i < 5; i++)
555 		rss_config.rss_key[i] = rss_key[i];
556 
557 	ret = qla_fw_cmd(ha, &rss_config, sizeof(qla_fw_cds_config_rss_t));
558 
559 	return ret;
560 }
561 
562 /*
563  * Name: qla_config_intr_coalesce
564  * Function: Configure Interrupt Coalescing.
565  */
566 static int
567 qla_config_intr_coalesce(qla_host_t *ha, uint16_t cntxt_id, int tenable)
568 {
569 	qla_fw_cds_config_intr_coalesc_t intr_coalesce;
570 	int ret;
571 
572 	bzero(&intr_coalesce, sizeof(qla_fw_cds_config_intr_coalesc_t));
573 
574 	intr_coalesce.hdr.cmd = Q8_FWCD_CNTRL_REQ;
575 	intr_coalesce.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_INTR_COALESCING;
576 	intr_coalesce.hdr.cntxt_id = cntxt_id;
577 
578 	intr_coalesce.flags = 0x04;
579 	intr_coalesce.max_rcv_pkts = 256;
580 	intr_coalesce.max_rcv_usecs = 3;
581 	intr_coalesce.max_snd_pkts = 64;
582 	intr_coalesce.max_snd_usecs = 4;
583 
584 	if (tenable) {
585 		intr_coalesce.usecs_to = 1000; /* 1 millisecond */
586 		intr_coalesce.timer_type = Q8_FWCMD_INTR_COALESC_TIMER_PERIODIC;
587 		intr_coalesce.sds_ring_bitmask =
588 			Q8_FWCMD_INTR_COALESC_SDS_RING_0;
589 	}
590 
591 	ret = qla_fw_cmd(ha, &intr_coalesce,
592 			sizeof(qla_fw_cds_config_intr_coalesc_t));
593 
594 	return ret;
595 }
596 
597 /*
598  * Name: qla_config_mac_addr
599  * Function: binds a MAC address to the context/interface.
600  *	Can be unicast, multicast or broadcast.
601  */
602 static int
603 qla_config_mac_addr(qla_host_t *ha, uint8_t *mac_addr, uint16_t cntxt_id,
604 	uint32_t add_multi)
605 {
606 	qla_fw_cds_config_mac_addr_t mac_config;
607 	int ret;
608 
609 //	device_printf(ha->pci_dev,
610 //		"%s: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n", __func__,
611 //		mac_addr[0], mac_addr[1], mac_addr[2],
612 //		mac_addr[3], mac_addr[4], mac_addr[5]);
613 
614 	bzero(&mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
615 
616 	mac_config.hdr.cmd = Q8_FWCD_CNTRL_REQ;
617 	mac_config.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_ADDR;
618 	mac_config.hdr.cntxt_id = cntxt_id;
619 
620 	if (add_multi)
621 		mac_config.cmd = Q8_FWCD_ADD_MAC_ADDR;
622 	else
623 		mac_config.cmd = Q8_FWCD_DEL_MAC_ADDR;
624 	bcopy(mac_addr, mac_config.mac_addr,6);
625 
626 	ret = qla_fw_cmd(ha, &mac_config, sizeof(qla_fw_cds_config_mac_addr_t));
627 
628 	return ret;
629 }
630 
631 /*
632  * Name: qla_set_mac_rcv_mode
633  * Function: Enable/Disable AllMulticast and Promiscuous Modes.
634  */
635 static int
636 qla_set_mac_rcv_mode(qla_host_t *ha, uint16_t cntxt_id, uint32_t mode)
637 {
638 	qla_set_mac_rcv_mode_t rcv_mode;
639 	int ret;
640 
641 	bzero(&rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
642 
643 	rcv_mode.hdr.cmd = Q8_FWCD_CNTRL_REQ;
644 	rcv_mode.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_MAC_RCV_MODE;
645 	rcv_mode.hdr.cntxt_id = cntxt_id;
646 
647 	rcv_mode.mode = mode;
648 
649 	ret = qla_fw_cmd(ha, &rcv_mode, sizeof(qla_set_mac_rcv_mode_t));
650 
651 	return ret;
652 }
653 
654 void
655 qla_set_promisc(qla_host_t *ha)
656 {
657 	(void)qla_set_mac_rcv_mode(ha,
658 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
659 		Q8_MAC_RCV_ENABLE_PROMISCUOUS);
660 }
661 
662 void
663 qla_set_allmulti(qla_host_t *ha)
664 {
665 	(void)qla_set_mac_rcv_mode(ha,
666 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
667 		Q8_MAC_RCV_ENABLE_ALLMULTI);
668 }
669 
670 void
671 qla_reset_promisc_allmulti(qla_host_t *ha)
672 {
673 	(void)qla_set_mac_rcv_mode(ha,
674 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id,
675 		Q8_MAC_RCV_RESET_PROMISC_ALLMULTI);
676 }
677 
678 /*
679  * Name: qla_config_ipv4_addr
680  * Function: Configures the Destination IP Addr for LRO.
681  */
682 void
683 qla_config_ipv4_addr(qla_host_t *ha, uint32_t ipv4_addr)
684 {
685 	qla_config_ipv4_t ip_conf;
686 
687 	bzero(&ip_conf, sizeof(qla_config_ipv4_t));
688 
689 	ip_conf.hdr.cmd = Q8_FWCD_CNTRL_REQ;
690 	ip_conf.hdr.opcode = Q8_FWCD_OPCODE_CONFIG_IPADDR;
691 	ip_conf.hdr.cntxt_id = (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
692 
693 	ip_conf.cmd = (uint64_t)Q8_CONFIG_CMD_IP_ENABLE;
694 	ip_conf.ipv4_addr = (uint64_t)ipv4_addr;
695 
696 	(void)qla_fw_cmd(ha, &ip_conf, sizeof(qla_config_ipv4_t));
697 
698 	return;
699 }
700 
701 /*
702  * Name: qla_tx_tso
703  * Function: Checks if the packet to be transmitted is a candidate for
704  *	Large TCP Segment Offload. If yes, the appropriate fields in the Tx
705  *	Ring Structure are plugged in.
706  */
707 static int
708 qla_tx_tso(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd, uint8_t *hdr)
709 {
710 	struct ether_vlan_header *eh;
711 	struct ip *ip = NULL;
712 	struct tcphdr *th = NULL;
713 	uint32_t ehdrlen,  hdrlen = 0, ip_hlen, tcp_hlen, tcp_opt_off;
714 	uint16_t etype, opcode, offload = 1;
715 	uint8_t *tcp_opt;
716 	device_t dev;
717 
718 	dev = ha->pci_dev;
719 
720 	eh = mtod(mp, struct ether_vlan_header *);
721 
722 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
723 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
724 		etype = ntohs(eh->evl_proto);
725 	} else {
726 		ehdrlen = ETHER_HDR_LEN;
727 		etype = ntohs(eh->evl_encap_proto);
728 	}
729 
730 	switch (etype) {
731 		case ETHERTYPE_IP:
732 
733 			tcp_opt_off = ehdrlen + sizeof(struct ip) +
734 					sizeof(struct tcphdr);
735 
736 			if (mp->m_len < tcp_opt_off) {
737 				m_copydata(mp, 0, tcp_opt_off, hdr);
738 				ip = (struct ip *)hdr;
739 			} else {
740 				ip = (struct ip *)(mp->m_data + ehdrlen);
741 			}
742 
743 			ip_hlen = ip->ip_hl << 2;
744 			opcode = Q8_TX_CMD_OP_XMT_TCP_LSO;
745 
746 			if ((ip->ip_p != IPPROTO_TCP) ||
747 				(ip_hlen != sizeof (struct ip))) {
748 				offload = 0;
749 			} else {
750 				th = (struct tcphdr *)((caddr_t)ip + ip_hlen);
751 			}
752 		break;
753 
754 		default:
755 			QL_DPRINT8((dev, "%s: type!=ip\n", __func__));
756 			offload = 0;
757 		break;
758 	}
759 
760 	if (!offload)
761 		return (-1);
762 
763 	tcp_hlen = th->th_off << 2;
764 
765 	hdrlen = ehdrlen + ip_hlen + tcp_hlen;
766 
767 	if (mp->m_len < hdrlen) {
768 		if (mp->m_len < tcp_opt_off) {
769 			if (tcp_hlen > sizeof(struct tcphdr)) {
770 				m_copydata(mp, tcp_opt_off,
771 					(tcp_hlen - sizeof(struct tcphdr)),
772 					&hdr[tcp_opt_off]);
773 			}
774 		} else {
775 			m_copydata(mp, 0, hdrlen, hdr);
776 		}
777 	}
778 
779 	if ((mp->m_pkthdr.csum_flags & CSUM_TSO) == 0) {
780 		/* If TCP options are preset only time stamp option is supported */
781 		if ((tcp_hlen - sizeof(struct tcphdr)) != 10)
782 			return -1;
783 		else {
784 			if (mp->m_len < hdrlen) {
785 				tcp_opt = &hdr[tcp_opt_off];
786 			} else {
787 				tcp_opt = (uint8_t *)(mp->m_data + tcp_opt_off);
788 			}
789 
790 			if ((*tcp_opt != 0x01) || (*(tcp_opt + 1) != 0x01) ||
791 				(*(tcp_opt + 2) != 0x08) ||
792 				(*(tcp_opt + 3) != 10)) {
793 				return -1;
794 			}
795 		}
796 
797 		tx_cmd->mss = ha->max_frame_size - ETHER_CRC_LEN - hdrlen;
798 	} else {
799 		tx_cmd->mss = mp->m_pkthdr.tso_segsz;
800 	}
801 
802 	tx_cmd->flags_opcode = opcode ;
803 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
804 	tx_cmd->ip_hdr_off = ehdrlen;
805 	tx_cmd->mss = mp->m_pkthdr.tso_segsz;
806 	tx_cmd->total_hdr_len = hdrlen;
807 
808 	/* Check for Multicast least significant bit of MSB == 1 */
809 	if (eh->evl_dhost[0] & 0x01) {
810 		tx_cmd->flags_opcode = Q8_TX_CMD_FLAGS_MULTICAST;
811 	}
812 
813 	if (mp->m_len < hdrlen) {
814 		return (1);
815 	}
816 
817 	return (0);
818 }
819 
820 /*
821  * Name: qla_tx_chksum
822  * Function: Checks if the packet to be transmitted is a candidate for
823  *	TCP/UDP Checksum offload. If yes, the appropriate fields in the Tx
824  *	Ring Structure are plugged in.
825  */
826 static int
827 qla_tx_chksum(qla_host_t *ha, struct mbuf *mp, q80_tx_cmd_t *tx_cmd)
828 {
829 	struct ether_vlan_header *eh;
830 	struct ip *ip;
831 	struct ip6_hdr *ip6;
832 	uint32_t ehdrlen, ip_hlen;
833 	uint16_t etype, opcode, offload = 1;
834 	device_t dev;
835 
836 	dev = ha->pci_dev;
837 
838 	if ((mp->m_pkthdr.csum_flags & (CSUM_TCP|CSUM_UDP)) == 0)
839 		return (-1);
840 
841 	eh = mtod(mp, struct ether_vlan_header *);
842 
843 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN)) {
844 		ehdrlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
845 		etype = ntohs(eh->evl_proto);
846 	} else {
847 		ehdrlen = ETHER_HDR_LEN;
848 		etype = ntohs(eh->evl_encap_proto);
849 	}
850 
851 
852 	switch (etype) {
853 		case ETHERTYPE_IP:
854 			ip = (struct ip *)(mp->m_data + ehdrlen);
855 
856 			ip_hlen = sizeof (struct ip);
857 
858 			if (mp->m_len < (ehdrlen + ip_hlen)) {
859 				device_printf(dev, "%s: ipv4 mlen\n", __func__);
860 				offload = 0;
861 				break;
862 			}
863 
864 			if (ip->ip_p == IPPROTO_TCP)
865 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM;
866 			else if (ip->ip_p == IPPROTO_UDP)
867 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM;
868 			else {
869 				device_printf(dev, "%s: ipv4\n", __func__);
870 				offload = 0;
871 			}
872 		break;
873 
874 		case ETHERTYPE_IPV6:
875 			ip6 = (struct ip6_hdr *)(mp->m_data + ehdrlen);
876 
877 			ip_hlen = sizeof(struct ip6_hdr);
878 
879 			if (mp->m_len < (ehdrlen + ip_hlen)) {
880 				device_printf(dev, "%s: ipv6 mlen\n", __func__);
881 				offload = 0;
882 				break;
883 			}
884 
885 			if (ip6->ip6_nxt == IPPROTO_TCP)
886 				opcode = Q8_TX_CMD_OP_XMT_TCP_CHKSUM_IPV6;
887 			else if (ip6->ip6_nxt == IPPROTO_UDP)
888 				opcode = Q8_TX_CMD_OP_XMT_UDP_CHKSUM_IPV6;
889 			else {
890 				device_printf(dev, "%s: ipv6\n", __func__);
891 				offload = 0;
892 			}
893 		break;
894 
895 		default:
896 			offload = 0;
897 		break;
898 	}
899 	if (!offload)
900 		return (-1);
901 
902 	tx_cmd->flags_opcode = opcode;
903 
904 	tx_cmd->tcp_hdr_off = ip_hlen + ehdrlen;
905 
906 	return (0);
907 }
908 
909 /*
910  * Name: qla_hw_send
911  * Function: Transmits a packet. It first checks if the packet is a
912  *	candidate for Large TCP Segment Offload and then for UDP/TCP checksum
913  *	offload. If either of these creteria are not met, it is transmitted
914  *	as a regular ethernet frame.
915  */
916 int
917 qla_hw_send(qla_host_t *ha, bus_dma_segment_t *segs, int nsegs,
918 	uint32_t *tx_idx,  struct mbuf *mp)
919 {
920 	struct ether_vlan_header *eh;
921 	qla_hw_t *hw = &ha->hw;
922 	q80_tx_cmd_t *tx_cmd, tso_cmd;
923 	bus_dma_segment_t *c_seg;
924 	uint32_t num_tx_cmds, hdr_len = 0;
925 	uint32_t total_length = 0, bytes, tx_cmd_count = 0;
926 	device_t dev;
927 	int i, ret;
928 	uint8_t *src = NULL, *dst = NULL;
929 
930 	dev = ha->pci_dev;
931 
932 	/*
933 	 * Always make sure there is atleast one empty slot in the tx_ring
934 	 * tx_ring is considered full when there only one entry available
935 	 */
936         num_tx_cmds = (nsegs + (Q8_TX_CMD_MAX_SEGMENTS - 1)) >> 2;
937 
938 	total_length = mp->m_pkthdr.len;
939 	if (total_length > QLA_MAX_TSO_FRAME_SIZE) {
940 		device_printf(dev, "%s: total length exceeds maxlen(%d)\n",
941 			__func__, total_length);
942 		return (-1);
943 	}
944 	eh = mtod(mp, struct ether_vlan_header *);
945 
946 	if ((mp->m_pkthdr.len > ha->max_frame_size)||(nsegs > Q8_TX_MAX_SEGMENTS)) {
947 		bzero((void *)&tso_cmd, sizeof(q80_tx_cmd_t));
948 
949 		src = ha->hw.frame_hdr;
950 		ret = qla_tx_tso(ha, mp, &tso_cmd, src);
951 
952 		if (!(ret & ~1)) {
953 			/* find the additional tx_cmd descriptors required */
954 
955 			hdr_len = tso_cmd.total_hdr_len;
956 
957 			bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
958 			bytes = QL_MIN(bytes, hdr_len);
959 
960 			num_tx_cmds++;
961 			hdr_len -= bytes;
962 
963 			while (hdr_len) {
964 				bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
965 				hdr_len -= bytes;
966 				num_tx_cmds++;
967 			}
968 			hdr_len = tso_cmd.total_hdr_len;
969 
970 			if (ret == 0)
971 				src = (uint8_t *)eh;
972 		}
973 	}
974 
975 	if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
976 		qla_hw_tx_done_locked(ha);
977 		if (hw->txr_free <= (num_tx_cmds + QLA_TX_MIN_FREE)) {
978         		QL_DPRINT8((dev, "%s: (hw->txr_free <= "
979 				"(num_tx_cmds + QLA_TX_MIN_FREE))\n",
980 				__func__));
981 			return (-1);
982 		}
983 	}
984 
985 	*tx_idx = hw->txr_next;
986 
987         tx_cmd = &hw->tx_ring_base[hw->txr_next];
988 
989 	if (hdr_len == 0) {
990 		if ((nsegs > Q8_TX_MAX_SEGMENTS) ||
991 			(mp->m_pkthdr.len > ha->max_frame_size)){
992         		device_printf(dev,
993 				"%s: (nsegs[%d, %d, 0x%b] > Q8_TX_MAX_SEGMENTS)\n",
994 				__func__, nsegs, mp->m_pkthdr.len,
995 				(int)mp->m_pkthdr.csum_flags, CSUM_BITS);
996 			qla_dump_buf8(ha, "qla_hw_send: wrong pkt",
997 				mtod(mp, char *), mp->m_len);
998 			return (EINVAL);
999 		}
1000 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1001 		if (qla_tx_chksum(ha, mp, tx_cmd) != 0)
1002         		tx_cmd->flags_opcode = Q8_TX_CMD_OP_XMT_ETHER;
1003 	} else {
1004 		bcopy(&tso_cmd, tx_cmd, sizeof(q80_tx_cmd_t));
1005 	}
1006 
1007 	if (eh->evl_encap_proto == htons(ETHERTYPE_VLAN))
1008         	tx_cmd->flags_opcode |= Q8_TX_CMD_FLAGS_VLAN_TAGGED;
1009 	else if (mp->m_flags & M_VLANTAG) {
1010         	tx_cmd->flags_opcode |= (Q8_TX_CMD_FLAGS_VLAN_TAGGED |
1011 						Q8_TX_CMD_FLAGS_HW_VLAN_ID);
1012 		tx_cmd->vlan_tci = mp->m_pkthdr.ether_vtag;
1013 	}
1014 
1015         tx_cmd->n_bufs = (uint8_t)nsegs;
1016         tx_cmd->data_len_lo = (uint8_t)(total_length & 0xFF);
1017         tx_cmd->data_len_hi = qla_host_to_le16(((uint16_t)(total_length >> 8)));
1018 	tx_cmd->port_cntxtid = Q8_TX_CMD_PORT_CNXTID(ha->pci_func);
1019 
1020 	c_seg = segs;
1021 
1022 	while (1) {
1023 		for (i = 0; ((i < Q8_TX_CMD_MAX_SEGMENTS) && nsegs); i++) {
1024 			switch (i) {
1025 			case 0:
1026 				tx_cmd->buf1_addr = c_seg->ds_addr;
1027 				tx_cmd->buf1_len = c_seg->ds_len;
1028 				break;
1029 
1030 			case 1:
1031 				tx_cmd->buf2_addr = c_seg->ds_addr;
1032 				tx_cmd->buf2_len = c_seg->ds_len;
1033 				break;
1034 
1035 			case 2:
1036 				tx_cmd->buf3_addr = c_seg->ds_addr;
1037 				tx_cmd->buf3_len = c_seg->ds_len;
1038 				break;
1039 
1040 			case 3:
1041 				tx_cmd->buf4_addr = c_seg->ds_addr;
1042 				tx_cmd->buf4_len = c_seg->ds_len;
1043 				break;
1044 			}
1045 
1046 			c_seg++;
1047 			nsegs--;
1048 		}
1049 
1050 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1051 		tx_cmd_count++;
1052 
1053 		if (!nsegs)
1054 			break;
1055 
1056         	tx_cmd = &hw->tx_ring_base[hw->txr_next];
1057 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1058 	}
1059 
1060 	if (hdr_len) {
1061 		/* TSO : Copy the header in the following tx cmd descriptors */
1062 
1063 		tx_cmd = &hw->tx_ring_base[hw->txr_next];
1064 		bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1065 
1066 		bytes = sizeof(q80_tx_cmd_t) - Q8_TX_CMD_TSO_ALIGN;
1067 		bytes = QL_MIN(bytes, hdr_len);
1068 
1069 		dst = (uint8_t *)tx_cmd + Q8_TX_CMD_TSO_ALIGN;
1070 
1071 		if (mp->m_flags & M_VLANTAG) {
1072 			/* first copy the src/dst MAC addresses */
1073 			bcopy(src, dst, (ETHER_ADDR_LEN * 2));
1074 			dst += (ETHER_ADDR_LEN * 2);
1075 			src += (ETHER_ADDR_LEN * 2);
1076 
1077 			hdr_len -= (ETHER_ADDR_LEN * 2);
1078 
1079 			*((uint16_t *)dst) = htons(ETHERTYPE_VLAN);
1080 			dst += 2;
1081 			*((uint16_t *)dst) = mp->m_pkthdr.ether_vtag;
1082 			dst += 2;
1083 
1084 			bytes -= ((ETHER_ADDR_LEN * 2) + 4);
1085 
1086 			bcopy(src, dst, bytes);
1087 			src += bytes;
1088 			hdr_len -= bytes;
1089 		} else {
1090 			bcopy(src, dst, bytes);
1091 			src += bytes;
1092 			hdr_len -= bytes;
1093 		}
1094 
1095 		hw->txr_next = (hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1096 		tx_cmd_count++;
1097 
1098 		while (hdr_len) {
1099 			tx_cmd = &hw->tx_ring_base[hw->txr_next];
1100 			bzero((void *)tx_cmd, sizeof(q80_tx_cmd_t));
1101 
1102 			bytes = QL_MIN((sizeof(q80_tx_cmd_t)), hdr_len);
1103 
1104 			bcopy(src, tx_cmd, bytes);
1105 			src += bytes;
1106 			hdr_len -= bytes;
1107 			hw->txr_next =
1108 				(hw->txr_next + 1) & (NUM_TX_DESCRIPTORS - 1);
1109 			tx_cmd_count++;
1110 		}
1111 	}
1112 
1113 	hw->txr_free = hw->txr_free - tx_cmd_count;
1114 
1115 	QL_UPDATE_TX_PRODUCER_INDEX(ha, hw->txr_next);
1116        	QL_DPRINT8((dev, "%s: return\n", __func__));
1117 	return (0);
1118 }
1119 
1120 /*
1121  * Name: qla_del_hw_if
1122  * Function: Destroys the hardware specific entities corresponding to an
1123  *	Ethernet Interface
1124  */
1125 void
1126 qla_del_hw_if(qla_host_t *ha)
1127 {
1128 	int	i;
1129 
1130 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1131 		QL_DISABLE_INTERRUPTS(ha, i);
1132 
1133 	qla_del_rcv_cntxt(ha);
1134 	qla_del_xmt_cntxt(ha);
1135 
1136 	ha->hw.flags.lro = 0;
1137 }
1138 
1139 /*
1140  * Name: qla_init_hw_if
1141  * Function: Creates the hardware specific entities corresponding to an
1142  *	Ethernet Interface - Transmit and Receive Contexts. Sets the MAC Address
1143  *	corresponding to the interface. Enables LRO if allowed.
1144  */
1145 int
1146 qla_init_hw_if(qla_host_t *ha)
1147 {
1148 	int		i;
1149 	uint8_t		bcast_mac[6];
1150 
1151 	qla_get_hw_caps(ha);
1152 
1153 	for (i = 0; i < ha->hw.num_sds_rings; i++) {
1154 		bzero(ha->hw.dma_buf.sds_ring[i].dma_b,
1155 			ha->hw.dma_buf.sds_ring[i].size);
1156 	}
1157 	/*
1158 	 * Create Receive Context
1159 	 */
1160 	if (qla_init_rcv_cntxt(ha)) {
1161 		return (-1);
1162 	}
1163 
1164 	ha->hw.rx_next = NUM_RX_DESCRIPTORS - 2;
1165 	ha->hw.rxj_next = NUM_RX_JUMBO_DESCRIPTORS - 2;
1166 	ha->hw.rx_in = ha->hw.rxj_in = 0;
1167 
1168 	/* Update the RDS Producer Indices */
1169 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 0, ha->hw.rx_next);
1170 	QL_UPDATE_RDS_PRODUCER_INDEX(ha, 1, ha->hw.rxj_next);
1171 
1172 	/*
1173 	 * Create Transmit Context
1174 	 */
1175 	if (qla_init_xmt_cntxt(ha)) {
1176 		qla_del_rcv_cntxt(ha);
1177 		return (-1);
1178 	}
1179 
1180 	qla_config_mac_addr(ha, ha->hw.mac_addr,
1181 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1182 
1183 	bcast_mac[0] = 0xFF; bcast_mac[1] = 0xFF; bcast_mac[2] = 0xFF;
1184 	bcast_mac[3] = 0xFF; bcast_mac[4] = 0xFF; bcast_mac[5] = 0xFF;
1185 	qla_config_mac_addr(ha, bcast_mac,
1186 		(ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 1);
1187 
1188 	qla_config_rss(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id);
1189 
1190 	qla_config_intr_coalesce(ha, (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id, 0);
1191 
1192 	for (i = 0; i < ha->hw.num_sds_rings; i++)
1193 		QL_ENABLE_INTERRUPTS(ha, i);
1194 
1195 	return (0);
1196 }
1197 
1198 /*
1199  * Name: qla_init_rcv_cntxt
1200  * Function: Creates the Receive Context.
1201  */
1202 static int
1203 qla_init_rcv_cntxt(qla_host_t *ha)
1204 {
1205 	device_t		dev;
1206 	qla_cdrp_t		cdrp;
1207 	q80_rcv_cntxt_rsp_t	*rsp;
1208 	q80_stat_desc_t		*sdesc;
1209 	bus_addr_t		phys_addr;
1210 	int			i, j;
1211         qla_hw_t		*hw = &ha->hw;
1212 
1213 	dev = ha->pci_dev;
1214 
1215 	/*
1216 	 * Create Receive Context
1217 	 */
1218 
1219 	for (i = 0; i < hw->num_sds_rings; i++) {
1220 		sdesc = (q80_stat_desc_t *)&hw->sds[i].sds_ring_base[0];
1221 		for (j = 0; j < NUM_STATUS_DESCRIPTORS; j++) {
1222 			sdesc->data[0] =
1223 				Q8_STAT_DESC_SET_OWNER(Q8_STAT_DESC_OWNER_FW);
1224 		}
1225 	}
1226 
1227 	phys_addr = ha->hw.rx_cntxt_req_paddr;
1228 
1229 	bzero(&cdrp, sizeof(qla_cdrp_t));
1230 
1231 	cdrp.cmd = Q8_CMD_CREATE_RX_CNTXT;
1232 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1233 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1234 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_rcv_cntxt_req_t));
1235 
1236 	if (qla_issue_cmd(ha, &cdrp)) {
1237 		device_printf(dev, "%s: Q8_CMD_CREATE_RX_CNTXT failed\n",
1238 			__func__);
1239 		return (-1);
1240 	} else {
1241 		rsp = ha->hw.rx_cntxt_rsp;
1242 
1243 		QL_DPRINT2((dev, "%s: rcv cntxt successful"
1244 			" rds_ring_offset = 0x%08x"
1245 			" sds_ring_offset = 0x%08x"
1246 			" cntxt_state = 0x%08x"
1247 			" funcs_per_port = 0x%08x"
1248 			" num_rds_rings = 0x%04x"
1249 			" num_sds_rings = 0x%04x"
1250 			" cntxt_id = 0x%04x"
1251 			" phys_port = 0x%02x"
1252 			" virt_port = 0x%02x\n",
1253 			__func__,
1254 			rsp->rx_rsp.rds_ring_offset,
1255 			rsp->rx_rsp.sds_ring_offset,
1256 			rsp->rx_rsp.cntxt_state,
1257 			rsp->rx_rsp.funcs_per_port,
1258 			rsp->rx_rsp.num_rds_rings,
1259 			rsp->rx_rsp.num_sds_rings,
1260 			rsp->rx_rsp.cntxt_id,
1261 			rsp->rx_rsp.phys_port,
1262 			rsp->rx_rsp.virt_port));
1263 
1264 		for (i = 0; i < ha->hw.num_rds_rings; i++) {
1265 			QL_DPRINT2((dev,
1266 				"%s: rcv cntxt rds[%i].producer_reg = 0x%08x\n",
1267 				__func__, i, rsp->rds_rsp[i].producer_reg));
1268 		}
1269 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1270 			QL_DPRINT2((dev,
1271 				"%s: rcv cntxt sds[%i].consumer_reg = 0x%08x"
1272 				" sds[%i].intr_mask_reg = 0x%08x\n",
1273 				__func__, i, rsp->sds_rsp[i].consumer_reg,
1274 				i, rsp->sds_rsp[i].intr_mask_reg));
1275 		}
1276 	}
1277 	ha->hw.flags.init_rx_cnxt = 1;
1278 	return (0);
1279 }
1280 
1281 /*
1282  * Name: qla_del_rcv_cntxt
1283  * Function: Destroys the Receive Context.
1284  */
1285 void
1286 qla_del_rcv_cntxt(qla_host_t *ha)
1287 {
1288 	qla_cdrp_t	cdrp;
1289 	device_t	dev = ha->pci_dev;
1290 
1291 	if (!ha->hw.flags.init_rx_cnxt)
1292 		return;
1293 
1294 	bzero(&cdrp, sizeof(qla_cdrp_t));
1295 
1296 	cdrp.cmd = Q8_CMD_DESTROY_RX_CNTXT;
1297 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.rx_cntxt_rsp)->rx_rsp.cntxt_id;
1298 
1299 	if (qla_issue_cmd(ha, &cdrp)) {
1300 		device_printf(dev, "%s: Q8_CMD_DESTROY_RX_CNTXT failed\n",
1301 			__func__);
1302 	}
1303 	ha->hw.flags.init_rx_cnxt = 0;
1304 }
1305 
1306 /*
1307  * Name: qla_init_xmt_cntxt
1308  * Function: Creates the Transmit Context.
1309  */
1310 static int
1311 qla_init_xmt_cntxt(qla_host_t *ha)
1312 {
1313 	bus_addr_t		phys_addr;
1314 	device_t		dev;
1315 	q80_tx_cntxt_rsp_t	*tx_rsp;
1316 	qla_cdrp_t		cdrp;
1317         qla_hw_t		*hw = &ha->hw;
1318 
1319 	dev = ha->pci_dev;
1320 
1321 	/*
1322 	 * Create Transmit Context
1323 	 */
1324 	phys_addr = ha->hw.tx_cntxt_req_paddr;
1325 	tx_rsp = ha->hw.tx_cntxt_rsp;
1326 
1327 	hw->txr_comp = hw->txr_next = 0;
1328 	*(hw->tx_cons) = 0;
1329 
1330 	bzero(&cdrp, sizeof(qla_cdrp_t));
1331 
1332 	cdrp.cmd = Q8_CMD_CREATE_TX_CNTXT;
1333 	cdrp.cmd_arg1 = (uint32_t)(phys_addr >> 32);
1334 	cdrp.cmd_arg2 = (uint32_t)(phys_addr);
1335 	cdrp.cmd_arg3 = (uint32_t)(sizeof (q80_tx_cntxt_req_t));
1336 
1337 	if (qla_issue_cmd(ha, &cdrp)) {
1338 		device_printf(dev, "%s: Q8_CMD_CREATE_TX_CNTXT failed\n",
1339 			__func__);
1340 		return (-1);
1341 	} else {
1342 		ha->hw.tx_prod_reg = tx_rsp->producer_reg;
1343 
1344 		QL_DPRINT2((dev, "%s: tx cntxt successful"
1345 			" cntxt_state = 0x%08x "
1346 			" cntxt_id = 0x%04x "
1347 			" phys_port_id = 0x%02x "
1348 			" virt_port_id = 0x%02x "
1349 			" producer_reg = 0x%08x "
1350 			" intr_mask_reg = 0x%08x\n",
1351 			__func__, tx_rsp->cntxt_state, tx_rsp->cntxt_id,
1352 			tx_rsp->phys_port_id, tx_rsp->virt_port_id,
1353 			tx_rsp->producer_reg, tx_rsp->intr_mask_reg));
1354 	}
1355 	ha->hw.txr_free = NUM_TX_DESCRIPTORS;
1356 
1357 	ha->hw.flags.init_tx_cnxt = 1;
1358 	return (0);
1359 }
1360 
1361 /*
1362  * Name: qla_del_xmt_cntxt
1363  * Function: Destroys the Transmit Context.
1364  */
1365 static void
1366 qla_del_xmt_cntxt(qla_host_t *ha)
1367 {
1368 	qla_cdrp_t	cdrp;
1369 	device_t	dev = ha->pci_dev;
1370 
1371 	if (!ha->hw.flags.init_tx_cnxt)
1372 		return;
1373 
1374 	bzero(&cdrp, sizeof(qla_cdrp_t));
1375 
1376 	cdrp.cmd = Q8_CMD_DESTROY_TX_CNTXT;
1377 	cdrp.cmd_arg1 = (uint32_t) (ha->hw.tx_cntxt_rsp)->cntxt_id;
1378 
1379 	if (qla_issue_cmd(ha, &cdrp)) {
1380 		device_printf(dev, "%s: Q8_CMD_DESTROY_TX_CNTXT failed\n",
1381 			__func__);
1382 	}
1383 	ha->hw.flags.init_tx_cnxt = 0;
1384 }
1385 
1386 /*
1387  * Name: qla_get_max_rds
1388  * Function: Returns the maximum number of Receive Descriptor Rings per context.
1389  */
1390 static int
1391 qla_get_max_rds(qla_host_t *ha)
1392 {
1393 	qla_cdrp_t	cdrp;
1394 	device_t	dev;
1395 
1396 	dev = ha->pci_dev;
1397 
1398 	bzero(&cdrp, sizeof(qla_cdrp_t));
1399 
1400 	cdrp.cmd = Q8_CMD_RD_MAX_RDS_PER_CNTXT;
1401 
1402 	if (qla_issue_cmd(ha, &cdrp)) {
1403 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1404 			__func__);
1405 		return (-1);
1406 	} else {
1407 		ha->hw.max_rds_per_cntxt = cdrp.rsp_arg1;
1408 		QL_DPRINT2((dev, "%s: max_rds_per_context 0x%08x\n",
1409 			__func__, ha->hw.max_rds_per_cntxt));
1410 	}
1411 	return 0;
1412 }
1413 
1414 /*
1415  * Name: qla_get_max_sds
1416  * Function: Returns the maximum number of Status Descriptor Rings per context.
1417  */
1418 static int
1419 qla_get_max_sds(qla_host_t *ha)
1420 {
1421 	qla_cdrp_t	cdrp;
1422 	device_t	dev;
1423 
1424 	dev = ha->pci_dev;
1425 
1426 	bzero(&cdrp, sizeof(qla_cdrp_t));
1427 
1428 	cdrp.cmd = Q8_CMD_RD_MAX_SDS_PER_CNTXT;
1429 
1430 	if (qla_issue_cmd(ha, &cdrp)) {
1431 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RDS_PER_CNTXT failed\n",
1432 			__func__);
1433 		return (-1);
1434 	} else {
1435 		ha->hw.max_sds_per_cntxt = cdrp.rsp_arg1;
1436 		QL_DPRINT2((dev, "%s: max_sds_per_context 0x%08x\n",
1437 			__func__, ha->hw.max_sds_per_cntxt));
1438 	}
1439 	return 0;
1440 }
1441 
1442 /*
1443  * Name: qla_get_max_rules
1444  * Function: Returns the maximum number of Rules per context.
1445  */
1446 static int
1447 qla_get_max_rules(qla_host_t *ha)
1448 {
1449 	qla_cdrp_t	cdrp;
1450 	device_t	dev;
1451 
1452 	dev = ha->pci_dev;
1453 
1454 	bzero(&cdrp, sizeof(qla_cdrp_t));
1455 
1456 	cdrp.cmd = Q8_CMD_RD_MAX_RULES_PER_CNTXT;
1457 
1458 	if (qla_issue_cmd(ha, &cdrp)) {
1459 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RULES_PER_CNTXT failed\n",
1460 			__func__);
1461 		return (-1);
1462 	} else {
1463 		ha->hw.max_rules_per_cntxt = cdrp.rsp_arg1;
1464 		QL_DPRINT2((dev, "%s: max_rules_per_cntxt 0x%08x\n",
1465 			__func__, ha->hw.max_rules_per_cntxt));
1466 	}
1467 	return 0;
1468 }
1469 
1470 /*
1471  * Name: qla_get_max_rcv_cntxts
1472  * Function: Returns the maximum number of Receive Contexts supported.
1473  */
1474 static int
1475 qla_get_max_rcv_cntxts(qla_host_t *ha)
1476 {
1477 	qla_cdrp_t	cdrp;
1478 	device_t	dev;
1479 
1480 	dev = ha->pci_dev;
1481 
1482 	bzero(&cdrp, sizeof(qla_cdrp_t));
1483 
1484 	cdrp.cmd = Q8_CMD_RD_MAX_RX_CNTXT;
1485 
1486 	if (qla_issue_cmd(ha, &cdrp)) {
1487 		device_printf(dev, "%s: Q8_CMD_RD_MAX_RX_CNTXT failed\n",
1488 			__func__);
1489 		return (-1);
1490 	} else {
1491 		ha->hw.max_rcv_cntxts = cdrp.rsp_arg1;
1492 		QL_DPRINT2((dev, "%s: max_rcv_cntxts 0x%08x\n",
1493 			__func__, ha->hw.max_rcv_cntxts));
1494 	}
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Name: qla_get_max_tx_cntxts
1500  * Function: Returns the maximum number of Transmit Contexts supported.
1501  */
1502 static int
1503 qla_get_max_tx_cntxts(qla_host_t *ha)
1504 {
1505 	qla_cdrp_t	cdrp;
1506 	device_t	dev;
1507 
1508 	dev = ha->pci_dev;
1509 
1510 	bzero(&cdrp, sizeof(qla_cdrp_t));
1511 
1512 	cdrp.cmd = Q8_CMD_RD_MAX_TX_CNTXT;
1513 
1514 	if (qla_issue_cmd(ha, &cdrp)) {
1515 		device_printf(dev, "%s: Q8_CMD_RD_MAX_TX_CNTXT failed\n",
1516 			__func__);
1517 		return (-1);
1518 	} else {
1519 		ha->hw.max_xmt_cntxts = cdrp.rsp_arg1;
1520 		QL_DPRINT2((dev, "%s: max_xmt_cntxts 0x%08x\n",
1521 			__func__, ha->hw.max_xmt_cntxts));
1522 	}
1523 	return 0;
1524 }
1525 
1526 /*
1527  * Name: qla_get_max_mtu
1528  * Function: Returns the MTU supported for a context.
1529  */
1530 static int
1531 qla_get_max_mtu(qla_host_t *ha)
1532 {
1533 	qla_cdrp_t	cdrp;
1534 	device_t	dev;
1535 
1536 	dev = ha->pci_dev;
1537 
1538 	bzero(&cdrp, sizeof(qla_cdrp_t));
1539 
1540 	cdrp.cmd = Q8_CMD_RD_MAX_MTU;
1541 
1542 	if (qla_issue_cmd(ha, &cdrp)) {
1543 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1544 		return (-1);
1545 	} else {
1546 		ha->hw.max_mtu = cdrp.rsp_arg1;
1547 		QL_DPRINT2((dev, "%s: max_mtu 0x%08x\n", __func__,
1548 			ha->hw.max_mtu));
1549 	}
1550 	return 0;
1551 }
1552 
1553 /*
1554  * Name: qla_set_max_mtu
1555  * Function:
1556  *	Sets the maximum transfer unit size for the specified rcv context.
1557  */
1558 int
1559 qla_set_max_mtu(qla_host_t *ha, uint32_t mtu, uint16_t cntxt_id)
1560 {
1561 	qla_cdrp_t	cdrp;
1562 	device_t	dev;
1563 
1564 	dev = ha->pci_dev;
1565 
1566 	bzero(&cdrp, sizeof(qla_cdrp_t));
1567 
1568 	cdrp.cmd = Q8_CMD_SET_MTU;
1569 	cdrp.cmd_arg1 = (uint32_t)cntxt_id;
1570 	cdrp.cmd_arg2 = mtu;
1571 
1572 	if (qla_issue_cmd(ha, &cdrp)) {
1573 		device_printf(dev, "%s: Q8_CMD_RD_MAX_MTU failed\n", __func__);
1574 		return (-1);
1575 	} else {
1576 		ha->hw.max_mtu = cdrp.rsp_arg1;
1577 	}
1578 	return 0;
1579 }
1580 
1581 /*
1582  * Name: qla_get_max_lro
1583  * Function: Returns the maximum number of TCP Connection which can be supported
1584  *	with LRO.
1585  */
1586 static int
1587 qla_get_max_lro(qla_host_t *ha)
1588 {
1589 	qla_cdrp_t	cdrp;
1590 	device_t	dev;
1591 
1592 	dev = ha->pci_dev;
1593 
1594 	bzero(&cdrp, sizeof(qla_cdrp_t));
1595 
1596 	cdrp.cmd = Q8_CMD_RD_MAX_LRO;
1597 
1598 	if (qla_issue_cmd(ha, &cdrp)) {
1599 		device_printf(dev, "%s: Q8_CMD_RD_MAX_LRO failed\n", __func__);
1600 		return (-1);
1601 	} else {
1602 		ha->hw.max_lro = cdrp.rsp_arg1;
1603 		QL_DPRINT2((dev, "%s: max_lro 0x%08x\n", __func__,
1604 			ha->hw.max_lro));
1605 	}
1606 	return 0;
1607 }
1608 
1609 /*
1610  * Name: qla_get_flow_control
1611  * Function: Returns the Receive/Transmit Flow Control (PAUSE) settings for
1612  *	PCI function.
1613  */
1614 static int
1615 qla_get_flow_control(qla_host_t *ha)
1616 {
1617 	qla_cdrp_t	cdrp;
1618 	device_t	dev;
1619 
1620 	dev = ha->pci_dev;
1621 
1622 	bzero(&cdrp, sizeof(qla_cdrp_t));
1623 
1624 	cdrp.cmd = Q8_CMD_GET_FLOW_CNTRL;
1625 
1626 	if (qla_issue_cmd(ha, &cdrp)) {
1627 		device_printf(dev, "%s: Q8_CMD_GET_FLOW_CNTRL failed\n",
1628 			__func__);
1629 		return (-1);
1630 	} else {
1631 		QL_DPRINT2((dev, "%s: flow control 0x%08x\n", __func__,
1632 			cdrp.rsp_arg1));
1633 	}
1634 	return 0;
1635 }
1636 
1637 /*
1638  * Name: qla_get_flow_control
1639  * Function: Retrieves hardware capabilities
1640  */
1641 void
1642 qla_get_hw_caps(qla_host_t *ha)
1643 {
1644 	//qla_read_mac_addr(ha);
1645 	qla_get_max_rds(ha);
1646 	qla_get_max_sds(ha);
1647 	qla_get_max_rules(ha);
1648 	qla_get_max_rcv_cntxts(ha);
1649 	qla_get_max_tx_cntxts(ha);
1650 	qla_get_max_mtu(ha);
1651 	qla_get_max_lro(ha);
1652 	qla_get_flow_control(ha);
1653 	return;
1654 }
1655 
1656 /*
1657  * Name: qla_hw_set_multi
1658  * Function: Sets the Multicast Addresses provided the host O.S into the
1659  *	hardware (for the given interface)
1660  */
1661 void
1662 qla_hw_set_multi(qla_host_t *ha, uint8_t *mta, uint32_t mcnt,
1663 	uint32_t add_multi)
1664 {
1665 	q80_rcv_cntxt_rsp_t	*rsp;
1666 	int i;
1667 
1668 	rsp = ha->hw.rx_cntxt_rsp;
1669 	for (i = 0; i < mcnt; i++) {
1670 		qla_config_mac_addr(ha, mta, rsp->rx_rsp.cntxt_id, add_multi);
1671 		mta += Q8_MAC_ADDR_LEN;
1672 	}
1673 	return;
1674 }
1675 
1676 /*
1677  * Name: qla_hw_tx_done_locked
1678  * Function: Handle Transmit Completions
1679  */
1680 static void
1681 qla_hw_tx_done_locked(qla_host_t *ha)
1682 {
1683 	qla_tx_buf_t *txb;
1684         qla_hw_t *hw = &ha->hw;
1685 	uint32_t comp_idx, comp_count = 0;
1686 
1687 	/* retrieve index of last entry in tx ring completed */
1688 	comp_idx = qla_le32_to_host(*(hw->tx_cons));
1689 
1690 	while (comp_idx != hw->txr_comp) {
1691 		txb = &ha->tx_buf[hw->txr_comp];
1692 
1693 		hw->txr_comp++;
1694 		if (hw->txr_comp == NUM_TX_DESCRIPTORS)
1695 			hw->txr_comp = 0;
1696 
1697 		comp_count++;
1698 
1699 		if (txb->m_head) {
1700 			bus_dmamap_sync(ha->tx_tag, txb->map,
1701 				BUS_DMASYNC_POSTWRITE);
1702 			bus_dmamap_unload(ha->tx_tag, txb->map);
1703 			bus_dmamap_destroy(ha->tx_tag, txb->map);
1704 			m_freem(txb->m_head);
1705 
1706 			txb->map = (bus_dmamap_t)0;
1707 			txb->m_head = NULL;
1708 		}
1709 	}
1710 
1711 	hw->txr_free += comp_count;
1712 
1713        	QL_DPRINT8((ha->pci_dev, "%s: return [c,f, p, pn][%d, %d, %d, %d]\n", __func__,
1714 		hw->txr_comp, hw->txr_free, hw->txr_next, READ_REG32(ha, (ha->hw.tx_prod_reg + 0x1b2000))));
1715 
1716 	return;
1717 }
1718 
1719 /*
1720  * Name: qla_hw_tx_done
1721  * Function: Handle Transmit Completions
1722  */
1723 void
1724 qla_hw_tx_done(qla_host_t *ha)
1725 {
1726 	if (!mtx_trylock(&ha->tx_lock)) {
1727        		QL_DPRINT8((ha->pci_dev,
1728 			"%s: !mtx_trylock(&ha->tx_lock)\n", __func__));
1729 		return;
1730 	}
1731 	qla_hw_tx_done_locked(ha);
1732 
1733 	if (ha->hw.txr_free > free_pkt_thres)
1734 		if_setdrvflagbits(ha->ifp, 0, IFF_DRV_OACTIVE);
1735 
1736 	mtx_unlock(&ha->tx_lock);
1737 	return;
1738 }
1739 
1740 void
1741 qla_update_link_state(qla_host_t *ha)
1742 {
1743 	uint32_t link_state;
1744 	uint32_t prev_link_state;
1745 
1746 	if (!(if_getdrvflags(ha->ifp) & IFF_DRV_RUNNING)) {
1747 		ha->hw.flags.link_up = 0;
1748 		return;
1749 	}
1750 	link_state = READ_REG32(ha, Q8_LINK_STATE);
1751 
1752 	prev_link_state =  ha->hw.flags.link_up;
1753 
1754 	if (ha->pci_func == 0)
1755 		ha->hw.flags.link_up = (((link_state & 0xF) == 1)? 1 : 0);
1756 	else
1757 		ha->hw.flags.link_up = ((((link_state >> 4)& 0xF) == 1)? 1 : 0);
1758 
1759 	if (prev_link_state !=  ha->hw.flags.link_up) {
1760 		if (ha->hw.flags.link_up) {
1761 			if_link_state_change(ha->ifp, LINK_STATE_UP);
1762 		} else {
1763 			if_link_state_change(ha->ifp, LINK_STATE_DOWN);
1764 		}
1765 	}
1766 }
1767 
1768 int
1769 qla_config_lro(qla_host_t *ha)
1770 {
1771 #if defined(INET) || defined(INET6)
1772 	int i;
1773         qla_hw_t *hw = &ha->hw;
1774 	struct lro_ctrl *lro;
1775 
1776 	for (i = 0; i < hw->num_sds_rings; i++) {
1777 		lro = &hw->sds[i].lro;
1778 		if (tcp_lro_init(lro)) {
1779 			device_printf(ha->pci_dev, "%s: tcp_lro_init failed\n",
1780 				__func__);
1781 			return (-1);
1782 		}
1783 		lro->ifp = ha->ifp;
1784 	}
1785 	ha->flags.lro_init = 1;
1786 
1787 	QL_DPRINT2((ha->pci_dev, "%s: LRO initialized\n", __func__));
1788 #endif
1789 	return (0);
1790 }
1791 
1792 void
1793 qla_free_lro(qla_host_t *ha)
1794 {
1795 #if defined(INET) || defined(INET6)
1796 	int i;
1797         qla_hw_t *hw = &ha->hw;
1798 	struct lro_ctrl *lro;
1799 
1800 	if (!ha->flags.lro_init)
1801 		return;
1802 
1803 	for (i = 0; i < hw->num_sds_rings; i++) {
1804 		lro = &hw->sds[i].lro;
1805 		tcp_lro_free(lro);
1806 	}
1807 	ha->flags.lro_init = 0;
1808 #endif
1809 }
1810 
1811 void
1812 qla_hw_stop_rcv(qla_host_t *ha)
1813 {
1814 	int i, done, count = 100;
1815 
1816 	while (count--) {
1817 		done = 1;
1818 		for (i = 0; i < ha->hw.num_sds_rings; i++) {
1819 			if (ha->hw.sds[i].rcv_active)
1820 				done = 0;
1821 		}
1822 		if (done)
1823 			break;
1824 		else
1825 			qla_mdelay(__func__, 10);
1826 	}
1827 }
1828